线性代数工自测题1答案

合集下载

线性代数参考题1-6答案

线性代数参考题1-6答案

线性代数参考题一答案:(注:为了大家共同的利益,我做了每一道题,希望你发现有做错处及时告诉我,谢谢,你的朋友冯国晨 gcfeng@ )一. 填空题(每小题3分,满分30分)1.42342311a a a a 与44322311a a a a -;2.b a =;3.)(211E A A -=-;4.可逆阵或满秩阵或非奇异阵;5.特征根为0;6.1-=α;7.)()(T r A r =;8.3R ;9.负定;10.25≠t二. 陈治中版《线性代数》例题1.5.7(p.26)答案:nn bc ad D )(2-=三. 令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=130231,3512,343122321C B A 则⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛----=--2115.053,2153,1115.235.123111X BA四. 令),,,(4321αααα=A ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==0000310020101013130631120140121),,,(4321ααααA 因而3)(=A r ,321,,ααα构成一个极大无关组,且321432αααα+-=五. 陈治中版《线性代数》习题4.6(p.121)答案:p.211 六. 将二次型f 化成矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=211121112A ,显然A 为实对称阵,可以正交对角化的,即 由特征方程0||=-E A λ,得01=λ,33,2=λ当01=λ 对应的特征向量为T)1,1,1(1=α,标准化为T)1,1,1(311=η;当33,2=λ 对应的特征向量为T)0,1,1(2-=α和T)1,0,1(3-=α正交化T)0,1,1(22-==αβ,标准化为T)0,1,1(212-=ηT)1,1,0(,,2222333-=⋅><><-=ββββααβ,标准化T)1,1,0(213-=η因而),,(321ηηη=P ,且232233y y f += 七. 令αααααααααααααααβββββL n nn=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3213213212113211111111111............由 1||=L 以及n αα,,1 线性无关得n ββ,,1 线性无关。

第1章行列式自测题(答案)

第1章行列式自测题(答案)

内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211a a a a a a a a D -==312312322113332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---2、排列与逆序定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义定义 称∑-==nn n p p p np p p p p p nnn n nn a a a a a a a a a a a a D21212121)(212222111211)1(τ )det(ij a =为n 阶行列式,记作D 或n D .也记作)det(ij a .4、三角形行列式:主对角线元素的乘积。

二、行列式的性质 性质1 D D ='.性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零.性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式.推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.性质4 nnn n in i i nnnn n in i i n nnn n in in i i i i n a a a a a a a a a a a a a a a a a a21211121121211121121221111211βββαααβαβαβα+=+++性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M .ij j i ij M A +-=)1( ——ij a 的代数余子式定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解D D x 11=,D Dx 22=,……,DD x n n =.推论 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (01=x ,02=x ,……,0=n x 显然是方程组的解,称为零解)1)0≠D ⇒仅有零解. 2)有非零解⇒0=D .《线性代数》单元自测题答案第一章 行列式一、填空题:1.设j i a a a a a 54435231是五阶行列式中带有负号的项,则i =________;j =_________。

线性代数试题库(1)答案

线性代数试题库(1)答案

线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。

A ij =(-1) n M ij C 。

A ij =(-1)j i +M ij D 。

A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。

5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。

相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C )A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫ ⎝⎛b b b B a a a ,则秩(AB )为(1)。

《线性代数》第一章单元自测题答案

《线性代数》第一章单元自测题答案

第一章 行《线性代数》单元自测题列式专业 班级 姓名 学号一、填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i =____2____;j =_____1____。

2. 在四阶行列式中,带正号且包含因子23a 和31a 的项为_____44312312a a a a __。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取_______+ ___。

4. 在函数xx x x x x f 21123232101)(=中,3x 的系数是 1- ____。

5. 行列式=600300301395200199204100103____2000______。

一、 计算下列各题:1.设4321630211118751=D ,求44434241A A A A +++的值 解:根据行列式展开定理的推论,有44434241A A A A +++4424432342224121A a A a A a A a ⋅+⋅+⋅+⋅==02.计算ab b a b a ba 00000000000 解:由行列式展开定理有abb a b a b a 000000000000 1110)1(-+⋅-⨯=n a b a b a a 11000)1(-+⋅-⨯+n n b a b a b bn n n b a 1)1(+-+=3.计算n 222232222222221解:n222232222222221)加到各列上第二列乘(1-nn n ⨯--202001200200021)1(-=)1(2022020120002-⨯-n n n)!2(2-⋅-=n4.计算ab b b b a b b bb a b bb b a解:ab b b b a b b b b a b b b b a各行加到第一行上abbbb a b b b b a b bn a b n a b n a b n a)1()1()1()1(-+-+-+-+ab b b b a b b bb a b b n a 1111])1([⋅-+=一列从第二列开始各列减第ba b b a b b a b b n a ---⋅-+00000001])1([1)(])1([--⋅-+=n b a b n a5.设51234555533325422221146523D =,求3132333435,A A A A A +++。

线性代数自测题一

线性代数自测题一

自测卷一 一、单项选择题1.设A ,B 均为n 阶可逆矩阵,则 ( )()A . B A +可逆;()B . kA 可逆(k 为常数);()C . AB 可逆;()D . 111)(---=BA AB .2.设A 是4阶矩阵,且A 的行列式0=A ,则A 中( ). ()A . 必有一列元素全为0; ()B . 必有两列元素成比例;()C . 必有一列向量是其余列向量的线性组合; ()D . 任意列向量是其余列向量的线性组合.3.设A 是65⨯矩阵,而且A 的行向量线性无关,则( ). ()A . A 的列向量线性无关;()B . 线性方程组B AX =的增广矩阵A 的行向量线性无关;()C . 线性方程组B AX =的增广矩阵A 的任意四个列向量线性无关; ()D . 线性方程组B AX =有唯一解.4.设n 阶矩阵A 非奇异(n 2≥),A 的伴随矩阵是*A ,则 ( ) 成立.()A . A A A n 1**)(-=; ()B . A AA n 1**)(+=;()C . A AA n 2**)(-=; ()D . A AA n 2**)(+=.5.对n 元方程组( ).()A . 若AX=0只有零解,则AX=b 有唯一解; ()B . AX=0有非零解的充要条件是0=A ;()C . AX=b 有唯一解的充要条件是r (A )=n ;()D . 若AX=b 有两个不同的解,则AX=0有无穷多解.二、填空题1.已知11111321--x 是关于x 的一次多项式,该式中x 的系数为2.已知矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=k k k k 111111111111A ,且A 的秩()3=A r ,则=k .3.已知线性方程组⎪⎩⎪⎨⎧=+=+-=+a y x y x y x 25320有解,则=a .4.设A 是n 阶矩阵,0≠A ,*A 是A 的伴随矩阵.若A 有特征值λ,则()1*2-A必有一个特征值是 . 5.若二次型()322123222132122,,x ax x x x x x x x x f ++++=是正定二次型,则a的取值范围是 .三.设n 阶矩阵A 和B 满足条件:AB B A =+. ⑴ 证明:E A -是可逆矩阵,其中E 是n 阶单位. ⑵ 已知矩阵⎪⎪⎪⎭⎫⎝⎛-=200012031B ,求矩阵A . 四.当a 、b 为何值时,线性方程组()⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++12323122043214324324321ax x x x b x x a x x x x x x x x 有唯一解,无解,有无穷多组解,并求出有无穷多组解时的通解. 五. 设⎪⎪⎪⎭⎫⎝⎛---=122113221A ,求A 的特征值与特征向量. 六. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125 七. 若二次型323121232221222x x x x x x x x x f βα+++++=经正交变换后可变为标准形23222y y +,求α,β.并求出该正交变换.八. 已知三维线性空间的一组基底为()0111,,=α,()1012,,=α,()1103,,=α求向量()002,,=β在上述基底下的坐标.九.设A 是n 阶矩阵,如果存在正整数k ,使得O A =k (O 为n 阶零矩阵),则称A 是n阶幂零矩阵.求证:⑴. 如果A 是n 阶幂零矩阵,则矩阵A 的特征值全为0. ⑵. 如果O A ≠是n 阶幂零矩阵,则矩阵A 不与对角矩阵相似.自测题一答案一、单项选择题1. C 2. C 3.B 4.C 5. D 二、填空题(每小题3分,共15分。

考研高数之线性代数自我检测试题(附详细答案解析)第一章行列式答案

考研高数之线性代数自我检测试题(附详细答案解析)第一章行列式答案

第一章 行列式1.利用对角线计算下列行列式(1) 381 1 4 11 0 2- - - 4 -= (2) ba c a c bcb a 33 3 3 a b c abc - - - = 2.按自然数从小到大为标准次序,求下列排列的逆序数 (1) 1 2 34 0 (2) 4 1 3 2 4 (3) 3 4 2 15(4) 2 4 1 33(5) 1 3 ┈(2n­1) 2 4 ┈(2n ) 2) 1 ( nn - (6) 1 3 ┈(2n­1)(2n)(2n­2)┈2 )1 ( - n n 3.写出四阶行列式中含有因子 23 11 a a 的项 4432 23 11 a a a a - 3442 23 11 a a a a 4.用行列式的定义计算下列行列式(1) nn n n a a a a a D 0 0 00 0 0 0 00 0 0 0 00 0 0 0 1 2 2 1 L L L M M M L M M L L - - =( )nn n a a a L 2 1 2)1 )(2 ( 1 - - - (2) 443332 23 21 1211 4 00 0 0 0 0 0 a a a a a a a D =4432 23 11 44 33 21 12 a a a a a a a a - - 5.计算下列各行列式(1) 07 1 1 02 5 10 2 0 2 1 4 2 1 4= =D 【解析】71120 2 15 4 2 7 711202 15 0 2 0 2 1 4 2 7 0= - - - - - = - - - -(2) abcdef efcfbfde cd bdaeac abD 4 = - - - = (3) ( ) [ ]( )11 - - + - = = n na x x a n xa aa x a aa xD L L L L L L L (4) n D na a a a + + + + =1 1111 1 1 1 1 1 1 11 1 1 1 3 21 L LLL L L L L L na a a a a a a L L L L L L L L L 0 00 0 00 1 1 1 1 13 121 1 - - - + = nni ia a a a L 2 1 1 ) 1 1 ( å = + = (其中 0 2 1 ¹ n a a a L )6.证明 322) ( 1 1 1 2 2 b a b b a a b aba - = + 利用对角线法则可得证7.计算下列各行列式:(1) ) 1 ( ) 1 )( 1 ( 1 0 0 11 0 1 1 1 014+ + + + = - - - = d a cd ab d cb aD 【解析】 ) 1 ( ) 1 )( 1 ( 1 0 1 1 0 0 1 ) 1 ( ) 1 ( 1 0 1 1 1 1 1 0 011 0 11 1 01 12 + + + + = - - - - + - - = - - -+ d a cd ab dc d c b a d cb a(2) aa aD nL M M M M L L0 1 0 0 10 = ,其中对角线上的元素都是a ,未写的元素都为零【解析】 )1 ( ) 1 ( 1 )1 ( ) 1 ( 0 0 0 0 1 0 0 1 ) 1 ( 0 00 0 0 0 0 10 01 0 - ´ - + - ´ - ´ ×× - + = n n n n n nn aa a a a aa a aLM LO M L L L MLM M L L L MMMM L L 2- - = n n a a(4) b a c a cb ac b c b a cb a D 2 2 2 + + + + + + =( )32 2 2 2 2 2 2 2 2 2 2 2 c b a ba c a cb a b ac b c b a b a c b a D + + = + + + + + + + + + + = (5)125 343 27 64 573425 49 9 16 1 1 1 1- - =D ( ) ( ) 1036812 12 8 9 573 4 573457 3 4 11 1 1 3 3 3 3 2222 - = ´ ´ ´ - = - - - =D 8.解下列方程(1)9 1 32 5 13 2 32 2 1 32 11 22= - - x x 【解析】( )( )( ) 0 31 4 4 0 00 5 1 3 2 0 0 1 0 32 1 1 9 1 32 5 13 2 3 2 2 1 3 2 1 1 2 2222 2= - - - = - - =- - x x x x x x 故可得 1 ± = x 或 2± = x (2)0 00 0 0 = a x a a a x x a a a x a 【解析】 ( )0 0 1 1 1 1 2 00 0 2 2 2 2 00 0 0 a x a aa x xa a x a axaa a x x a a x a x a x a x a a x a a a x x a a a x a + = + + + + =( )( ) ( ) 0 4 0 02 0 0 0 0 0 1 1 1 1 2 2 24 = - = - - - - - - - + = - - - - - - - + = a x xxx xa x x a x x x a a a x x a x x a ax a x a 故可得 0 = x ,或者 ax 2 ± =。

线性代数检测(1)参考答案

线性代数检测(1)参考答案

《线性代数》检测题一. 填空、选择题(每小题3分,共24分)1. 已知α,β,γ为三维列向量,行列式D=|α β γ|=2, 则行列式|3β γ α+β|= ___________。

2. 设三阶方阵A 的特征值为-1,1,3,则1*, .A A -==3. 实二次型2221231231213(,,)222f x x x x x x tx x x x =++-+正定时,t 应满足的 条件是 .4. 设矩阵()nm ija A ⨯=,则0=Ax 仅有零解的充分必要条件是【 】(A) A 的行向量组线性相关 (B) A 的行向量组线性无关 (C) A 的列向量组线性相关 (D) A 的列向量组线性无关 5. 设,A B 为可逆矩阵,则下列说法中不正确的是【 】 (A) ()11AA --= (B) ()111A B A B ---+=+ (C) ()()1110A A λλλ--=≠ (D) ()111AB B A ---=6.设三阶方阵,A B 满足16,A BA A BA -=+且131417A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪⎝⎭,则()B = (A) 321⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 347⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 123⎛⎫ ⎪ ⎪ ⎪⎝⎭(D) 743⎛⎫ ⎪ ⎪ ⎪⎝⎭7.设A 、B 都为n 阶非零矩阵,且AB=0,则A 和B 的秩【 】A. 必有一个等于零.B. 都小于n.C. 一个小于n,一个等于n.D. 都等于n.8. 设12,,,r ααα 为n 维列向量,下列命题不正确的是【 】A. 若对任意的不全为零的数12,,,r k k k ,都有10ri ii k α=≠∑,则12,,,r ααα 线性无关.B. 若12,,,r ααα 线性相关,对任意一组不全为零的数12,,,r k k k ,都有10ri ii k α==∑.C. 12,,,r ααα 线性无关的充要条件是矩阵(12,,,r ααα )的秩等于r.D. 若12,,,r ααα 线性无关,则其中任意两个向量都线性无关. 二.解答题(每小题10分,共40分)1.计算行列式11111234149161827642.已知101210,325A ⎛⎫⎪= ⎪ ⎪--⎝⎭求()1E A --.3. 设1,P AP -=Λ其中1410,,1102P ---⎛⎫⎛⎫=Λ= ⎪ ⎪⎝⎭⎝⎭求()32.A A A E ϕ=+- 4. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求:(1)向量组1234,,,αααα的秩;(2)向量组1234,,,αααα的一个最大无关组;(3)将最大无关组之外的其余向量用此最大无关组线性表示.三.(13分)当a 为何值时,1232312341333(1)0x x x ax x x x a x --+=⎧⎪-=⎨⎪+++=⎩无解、有唯一解、有无穷多解?并在有解时求其所有解。

线性代数试题1及答案

线性代数试题1及答案

线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。

《线性代数》自测题一及答案

《线性代数》自测题一及答案

测试题一(行列式)一. 单项选择题1. 方程0881441221111132=--x x x的根为( B ). (A )1,2,3; (B )1,2,-2; (C )0,1,2; (D )1,-1,2. 2. 已知3阶行列式ij a ,ij ij a b =,,3,2,1,=j i 则行列式=ij b ( B ). (A )ij a ; (B )0; (C)ij a 的绝对值; (D )ij a - .3. 已知齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=++0030z y z y x z y x λλλ仅有零解,则( A ).(A )0≠λ且1≠λ; (B )0=λ或1=λ; (C )0=λ; (D )1=λ.4.已知方程组⎪⎩⎪⎨⎧=+-=-+=++c z y x b z y x az y x 有唯一解,且1=x ,那么=--111111c b a ( D ).(A )0; (B )1; (C )-4; (D )4.5.n 阶行列式ij a D =,则展开式中项11342312n n n a a a a a - 的符号为( D ). (A )- (B )+ (C )n )1(- (D )1)1(--n 二. 填空题1. 排列134782695的逆序数为 10 .2. 已知2413201x x 的代数余子式012=A ,则代数余子式=21A 4 .3. 已知排列9561274j i 为偶排列,则=),(j i (8,3) .4. =5678901201140010300020001000 120 .5. 设xx x x x D 111123111212-=,则D 的展开式中3x 的系数为 -1 . 三. 判断题(正确打V ,错误打×)1. n 阶行列式ij a 的展开式中含有11a 的项数为n .( × )2. 若n 阶行列式ij a 每行元素之和均为零,则ij a 等于零.( V )3. 若V 为范德蒙行列式,ij A 是代数余子式,则V A nj i ij =∑=1,.( V )4. 若n 阶行列式ij a 满足ij ij A a =,n j i ,2,1.=,则0>ij a .( × )5. 若n 阶行列式ij a 的展开式中每一项都不为零,则0≠ij a .( × )四. 已知4521011130112101--=D ,计算44434241A A A A +++. 五. 计算行列式(1)600300301395200199204100103 (2) 1111111111111111--+---+---x x x x (3) ccb ba a------1111111(4)3833262290432231---- (5)ba a a a a ab a a a a a b a n nn+++321321321 (6) n2222232222222221。

线代一至四章自测题兼答案

线代一至四章自测题兼答案

《线性代数》单元自测题第一章 行列式专业 班级 姓名 学号一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有正号的项,则i = ,j = . 2. 在四阶行列式中同时含有元素13a 和31a 的项为__ ___. 3. 各行元素之和为零的n 阶行列式的值等于 .4.已知2333231232221131211=a a a a a a a a a ,则=+++133312321131131211232221333a a a a a a a a a a a a . 5.设)4,3,2,1(2=i A i 是行列式6932987342322212a w a za y a x中元素2i a 的代数余子式,则=+++423222126397A A A A __ ___. 二、 选择题:1.已知,42124011123313)(x x x x x x f --=则)(x f 中4x 的系数为( )(A )1- ; (B )1 ; (C )2- ; (D )2 .2.222111c b a c b a=( ) (A )b c a b c a 222++; (B )))()((b c a c a b ---; (C ))(222a c c b b a ++-; (D ))1)(1)(1(---c b a .3.已知0014321≠=-k c b a , 则063152421-+-+c b a =( )(A ) 0 ; (B )k ; (C )k - ; (D )k 2.4.已知01211421=--λλ,则λ=( ) (A )3-=λ; (B )2-=λ; (C )3-=λ或2; (D )3-=λ或2-. 三、 计算题:1.计算63123112115234231----=D .2.设4321630211118751=D ,求44434241A A A A +++的值.3.计算4443332225432543254325432=D .4.计算abb a b a b a D n 000000000000 =.5.计算2111121111211112----=λλλλ n D .6.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值.《线性代数》单元自测题第二章 矩阵专业 班级 姓名 学号一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则)(A R = .2.设A 是3阶可逆方阵,且m A =,则1--mA = .3.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A .4.设A 为3阶方阵,且3=A ,*A 为A 的伴随矩阵,则=-13A ;=*A ;=--1*73A A .5. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=4000003000002000001100041A ,由分块矩阵的方法得=-1A . 二、选择题:1. 设A 、B 为n 阶方阵,则下列命题中正确的是( )(A ) 0=AB 0=⇒A 或0=B ; (B ) TT T A B AB =)(;(C ) B A B A +=+; (D ) 22))((B A B A B A -=-+. 2.设A 为54⨯矩阵,则A 的秩最大为( )(A )2 ; (B )3 ; (C )4 ; (D )5.3.设C B A ,,是n 阶矩阵,且E ABC =,则必有( )(A )E CBA =; (B )E BCA =; (C )E BAC =; (D )E ACB =.4.当=A ( )时,⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a a a a a A ⎪⎪⎪⎭⎫⎝⎛---=333231232221331332123111333a a a a a a a a a a a a . (A )⎪⎪⎪⎭⎫⎝⎛-103010001; (B )⎪⎪⎪⎭⎫⎝⎛-100010301; (C ) ⎪⎪⎪⎭⎫ ⎝⎛-101010300; (D ) ⎪⎪⎪⎭⎫ ⎝⎛-130010001. 5.设B A ,均为n 阶方阵,且O E B A =-)(,则( ) (A )O A =或E B =; (B ) BA A =;(C )0=A 或1=B ; (D ) 两矩阵A 与E B -均不可逆.三、计算题:1.设⎪⎪⎪⎭⎫⎝⎛---=221011332A ,求1-A .2. 设⎪⎪⎪⎭⎫ ⎝⎛--=032211123A ,且X A AX 2+=,求X .3.已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4553251101413223211a A 的秩为3,求a 的值.4.设Λ=-AP P 1,其中⎪⎪⎭⎫⎝⎛--=1141P , ⎪⎪⎭⎫⎝⎛2001-=Λ, (1)求nA ;(2)设()322+-=x x x f ,求()A f .四、证明题:1、 设A 为n 阶方阵,且有0522=--E A A ,证明E A +可逆,并求其逆.2.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵,证明AB 为反对称矩阵的充分必要条件是BA AB =.《线性代数》单元自测题第三章 向量组的线性相关性专业 班级 姓名 学号一、填空题:1.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=6402α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2101β,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=9741γ,且向量ξ满足βαγβξ-=-+22,则ξ= . 2.已知向量组T)1,1,2,1(1-=α,T T t )0,,0,2(,)2,5,4,0(32==αα的秩为2,则=t . 3.若T)1,1,1(1=α,T)2,3,1(2=α,T b a ),0,(3=α线性相关,则b a ,应满足关系式 . 二、单选题:1.下列向量组中,线性无关的是( )(A )T )4321(,T )5201(-,T )8642(;(B )T )001(-,T )012(,T )423(-;(C )T)111(-,T )202(-,T )313(-;(D )T )001(,T )010(,T )100(,T )101(.2.下列向量组中,线性相关的是( ) (A )T b a)1(,T c b a )222(+;)0(≠c (B )T )0001(;(C )T )0001(,T )1000(,T )0010(; (D )T )001(,T )010(,T )000(.3、设向量组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=t 01,121,011γβα线性无关,则( )(A )1-=t ; (B )1-≠t ; (C )1=t ; (D )1≠t .4. 设m ααα,,21 ,均为n 维向量,那么下列结论正确的是( ) (A )若为常数),m m m k k k k k k ,,(0212211=+++ααα,则m ααα,,21 ,线性相关;(B )若对任意一组不全为零的数m k k k ,,,21 ,都有02211≠+++m m k k k ααα ,则m ααα,,21 ,线性无关;(C )若m ααα,,21 ,线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有02211=+++m m k k k ααα ;(D )若有一组全为零的数m k k k ,,,21 ,使得02211=+++m m k k k ααα ,则m ααα,,21 ,线性无关.5、设A 是n 阶方阵,且A 的行列式0=A ,则A 中( )(A )必有一列元素全为零; (B )必有两列元素对应成比例;(C )必有一列向量是其余列向量的线性组合; (D )任一列向量是其余列向量的线性组合.三、计算下列各题:1.判断向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=36122α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21013α,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=09244α的线性相关性.2.求向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=40121α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=21012α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=63033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21114α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=40125α的秩和一个最大无关组,并把其余向量用该最大无关组线性表示出来.3、设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0611,231,2211321αααx x ,若此向量组的秩为2,求x 的值。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。

线代第一章测试题及答案

线代第一章测试题及答案

线代第一章测试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项不是线性代数的研究对象?A. 向量空间B. 线性方程组C. 矩阵D. 微分方程答案:D2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行(或列)的最大数目D. 矩阵的元素个数答案:C3. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵答案:B4. 向量空间的基是指:A. 空间中的任意一组向量B. 空间中的一组线性无关的向量C. 空间中的一组线性相关的向量D. 空间中的一组正交向量答案:B二、填空题(每题5分,共20分)1. 矩阵的元素个数称为矩阵的______。

答案:阶数2. 如果一个矩阵的行向量组线性无关,则该矩阵是______矩阵。

答案:满秩3. 向量空间中,一组向量如果满足线性组合的系数全为零,则称这组向量是______的。

答案:线性无关4. 一个n阶方阵的行列式等于______。

答案:0三、简答题(每题10分,共20分)1. 请简述什么是线性方程组的解。

答案:线性方程组的解是指满足方程组中所有方程的未知数的取值。

2. 请解释什么是矩阵的转置。

答案:矩阵的转置是指将矩阵的行向量变成列向量,列向量变成行向量,即交换矩阵的行和列。

四、计算题(每题15分,共40分)1. 计算矩阵A的行列式,其中A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]。

答案:\[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 已知矩阵B = \[\begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求B的逆矩阵。

答案:\[ B^{-1} = \frac{1}{(2)(2) - (1)(4)} \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -0.5 \\-2 & 1 \end{bmatrix} \]。

线性代数自测习题及答案

线性代数自测习题及答案

自测复习题21填空题 (1) 向量组[][][]1232,2,7,3,1,2,1,5,12a a a T T T ==-=线性 关。

(2) 4维向量组[]11,4,0,2a T =-,[]25,11,3,0a T =-,[]33,2,4,1a T =--,[]42,9,5,0a T =--, []50,3,1,4a T=-的秩是 ,且一个极大无关组为 。

的秩为,则向量组的秩为)已知向量组(321321,3,,4a a a a a a - 。

=⨯m A A n m 则的行向量组线形无关,,且的秩为矩阵)已知(35 ,m n 。

(6)已知秩为3的向量组1234,,,a a a a 可由向量组123,,βββ线性表示,则向量组123,,βββ必线性 。

(7)设20,,k k βT ⎡⎤=⎣⎦能由[]11,1,1a k T =+,[]21,1,1a k T =+,[]31,1,1a k T =+唯一线性表出,则k 满足 。

(8)设A 为4阶方阵,且()2r A =,则*0A x =的基础解系所含解向量的个数为 。

2选择题(1)设向量组()I 123,,a a a ;1234(),,,a a a a II ;1235(),,,a a a a III ;()V I 12345,,,a a a a a +,且()()3r r I =II =,()4,r III =则()r V I =( )。

(A)2 (B)3 (C)4 (D)5(2)设向量β可由向量组12,,....m a a a 线性表示,但不能由向量组121(),,....m a a a -I 线性表示,若向量组121(),,...,m a a a β-II ,则m a ( )。

(A )既不能由(I )线性表示,也不能由(II )线性表示(B )不能由(I )线性表示,但可由(II )线性表示(C )可由(I )线性表示,也可由(II )线性表示(D )可由(I )线性表示,但不可由(II )线性表示(3)n 维向量组12,,.....(3)s a a a s n ≤≤线性无关的充要条件是( )。

自考考试:工程数学线性代数模拟试题及答案

自考考试:工程数学线性代数模拟试题及答案

自考考试:工程数学线性代数模拟试题及答案一、单选题(共15题,共30分)1.某人打靶3发,事件Ai表示“击中i发”,i=0,1,2,3.那么事件A=A1∪A2∪A3表示A.全部击中B.至少有一发击中C.必然击中D.击中3发正确答案:B2.对于任意两个随机变量X和Y,若E(XY)=E(X)E(Y),则有∙ A.X和Y独立∙ B.X和Y不独立∙ C.D(X+Y)=D(X)+D(Y)∙ D.D(XY)=D(X)D(Y)正确答案:C3.下列各函数中可以作为某个随机变量的概率密度函数的是∙ A.∙ B.∙ C.∙ D.正确答案:D4.设随机变量X~N(u,4²),Y~N(u,5²),P1=P{X≤u-4},P2=P{Y≥u+5},则有∙ A.对于任意的u,P1=P2∙ B.对于任意的u,P1<P2∙ C.只对个别的u,才有P1=P2∙ D.对于任意的u,P1>P2正确答案:A5.设X为随机变量,其方差存在,c为任意非零常数,则下列等式中正确的是∙ A.D(X+c)=D(X)∙ B.D(X+c)=D(X)+c∙ C.D(X-c)=D(X)-c∙ D.D(cX)=cD(X)正确答案:A6.设c为从原点沿y²=x至1+i的弧段,则∙ A.∙ B.∙ C.∙ D.正确答案:D7.设c为不经过点1与1的正向简单闭曲线,则∙ A.∙ B.∙ C.0∙ D.(A)(B)(C)都有可能正确答案:D8.设:c1:|z|为负向,c2:|z|3正向,则∙ A.-2πi∙ B.0∙ C.2πi∙ D.4πi正确答案:B9.设c为正向圆周|z|=2,则∙ A.-sin1∙ B.sin1∙ C.-2πi sin1∙ D.2πi sin1正确答案:C10.设c为正向圆周|z|=1/2,则∙ A.2π(3cos-sin1)∙ B.0∙ C.6paiicos1∙ D.-2πsin1正确答案:B11.设c为正向圆周|z|1/2,则∙ A.2π(3cos1-sin1)∙ B.0∙ C.6πicos1∙ D.-2πsin1正确答案:B12.设f(z)在单连通域B内处处解析且不为零,c为B内任何一条简单闭曲线,则积分∙ A.等于2πi∙ B.等于-2πi∙ C.等于0∙ D.不能确定正确答案:C13.设c为任意实常数,那么由调和函数u=x²-y²确定的解析函数f(z)=u+iv是∙ A.iz²+c∙ B.iz²+ic∙ C.z²+c∙ D.z²+ic正确答案:D14.下列命题中,正确的是∙ A.设v1,v2在区域D内均为u的共轭调和函数,则必有v1v2∙ B.解析函数的实部是虚部的共轭调和函数∙ C.若f(z)=u+iv在区域D内解析,则xu为D内的调和函数∙ D.以调和函数为实部与虚部的函数是解析函数正确答案:C15.设v(x,y)在区域D内为u(x,y)的共轭调和函数,则下列函数中为内解析函数的是∙ A.v(x,y)+iu(x,y)∙ B.v(x,y)-iu(x,y)∙ C.u(x,y)-iv(x,y)∙ D.正确答案:B二、填空题(共7题,共14分)16.设3阶矩阵A的特征值为-1,1,2,它的伴随矩阵记为A*,则|A*+3A –2E|=正确答案:917.设有3个元件并联,已知每个元件正常工作的概率为P,则该系统正常工作的概率为正确答案:1–(1–P)³18.设随机变量X的概率密度函数为f(x)=2x0<x<A,f(x)=0,则概率正确答案:3/419.设二维连续型随机变量(X,Y)的联合概率密度函数为,则系数k=正确答案:1220.设c为正向圆周|z|=3,则正确答案:6πi21.解析函数在圆心处的值等于它在圆周上的正确答案:平均值22.设u(x,y)的共轭调和函数为v(x,y),那么v(x,y)的共轭调和函数为正确答案:-u(x,y)三、问答题(共8题,共56分)23.发报台分别以概率0.6和0.4发出信号“1”和“0”。

线性代数考试题库及答案(一)

线性代数考试题库及答案(一)

线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。

3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。

项。

4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。

9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。

(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。

2.在六阶行列式中项a32a41a25a13a56a64的符号为-。

改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。

线性代数自测习题及答案

线性代数自测习题及答案

自测复习题1一. 填空题1. 已知1201,3410A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则20012002B AB =___________. 2. 线性方程组1231231230020kx x x x kx x x x x ++=⎧⎪++=⎨⎪-+=⎩ 有非零解,则k =_________。

3. 6阶行列式00010000012000012300400005000067=__________。

4. 设A 为3阶方阵,且3A =,则TA A =___,*A A = ,**()A =___,1*32A A --= 。

5. 如果n 阶行列式n D 中每一行上的n 个元素之和等于零,则n D =___。

6. 已知1234522211312451112243150D =,则 4142434445222A A A A A ++++=_____。

7. 方程的通解为___________.8. 设121000000000000n n a a A a a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 则1-A =___________。

9.已知A 为n 阶矩阵,A 可逆,则1[()()]()E E A E A E A -+-++=__________。

⎩⎨⎧=-+=++01654321x x x x x x10. 若线性方程组Ax =b 的增广矩阵()=B A,b 经初等行变换化为12340012004λ⎛⎫⎪ ⎪⎪⎝⎭,则当_______λ=时,此线性方程组有无穷多解.二、选择题1. 已知A 为m ×n 矩阵,且()R A r =,则A 中必成立( )。

(A ) 没有等于零的1r -阶子式,至少有一个r 阶子式不为零 (B ) 有等于零的r 阶子式,没有不等于零的1r +阶子式 (C ) 有不等于零的r 阶子式,所有1r +阶子式全为零 (D ) 任何r 阶子式不等于零,任何1r +阶子式都等于零2.设A =1100011000111001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,1234a a b a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,Ax b =有解的充分必要条件为( )。

线代自测题一答案

线代自测题一答案

自测题一答案一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每空3分,共15分)1. ⎪⎪⎭⎫⎝⎛41752 2. 1 3. -54 4.5 5. 2二、选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

答案选错或未选者,该题不得分。

每小题3分,共15分。

)1.D 2. D 3. B 4. D 5. C三、计算题(计算下列行列式,共10分)计算行列式baba ab a b b a b a +++的值.四、计算题(10分)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛213345666100210321 X 求解矩阵方程2100210321213345666213345666100210321 1----⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⇒⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-X X10)(28))((2601)(22111)(23322-----------------------+-=-----------------+-+-=--------------------++=------+++=+++b a b ab a b a aba b a ba b b a baa b a b a bb a b a ba ab a b b a b a10353065666X 7100210121213345666-------------------------⎪⎪⎪⎭⎫ ⎝⎛----=⇒--------------------⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=⇒X五、计算题(10分)求下列向量组的秩和一个最大线性无关组.α1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0321,α2=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--3021,α3=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0642,α4=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0121,α5=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1100,()700000010001403001211210030116030242201211),,,,a 54321-----------------------⎪⎪⎪⎪⎪⎭⎫⎝⎛--→------------⎪⎪⎪⎪⎪⎭⎫⎝⎛----=a a a a 所以矩阵的秩为2-----------------------------------------------------------------------8 可取最大线性无关组为 421,,ααα-------------------------------------------------10六、计算题(15分)确定λ,μ的值,使线性方程组⎪⎪⎩⎪⎪⎨⎧μ=++=+λ=++=++3213232132134532231x x x x x x x x x x x 有解.解:要使方程组有解,就是要使得R(A)=R(A,b)----------------------------------2⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛=20000003210111134532101231111),(λμλλμλb A -----------------------10 因此有2,0==μλ----------------------------------------------------------------------15七、计算题(15分)用正交变换化二次型323121232221321484363x x x x x x x x x )x ,x ,x (f ---++=为标准形,并写出所用的正交变换.解:对应二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛------324262423---------------------------------------------------2所以对应的特征方程为324262423---λλλ=0---------------------------------------------4解得2,(70)2()7(2-==⇒=+-λλλλ二重)-----------------------------------------7 将7=λ代入解得基础解系为:T T )1,0,1(,)0,1,2/1(21-=-=ηη---------------------10 正交化得:T T p p )1,0,1(,)0,1,2(21-=-=八、证明题(本大题共2小题,每题5分,共10分)1.设A 是n 阶方阵,|A |≠0,证明|A *|=|A |n-1.2.已知n 阶方阵A 的各行元素之和均为a ,证明向量x=(1,1,…,1)T 为A 的一个特征向量,并求相应的特征值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西财经大学线性代数自测题一答案
一、填空题(将正确答案写在答题纸的相应位置。

答错或未答,该题不得分。

本大题共5个小题,每小题3分,共15分。


1. 0 .
2.11/81/51/2-⎡
⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 3. 2 .
4. -120 .
5.11,01⎡⎤⎢⎥
≠⎢⎥⎢⎥⎣⎦
k k
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

答案错选或未选者,该题不得分。

本大题共5小题,每小
题3分,共15分。

) 1.C
2.D
3.B
4.A.
5.C
三、计算题(请写出主要步骤及结果,本题10分)
计算行列式ax by
ay bz
az bx
D ay bz az bx ax by az bx ax by ay bz
+++=++++++的值.
+++++++=+++=++++++++++++ax by ay bz az bx
ax ay bz az bx
by ay bz az bx
D ay bz az bx ax by ay az bx ax by bz az bx ax by az bx ax by ay bz az ax by ay bz bx ax by ay bz
2分
=+ax ay az by bz bx
ay az ax bz bx by az ax ay bx by bz
4分
33=+x y z
y
z x a y
z x b z x y z
x y x y
z
6分
33()=+x
y z
a b y
z x z
x
y
8分
33333()(3)=+---a b xyz x y z 10分
四、计算题(请写出主要步骤及结果,本题10分)
已知2111011,101A AB E A B ⎡⎤
⎢⎥=+-=⎢⎥
⎢⎥⎣⎦
,求B . 解:22+-=⇒-=-AB E A B AB B A E
3分 ()()()⇒-=-+A E B A E A E
6分
由于-A E 可逆,左乘-A E 的逆得
=+B A E
9分 所以有211021102⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
B
10分
五、计算题(请写出主要步骤及结果,本题10分)
A 是3阶矩阵,它的3个特征值为11λ=,21λ=-,32λ=,令324
B A A =-,
(1)求矩阵B 的特征值 (2) 求*B A +
解:(1)矩阵B 的特征值的形式为324λλ-A A ,
2分
将特征值11λ=,21λ=-,32λ=
代入得矩阵B 的特征值为13λ=-,25λ=-,38λ=-
5分
(2)*+B A 的特征值的形式为λλ+
B A
A
2分
代入得到矩阵*+B A 的特征值为15λ=-,23λ=-,39λ=- 4分
所以有*(5)(3)(9)135+=-⨯-⨯-=-B A
5分
六、计算题(请写出主要步骤及结果,本题10分)
设向量组1,3,1T a α=(),22,,3T b α=(),31,2,1T
α=()
,42,3,1T α()=的秩为2,求参数,a b 的值.
解:构造矩阵2123231311⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦
a b ,做行初等变换 2分
2121
3113230910131102312⎡⎤⎡⎤⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦
a b b a a a 5分
由于秩为2,所以有91
20,231---==--b a a a
8分 解得2,5=-a b
10分
七、计算题(请写出主要步骤及结果,本题10分)
当,a b 取何值时,线性方程组12312312
33244
x ax x x ax x x x bx ++=⎧⎪
++=⎨⎪++=⎩有唯一解、无解、有无穷多
解?当方程组有无穷多解时,求其通解.
解:构造增广矩阵113()1214114⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦a A b a b ,做行初等变换 1131131214011211400(1)21⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦
a a
a b b a b a 2分
(1) 当0,1≠≠a b 时,()()3==R A R A b 唯一解 4分 (2) 当0=a 时,2()()3=<=R A R A b 无解
6分
(3) 当1=b 时,若1/2≠a ,2()()3=<=R A R A b 无解
当1=b 时,若1/2=a ,2()()==R A R A b ,无穷多解
8分
11311/213101201120102010200(1)2100000000⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦a
b a b a 通解为1202,10-⎡⎤⎡⎤
⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
X k k R
10分
八、计算题(请写出主要步骤及结果,本题10分)
求矩阵324202423A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
的特征值与特征向量. 解:构造特征方程
232
4
22(1)(8)04
23λ
λλλλ
--=-+-=-
所以特征值为1231,8λλλ==-=
4分
对121λλ==-时,解()0λ-=A E X 得基础解系为 12(1,2,0),(1,0,1)αα=-=-T T 所以属于特征值121λλ==-的特征向量为 1122αα+k k ,12,k k 不全为零。

7分
对38λ=时,解()0λ-=A E X 得基础解系为
3(2,1,2)α=T
所以属于特征值121λλ==-的特征向量为33αk ,30≠k 。

10分
九、证明题(请写出推理步骤及结果,本题10分)
已知向量组(Ⅰ)123,,ααα的秩为3,向量组(Ⅱ)1234,,,αααα的秩为3,向量组(Ⅲ)1235,,,αααα的秩为4,证明向量组12354,,,ααααα-的秩为4. 证明:(Ⅰ)123,,ααα的秩为3,说明123,,ααα线性无关
2分 (Ⅱ)1234,,,αααα的秩为3,说明1234,,,αααα线性相关
4分
所以4α可以由123,,ααα线性表示
5分
反证:假设12354,,,ααααα-线性相关,根据123,,ααα线性无关,则有
54αα-可以由123,,ααα线性表示,从而
5α可以由123,,ααα线性表示,即1235,,,αααα线性相关
8分
(Ⅲ)1235,,,αααα的秩为4,说明1235,,,αααα线性无关,矛盾 9 假设不成立,因此12354,,,ααααα-线性无关, 即向量组12354,,,ααααα-的秩为4.
10分。

相关文档
最新文档