9-1 简谐运动的动力学特征

合集下载

简谐运动的动力学和运动学

简谐运动的动力学和运动学

2 简谐振动
简谐运动 最简单、最基本的振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动的物体
第九章 振 动
5
物理学
第五版
9-1 简谐振动的动力学和运动学
二 简谐振动动力学特征
弹簧振子的振动
l0 k
m
A
o
x0 F 0
第九章 振 动
x
A
6
物理学
第五版
9-1 简谐振动的动力学和运动学
振动的成因
a 回复力 b 惯性
(2)简谐运动的动力学方程 d2 x 2 x
(3)简谐运动的运动学描述 dt 2
x A cos(t ) v A sin(t )
(4)加速度与位移成正比而方向相反
a 2 x
第九章 振 动
25
物理学
第五版
9-1 简谐振动的动力学和运动学
弹簧振子 k m
单摆 g l
复摆 mgl
16
物理学
第五版
9-1 简谐振动的动力学和运动学
2 周期、频率
x Acos(t ) Acos[(t T ) ]
周期 T 2π
x
注意
A
弹簧振子周期 o
A
T 2π m k
xt图
Tt
T 2
第九章 振 动
17
物理学
第五版
9-1 简谐振动的动力学和运动学
x Acos(t ) Acos[(t T ) ]
x Acos(t )
x x t图
A
T 2π 取 0
o
t
T
A
v A sin(t )
v
A
A cos(t π)

简谐运动-高考物理知识点

简谐运动-高考物理知识点

简谐运动-高考物理知识点
物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。

2.动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。

简谐运动的动力学特征是判断物体是否为简谐运动的依据。

3.简谐运动的运动学特征a=-kx加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。

4.简谐运动加速度的大小和方向都在变化,是一种变加速运动。

简谐运动的运动学特征也可用来判断物体是否为简谐运动。

5.简谐运动图象:简谐运动的位移—时间图象通常称为振动图象,也叫振动曲线。

简谐运动振动图象的特点所有简谐运动的振动图象都是正弦或余弦曲线。

6.简谐运动图象的物理意义表示振动物体相对于平衡位置的位移随时间的变化情况,或反映位移随时间的变化规律。

振动图象描述的是一个振动质点在各个不同时刻相对于平衡位置的位移,不是反映质点的运动轨迹。

简谐运动的特征

简谐运动的特征

简谐运动的特征简谐运动是物体在恢复力作用下进行周期性往复运动的一种运动状态。

它具有以下几个特征:首先,简谐运动的运动轨迹通常是一条直线,或者是一个圆周。

在直线运动的情况下,物体的位置随时间的推移呈现出正弦曲线的形状;而在圆周运动的情况下,物体处于圆的周围运动,运动轨迹是一个圆。

其次,简谐运动的物体周期性地往复运动。

也就是说,物体在一个周期内经历相同的过程,并且在不同阶段的速度和加速度的变化都是相同的。

这使得简谐运动成为一种非常规律且可预测的物理现象。

第三,简谐运动的物体受到恢复力的作用。

恢复力是指使物体向运动平衡位置恢复的力量,它的大小与物体偏离平衡位置的距离成正比。

当物体偏离平衡位置越大时,恢复力越大;当物体接近平衡位置时,恢复力越小。

这种力量的作用使得物体具有了周期性的往复运动。

第四,简谐运动的物体具有振幅和频率两个重要的物理量。

振幅是指物体在运动过程中离开平衡位置的最大距离,它反映了物体运动的幅度大小;频率是指单位时间内运动的周期数,它反映了物体运动的快慢程度。

振幅和频率之间存在着一种关系:频率越高,振幅越小;频率越低,振幅越大。

简谐运动在生活和科学研究中具有重要的应用价值。

它不仅在机械振动和波动研究中有广泛应用,还在其他领域如电子工程、光学、天文学等方面发挥着重要作用。

例如,在电子工程中,简谐运动的概念被应用于交流电路和振荡器的设计与分析;在天文学中,简谐运动的理论被用来描述行星、卫星等天体的轨道运动。

总之,简谐运动作为一种具有周期性和规律性的运动,具有明显的特征和重要的应用价值。

理解和掌握简谐运动的特点可以帮助我们深入了解自然界中的物理规律,并且为科学技术的发展提供了基础。

高考简谐运动及其图像全解读

高考简谐运动及其图像全解读

图1 教案9-1 简谐运动一、教学目标:1.知道机械振动是物体机械运动的另一种形式。

知道机械振动的概念。

2.知道什么是简谐运动,理解间谐运动回复力的特点。

3.理解简谐运动在一次全振动过程中加速度、速度的变化情况。

4.知道简谐运动是一种理想化模型,了解简谐运动的若干实例,知道判断简谐运动的方法以及研究简谐运动的意义。

5.培养学生的观察力、逻辑思维能力和实践能力。

二、教学重点:简谐运动的规律三、教学难点:简谐运动的运动学特征和动力学特征四、教学方法:实验演示和多媒体辅助教学五、教 具:轻弹簧和小球,水平弹簧振子,气垫式弹簧振子,自制CAI 课件,计算机,大屏幕六、教学过程(一)新课引入【演示】演示图1所示实验,在弹簧下端挂一个小球,拉一下小球,引导学生注意观察小球的运动情况。

(培养学生观察实验的能力)提问学生:小球的运动有哪些特点?(引发思考,激发兴趣)学生讨论,然后请一位学生归纳。

(培养学生表达能力)师生共同分析后,抓住“中心两侧”和“往复性”两个基本特征,得出“机械振动”的概念。

师生一起列举生活中有关振动的例子,增强感性认识,进一步提出,“研究振动要从最简单、最基本的振动入手,这就是简谐运动”。

(这实际上是交给学生一种研究问题的方法)(二)进行新课图21、 简谐运动的特点【演示】演示水平弹簧振子(小球)的振动和气垫式弹簧振子(滑块)的振动(提醒学生注意观察他们振动的时间),(建立理想模型概念,隐含振动产生的条件。

)说明:小球和滑块质量相同,连接的弹簧也相同(为避免这些因素对问题分析的干扰)。

提出问题(由学生思考回答)①、小球和滑块谁振动的时间长?为什么?(观察结果,滑块比小球振动时间长。

原因是小球受摩擦阻力较大,滑块受到的阻力小。

)②、如果小球受到更大的摩擦阻力,其结果如何?(振动时间更短,甚至不振动。

) ③、如果把滑块和小球受到的阻力忽略不计,弹簧的质量比滑块和小球的质量小得多,也忽略不计,其结果如何?(滑块和小球将持续振动。

高中物理:简谐运动的特征及分析方法

高中物理:简谐运动的特征及分析方法

一、简谐运动特征
1、动力学特征:,注意k不等同于弹簧的劲度系数,是由振动装置本身决定的常数;动力学特征也是判断某机械运动是否为简谐运动的依据。

2、运动学特征:,此式表明加速度也跟位移大小成正比,并总指向平衡位置。

由此可见,简谐运动是一变加速运动,且加速度和速度都在做周期性的变化。

3、能量特征:机械能守恒,注意振动物体通过平衡位置时势能为零的说法不够确切,应说成此位置势能最小。

4、对称特征:关于平衡位置对称的两点等物理量的大小相等,此外还体现在过程量上的相等,如从某点到平衡位置的时间和从平衡位置到与该点关于平衡位置对称点的时间相同等等。

二、简谐运动的分析方法
1、判断振动是简谐运动的思路:正确受力分析;找出平衡位置
();设物体偏离平衡位置位移为x,找到,即可得证。

2、判断简谐运动的变化的思路:
例、如图所示,一个质点在平衡位置O点附近做简谐运动,若从O点开始计时,经过3s质点第一次经过M点,再继续运动,又经过2s它第二次经过M点;则该质点第三次经过M点所需的时间是_______________。

解析:设图中a、b两点为质点振动过程中的最大位移处,若开始质点从O
点向右运动,O→M历时3s,M→b→M历时2s,则=4s,T=16s,质点第三次经过M点所需时间
t=16s-2s=14s。

若开始计时时刻质点从O点向左运动,O→a→O→M历时3s。

M→b→M历时2s,则,质点第三次经过M点所需时

本题的求解关键在于灵活运用简谐运动中的对称性,同时还要注意振动方向的不确定性造成此题的多解;除此之外,对简谐运动过程中各个物理量在四个T/4时段内和五个特殊时刻的情况分析也要清楚。

简谐运动

简谐运动

准弹性力
系统本身决定的常数
动力学方程:
在水平方向上:
弹簧振子
F kx
由牛顿第二定律
d 2x kx m 2 dt
k 令 2 m
则有
d x 2 x 0 2 dt
二阶齐次常 微分方程
2
一般写成: 或:
x A sin t x A cost
振动和波动
共同特征:运动在时间、空间上的周期性
振动: 任何物理量在某一定值附近随时间周期性变化
波动: 振动在空间的传播
振动
机械振动:物体在某一位置附近作周期往复运动 电磁振荡:电场、磁场随时间作周期性变化
简谐振动(简谐运动):最简单、最基本的振动
9-1简谐振动
一、简谐振动的基本特征
弹簧振子
轻弹簧 k + 刚体 m (平动~质点) 集中弹性 集中惯性
解得
2 2 v v 2 A x0 02 x 2 2
的状态如何就决定了系 统未来的振 但计算A的大小时不一定非用初 始 条件,只要同时告诉某 时刻的x与
幅A的大小。所以A由初始条件决定。
相应的v,又知道,就可以求出A。
3、初相位
初相:
由 t = 0时
x0 A cos v0 A sin
(1)、相位 t 是确定振动状态的物理量
(2) ( t )与状态参量 x,v有一一对应的关系
x A cos(t ); v A sin(t )
当 t 例:

3
时:
A x , 2
A x , 2
3 v A 2
质点在 x A 2 处以速率 v向 x方向运动

高中物理知识点总结-简谐运动

高中物理知识点总结-简谐运动

高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。

简谐运动的力和能量特征

简谐运动的力和能量特征
若振子运动到平衡位置左侧,此时受到向右的指向平衡位置的作用力.
运动中的速度变化
A→O:弹力方向与速度方向相同,物体作加速运动. O→B:弹力方向与速度方向相反.物体作减速运动. 物体到达平衡位置时的速度最大.
2,简谐运动能量的特征:
AOLeabharlann B将振子从B点释放后在弹簧弹力(回复力)作用下,振子向左运 动,速度加大,弹簧形变(位移)减少,弹簧的弹性势能转化 为振子的动能。当回到平衡位置O时,弹簧无形变,弹性势能为 零,振子动能达到最大值,这时振子的动能等于它在最大位移 处(B点)弹簧的弹性势能,也就是等于系统的总机械能。

2.简谐运动特征
(1)力的特征:物体离开平衡位置后,总是受 到一个方向指向平衡位置,大小与物体离开 平衡位置的距离成正比的力的作用,则此物 体一定在作简谐运动。 (2)运动特征:运动图象是具有正弦或余弦函 数的规律,具有周期性.
振子受力变化
若振子运动到平衡位置右侧,此时受到向左的指向平衡位置的作用力.
解:设物体静止时拉伸弹簧长度为x0,又向下拉伸距 离为x1,取向竖直向下为正方向.
F0=-kx0=-mg F=-k(x0+x)=-mg-kx
Fo G
F O’ xo O G O’ O x A
F回=-F+mg =- (mg+kx)+mg =-kx 所以物体的振动是简谐运动.
知识应用:
1.简谐运动属于下列哪一种运动? A.匀加速运动 B.匀减速运动. 动. D非匀变速运动 ( ) C.匀速直线运
1、回复力是效果力,它可以是弹力,也可以是其它力;可以是 一个力,也可以是几个力的合力; 或是某个力的分力。 2、回复力的方向总是指向平衡位置,回复力为零的位置就是平衡 位置。 3.回复力的方向与位移方向相反.

简谐振动的动力学特征

简谐振动的动力学特征

= A [cosω0t cosα1 sinω0t sinα1] + A2 [cosω0t cosα2 sinω0t sinα2 ] 1 = ( A cosα1 + A2 cosα2 ) cosω0t ( A sinα1 + A2 sinα2 ) sinω0t 1 1
令:
Acosα = A cosα1 + A2 cosα2 1 Asinα = A sinα1 + A2 sinα2 1
x = cos(ω0t +α)
2 2 & x a = v = && = Aω0 cos(ω0t +α ) = Aω0 cos(ω0t +α +π ) π 设: φx = ω0t +α , φv = ω0t +α + , φa = ω0t +α +π 2 π π 则, φv φx = , φa φv = , φa φx = π
x = Acos(ω0t +α)
1 2 2 1 2 1 Ek = kA sin (ω0t +α ), Ep = kx = kAcos2 (ω0t +α ) 2 2 2
弹簧振子的总能为: 故,弹簧振子的总能为:E = E
k
+ Ep
由此可见:动能和势能互相转化. 由此可见:动能和势能互相转化.
22
2 例 若单摆的振幅为 θ0 ,试证明悬线所受的最大拉力等于 mg(1+θ0 )
23
24
§9-4 简谐振动的合成 一,同方向同频率简谐振动的合成
设质点参与同方向同频率的两个简谐振动: 设质点参与同方向同频率的两个简谐振动:
x1 = A cos(ω0t +α1 ) 1

大学物理第九章简谐运动

大学物理第九章简谐运动

t 确定, 振动状态确定
O
A
O X X
初相位:=/3
判断: t = 0, 振子的初位移、初速度 x0=A/2, v0<0(向x轴负方向运动)
用旋转矢量描述简谐振动:
O
O X 判断: t = 0,
A
X
=/2
振子的初位移、初速度
x0=0, v0<0 (向x轴负方向运动)
用旋转矢量描述简谐振动:
14
讨论

相位差:表示两个相位之差
(1)对于两个同频率的简谐运动,相位 差表示它们间步调上的差异(解决振动合成 问题). x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
(t 2 ) (t 1 )
2 1
15
合成
简谐运动 谐振子 分解 复杂振动
作简谐运动的物体
8
弹簧振子的振动模型
弹簧和一谐振子组成的振动系统。
l0 k
m
x
C
o
B
x xB F FB
x 0 F 0 平衡位置
x xc v 0
9
振动的成因
a 回复力
b 惯性
10
弹簧振子的动力学分析
F
o
F kx ma
2
m
x
解得 x A cos(t )
简谐运动方程
积分常数,根据初始条件确定
12
由 x A cos(t )
简谐运动方程
简谐振动的各 阶导数也都作 简谐振动
dx 得 v A sin(t ) dt A cos t 2 d2 x a 2 A 2 cos(t ) dt

简谐振动的动力学特征

简谐振动的动力学特征

课程设计画布一、教学目标本课程的教学目标是让学生掌握第三章:生物的遗传与变异的核心概念和原理。

知识目标包括:•能够描述基因的概念和其在遗传中的作用。

•能够解释DNA的结构和复制过程。

•能够阐述孟德尔遗传定律及其在现代遗传学中的应用。

•能够描述基因突变和其对生物体影响。

技能目标则要求学生:•能够运用遗传学知识解决简单的实际问题。

•能够使用实验数据来验证遗传学假说。

•能够通过绘图或模型制作来解释遗传学过程。

情感态度价值观目标旨在培养学生的:•对生命科学探究的兴趣和好奇心。

•尊重科学探究过程和结果的态度。

•认识生物技术的意义和潜在价值。

二、教学内容本章节的教学内容将依据《高中生物》教材的第三章,详细安排如下:1.基因与遗传:介绍基因的定义,解释基因如何控制生物的特性。

2.DNA的结构与复制:阐述DNA的双螺旋结构,演示DNA复制的过程。

3.孟德尔遗传定律:详细讲解孟德尔的两大遗传定律,并通过实例分析其应用。

4.基因突变:探讨基因突变的类型、原因及对生物体的影响。

5.遗传学实验技术:介绍常见的遗传学实验技术,如杂交实验和基因工程。

三、教学方法为达成上述教学目标,将采用以下教学方法:•讲授法:用于讲解基础理论和概念。

•讨论法:鼓励学生就遗传学案例进行讨论,促进深入理解。

•实验法:指导学生完成遗传学相关实验,增强实践操作能力。

•案例分析法:分析真实或模拟的遗传学案例,培养学生解决问题的能力。

四、教学资源教学资源的准备将包括:•教材《高中生物》及相关辅助阅读材料。

•多媒体教学课件,包括视频和动画资料。

•实验室设备,如显微镜、DNA模型等,用于实验教学。

•在线资源库,提供额外的学习资料和互动平台。

以上课程设计画布内容围绕教学目标、教学内容、教学方法和教学资源展开,旨在为学生提供一个清晰、有序、互动和富有启发性的学习环境。

五、教学评估为全面评估学生对第三章:生物的遗传与变异内容的掌握情况,将采用以下评估方式:1.平时表现:通过课堂提问、讨论参与度等评估学生的理解力和积极性。

9-1简谐运动 振幅 周期和频率 相位

9-1简谐运动 振幅 周期和频率 相位

当 x0 0 、v0 0时的 取在第三象限的值;
当 x0 0 、v0 0时的 取在第四象限的值;
第九章 振 动
22
物理学
第五版
9-1 讨论
简谐运动 振幅 周期和频率 相位
已知: t 0, x 0, v0 0 求:
0 A cos π 2 v0 A sin 0
12
物理学
第五版
9-1
简谐运动 振幅 周期和频率 相位
A
v A sin(t ) π A cos(t ) 2 2 a A cos( t )
A cos( t π)
2
x A cos(t ) 2π T 取 0
20
物理学
第五版
9-1
简谐运动 振幅 周期和频率 相位
五、常数 A和 的确定 x A cos( t )
v A sin(t )
初始条件 t
2
0 x x0 v v0

v0
2 2

A x0
v0 tan x0
第九章
对给定的振动系统, 周期T或角频率由系统 本身性质决定,振幅A和 初相由初始条件决定.
第九章 振 动
6
物理学
第五版
9-1
简谐运动 振幅 周期和频率 相位
振动的成因:
F kx
——回复力
回复力
+
惯性
振 动
7
第九章
物理学
第五版
9-1
简谐运动 振幅 周期和频率 相位
根据胡克定律和牛顿第二定律得
F kx ma k a x m k 2 2 a x 得 令 m

简谐运动的动力学方程

简谐运动的动力学方程
在振动过程中, 物体所受到的合外力与其相对于平衡位 置的位移成正比而反向(始终指向平衡位置), 这样的力称为 线性恢复力.
简谐运动的动力学方程
由牛顿第二定律
m d 2x kx dt2

d2x k x 0
dt2 m

2 k
m

d2x2 x 0
dt2
—简谐运动动力学方程
微分方程的解为 x Acos(t)
(1)单摆
如图, 细线的上端固定, 另一 端悬挂一可看作质点, 质量为 m 的重物, 细线的质量和伸长可忽 略不计. 这一振动系统叫做单摆. 重物叫做摆球, 细线叫做摆线.
若把摆球从平衡位置略为拉 开后放手, 摆球就在竖直平面内 来回摆动.
解: 规定: 右方顺时针 > 0 左方逆时针 < 0
在忽略空气阻力的情况下, 合外力沿 切线方向的分力(即重力分力) 为
它拉开一个微小角度 θ后释放. 若忽
略阻力和摩擦力, 则物体将绕轴 O作微 小的自由摆动. 这样的装置叫做复摆.
简谐运动的动力学方程
简谐运动的动力学方程
解: 复摆在力矩 M的作用下的作用下的作用下的作用下,,由
定定轴律转动定M律由m定g轴l转J动定d律2由定轴转动定律由定轴转动
dt2
动力学方程为 d2 mgl
Fτ mgsin
切向运动方程为
mgsin maτ ml
d2
dt2

d2 g sin 0
dt2 l
为非简谐运动.
简谐运动的动力学方程

当θ很小时 < 50 0.0873rad sin
为简谐运动 d22
dt2
0
单摆的角频率和周期分别为

简谐运动ppt课件

简谐运动ppt课件

解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6

5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去

2022-2023高中物理--机械振动--第三节:简谐运动的回复力和能量

2022-2023高中物理--机械振动--第三节:简谐运动的回复力和能量

简谐运动的回复力和能量一、知识点梳理1.简谐运动的回复力(1)回复力①定义:振动物体偏离平衡位置后,所受到的使它回到平衡位置的力叫做回复力. ②回复力是根据力的作用效果命名的,它可以是弹力,也可以是其他力(包括摩擦力),或几个力的合力,或是某个力的分力,物体沿直线振动时回复力就是合外力,沿圆弧振动时回复力是合外力在圆弧切线方向上的分力.③回复力的方向总是指向平衡位置,回复力为零的位置就是平衡位置(沿圆弧振动时,物体经平衡位置时回复力为零,但合外力不为零). (2)简谐运动的动力学特征:回复力kx F -=①回复力kx F -=中的k 是比例系数,并非弹簧的劲度系数,其值由振动系统决定,对水平弹簧振子,回复力仅由弹簧弹力提供,k 即为劲度系数,由弹簧决定,与振幅无关,其单位是N/m .②回复力的大小跟位移大小成正比,“—”号表示回复力与位移的方向相反. ③如果质点所受的回复力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,则质点的运动就是简谐运动.(3)简谐运动的运动学特征:加速度m kx a -=①简谐运动是一种变加速的往复运动,“—”号表示加速度a 方向与位移x 方向相反. ②一个物体是否做简谐运动,就是看它是否满足简谐运动的受力的特点或运动特征,即回复力是否满足kx F -=或加速度是否满足mkx a -=.例1、做简谐振动的物体,当振子的位移为负值时,以下说法中正确的是( ) A .速度一定为正值,加速度一定为负值 B .速度一定为负值,加速度一定为正值 C .速度不一定为正值,但加速度一定为正值 D .速度不一定为负值,但加速度一定为负值例2、(多选)关于回复力,下列说法中正确的是( ) A .回复力就是物体所受各力中指向平衡位置的力 B .回复力一定是物体所受的合力C .回复力是从力的效果来命名的,可以是弹力,也可以是摩擦力,还可以是几个力的合力D .回复力与向心力都是以作用效果命名的2.简谐运动的能量(1)定义做简谐运动的物体在振动中经过某一位置时所具有的势能和动能之和,称为简谐运动的能量.(2)公式 :221kA E =,式中k 为回复力F 与位移的比例常数,A 为振动的振幅. (3)关于简谐运动能量的说明①做简谐运动的物体能量的变化规律:只有动能和势能的相互转化,对弹簧振子而言,机械能守恒. 对简谐运动来说,一旦供给系统一定的能量,使它开始振动,它就以一定的振幅永不停息地持续振动,简谐运动是一种理想化的振动.振动过程是一个动能和势能不断转化的过程.②简谐运动中的能量跟振幅有关,振幅越大,振动的能量越大.在简谐运动中,振动的能量保持不变,所以振幅保持不变,只要没有能量损耗,它将永不停息地振动下去,因此简谐运动又称等幅振动.③在振动的一个周期内,动能和势能完成两次周期性变化,经过平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小.例3、(多选)一质点做简谐运动的图象如图所示,则下列结论中,正确的是( ) A .质点速度最大而加速度为零的时刻分别是0.1 s 、0.3 s B .质点速度为零而加速度为负方向最大值的时刻分别是0、0.4 s C .质点所受的回复力方向由正变负的时刻是0.3 sD .振动系统势能最大而加速度为正方向最大值的时刻是0.3 s二、技巧总结1.简谐运动的判定方法(1)简谐运动的位移一时间图象是正弦曲线或余弦曲线.(2)简谐运动物体所受的力满足kx F -=,即回复力F 与位移x 成正比且方向总相反. 用kx F -=判定振动是否是简谐运动的步骤: ①找出振动的平衡位置;②让物体沿振动方向偏离平衡位置的位移为x ; ③对物体进行受力分析;④规定正方向(一般规定位移的方向为正),求出指向平衡位置的合力(回复力),判断是否符合kx F -=.例4、如图所示,劲度系数为k 的弹簧上端固定在天花板上,下端挂一质量为m 的小球,小球静止后,再向下将弹簧拉长x ,然后放手,小球开始振动.(1)请证明小球的振动为简谐运动; (2)求小球振动的振幅;(3)求小球运动到最高点的加速度 .例5、如图所示,在光滑水平面上,用两根劲度系数分别为1k 、2k 的轻质弹簧系住一个质量为m 的小球. 开始时,两弹簧均处于原长,后使小球向左偏离x 后放手,可以看到小球将在水平面上做往复振动,试问小球是否做简谐运动?2.做简谐运动的物体受力情况的分析方法物体做简谐运动时,其运动的加速度时刻在变化.在分析物体的受力情况时,首先要判断出加速度的方向,然后根据牛顿第二定律ma F 分析出所要求的力.对于连接体问题,可以利用整体法求出加速度,然后根据隔离法求相互作用力;也可以先利用相互作用力求出加速度,然后利用整体法求合外力.例6、在光滑水平面上有一弹簧振子,弹簧的劲度系数为k,振子质量为M, 振动的最大速度为v. 如图所示,当振子在最大位移为A 的时刻把质量为m 的物体轻放其上,假定最大静摩擦力等于滑动摩擦力,则:(1)要保持物体和振子一起振动,二者间动摩擦因数至少是多少? (2)物体和振子一起振动时,二者过平衡位置的速度多大?振幅又是多大?3.简谐运动中位移、回复力、加速度、速度、动能、势能的变化规律(1)位移的变化规律振动中的位移x 都是以平衡位置为起点,因此,方向就是从平衡位置指向末位置的方向,大小就是这两位置间的距离,在两个“端点”时位移最大,在平衡位置位移为零. (2)加速度与回复力的变化规律加速度a 的变化与回复力的变化是一致的,在两个“端点”最大,在平衡位置为零,方向总指向平衡位置. (3)速度变化规律速度大小v 与加速度a 的变化恰好相反,在两个“端点”为零,在平衡位置最大,除两个“端点”外任何一个位置的速度方向都有两种可能. (4)动能变化规律动能大小与速度大小对应,在两端点为零,在平衡位置最大. (5)势能变化规律势能大小变化与动能大小变化恰好相反,在两端点最大,在平衡位置为零.4. 简谐运动的能量曲线做简谐运动的物体在运动的过程中,只有回复力做功,存在着振子动能k E 和系统势能p E 之间的相互转化,振动的总能量等于动能k E 和系统势能p E 之和,即p k E E E +=.简谐运动的振动方程为)cos(αω+=t A x .振动的总能量221kAE = ①其中)(cos 2121222αω+==t kA kx E p ② )(sin 2121212222αω+=-=t kA kx kA E k ③右图甲表示简谐运动动能k E 或势能p E 随时间t 的变化曲线,图乙表示简谐运动的动能k E 或势能p E 随位移x 的变化曲线.由②式可知,势能曲线是通过坐标原点O 、且具有横向对称性的抛物线;而①式则表明,总能量曲线是一条平行于x 轴的水平线,它与势能曲线分别交于坐标为A x +=的点和A x -=的点. 由②③式可知,动能、势能随时间变化的周期都是振动周期的一半. 由于简谐运动的机械能与振幅的二次方成正比,所以对于确定的谐振子,振幅越大,振动越强烈,能量也就越大.振幅的二次方可用来表示简谐运动的强度. 这一结论对于其他形式的简谐运动系统同样适用.三、针对练习1.(多选)在下述各力中,属于根据力的性质命名的是( ) A .弹力 B .回复力C .向心力D .摩擦力2.做简谐运动的物体,通过平衡位置时,其( ) A .合外力为零 B .回复力为零C .加速度为零D .速度为零3.(多选)做简谐运动的振子每次通过同一位置时,相同的物理量是( ) A .速度 B .加速度 C .位移 D .动能4.一个做简谐运动的物体,每次有相同的动能时,下列说法正确的是( ) A .一定具有相同的势能 B .一定具有相同的速度 C .一定具有相同的加速度 D .一定具有相同的位移5.在水平方向上做简谐运动的弹簧振子如图所示,O 为平衡位置,振子在A 、B 之间振动,图示时刻振子所受的力有( )A .重力、支持力和弹簧的弹力B .重力、支持力、弹簧弹力和回复力C .重力、支持力和回复力D .重力、支持力、摩擦力和回复力6.(多选)甲、乙两弹簧振子,振动图象如图所示,则可知( ) A .甲速度为零时,乙加速度最大 B .甲加速度为零时,乙速度最小C .1.25s ~1.5 s 时间内,甲的回复力大小增大,乙的回复力 大小减小D .甲、乙的振动频率之比2:1:=乙甲f fE .甲、乙的振幅之比1:2:=乙甲A A7.一平台竖直方向做简谐运动,一物体置于振动平台上随平台一起运动,当振动 平台处于什么位置时,物体对平台的压力最大( )A .当振动平台运动到最高点时B .当振动平台向下运动过振动中心时C .当振动平台运动到最低点时D .当振动平台向上运动过振动中心时8.(多选)做简谐运动的弹簧振子,振子质量为m ,最大速率为v , 则下列说法中正确的是( )A .从某时刻算起,在半个周期的时间内,回复力做的功一定为零B .从某时刻算起,在半个周期的时间内,回复力做的功可能是零到221mv 之间的某一个值 C .从某时刻算起,在半个周期的时间内,速度变化量一定为零D .从某时刻算起,在半个周期的时间内,速度变化量的大小可能是零到v 2之间的某一个值9.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板. 一段时间内货物在竖直方向的振动可视为简谐运动,周期为T . 取竖直向上为正方向,以某时刻作为计时起点,即0=t , 其振动图象如图所示,则( )A .T t 41=时,货物对车厢底板的压力最大 B .T t 21=时,货物对车厢底板的压力最小C .T t 43=时,货物对车用底板的压力最大D .T t 43=时,货物对车用底板的压力最小10.一个质点以O 为中心做简谐运动,位移随时间变化的图像如图所示,a 、b 、c 、d 表示的原点在不同时刻的相应位置下,下列说法正确的( ) A .质点在位置b 比位置d 时相位超前4π B .质点通过位置b 时,相对平衡位置的位移2A C .质点从位置a 到c 和从位置b 到d 所用时间相等 D .质点从位置a 到b 和从b 到c 的平均速度相等11.一质点做简谐运动. 质点的位移随时间变化的规律如图所示,则从图中可以看出( ) A .质点做简谐运动的周期为5s B .质点做简谐运动的振幅为4cm C .t =2s 时,质点的加速度最大 D .t =3s 时,质点沿y 轴负向运动12.如图甲所示为以O 点为平衡位置. 在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在0.2s t =时,弹簧振子一定运动到B 位置B .在0.3s t =与0.7s t =两个时刻,弹簧振子的速度相同C .从0到0.2s t =的时间内,弹簧振子的动能持续地减少D .在0.2s t =与0.6s t =两个时刻,弹簧振子的加速度相同13.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它的平衡位置为O ,在A 、B 间振动,如图所示,下列结论正确的是( ) A .小球在O 位置时,动能最大,加速度最小 B .小球在A 、B 位置时,动能最大,加速度最大 C .小球从A 经O 到B 的过程中,回复力一直做正功 D .小球从A 经O 到B 的过程中,回复力一直做负功14.(多选)某鱼漂的示意图如图所示,O 、M 、N 为鱼漂上的三个点. 当鱼漂静止时,水面恰好过点O . 用手将鱼漂向下压,使点M 到达水面,松手后,鱼漂会上下运动,上升到最高处时,点N 到达水面. 不考虑阻力的影响,下列说法正确的是( ) A .鱼漂的运动是简谐运动B .点O 过水面时,鱼漂的速度最大C .点M 到达水面时,鱼漂具有向下的加速度D .鱼漂由上往下运动时,速度越来越大15.(多选)理论表明:弹簧振子的振动周期2mT kπ=,总机械能与振幅A 的平方成正比,即212E kA =,k 为弹簧的劲度系数,m 为振子的质量. 如图,一劲度系数为k 的轻弹簧一端固定,另一端连接着质量为m 的物块,物块在光滑水平面上往复运动. 当物块运动到最大位移为A 的时刻,把另一质量也为m 的物块轻放在其上,两个物块始终一起振动设最大静摩擦力等于滑动摩擦力,重力加速度为g . 放上质量也为m 的物块后,下列说法正确的是( ) A .物块振动周期变为原来的2倍 B .两物块之间的动摩擦因数至少为2kAmgC .物块经过平衡位置时速度为22kA mD .系统的振幅可能减小16.(多选)如图是一质点做简谐运动的振动图象,关于该质点的运动,下列说法正确的是( )A .0.01s 时质点的运动方向向下B .0.025s 和0.075s 两个时刻的加速度大小和方向都相同C .0.025s 和0.075s 两个时刻的速度大小相等,方向相反D .0.125时刻速度和加速度的方向相同E .0~0.3s 时间内该质点通过的路程为3cm17.(多选)如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量是乙的质量的4倍,弹簧振子做简谐运动的周期T =2πmk ,式中m 为振子的质量,k 为弹簧的劲度系数. 当细线突然断开后,两物块都开始做简谐运动,在运动过程中( ) A .甲的振幅是乙的振幅的4倍 B .甲的振幅等于乙的振幅C .甲的最大速度是乙的最大速度的12 D .甲的振动周期是乙的振动周期的2倍 E .甲的振动频率是乙的振动频率的2倍18.如图所示,质量分别为2kg 和3kg 的A 、B 两物块,用劲度系数为k 的轻弹簧相连后竖直放在水平面上,今用大小为F=45N 的力把物块A 向下压而使之静止,突然撤去压力,则( ))/10(2s m g A .物块B 有可能离开水平面 B .物块B 不可能离开水平面C .只要k 足够小,物块B 就可能离开水平面D .只要k 足够大,物块B 就可能离开水平面19.如图所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a 、b 两个小物块粘在一起组成的.物块在光滑水平面上左右振动,振幅为0A ,周期为0T . 当物块向右通过平衡位置时,a 、b 之间的粘胶脱开;以后小物块a 振动的振幅和周期分别为A 和T ,则( )A .0A A <;0T T <B .0A A =;0T T =C .0A A >;0T T <D .0A A <;0T T >20.如图所示,A 、B 叠放在光滑水平地面上,B 与自由长度为0L 的轻弹簧相连,当系统振动时,A 、B 始终无相对滑动,已知m m A 3=,m m B =,当振子距平衡位置的位移2L x =时,系统加速度为a ,求A 、B 间摩擦力f F 与位移x 的函数关系.21.如图所示,质量为M 、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k 、自然长度为L 的轻质弹簧相连,弹簧的另一端连接着质量为m 的物块.压缩弹簧使其长度为L 43时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态.重力加速度为g .(1)求物块处于平衡位置时弹簧的长度;(2)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x 表示物块相对于平衡位置的位移,证明物块做简谐运动; (3)求弹簧的最大伸长量;(4)为使斜面体始终处于静止状态,动摩擦因数μ应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?答案例题例1.C 例2.CD 例3.ABC 例4.(1)略;(2)x ;(3)mkx,方向竖直向下 例5.x k k F )(21+=,令21k k k +=,因为力与位移反向,所以可以写成kx F -=,得证 例6.(1)最大加速度Mm kAa +=,由ma mg ≥μ,得g M m kA g a )(+=≥μ(2)由机械能守恒,2221)(21Mv v M m =+, 0v mM Mv ⋅+=最大弹性势能不变,所以振幅仍为A针对练习1.AD2.B3.BCD4.A5.A6.CDE7.C8.AD9.C 10.C 11.C 12.C 13.A 14.AB 15.BC 16.BCE 17.BCD 18.B 19.A 20.解析:在距离平衡位置的位移20L x =时,a m m Lk B A )(20+=,得08L ma k = ①当系统位移为x 时,对整体')(a m m kx B A +=- ②对A 有'a m F A f = ③ 联立①②③解得x L maF f 06-= 21.(1)设物块在斜面上平衡时,弹簧伸长量为L ∆,有0sin =∆-L k mg α 解得k mg L αsin =∆,此时弹簧长度为kmg L αsin + (2)当位移为x 时,弹簧伸长量为L x ∆+, )(sin L x k mg F ∆+-=α合 联立以上各式可得kx F -=合, 可知物块做简谐运动(3)振幅k mg L A αsin 4+=,由对称性,最大伸长量为kmg L αsin 24+ (4)设物块位移x 为正,则斜面体受力如图,由于斜面体平衡,所以水平方向0cos sin 1=-+ααF F f N 竖直方向0sin cos 12=---ααF F Mg F N N )(L x k F ∆+=, αcos 1mg F N =11 联立可得αcos kx f =, αsin 2kx Mg mg F N ++= 为使斜面体静止,结合牛三,应有2N F f μ≤所以ααμsin cos 2kx Mg mg x k F f N ++=≥,当A x -=时达到最大值 有ααααμsin 4cos 4cos )sin 4(2kL Mg mg mg kL -++≥。

简谐振动的特点和动力学描述

简谐振动的特点和动力学描述

简谐振动的特点和动力学描述简谐振动是物体在恢复力作用下沿着某个轴线上做往复振动的一种特殊运动形式。

它具有以下几个特点:1. 平衡位置稳定:简谐振动的平衡位置是物体的稳定位置,当物体偏离平衡位置时,会受到一个恢复力的作用,使得物体趋向于返回平衡位置。

2. 振幅固定:简谐振动的振幅是一个固定值,表示物体在振动过程中离开平衡位置的最大距离。

3. 频率恒定:简谐振动的频率与振动系统本身的性质有关,而与振幅无关。

频率是指单位时间内振动的完整周期数,单位为赫兹(Hz)。

4. 正弦函数描述:简谐振动的运动可用正弦函数来描述。

物体在简谐振动过程中,其位置、速度和加速度随时间的变化都可以用正弦函数表示。

根据简谐振动的特点,在动力学上可以进行如下的描述:1. 动力学方程:对于简谐振动,其动力学方程可以由胡克定律得到。

胡克定律指出,弹性力与物体偏离平衡位置的距离成正比,即恢复力F 与位移x的关系为F = -kx,其中k为弹性系数。

2. 牛顿第二定律:根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

对于简谐振动,可以将牛顿第二定律应用于沿轴线的振动,并根据动力学方程得到加速度与位移之间的关系。

3. 振动的能量:在简谐振动中,物体的能量在势能和动能之间不断转换。

当物体通过平衡位置时,其动能最大,而势能最小;当物体运动到最大位移时,其势能最大,而动能最小。

总能量保持不变。

4. 平衡位置的稳定性:简谐振动的平衡位置是稳定的,当物体偏离平衡位置时,会受到恢复力使其回到平衡位置。

这种稳定性是由弹簧的弹性恢复力所决定的。

综上所述,简谐振动具有稳定平衡位置、固定振幅、恒定频率等特点,并可以通过动力学方程和能量转换进行描述和分析。

研究简谐振动有助于理解振动现象的基本规律,对于很多领域如机械、电子、光学等都有重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学
第五版
9-1 简谐运动的动力学特征
2) 弹簧振子的运动分析
F
o
m
x
2
x
F kx ma
2
d x 2 x 得 a 2 x 即 2 dt 简谐运动的特征:加速度 a 与位移的大小x 成正比,方向相反
第九章 振 动
11
k 令 m
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
第九章 振 动
17
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征


教材P38 9-10
第九章 振 动
18
物理学
第五版
物理学
第五版
第九章 振 动
19
d 2 (或 2 2 0) dt
第九章 振 动
J ml P
2
14
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
d 2 M m glsin J J 2 dt
复摆 M l F
转动正向 O
( 5 )

d mgl J 2 dt
物理学
第五版
物理学
第五版
第 九 章


第九章 振 动
1
物理学
第五版
物理学
第五版
知识回顾
振动:一种周期性的运动,是指在时间上具有重复性
或往复性的一种运动。如:行星的运动,血液的运动,生
态的循环,消费指数的振荡等,遍及自然界和社会科学界。
机械振动:物体或物心脏的跳动,钟摆,乐器, 地震等。
2
l
*C
mgl 令 J
2
P
(C点为质心)
d 2 m gl 2 dt J
第九章 振 动
15
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
例 弹簧下面悬挂物体,不计弹簧质量和阻 力,证明在平衡位置附近的振动是简谐运动。

mg k(x ) mg ma k
平衡位置
第九章 振 动
2
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
简谐运动
最简单、最基本的振动 合成
简谐运动
谐振子
分解
复杂振动
作简谐运动的物体
第九章 振 动
3
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
力学
运动学 :物体位置随时间的变化规律。 动力学 :物体运动与物体之间的相互作 用的内有联系和规律。 静力学 :物体在相互作用下的平衡问题。
d x 2 x 2 dt
2
d2 x 2x 0 dt 2
简谐运动的微分方程
k k 2 (或 ) m m
由振动系统本身的性质决定
第九章 振 动
12
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
单摆
M mglsin
A
5

时, sin
2


M mgl
d mgl J 2 dt 2 d g 2 dt l
第九章 振 动
FT
O
l
转 动 正 向
m
J ml P
2
13
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
2
d g 2 dt l

2
A
d 2 2 dt
g l
2

FT
O
l
转 动 正 向 m
ma kx 0
d x k x0 2 m dt
第九章 振 动
16
2
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
小结:判别简谐运动的依据
1)作用力的形式为
F kx ,k
2
为常系数。
d x 2 x 0, 为 2)动力学方程可写成 2 dt
常系数,且决定于系统本身的性质。
本节内容概要
几个概念 简谐运动的几个例子 简谐运动的动力学特征
本节教学要求
掌握简谐运动的基本特征,能建立一维简谐 运动的微分方程。
第九章 振 动
7
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
一 基本概念
简谐运动:质点在线性回复力作用下围绕平衡 位置的运动。 平衡位置:质点在该位置所受的力(或沿运动 方向受的力)等于零。 线性回复力:作用于质点的力与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指 向平衡位置。
物理学
第五版
9-1 简谐运动的动力学特征
从动力学角度讨论简谐运动的步骤
1)确定振动系统的平衡位置,以平衡位置
为坐标原点,建立坐标系;
2)让振动系统偏离平衡位置,分析并求出 系统所受的合外力; 3)根据牛顿运动定律,导出简谐运动的运 动微分方程。
第九章 振 动
6
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
第九章 振 动
4
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
动力学问题解题的基本思路
1)认物体(确定研究对象);
2)看运动;
3)查受力(隔离体法); 4)列方程求解(一般用分量式); 5)利用其它的约束条件列补充方程; 6)先用文字符号求解,后带入数据计算结果。
第九章 振 动
5
物理学
第五版
f kx (k 0)
第九章 振 动
8
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
二 简谐运动的几个例子
弹簧振子的振动
l0 k
m
x
A
o
A
x0 F 0
第九章 振 动
9
物理学
第五版
物理学
第五版
9-1 简谐运动的动力学特征
1) 振动的成因:
回复力+惯性
第九章 振 动
10
物理学
第五版
相关文档
最新文档