八年级下数学期末考检测卷

合集下载

最新人教版数学八年级下学期《期末检测卷》有答案解析

最新人教版数学八年级下学期《期末检测卷》有答案解析
A.平行四边形的对边相等B.正方形的对角线互相垂直平分且相等
C.菱形的对角线互相垂直D.矩形的对角线互相垂直
【答案】D
【解析】
【分析】
根据几种四边形的性质进行判断即可.
【详解】解:矩形对角线一定相等,但不一定相互垂直,选D说法错误.
其它三个选项说法均正确.
故选:D.
【点睛】本题考查了平行四边形以及三种特殊平行四边形的性质,掌握这几种四边形的性质是解题的键.
27.如图1,在正方形A B C D中,P是对角线B D上的一点,点E在A D的延长线上,且PA=PE,PE交C D于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形A B C D改为菱形A B C D,其他条件不变,当∠A B C=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】13或
【解析】
【分析】
分情况讨论当 的木棒为直角边时以及当 的木棒为斜边时,利用勾股定理解答即可.
【详解】解:当 的木棒为直角边时,第三根木棒的长度为 ;
当 的木棒为斜边时,第三根木棒的长度为 ;
A. B. C. D.
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解】2.3μm=2.3×0.000001m=2.3×10-6m,
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为A×10-n,其中1≤|A|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.在一次函数 中,随 的 增大而增大,则 ________.

八年级数学下册期末考试卷及答案【完整版】

八年级数学下册期末考试卷及答案【完整版】

八年级数学下册期末考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°8.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为().A.1 B .31-C.2 D.222-9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.若2x=5,2y=3,则22x+y=________.2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,后求值:(5a 5a (a ﹣2),其中a=12+2.3.已知x+12132x+y ﹣6的立方根是2,求3xy 的算术平方根.4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、A6、C7、C8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、752、03、54、705、49 136、20三、解答题(本大题共6小题,共72分)1、x=-1或x=32、43、6.4、略.5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

湖北省武汉洪山区2023-2024学年八年级下学期期末数学试题(含答案)

湖北省武汉洪山区2023-2024学年八年级下学期期末数学试题(含答案)

洪山区2023—2024学年度第二学期期末质量检测八年级数学试卷2024.06.27亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效、4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.若式子a+1有意义,则a的取值范围是()A.a≥1B.a≤-1C.a≠-1D.a≥-12.下列各式计算正确的是()A.2+2=4B.6÷3=2C.35×25=65D.8―2=23.下表记录了甲、乙、丙、丁四位选手各10次射击成绩的数据信息.选手甲乙丙丁平均数(环)9.69.69.39.3方差(环²)0.0340.0320.0340.032请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁4.△ABC的三边分别为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.a=1,b=2,c=5B.a=3,b=4,c=5C.c²―a²=b²D.∠B:∠C:∠A=1:3:45.在Rt△ABC中,∠BAC=90°,∠B=60°,AC=3,则AB=()A.1B.2C.3D.236.若一次函数y=2x+b的图象不经过第二象限,则b的取值范围为()A.b<0B.b≤0C.b≥0D.b>07.已知四边形ABCD,下列条件能判定它是平行四边形的是()A.AB∥CD,AB=CDB.∠A=∠D,∠B=∠CC.AB∥CD,AD=BCD.AB=CD,∠A=∠C8.一个有进水管和出水管的容器,从某时刻开始3min内只进水不出水,在随后的5min内既进水又出水,最后的5min 只出水不进水,每分钟的进水量和出水量不变.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则在整个过程中,容器内水量最多有()L.A.9.5B.10C.11D.129.如图,函数y =|kx ―b |(k ≠0)的图像与x 、y 轴分别交于点B 和A (0,3)两点,与函数y =12x 交于点C 、D ,若D 点纵坐标为1,则|kx ―b |≤12x 的解集为()A .56≤x ≤52B .56≤x ≤2C .65≤x ≤2D .65≤x ≤5210.如图,有5块正方形连在一起的钢板余料,要求分割成若干小块后能拼接成与原图形面积相等的正方形,下列四种分割的方法符合要求的有()种?(沿虚线分割,忽略接缝不计)A.1B.2C.3D.4第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算9的结果为______12.某次比赛中,赵海的得分为:演讲内容90分,演讲能力91分,演讲效果93分,若演讲内容、演讲能力、演讲效果按照2:2:1的比确定,则赵海的最终成绩是______分.13.某水库的水位在最近5小时内持续下降,水库的初始水位高度为10米,水位以每小时0.2米的速度匀速下降,则该水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为______.14.如图,矩形ABCD的对角线AC、BD交于点O,过点O作OF⊥AC交BC于点F.若AB=12,AD=18,则FC长为______.15.已知直线l:y=kx―k+1,下列四个结论:①直线一定经过第一象限;②关于x、y的方程组{y=kx―k+1x+y=2的解为{x=1y=1;③若点A(x₁,y₁),B(x₂,y₂)在直线l上,当x₁<x₂时,y₁>y₂;④若直线l向下平移2个.其中正确的是______.(填写序号)单位后过点(2,m),且不等式kx―k+1<m的解集为x>5,则k=―2316.如图,在平行四边形ABCD中,AB=5,AD=4,∠B=60°,点E,F分别为AB,BC边上的一点,连接EF.点B关于EF的对称点P恰好落在CD上.当BE最小时,求PF的长为______.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(本题满分8分)计算:(1)(26―4)÷2;―48.(2)27+61318.(本题满分8分)如图,点P(x,y)在第一象限,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S.(1)当点P的横坐标为5时,△OPA的面积为多少?(2)若△OPA的面积大于9,请求出x的取值范围.19.(本题满分8分)某校对初中生进行综合素质评价,划分为A,B,C,D四个等级,现从全体学生中随机抽取部分学生,调查他们的等级评定情况,将收集的数据整理后,制作了如下不完整的统计表和统计图.等级结果人数A优秀24B良好18C合格aD待合格b请根据图中提供的信息解答下列问题:(1)本次抽取的学生共有______人,表中a的值为______;(2)所抽取学生等级的众数落在______等级(填“A”,“B”,“C”或“D”);(3)若该校共有900名学生,请估计其中B等级的学生人数.20.(本题满分8分)已知四边形ABCD,(1)如图(1),若AC=BD,点E、F、G、H分别为AB、BC、CD、DA的中点,判断四边形EFGH的形状,并说明理由.(2)如图(2),若AC⊥BD于O,AB=4,CD=6,求BC²+AD²的值.21.(本题满分8分)如图是由小正方形组成的5×7网格,每个小正方形顶点叫做格点.三角形ABC的三个顶点都在格点上.仅用无刻度的直尺在给定网格中完成画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,作△ABC的高AD;在AB边上找一点E,使得DE=BE;(2)在图(2)中,P是边AB上一点,∠ABC=α.先将线段AB绕点B顺时针旋转2α,得到线段BH,画出线段BH;再画点Q,使P,Q两点关于直线BC对称.22.(本题满分10分)为响应节能减排的号召,某品牌汽车4S店准备购进A型和B型两种不同型号电动汽车共30辆进行销售.两种型号汽车的进价和售价如下表:进价(万元/辆)售价(万元/辆)A型1617.8B型2729.6(1)如果该4S店购进30辆两种型号电动汽车共花费612万元,那么购进A和B型号电动汽车各多少辆?(2)为保证A型电动汽车购进量不少于B型电动汽车购进量的2倍但不超过B型电动汽车购进量的4倍,那么30辆车全部售出后,求购进多少辆A型电动汽车可使销售利润最大,最大利润是多少?(3)在(2)的条件下,实际销售时,政府大力补贴,A型电动汽车的进价下调a万元(0<a<1),请你设计出销售利润最大的进货方案.23.(本题满分10分)在矩形ABCD中,AD=4,E为BC边上一点,将ΔCDE沿DE折叠得△FDE,(1)如图(1),若CD=42,点F在AB边上,求AF长度;(2)如图(2),若点F在矩形ABCD外部,DF,EF分别与AB于点P、T,且CD=2EC,PF=BE,求CE 长度;(3)如图(3),若CD=AD=4,取AD中点K,作KQ⊥KF且KQ=KF,当AQ取最小值时,直接写出BF 长度.24.(本题满分12分)如图,平面直角坐标系中,点A,B的坐标分别为(0,2),(-4,0),以AB为边作菱形ABCD,菱形中心为坐标原点,点C在y轴负半轴上,点D在x轴正半轴上.(1)直接写出D点坐标______;直线AD的函数解析式______;(2)①在直线AB上找一点E,连CE,若∠ECO+∠ODC=45°,求点E的坐标;②点E为AB边上的任一点,将点E绕原点O顺时针旋转90°得到点Q,试证明点Q在一条定直线上运动,若EQ中点为T,求出O T最小值.答案一、选择题1.A 2.B 3.A 4.D 5.D 6.C 7.C 8.B 9.C 10.A二、填空题11.12.13.8814.2915.①③④16.三、解答题17.(1)解:原式(2)解:原式18.(1)解:四边形为菱形.理由如下:如图,连接,交于点,四边形是菱形,,又,又,四边形为平行四边形,平行四边形为菱形.(2)已知,,在中,由勾股定理得,,19.解:(1)由题意得,(名),答:一共抽取了200名学生;(2)(名),2321y x =+72=+-===AECF AC BD O Q ABCD ,,AC BD AO OC BO OD ∴⊥==BE FD =Q ,BE BO FD DO EO OF ∴-=-∴=AO OC =Q ∴AECF Q AC BD ⊥∴AECF 5,12AD EF ==1,2ED BD ED FB ==Q 1112344OD EF ∴==⨯=Rt ADO △4AO ==8AC ∴=1242ABCD S BD AC ∴=⋅=菱形4020%200÷=20030%60⨯=补全条形统计图如下:(3)(名),答:全校喜欢篮球的大约有1050名学生.20.解:(1)把代入中,得解得:,与的函数关系式为:;(2)当弹簧长度为时,即,解得:,当弹簧长度为时,所挂物体的质量为.21.解:(1)(2)(3)(每小题2分)(4.22.解:(1)由题意可知:(2)由题意得,解之得又,为整数,300070/2001050⨯=0,15;2,19x y x y ====y kx b =+219,15k b b +=⎧⎨=⎩215k b =⎧⎨=⎩∴y x 215y x =+20cm 21520y x =+=2.5x =∴20cm 2.5kg 400200(12)300(2)250(8)W x x x x =+⨯-+⨯-+⨯-2503800.W x ∴=+25038005000x +≤ 4.8x ≤20,2 4.8x x -≥∴≤≤Q x可取,共有三种调运方案.(3)中,是的一次函数,又,则随的值增大而增大,当时,的值最小,最小值是元.此时的调运方案是:市运往市0台,运往市6台;市运往市10台,运往市2台23.解:(1)(2)①②结论:.理由如下:如图,过点作,交与点.由轴对称知,,在正方形中,,又,为等腰直角三角形,,在Rt 中,由勾股定理得,,.24.解:(1)由得,即,,设的解析式为,将的坐标代入解析式,得∴x 2,3,4Q 2503800W x =+W x 2500≥W x 2x =W 250238004300W =⨯+=B C D A C D 45AGD ∠=︒135AGD ∠=︒FG DG -=A AM AG ⊥FD M ,,AE BF AB AF AFB ABF ⊥=∠=∠Q ABCD ,90AB AD BAD =∠=︒AD AF ∴=AFD ADF∴∠=∠90AFB ABF AFD ADF ∠+∠+∠+∠=︒45BFD ∴∠=︒9045AGF BFD ∴∠=︒-∠=︒AMG ∴△,135AM AG AGD AMF ∴=∠=∠=︒(AAS)AMF AGD ∴△≌△FM DG∴=FG DG MG∴-=AMG △222AM AG MG +=AM AG =Q MG ∴=FG DG ∴-=2(2)0a -=2,6a b ==(2,2)A -(0,6)B 21y kx b =+,A B解得的解析式为(2)作,则到的距离等于到的距离,,过,的解析式为,又在直线上,点的坐标为,当在的左侧时,求得点的坐标为,点的坐标为或.(3)存在.如图,若直线与轴交于点,过点作,交轴于点,过点作,交于点,过点作轴,作点关于轴的对称点,连接交于点.轴,,,,22,6k b b -+=⎧⎨=⎩26k b =⎧⎨=⎩∴2126y x =+BP AO ∥P AO B AO AOP AOBS S ∆∆∴=Q PB AO ∥PB (0,6)B ∴PB 6y x =-+P 8y =2,x ∴=-∴P (2,8)-P AO P (14,8)-∴P (2,8)-(14,8)-21x C B 45ABN ∠=︒x N C DC CB ⊥BN D D DE x ⊥N y F BF AO M BO x ⊥Q 90BOC CED BCD ∴∠=∠=∠=︒90CBO BCO ECD BCO ∠+∠=∠+∠=︒CBO ECD∴∠=∠45,ABN DC CB ∠=︒⊥Q CB CD∴=(AAS)CBO DCE ∴△≌△6,3CE OB DE CO ∴====(3,3)D ∴-设的解析式为,将代入解析式可得.解得直线的解析式为,当时,,点关于轴的对称点的坐标为.设的解析式为,将代入解析式可得.解得直线的解析式为,联立,解得BD 11y k x b =+(0,6),(3,3)B D -111336k b b +=-⎧⎨=⎩113,6k b =-=∴BD 36y x =-+0y =2,(2,0)x N =∴∴N y F (2,0)-BF 22y k x b =+(0,6),(2,0)B F -222206k b b -+=⎧⎨=⎩223,6k b ==∴BF 36y x =+36y x y x=+⎧⎨=-⎩33,22x y =-=33,.22M ⎛⎫∴- ⎪⎝⎭。

湖北省武汉市武昌区2023-2024学年八年级下学期期末考试数学试卷(含答案)

湖北省武汉市武昌区2023-2024学年八年级下学期期末考试数学试卷(含答案)

八年级数学第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卷上将正确答案自代号涂黑.1.能使有意义的的取值范围是()A. B. C. D.2.下列二次根式中,与是同类二次根式的是()A. B. C. D.3.学校准备从甲、乙、丙、丁四位同学中选出一名同学,参加区中小学科技创新竞赛,表格记录了四位同学10次平时成绩的平均数及方差:甲乙丙丁平均分92989298方差1 1.8 1.81若要选出一个成绩好且状态稳定的同学去参赛,那么应选的同学是()A.甲B.乙C.丙D.丁4.下列各式计算正确的是()A. B. C. D.5.在中,,,,则的长度是()A. B. C. D.6.一次函数,随的增大而减小,,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,四边形的对角线,相交于点,下列条件不能判定这个四边形是平行四边形的是()A.,B.,C.,D.,8.在某次综合与实践活动中,小明同学了解到鞋号(码)与脚长(毫米)的对应关系如下表:鞋号(码)…3334353637…脚长(毫米)……若小华的脚长为251毫米,则他的鞋号(码)是()A.39B.40C.41D.429.如图,正方形的边长为1,在轴上,点,分别在直线和直线上,若,则点的坐标为()A. B. C. D.10.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,直线与坐标轴围成的三角形区域(不含边界)中只有四个整点,则的取值范围是()A. B.且C. D.且第Ⅱ卷(非选择题,共90分)二、填空题(本题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卷指定位置.11.计算的结果是________.12.写出一个图象过第一、三、四象限的一次函数解析式是________..在学校演讲比赛中,小明的得分为:演讲内容87分,演讲能力98分,演讲效果90分,若演讲内容、演讲能力、演讲效果按照的比确定,则小明的最终成绩是________分.14.矩形的两条对角线的夹角为,对角线的长为,则矩形的面积为________.15.已知一次函数的图象与轴交于点,且,则下列结论:①函数图象一定经过定点;②若函数图象不经过第四象限,则;③不等式的解集为,则;④直线与直线交于点,与轴交于点,则的面积为1.其中正确的结论是________(请填写序号).16.如图,在中,,,在左侧构造等边,在右侧构造等边,连接,点为中点,连接,则的最大值是________.三、解答题(共8个小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)计算:(1);(2).18.(本小题满分8分)如图,点,分别在平行四边形的边,上,与相交于点,.(1)求证:;(2)连接,.请添加一个条件,使四边形为矩形.(不需要说明理由)19.(本小题满分8分)某校开展了“安全伴我行”宣传教育活动.为了解活动效果,该校随机抽取名学生进行了一次测试,满分为100分,按成绩划分为A,B,C,D四个等级.将收集的数据整理绘制成如下不完整的统计图表.成绩频数分布表等级成绩x频数A46B nC32D8成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出,的值;(2)抽取的这名学生中,其成绩的中位数落在________等级;(3)该校有1500名学生参加这次测试,请估计有多少名学生的成绩达到A等级.20.(本小题满分8分)如图,在平面直角坐标系中,一次函数的图象经过,两点,与轴和轴分别交于点和点.(1)求一次函数的解析式;(2)若点在线段上,过点作于点,作于点,若四边形为正方形,求点的坐标;(3)点在轴上,点在第一象限,若以,,,为顶点的四边形是菱形,直接写出点的坐标.21.(本小题满分8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中,,,都是格点.仅用无刻度的直尺在给定网格中完成画图.图1图2(1)如图1,是上一点,在线段上找一点,使;连接,作一点,使四边形为平行四边形;(2)在图2中作的垂直平分线,分别交,于,;将四边形沿翻折,点的对应点为点,画出翻折后的四边形.22.(本小题满分10分).某中学计划租用客车送312名学生和8名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种型号的客车,它们的载客量和租金如下表所示.设租车总费用为元,租用甲型客车辆.甲型客车乙型客车载客量(人/辆)4530租金(元/辆)400280(1)共需租________辆客车;(2)求关于的函数解析式,并求出自变量的取值范围;(3)租车公司为了回馈学校,将甲型客车每辆租金下调元,乙型客车每辆租金下调元,若租车的最低费用是2160元,求的值.23.(本小题满分10分)问题提出如图1,正方形的对角线与交于点,点在上,连接,作交于点,平分交于,探究与的数量关系.问题探究(1)先将问题特殊化,如图2,当点与重合,点与重合时,直接写出与的数量关系;(2)再探究一般情形,如图1,探究与的数量关系:问题拓展(3)如图3,连接,若正方形的边长为,请直接写出的最小值为________(用含的式子表示).图1图2图324.(本小题满分12分)如图,一次函数的图象与轴交于点,与轴交于点,点在轴正半轴上,.(1)直接写出直线的解析式;(2)如图1,点在轴正半轴上,,求点的坐标;(3)如图2,点在上,过作交于点,将点向下平移长度到点,连接,当点从点运动至点过程中,求的最小值.图1图2参考答案一、选择题(每小题3分,共30分)题号12345678910答案A C D C B A C B B D二、填空题(每小题3分,共18分)11.12.(答案不唯一)13.9214.16 15.①③④(对一个得一分,选②不得分)16.16.提示:以为边向上构造等边,连接,易得可证为平行四边形,且过点作,取中点易得,,勾股可得则.三、解答题(共72分)17.解:(1)原式;(2)原式18.证明:(1)∵四边形为平行四边形,∴,∴.又∵,.∴.(2)或等(答案不唯一)19.解:(1)200,57;(2)B;(3).答:估计有345名学生的成绩达到A等级.20.解:(1)将,两点代入函数解析式中得解得∴一次函数解析式为;(2)∵四边形为正方形,∴可设,将代入一次函数得,解得∴;(3)或.21.第(1)小问4分;第(2)小问4分.图1图2另解:22.解:(1)8;(2)∵解得又∵,且为整数∴自变量的取值范围为,且为整数综上:解析式为,,且为整数;(3).①若,则,随的增大而增大∴当时,取最小值,则,∴②若,则此时不成立舍去③若,则,随的增大而减小∴当时,取最小值,则,∴∵不符合不成立舍去.综上:的值为40.23.解:(1);(2)过点作交延长线于.∴,易证,可得,连接,则为等腰直角三角形,则,∵为角平分线易得则;(3).简解:即作关于对称点则.24.解:(1);(2)如图,在轴上取点,使,连接,作交的延长线于,作轴于.由得,,则,可得,则,,∴,∴待定系数法可求:∴;(3)设,①当时,∵则则点轨迹为为线段则当时,在处当时,在处当且仅当时,最小易得,在中,由面积法可求;②当时,∵则则点轨迹为∵过,且与轴交于当且仅当时,最小易得,在中,由面积法可求;∵则的最小值为.。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

2024年7月北京市朝阳区八年级数学期末测试

2024年7月北京市朝阳区八年级数学期末测试

北京市朝阳区2023 ~ 2024学年度第二学期期末检测八年级数学试卷 (选用) 2024.7(考试时间90分钟 满分100分)学校_________________ 班级_________________ 姓名_________________ 考号_________________ 考 生 须知 1.本试卷共6页,共三道大题,25道小题. 2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡、草稿纸一并交回. 一、选择题(共24分,每题3分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.下列二次根式中,是最简二次根式的是(A )5(B )8(C )13(D )0.32.下列计算正确的是(A )235+= (B )322=3-(C )28=4⨯(D )105=2÷3.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,下列条件中可以判断∠A =90°的是(A )a =3,b =4,c =5(B )a =6,b =5,c =4(C )a =2,b =2,c =2(D )a =1,b =2,c =34.如图,AB ∥CD ,AD ,BC 相交于点O ,下列两个三角形的面积不一定相等的是(A )△ABC 和△ABD (B )△ACD 和△BCD (C )△AOC 和△BOD (D )△AOB 和△COD5.在奥运会跳水项目中,多名评委对同一位选手打分,去掉一个最高分和一个最低分后再计算该选手的成绩.去掉这两个分数的前后,一定不发生变化的统计量是 (A )平均数(B )中位数(C )众数(D )方差6.满足下列条件的四边形一定是正方形的是(A )对角线互相平分的四边形(B )有三个角是直角的四边形 (C )有一组邻边相等的平行四边形(D )对角线相等的菱形7.下列函数的图象是由正比例函数y =2x 的图象向左平移1个单位长度得到的是(A )21y x =+ (B )22y x =+ (C )21y x =- (D )22y x =-8.我们知道,四边形具有不稳定性.如图,边长为2的菱形ABCD 的形状可以发生改变,在这个变化过程中,设菱形ABCD 的面积为y ,AC 的长度为x ,则下列图象中,可以表示y 与x 的函数关系的图象大致是(A )(B )(C )(D )二、填空题(共24分,每题3分)9.若二次根式3x -在实数范围内有意义,则实数x 的取值范围是 . 10.请写出一个图象经过第二、三、四象限的一次函数的表达式: . 11.下表是某校排球队队员的年龄分布,该排球队队员的平均年龄是 岁.年龄/岁 12 13 14 15 频数113312.如图,DE 是△ABC 的中位线,若△ABC 的周长为10,则△ADE 的周长为 .13.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BEC = °.14.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,P 为射线AB 上一点,若△ACP 是等腰三角形,则AP 的长为 .15.直线32(0)y kx k k =+-≠一定经过一个定点,这个定点的坐标是 .16.如图1,华容道是一种古老的中国民间益智游戏,一些棋子紧密地摆放在矩形木框内,其中有5个完全一样的小矩形木块代表“五虎上将”,它们有4个纵向摆放,1个横向摆放,把其他棋子拿掉后,这5个小矩形木块排列示意图如图2所示.若图2中阴影部分面积为40,则一个小矩形木块的对角线的长为 .第14题图第13题图第12题图图2图1三、解答题(共52分,第17-22题,每题5分,第23题7分,第24题7分,第25题8分) 17.计算:()278226-+-.18.已知2a =,求代数式212a a a +-+的值.19.如图,在矩形ABCD 中,AC ,BD 相交于点O ,E 为AB 的中点,连接OE 并延长至点F ,使EF =EO ,连接AF ,BF .求证:四边形AFBO 是菱形.20.数学课上老师提出一个命题:如果四边形ABCD 和BEFC 都是平行四边形,则四边形AEFD 也是平行四边形.下面是某同学根据自己画出的图形给出的证明过程. 证明:因为ABCD 是平行四边形,所以AD =BC ,AB =CD . 又因为BEFC 也是平行四边形, 所以BC =EF ,BE =CF . 所以AD =EF ,AB +BE =DC +CF . 即AE =DF .所以四边形AEFD 是平行四边形.讨论后大家发现这个证明过程存在问题. (1)请说明该同学证明中出现的问题; (2)给出正确的证明.21.如图,在平面直角坐标系xOy中,函数y=kx与y=6-x的图象交于点A.(1)若点A的横坐标为2,求k的值;(2)若关于x的不等式kx<6-x有且只有2个正整数解,直接写出k的取值范围.22.某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的编号与身高:编号①②③④⑤⑥⑦⑧身高161 162 162 164 165 165 165 166编号⑨⑩⑪⑫⑬⑭⑮⑯身高166 167 168 168 170 172 172 175 b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75 m nc.分组方案:甲组队员编号乙组队员编号方案一①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮⑯方案二①③⑤⑦⑨⑪⑬⑮②④⑥⑧⑩⑫⑭⑯方案三①③⑤⑦⑩⑫⑭⑯②④⑥⑧⑨⑪⑬⑮方案四①④⑤⑧⑨⑫⑬⑯②③⑥⑦⑩⑪⑭⑮(1)写出表中m,n的值;(2)按照方案一分成的两组中,学生身高更整齐的是(填“甲组”或“乙组”);(3)如果分成的两组学生的平均身高接近,且身高的方差也接近,则认为这两组学生的身高整体接近,在演出时舞台呈现效果更好.在这四个分组方案中,舞台呈现效果最好是方案(填“一”“二”“三”或“四”).23.《九章算术》卷九“勾股”中记载:今有池,方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐,问水深、葭长各几何.大意是:如图,水池底面的宽AB=1丈,芦苇OC生长在AB的中点O处,高出水面的部分CD=1尺.将芦苇向池岸牵引,尖端达到岸边时恰好与水面平齐,即OC=OE,求水池的深度和芦苇的长度(1丈等于10尺).(1)求水池的深度OD;(2)中国古代数学家刘徽在为《九章算术》作注解时,更进一步给出了这类问题的一般解法.他的解法用现代符号语言可以表示为:若已知水池宽AB=2a,芦苇高出水面的部分CD=n(n<a),则水池的深度OD(OD=b)可以通过公式222a nbn-=计算得到.请证明刘徽解法的正确性.24.如图,E为正方形ABCD内部一点,且AE=AB,BE的延长线交CD于点F.(1)求证:∠CBF =12∠BAE;(2)作FG⊥AB于点G,交AE于点H,用等式表示线段AH,BG,FH的数量关系,并证明.25.如图,某校研学小组在博物馆中看到了一种“公道杯”,在这种杯子中加水超过一定量时,水会自动排尽,体现了“满招损,谦受益”的寓意.该小组模仿其原理,自制了一个圆柱形简易“公道杯”,确保向杯中匀速注水和杯中水自动向外排出时,杯中的水位高度变化都是匀速的.向此简易“公道杯”中匀速注入清水,一段时间后停止,再等水完全排尽.在这个过程中,对不同时间的水位高度进行了记录,部分数值如下:时间(t/s) 1 2 3 4 5 6 7 8 水位高度(h/cm) 2 4 6 5.75 5.5 3根据以上信息,解决下列问题:(1)描出以表中各组已知对应值为坐标的点;(2)当t= s时,杯中水位最高,是cm;(3)在自动向外排水开始前,杯中水位上升的速度为cm/s;(4)求停止注水时t的值;(5)从开始注水,到杯中水完全排尽,共用时s.。

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。

八年级下册数学期末试卷达标检测卷(Word版含解析)

八年级下册数学期末试卷达标检测卷(Word版含解析)

八年级下册数学期末试卷达标检测卷(Word 版含解析)一、选择题1.下列二次根式有意义的范围为x ≥﹣4的是( )A .4x -B .14x -C .14x +D .4x + 2.下列给出的四组数中,能构成直角三角形三边的一组是( )A .3,4,5B .5,12,14C .6,8,9D .8,13,153.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是菱形;④对角线互相垂直的矩形是正方形.其中真命题的个数是( )A .1B .2C .3D .44.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( )A .中位数B .平均数C .众数D .方差 5.ABC ∆的周长为60,三条边之比为13:12:5,则这个三角形的面积为( )A .30B .90C .60D .120 6.在菱形ABCD 中,80ABC ∠=︒,BA BE =,则DAE =∠( )A .20︒B .30C .40︒D .50︒7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .68.如图,在平面直角坐标系中,已知A (5,0)点P 为线段OA 上任意一点.在直线y =34x 上取点E ,使PO =PE ,延长PE 到点F ,使PA =PF ,分别取OE 、AF 中点M 、N ,连结MN ,则MN 的最小值是( )A .2.5B .2.4C .2.8D .3二、填空题9.函数01(1)2y x x =+-+中x 的取值范围是______. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E 、F ,连接PB 、PD ,若AE =2,PF =9,则图中阴影面积为______;13.某一次函数的图象经过点(2,-3),且函数y 随x 的增大而增大,请你写出一个符合条件的函数解析式_____________________.14.在矩形ABCD 中,3AB =,ABC ∠的平分线BE 交AD 所在的直线于点E ,若2DE =,则AD 的长为__________.15.如图,在平面直角坐标系中,点A ,A 1,A 2,…在x 轴上,点P ,P 1,P 2,…在直线l :y=kx +34(k >0)上,∠OPA =90°,点P (1,1),A (2,0),且AP 1,A 1P 2,…均与OP 平行,A 1P 1,A 2P 2,…均与AP 平行,则有下列结论:①直线AP 1的函数解析式为y =x ﹣2;②点P 2的纵坐标是259;③点P 2021的纵坐标为(53)2021.其中正确的是_____(填序号).16.如图,在平面直角坐标系xOy 中,一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为____.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.笔直的河流一侧有一旅游地C ,河边有两个漂流点A ,B .其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,为方便游客决定在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =5千米,CH =4千米,BH =3千米. (1)判断△BCH 的形状,并说明理由;(2)求原路线AC 的长.19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________.(2)如图,已知格点(小正方形的顶点)()0,0O ,()3,0A ,()0,4B ,请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的两个勾股四边形OAMB .20.如图,矩形ABCD 的对角线AC 与BD 交于点,作CF ∥BD ,DF ∥AC .求证:四边形DECF 为菱形.21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费. (1)分别写出两厂的收费y (元)与印制数量x (份)之间的关系式;(2)印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3000元用于印刷上述宣传材料,选择哪一家印刷厂能多印制一些宣传材料?23.在正方形ABCD 中,点E 是CD 边上任意一点,连接过点B 作于F ,交AD 于.如图1,过点D 作于G .求证:;如图2,点E 为CD 的中点,连接DF ,试判断存在什么数量关系并说明理由;如图3,,连接,点为的中点,在点E 从点D 运动到点C 的过程中,点随之运动,请直接写出点运动的路径长.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.【参考答案】一、选择题1.D解析:D【分析】根据二次根式中的被开方数是非负数,分式的分母不为0列出不等式,分别计算即可.【详解】解:A 、x ﹣4≥0,解得x ≥4,故此选项不符合题意;B 、x ﹣4>0,解得x >4,故此选项不符合题意;C 、x +4>0,解得x >﹣4,故此选项不符合题意;D 、x +4≥0,解得x ≥﹣4,故此选项符合题意.故选:D .【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式求解.2.A解析:A【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A.∵32+42=52,∴能构成直角三角形三边;B.∵52+122≠142,∴不能构成直角三角形三边;C.∵62+82≠92,∴不能构成直角三角形三边;D.∵82+132≠152,∴不能构成直角三角形三边.故选A.【点睛】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B解析:B【解析】【分析】根据平行四边形、矩形、菱形和正方形的判定直接进行判断即可.【详解】解:①一组对边平行且相等的四边形是平行四边形,原命题是假命题;②对角线相等的平行四边形是矩形,原命题是假命题;③对角线互相垂直平分的四边形是菱形,是真命题;④对角线互相垂直的矩形是正方形,是真命题;故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.D解析:D根据已知条件可求得三边的长,再判断这个三角形是直角三角形,即可求得面积.【详解】∵三条边之比为13:12:5,∴122+52=132,∴△ABC 是直角三角形,∵△ABC 的周长为60,∴三边长分别是:26,24,10,∴这个三角形的面积是:24×10÷2=120,故选D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.B解析:B【解析】【分析】利用菱形的性质和等腰三角形的性质即可求解.【详解】解:在菱形ABCD 中,80ABC ∠=︒,∴18080100BAD ∠=︒-︒=︒,40ABE ∠=︒,∵BA BE =, ∴18040702BAE BEA ︒-︒∠=∠==︒, ∴1007030DAE BAD BAE ∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了菱形的性质和等腰三角形的性质,运用知识准确计算是解题的关键. 7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中''C ED AEB C A ⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.B解析:B【分析】如图,连接PM ,PN ,设AF 交EM 于J ,连接PJ .证明四边形PMJN 是矩形,推出MN=PJ ,求出PJ 的最小值即可解决问题.【详解】解:如图,连接PM ,PN ,设AF 交EM 于J ,连接PJ .∵PO=PE ,OM=ME ,∴PM ⊥OE ,∠OPM=∠EPM ,∵PF=PA ,NF=NA ,∴PN ⊥AF ,∠APN=∠FPN ,∴∠MPN=∠EPM+∠FPN=12(∠OPF+∠FPA )=90°,∠PMJ=∠PNJ=90°,∴四边形PMJN 是矩形,∴MN=PJ ,∴当JP ⊥OA 时,PJ 的值最小此时MN 的值最小, ∵AF ⊥OM ,A (5,0),直线OM 的解析式为y=34x ∴设直线AF 的解析式为y=4-3x+b ∵直线AF 过A (5,0), ∴4-5+b 3⨯=0,∴b=203, ∴y=420-x+33, 由3442033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得165125x y ⎧=⎪⎪⎨⎪=⎪⎩∴16(,)5125J ∴PJ 的最小值为125=2.4 即MN 的最小值为2.4故选:B .【点睛】本题考查一次函数的应用,矩形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.二、填空题9.x >﹣2且x ≠1.【解析】【分析】从二次根式,分式,零指数幂三个角度去思考求解即可.【详解】由题意得,x +2>0,且x ﹣1≠0,解得x >﹣2且x ≠1,所以x 的取值范围是x >﹣2且x ≠1.故答案为:x >﹣2且x ≠1.【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,熟练上述基本条件是解题的关键.10.2【解析】【分析】利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=12×1×4=2. 故答案为2.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=12ab (a 、b 是两条对角线的长度). 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:22242025=+==a ,22331832=+==b ,221526=+=c ,∵262018>>,即262532>>,∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.A解析:18【分析】作PM ⊥AD 于M ,交BC 于N ,根据矩形的性质可得S △PEB =S △PFD 即可求解.【详解】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,,,,,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S ∴=====,∴DFPM BEPN S S 矩矩=,12442DFP PBE S S ∴==⨯⨯=, ∴S 阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明DFP PBE S S =.13.5y x =-(答案不唯一)【分析】根据题意,写出一个0k >且经过(2,3)-的解析式即可【详解】函数y 随x 的增大而增大0k ∴>图象经过点(2,-3)例如:5y x =-(答案不唯一)【点睛】本题考查了一次函数的性质,一次函数的定义,理解一次函数的性质是解题的关键. 14.5或1【分析】当点E 在AD 上时,根据平行线的性质和角平分线的定义可得3AE AB ==,可得AD 的长;当点E 在AD 的延长线上时,同理可求出AD 的长.【详解】解:如图1,当点E 在AD 上时,四边形ABCD 是矩形,90A ∴∠=︒,//AD BC ,AEB CBE ∴∠=∠, BE 平分ABC ∠,ABE CBE ∴∠=∠,ABE AEB ∴∠=∠,3AE AB ∴==,2DE =,325AD AE DE ∴=+=+=;如图2,当点E 在AD 的延长线上时,同理3AE =,321AD AE DE ∴=-=-=.故答案为:5或1.【点睛】本题主要考查了矩形的性质,等腰直角三角形的性质等知识,解题的关键是正确画出两种图形.15.①②③【分析】由已知易求得直线的解析式为:,直线为:,进而根据待定系数法可求得 的解析式为:即可判断①;解析式联立构成方程组可求得 的坐标,同理求得 的坐标,即可判断②;由、的坐标得出规律即可得解析:①②③【分析】由已知易求得直线OP 的解析式为:y x =,直线l 为:1344y x =+,进而根据待定系数法可求得 1AP 的解析式为:2y x =-即可判断①;解析式联立构成方程组可求得 1P 的坐标,同理求得 2P 的坐标,即可判断②;由1P 、2P 的坐标得出规律即可得出点 2021P 的纵坐标为202153⎛⎫ ⎪⎝⎭,即可判断③.【详解】解:设1AP 的解析式为y kx b =+,∵P (1,1),∴直线OP 为y x =,∵AP 1∥OP ,∴k =1,即y x b =+,∵A (2,0),∴2+b =0,解得b =﹣2,∴AP 1的解析式为2y x =-,故①正确;∵点P ,P 1,P 2,…在直线l :34y kx =+(k >0)上, ∴1=k +34,解得k =14,∴直线l 为:1344y x =+, 解21344y x y x =-⎧⎪⎨=+⎪⎩得11353x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴115133P ⎛⎫ ⎪⎝⎭,, 设11A P 的解析式为y x b =-+, 代入111533P ⎛⎫ ⎪⎝⎭,可得,11A P 的解析式为:163y x =-+, ∴A 1的坐标为(163,0), 同理求得A 1P 2的解析式为:163y x =-, 解1631344y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得739259x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 2纵坐标为259,故②正确; ∵P 1纵坐标为53,P 2纵坐标为259=(53)2, 以此类推,点P 2021的纵坐标为(53)2021.故③正确. 故答案为:①②③.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,总结出点的纵坐标的规律是解题的关键.16.【分析】过点作轴于点,过点作轴于点,由正方形的性质就可以得出,就可以得出,,由一次函数的图象经过正方形的顶点和,设点,就可以得出代入解析式就可以求出的值,由正方形的面积等于就可以求出结论.【详 解析:325【分析】过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,由正方形的性质就可以得出CDO AEO ∆≅∆,就可以得出CD AE =,OD OE =,由一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -,就可以得出(24,)A a a --代入解析式就可以求出a 的值,由正方形的面积等于2OC 就可以求出结论.【详解】解:过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,90CDO AEO ∴∠=∠=︒.四边形OABC 是正方形,90AOC ∴∠=︒,OC OA =.90DOE ∠=︒,AOC DOE ∴∠=∠,AOC AOD DOE AOD ∴∠-∠=∠-∠,COD AOE ∴∠=∠.在CDO ∆和AEO ∆中,CDO AEO COD AOE OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()CDO AEO AAS ∴∆≅∆CD AE ∴=,OD OE =.一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -, OD a ∴=,24CD a =-,OE a ∴=,24AE a =-,(24,)A a a ∴--,2(24)4a a ∴-=--,125a ∴=. 125OD ∴=,45CD =, 在Rt CDO ∆中,由勾股定理,得2222212432555OC OD CD ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 2OABC S CO =正方形,325OABC S ∴=正方形. 故答案为:325. 【点睛】 本题考查了正方形的性质及面积公式的运用,垂直的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,一次函数图象上点的坐标的特征的运用,构造K 字形全等,得出AC 两点坐标关系是解题的关键.三、解答题17.①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:①原式=0;②原式=5.【解析:①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:原式3=-=-33=0;②2原式32=+-=5.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则和运算顺序是解题的关键.18.(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△解析:(1)直角三角形,理由见解析;(2)原来的路线AC的长为256千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x-3)2+42,解这个方程,得x=256,答:原来的路线AC的长为256千米.【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.19.(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方解析:(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形OAMB对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方,故答案为:矩形,正方形;(2)如图,证明:∵∠AOB=90°,∴222OA OB AB+=,∴四边形OAMB为勾股四边形,由勾股定理得,22345OM+∴AB=OM,∴四边形OAMB都是勾股四边形,符合题意.【点睛】本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键.20.见解析【分析】根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形.【详解】证明:∵DF∥AC解析:见解析【分析】根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=12BD=12AC=EC,即可证出四边形EDFC是菱形.【详解】证明:∵DF∥AC,CF∥BD∴四边形EDFC是平行四边形,∵四边形ABCD是矩形,∴ED=12BD=12AC=EC,∴四边形EDFC是菱形.【点睛】本题主要考查矩形性质和菱形的判定的知识点,解答本题的关键是熟练掌握菱形的判定定理,此题比较简单.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.,试题解析:(1)∵∴4a2-8a+1)2-8×)+1=5;×(2)原式=12×)=12×10=12=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键.22.(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料【分析】(1)根据“甲印刷厂的收解析:(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料【分析】(1)根据“甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费”可得甲厂关系式,根据“乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费”可得乙厂关系式;(2)把x=800代入两厂关系式进行计算即可得哪厂比较合算;把y=3000代入两厂关系式进行计算可得哪厂能多印制一些宣传材料.【详解】解:(1)根据题意得:y甲=x+1500,y乙=2.5x;(2)当x=800时,y甲=800+1500=2300,y乙=2.5×800=2000,∵2300>2000,∴印制800份宣传材料时,选择乙厂比较合算;当y=3000时,甲厂:3000=x+1500,解得x=1500,乙厂:3000=2.5x,解得x=1200,∵1500>1200,∴商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料.【点睛】本题考查了一次函数的应用,理解题意是解题的关键.23.(1)见解析;(2)FH+FE=DF,理由见解析;(3)【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:FH+FE=DF.如图2中,过点D作DK⊥AE于K,DJ⊥解析:(1)见解析;(2),理由见解析;(3)【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:.如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论.(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.证明△KPJ是等腰直角三角形,推出点P在线段JR上运动,求出JR即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DG⊥AE,AE⊥BH,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=1CD,CD=AD,2∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴DF=2FJ,∴FH+FE=FJ-HJ+FK+KE=2FJ=2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH≌△DAE,∴AH=DE,∵∠EDH=90°,HP=PE,∴PD=PH=PE,∵PK⊥DH,PT⊥DE,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK是矩形,∴PT=DK=b,PK=DT,∵PH=PD=PE,PK⊥DH,PT⊥DE,∴DH=2DK=2b,DE=2DT,∴AH=DE=1-2b,∴PK=12DE=12-b,JK=DJ-DK=12-b,∴PK=KJ,∵∠PKJ=90°,∴∠KJP=45°,∴点P在线段JR上运动,∵2DJ=,∴点P 的运动轨迹的长为.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题. 24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••,∴3AC AP =, ∵224442AC =+=, ∴1424233AP =⨯=, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴2242(4)(4)243AP x x x =-+-=•-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =,∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-,B C '∴BM MN NC ++有最小值为:66B C '+=+∵点N 的横坐标为:517622+=, ∴点N 的纵坐标为:6177411211y =⨯-=, ∴点N 的坐标为:(172,711). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)15,8;(2),见解析;(3);(4)4【分析】解决问题(1)只需运用面积法:,即可解决问题;(2)解法同(1);(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的解析:(1)15,8;(2)PE PF CG +=,见解析;(3)4)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出AM =ABC ∆的面积12BC AM =⨯=ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++= (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥, ∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒, ∴4DC =,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。

2023-2024学年八年级下学期期末考试数学试卷附答案解析

2023-2024学年八年级下学期期末考试数学试卷附答案解析

第1页(共17页)2023-2024学年八年级下学期期末考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项
1.(3分)下列各组数是勾股数的是(
)A .2,3,4
B .3,4,5
C .4,5,6
D .5,6,7
2.(3分)计算
r2r1−r1的结果为(
)A .1B .2
C .2r1
D .2r13.(3分)某校举行健美操比赛,甲、乙、丙三个班各选10名学生参加比赛,三个班参赛学生的平均身高都是1.65米,其方差分别是s 甲2=1.9,s 乙2=2.4,s 丙2=1.6,则参赛学生身高比较整齐的班级是(
)A .甲班B .乙班C .丙班
D .三个班一样整齐4.(3分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(

A .对角线互相平分的四边形是平行四边形
B .两组对角分别相等的四边形是平行四边形
C .两组对边分别相等的四边形是平行四边形
D .两组对边分别平行的四边形是平行四边形
5.(3分)下列计算正确的是(
)A .2+3=5B .42−2=3
C .3×5=8
D .6÷3=26.(3分)如图,在Rt △ABC 中,∠ACB =90°,AB =12,CD 是AB 边上的中线,则
CD 的长为()
A .24
B .12
C .8
D .6。

通州区2022-2023学年八年级下学期数学期末试题(解析版)

通州区2022-2023学年八年级下学期数学期末试题(解析版)

通州区2022—2023学年第二学期八年级期末质量检测数学试卷2023年6月考生须知1.本试卷共6页,共三道大题,27个小题,满分为100分,考试时间为120分钟.2.请在试卷和答题卡上准确填写学校名称、班级、姓名.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,请将答题卡交回.一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1. 五边形的外角和等于()A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和等于360°解答.【详解】解:五边形的外角和是360°.故选B.【点睛】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.2. 志愿服务,传递爱心,传递文明,下列志愿服务标志为中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A .不是中心对称图形,故此选项不符合题意;B .是中心对称图形,故此选项符合题意;C .不是中心对称图形,故此选项不符合题意;D .不是中心对称图形,故此选项不符合题意;故选B .【点睛】本题主要考查了中心对称图形的定义,解题的关键在于能够熟练掌握中心对称图形的定义. 3. 用配方法解方程2430x x --=,配方后方程是( )A. 2(2)7x -=B. 2(2)7x +=C. 2(2)1x -=D. 2(2)1x +=【答案】A【解析】 【分析】将方程常数移到右边,再配方—方程两边同时加上4即可得到答案.【详解】解:方程2430x x --=,移项得:243x x -=,配方得:2447x x -+=,即()227x -=,故选:A .【点睛】此题考查了解一元二次方程的方法—配方法,熟练掌握完全平方公式是解题的关键.4. 矩形具有而菱形不具有的性质是( ).A. 两组对边分别平行B. 对角线相等C. 对角线互相平分D. 两组对角分别相等 【答案】B【解析】【分析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:【详解】A .矩形与菱形的两组对边都分别平行,故本选项错误,不符合题意;B .矩形的对角线相等,菱形的对角线不相等,故本选项正确,符合题意;C .矩形与菱形的对角线都互相平分,故本选项错误,不符合题意;D .矩形与菱形的两组对角都分别相等,故本选项错误,不符合题意.故选B .5. 某工厂由于管理水平提高,生产成本逐月下降.原来每件产品的成本是1600元,两个月后降至900元,的若产品成本的月平均降低率为x ,下面所列方程正确的是( )A. ()216001900x -=.B. ()160012900x -=.C. ()216001900x-=D. ()16001900x -= 【答案】A【解析】【分析】根据原价(1)n x ⨯+=现价直接列式求解即可得到答案;【详解】解:由题意可得, ()216001900x -=,故选A .【点睛】本题考查一元二次方程解决平均变化的实际应用题,解题的关键是熟练掌握平均变化的等量关系式原价(1)n x ⨯+=现价.6. 已知一次函数2y x =-+ ,那么下列结论正确的是( )A. y 的值随 x 的值增大而增大B. 图象经过第一、二、三象限C. 图象必经过点()0,2D. 当2x < 时,y <0 【答案】C【解析】【分析】根据一次函数的性质逐项进行分析即可.【详解】解:A 、由于一次函数y =-x +2的k =-1<0,所以y 的值随x 的值增大而减小,故该选项不符合题意;B 、一次函数y =-x +2的k =-1<0,b =2>0,所以该函数过一、二、四象限,故该选项不符合题意;C 、将(0,2)代入y =-x +2中得2=0+2,等式成立,所以(0,2)在y =-x +2上,故该选项符合题意;D 、一次函数y =-x +2的k =-1<0,所以y 的值随x 的值增大而减小,所以当x <2时,y >0,故该选项不符合题意.故选:C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的相关知识是解题的关键.7. 方差的统计含义:表示一组数据的每个数( )A. 偏离它的众数的差的平均值B. 偏离它的平均数的差的绝对值的平均值C. 偏离它的中位数的差的平方数的平均值D. 偏离它的平均数的差的平方数的平均值【答案】D【解析】【分析】根据方差的含义求解即可.【详解】解:方差的统计含义:表示一组数据的每个数偏离它的平均数的差的平方数的平均值,故选:D.【点睛】题目主要考查方差的定义,理解此定义是解题关键.8. 下面的四个问题中都有两个变量:变量y与变量x之间的函数关系可以用如图所示的图象的是()A. 汽车从A地匀速行驶到B地,汽车的行驶路程y与行驶时间xB. 用长度一定的绳子围成一个矩形,矩形的一条边长y与另一条边长xC. 将水匀速注入水箱中,水箱中的水量y与注水时间xD. 在弹簧测力计的弹性范围内,弹簧挂重物伸长后的总长度y与所挂重物质量x【答案】B【解析】【分析】A根据汽车的行驶路程y随行驶时间x的增加而增加判断即可;B根据矩形的周长公式判断即可.C根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;【详解】解:汽车从A地匀速行驶到B地,根据汽车的行驶路程y随行驶时间x的增加而增加,故A不符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形的一条边长y随另一条边长x的增加而减少,是一次函数关系,故B符合题意;将水匀速注入水箱中,,根据水箱中的水量y随注水时间x的增加而增加,故C不符合题意;在弹簧测力计的弹性范围内,弹簧挂重物伸长后的总长度y与所挂重物质量x成正比例;故D不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是B.故选:B.【点睛】本题考查了利用函数的图象解决实际问题,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共8个小题,每小题2分,共16分)9. 在平面直角坐标系xoy 中,点()3,4A -和点()3,4B 关于______轴对称.【答案】y【解析】【分析】根据两点纵坐标相同,横坐标互为相反数即可得到答案;【详解】解:∵点()3,4A -和点()3,4B 两点纵坐标相同,横坐标互为相反数,∴A 、B 两点关于y 轴对称,故答案为:y .【点睛】本题考查坐标系中关于坐标轴对称点的特征:关于谁对称谁不变,另一个互为相反数. 10. 函数6y x -x 的取值范围是_______.【答案】x≥6.【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,即可解答. 【详解】6x -60x -≥,∴6x ≥.故答案为:6x ≥. 考点:1.函数自变量的取值范围;2.二次根式有意义的条件. 11. 如图所示,某居民小区为了美化居住环境,要在一块三角形ABC 空地上围一个四边形花坛BCFE ,已知点E 、F 分别是边AB AC 、的中点,量得16BC =米,则EF 的长是______米. 【答案】8 【解析】 【分析】由题意知,EF 是ABC 的中位线,根据12EF BC =,计算求解即可. 【详解】解:由题意知,EF 是ABC 的中位线,的∴182EF BC ==, 故答案为:8.【点睛】本题考查了中位线.解题的关键在于熟练掌握中位线的性质,平行于底边且等于底边的一半. 12. 已知关于x 的方程x 2+3x +k =0的一个根是-1,则k 的值是_____.【答案】2【解析】【分析】将=1x -代入x 2+3x +k =0中,即可求出k 的值.【详解】解:将=1x -代入x 2+3x +k =0中可得:()()21310k -+⨯-+=解得2k =故答案为:2.【点睛】本题考查的是一元二次方程的根,即方程的解的定义:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.13. 已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是_____..【答案】1【解析】【详解】解:∵关于x 的一元二次方程220x x m ++=有两个相等的实数根,∴∆=0,∴4﹣4m=0,∴m=1,故答案为1.14. 《九章算术》是中国传统数学最重要的著作,在《九章算术》中的勾股卷中有这样一道题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思为:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原处竹子3尺远,则原处还有几尺的竹子?这个问题中,如果设原处还有x 尺的竹子,则可列方程为______.(注:1丈=10尺)【答案】()22910x x +=-【解析】【分析】竹子折断后刚好构成一个直角三角形,设竹子折断处离地面x 尺,则斜边长为()10x -尺,利用勾股定理求解即可.【详解】解:设竹子折断处离地面x 尺,则斜边长为()10x -尺,根据勾股定理:()222310x x +=-,故答案为:()222310x x +=-. 【点睛】本题考查了勾股定理,熟练掌握勾股定理的方程思想是解题的关键,学会数形结合将实际转化成数字问题.15. 下表记录了四名运动员100米短跑几次选拔赛的成绩,现要选一名成绩好且发挥稳定的运动员参加市运动会100米短跑项目,应选择______. 甲 乙 丙 丁平均数(秒) 12.2 12.1 12.2 12.1方差6.3 5.2 5.8 6.1【答案】乙【解析】【分析】先比较平均数,平均数相同时选择方差较小的参加比赛.【详解】解:...平均数非常接近,但乙的方差最小,.选择乙参加比赛.故答案为乙.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16. 如图,在ABCD Y 中,O 为AC 的中点,点E ,M 为ABCD Y 同一边上任意两个不重合的动点(不与端点重合),EO MO ,的延长线分别与ABCD Y 的另一边交于点F ,N ,连接EN MF ,,下面四个推断:.EF MN =.EN MF ∥.若ABCD Y 是菱形,则至少存在一个四边形ENFM 是菱形.对于任意的ABCD Y ,存在无数个四边形ENFM 是矩形其中,所有正确的有______.(填写序号)【答案】..##④②【解析】【分析】由“ASA ”可证EAO FCO ≌,EAO FCO ≌,可证四边形EMFN 是平行四边形,可得EN MF ∥,EF 与MN 不一定相等,故.错误,.正确,由菱形的判定和性质和矩形的判定可判断.错误,.正确.【详解】解:如图1,.O 为ABCD Y 对角线AC 的中点,.OA OC =,AD BC ∥,.EAO FCO ∠=∠,在.AOE 和.COF 中,EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,.()ASA AOE COF ≌△△,.AE CF =,同理可得:AM CN =,.AM AE CN CF -=-,即EM FN =;又.EM FN ∥,.四边形EMFN 是平行四边形,.EN MF ,故.正确;根据现有条件无法证明EF MN =,故.错误.若平行四边形ABCD 是菱形,则AC BD ⊥,.90AOD ∠=︒,.点E ,M 为AD 边上任意两个不重合的动点(不与端点重合),.90EOM ∠<︒,.四边形EMFN 不可能是菱形,故.不正确;如图2,当OE OM =时,则EF MN =,∵四边形EMFN 是平行四边形,.边形EMFN 是矩形,又.存在无数个点E 、M 满足OE OM =,.对于任意的ABCD Y ,存在无数个四边形ENFM 是矩形,故.正确;故答案为:.④.【点睛】本题考查了矩形的判定,菱形的判定和性质,平行四边形的性质与判定,全等三角形的判定和性质,证明四边形ENFM 是平行四边形是解题的关键.三、解答题(本题共68分,第17题10分;第18、20、22、23、25每题5分;第19、21、24每题6分;第26题8分;第27题7分)解答应写出文字说明、演算步骤或证明过程. 17. 解方程:(1)23270x -=;(2)2420x x --=【答案】(1)13x =,23x =-(2)126x =,226x =【解析】【分析】(1)利用直接开平方法,即可解方程;(2)利用配方法,即可解方程.【小问1详解】解:23270x -=,移项得 2327x =,系数化为1得29x =解得13x =,23x =-【小问2详解】解:2420x x --=,移项得2x 4x 2-=,配方得2446x x -+=,即()226x -=, 开方得26x -= 解得126x =,226x =【点睛】本题考查了解一元二次方程,熟练挑选正确地方法解一元二次方程是解题的关键. 18. 一次函数()0y kx b k =+≠的图像经过点()0,2和()2,2-.(1)求这个一次函数的表达式;(2)画出该函数的图像;(3)结合图像回答:当0y <时,x 的取值范围是______.【答案】(1)22y x =-+(2)图见解析 (3)1x >【解析】【分析】(1)将两点代入函数解析式求解即可得到答案;(2)描出两点,过两点画直线即可得到答案;(3)根据图像找到x 轴下方图像的图像规律即可得到答案;【小问1详解】解:将点()0,2和()2,2-代入()0y kx b k =+≠可得,222b k b =⎧⎨+=-⎩, 解得:22b k =⎧⎨=-⎩, ∴22y x =-+;【小问2详解】在直角坐标系中描出点()0,2和()2,2-,过两点画直线如下图所示,;【小问3详解】解:根据图像可得,当0y =时,220x -+=,1x =,∴当0y <时,x 的取值范围是1x >,故答案为:1x >;【点睛】本题考查求一次函数解析式,画一次函数图像,根据一次函数与不等式的关系结合图像求解,解题的关键是求出解析式正确画出图像.19. 下面是小乐设计的“利用已知矩形作一个内角为45°角的菱形”的尺规作图过程.已知:矩形ABCD .求作:菱形AEFD ,使45EAD ∠=︒.作法:.作BAD ∠的角平分线AP ;.以点A 为圆心,以AD 长为半径作弧,交射线AP 于点E ;.分别以点E 、D 为圆心,以AD 长为半径作弧,两弧交于点F ,连结EF 、DF .则四边形AEFD 即为所求作的菱形.(1)请你用直尺和圆规,依作法补全图形(保留作图痕迹);(2)填空:.四边形AEFD 是菱形的依据__________________;.连结BE 、CF ,四边形BEFC 的形状是______,依据是__________________.【答案】(1)见解析 (2).四条边都相等的四边形是菱形;.平行四边形,一组对边平行且相等的四边形是平行四边形【解析】【分析】(1)根据作法可知:AD AE EF DF ===,由此即可得出四边形是菱形(2)根据菱形和矩形性质可证明EF BC ∥,EF BC =,继而判定四边形BEFC 是平行四边形.【小问1详解】解:如图所示,,【小问2详解】.由作法可知:AD AE EF DF ===,.四边形AEFD 是菱形,依据是:四条边都相等的四边形是菱形;.连结BE 、CF ,.四边形AEFD 是菱形,.AD EF =,AD EF ,.在矩形ABCD 中,AD BC =,AD BC ∥,.EF BC ∥,EF BC =,.四边形BEFC 是平行四边形,依据是:一组对边平行且相等的四边形是平行四边形。

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。

)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。

广东省深圳市深圳高级中学2023-2024学年八年级下学期期末考试数学试卷(含答案)

广东省深圳市深圳高级中学2023-2024学年八年级下学期期末考试数学试卷(含答案)

深圳高级中学 2023-2024学年第二学期期末测试卷初二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1-10题,共30分,第Ⅱ卷为第11-22题, 共70分,全卷共计100分.考试时间为90分钟.第Ⅰ卷 (本卷共计30分)一、选择题(本题共10小题,每小题3分,共30分.答案填在答卷的指定位置上,否则不给分)1.2024年4月25日搭载神舟十八号载人飞船的长征二号F遥十八运载火箭成功发射升空,叶光富、李聪、李广苏 3 名航天员开启“太空出差”之旅,展现了中国航天科技的新高度,下列航空航天图标中,其文字上方的图案是中心对称图形的是(※ )2.下列从左到右的变形中,是因式分解的为 (※ )A.(x+3)²=x²+6x+9B. x―3xy=x(1―3y)C.3xy²=3x⋅y⋅yD.x²+2x+2=x(x+2)+23.根据下表中的数值,判断方程(ax²+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是(※ )x 3.23 3.24 3.25 3.26ax²+bx+c-0.04-0.010.020.06A. 3<x<3.23B. 3.23<x<3.24C. 3.24<x<3.25D. 3.25<x<3.264.如图,下列条件能使平行四边形ABCD是菱形的为(※ )①AC⊥BD; ②∠BAD=90°; ③AB=BC; ④AC=BD.A. ①③B. ②③C. ③④D. ①④5.用配方法解下列方程,其中应在方程两边同时加上4的是(※)A.x²―2x=5B.x²+4x=5C.x²+2x―5=0D.4x²+4x=56.如图,小明荡秋千,位置从A点运动到了A'点,若∠OAA'=55°,则秋千旋转的角度为(※ )A. 55°B. 60°C. 65°D. 70°7. 如图, ▱ABCD的对角线AC、BD相交于点O,∠ADC的平分线与边AB相交于点P, E是PD中点,连接PE, 若AD=4, CD=8, 则OE的长为( ※ )A. 4B. 3C. 2D. 18.如图,直线y₁=kx+b与直线y₂=―x+5交于点(1,m),则不等式y₁<y₂的解集为(※ )A. x<1B. x>1C. x≤1D. x≥19.下列说法正确的是(※ )A.对角线互相垂直的四边形是菱形B.顺次连接矩形四边中点形成的图形是菱形C.对角线相等的矩形是正方形D.对角线相等的四边形是矩形10. 如图, 四边形ABCD中, BC∥AD, AC⊥BD, AC=3, BD=6,BC=1, 则AD的长为( ※ )A. 8B.32―1C.32+1D.35―1第Ⅱ卷 (本卷共计70分)二、填空题(每小题3分,共15分.答案填在答卷的指定位置上,否则不给分)11. 因式分解: x²―4y²=.※12.若m是一元二次方程x²―3x―5=0的一个解,则2m²―6m=.※13.一个正多边形的内角和减外角和等于360°,则它的边数为※ .14. 关于x的不等式组{x―m<03―2x≤3(x―2)有且仅有3个整数解,那么m的取值范围为※ .15. 如图, 在□ABCD中, AG⊥BC, ∠ADB=30°,BG=25,CG=3,AG=4,E为平行四边形对角线BD上一点, F为CD边上一点,且BE=CF,连接AE、AF, 则AE+AF的最小值为※ .三、解答题(共7题,合计55分.答案填在答卷的指定位置上,否则不给分)16.(6分)计算: (1)x²―4x=0;(2)x+13≤x―52.17.(6分) 先化简, 再求值: x2―6x+9x2―9÷x―3x+2,其中x=3―3.18.(8分)如图, 在▱ABCD中, BC=2AB, E、F分别是BC、AD的中点, AE与BF交于点O, 连接EF、OC.(1) 求证: 四边形 ABEF 是菱形;(2) 若BC=8, ∠ABC=60°, 求OC的长.19.(8分)某粮食生产基地积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多3万元,用30万元购买甲种农机具的数量和用21万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共10件,且购买的总费用不超过90万元,则甲种农机具最多能购买多少件?20.(8分)仅利用已有的格点与无刻度直尺作图.(保留作图痕迹)(1)在图1中,作出面积最大的平行四边形ABCD.(2) 在图2中, D是 AC 中点, 在AB边上找到点E, 连接DE, 使DE∥BC.(3) 在图3中, 在 CD边上找到点 E, 连接BE, 使 BE 平分∠ABC.21.(9分)先阅读材料,再回答问题.我们定义:形如x+mnx=m+n(m、n为非零实数),且两个解分别为x₁=m,x₂=n的方程称为“可分解分式方程”.例如:x+6x =5为可分解分式方程,可化为x+2×3x=2+3,∴x1=2,x2=3.应用上面的结论解答下列问题:(1)若x―12x=4为可分解分式方程,则:x₁=,x₂=.(2)若可分解分式方程方程:x―7x =5的两个解分别为x₁=a,x₂=b,求ab+ba的值.(3)若关于x的可分解分式方程x―k2―k―61―x=2k的两个解分别为x₁、x₂(k为实数),且x₁⋅x ₂=6,求k的值.22.(10分)【问题感知】(1) 如图1, 在四边形ABCD 中, ∠ABC=∠ADC=90°,∠A+∠C=180°,, 且AD=CD,①请直接写出AB、BC、BD的数量关系: ;②证明: BD平分∠ABC;【迁移应用】(2) 如图2, 四边形 ABCD 中, ∠ABC=60°, ∠ADC=120°, BE⊥AD, AB=BC= 13,CD=1, 计算 BE的长度;【拓展研究】(3)如图3, 正方形ABCD中, E为BC边上一点, 连接AE, F为AE边上一点, 且AF=BC,FG 垂直DF 交 AB于点G, EF=2, AG=5, 直接写出正方形的边长.深圳高级中学2023-2024学年第二学期期末测试卷参考答案初二数学一、选择题(本题共10小题,每小题3分,共30分.答案填在答卷的指定位置上,否则不给分)1-5: CBCAB6-10: DCABD二、填空题(每小题3分,共15分.答案填在答卷的指定位置上,否则不给分)11. (x+2y)(x――2y)12. 1013. 614. 4<m≤515. 7三、解答题(共7题,合计55分.答案填在答卷的指定位置上,否则不给分)16.(6分) 计算: (1)x²―4x=0;(2)x+13≤x―52.(1) 解: x(x―4)=0x₁=0,x₂=4(2) 解: 6x+2≤3(x―5) 6x+2≤3x―153x≤―17x≤―17317.(6分) 先化简, 再求值: x 2―6x +9x 2―9÷x ―3x +2,其中 x =3―3.原式 =(x ―3)2(x ―3)(x +3)⋅x +2x ―3=x +2x +3将 x =3―3带入原式 =3―3+23―3+3=3―3318.(8分)如图, 在▱ABCD 中, BC=2AB, E 、F 分别是 BC 、AD 的中点, AE 与BF 交于点O, 连接EF 、OC.(1) 求证: 四边形 ABEF 是菱形;(2) 若BC=8, ∠ABC=60°, 求OC 的长.证明:∵四边形ABCD 是平行四边形∴AD ∥BC, AD=BC ∴AF ∥BE∵点E 、F 分别是BC 、AD 的中点 ∴AF =12AD ,BE =12BC ∴AF=BE∴四边形ABEF 是平行四边形∵ BC=2AB,且BC=2BE ∴AB= BE∴四边形ABEF 是菱形;(2) 如图, 过点O 作OH ⊥BC 于H由(1) 知, 四边形 ABEF 是菱形, ∠ABC=60°∴∠ABO =∠OBH =12×60∘=30 ∘,BO ⊥AE ∵ AB=4 ∴AO =12AB =2∴BO =AB 2―AO 2=23 ∴OH =12BO =3∴BH=BO2―OH2=(23)2―(3)2=3∵BC=2AB=2×4=8HC=BC-BH=8-3=5∴OC=OH2+HC2=(3)2+52=27.19.(8分)某粮食生产基地积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多3万元,用30万元购买甲种农机具的数量和用21万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共10件,且购买的总费用不超过90万元,则甲种农机具最多能购买多少件?解:(1)设乙种农机具一件需x万元,则甲种农机具一件需(x+3)万元根据题意得:30x+3=21x解得: x=7经检验:x=7是原方程的解,且符合题意.∴一台甲种农机具需7+3=10万元.答:甲种农机具一件需10万元,乙种农机具一件需7万元(2)设甲种农机具最多能购买m件由题意得10m+7(10―m)≤90解得m≤203∵m为正整数,则m的最大值为6,答:甲种农机具最多能购买6件.20.(8分)仅利用已有的格点与无刻度直尺作图.(保留作图痕迹)(1)在图1中,作出面积最大的平行四边形 ABCD.(2) 在图2中, D是 AC 中点, 在 AB边上找到点E, 连接DE, 使DE∥BC.(3) 在图3中, 在 CD边上找到点 E, 连接BE, 使 BE 平分∠ABC.21.(9分)先阅读材料,再回答问题.我们定义:形如x+mnx=m+n(m、n为非零实数),且两个解分别为x₁=m,x₂=n的方程称为“可分解分式方程”.例如:x+6x =5为可分解分式方程,可化为x+2×3x=2+3,∴x1=2,x2=3.应用上面的结论解答下列问题:(1)若x―12x=4为可分解分式方程,则:x₁=,x₂=.(2)若可分解分式方程方程x―7x =5的两个解分别为x₁=a,x₂=b,求ab+ba的值.(3)若关于x的可分解分式方程x―k2―k―61―x=2k的两个解分别为x₁、x₂(k为实数),且x₁⋅x ₂=6,求k的值.解: (1) 解: ∵方程x―12x =4是可分解分式方程,可化为x+6×(―2)x=6+(―2),∴x1=6,x2=―2,故答案为: 6, -2.(-2, 6亦可以)(2)解:∵可分解分式方程x―7x=5的两个解分别为x₁=a,x₂=b,∴ab=―7, a+b=5,∵ab +ba=a2+b2ab=(a+b)2―2abab,∴ab +ba=52―2×(―7)―7=―397.(3)解:方程x―k2―k―61―x=2k是可分解分式方程,可化为x―1+(k+2)(k―3)x―1=2k―1=(k+2)+(k―3),∵k为实数,不妨设x₁―1=k+2,x₂―1=k―3∴x₁=k+3,x₂=k―2∴x₁⋅x₂=(k+3)(x―2)=k²+k―6=6,∴k²+k―12=0∴(k+4)(k―3)=0∴k₁=―4,k₂=3(舍去)22. (10分)【问题感知】(1) 如图1, 在四边形ABCD 中, ∠ABC=∠ADC=90°,∠A+∠C=180°,, 且AD=CD,①请直接写出AB、BC、BD的数量关系: ;②证明: BD平分. ∠ABC;【迁移应用】(2)如图2, 四边形ABCD 中, ∠ABC=60∘,∠ADC=120∘,BE⊥AD,AB=BC=13 ,CD=1, 计算 BE 的长度;【拓展研究】(3)如图3, 正方形ABCD中, E为BC边上一点, 连接AE, F为AE 边上一点, 且AF=BC,FG 垂直DF 交 AB 于点G,EF=2,AG=5,直接写出正方形的边长.解: (1)circle1AB+BC=2BD②证明: 将△DAB绕点D逆时针旋转90°至△DCE∴∠DCB+∠DCE=∠DCB+∠DAB=180°∴B、C、E三点共线∵∠ADB+∠BDC=∠CDE+∠BDC=90°, BD=CD∴△BDE是等腰直角三角形∴∠DBC=∠DEC=∠DBA=45°∴BD平分∠ABC(2) 连接BD, 将△BCD绕点D逆时针旋转60°至△BAD'∴AD′=CD=1,BD′=BD,∠D′BA=∠DBC在四边形ABCD中,∠BAC+∠ABC+∠BCD+∠ADC=360°∴∠BAD+∠BAD'=∠BAD+∠BCD=180°∴B、D、D'三点共线又∠∠ABD′+∠ABD=∠BCD+∠ABD=60°,BD=BD所以△BDD′是等边三角形∵BE⊥AD∴BE平分∠D'BE∴∠D′BE=30°∴BE=3D′E设AE=x则BE=3(AD′+AE)=3(1+x)在Rt△ABE中, AE²+BE²=AB²则x2+[3(1+x)]2=13(舍)解得x1=1,x2=―52∴AE=1∴BE=23(3)25+5。

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

2023-2024学年下学期期末八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义的条件是( )A. B. C. D.2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,63.下列图象中不能表示y 是x 的函数关系的是()A. B.C. D.4.下列计算正确的是( )B.5.将直线向上平移4个单位长度后所得的直线的解析式为( )A.B. C. D.6.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,方差如下表所示,则四名选手中成绩最稳定的是()选手甲乙丙丁方差1.340.16 2.560.21A.甲B.乙C.丙D.丁7.如图,函数的图象与函数的图象交于点,其中k ,b ,m ,n 为常数,.则关于x 的不等式的解集是( )A. B. C. D.7题图8题图8.《九章算术》记载:今有坦高九尺,瓜生其上,蔓日长七寸;瓠生其下﹐蔓日长一尺.问几何日相逢?意思是有一道墙,高9尺,在墙头种一株瓜,瓜蔓沿墙向下每天长7寸(1尺=10寸);同时地上种着瓠沿墙向上每天长1尺,问瓜蔓、瓠蔓要多少天才相遇?小李绘制如图的函数模型解决了此问题.图中h (单位:尺)表示瓜蔓与瓠蔓离地面的高度,x (单位:天)表示生长时间.根据小李的模型,点P 的横坐标为( )A.B.C.D.3x ≤3x ≥3x <3x >=2===22y x =-2y x=24y x =-22y x =+26y x =-y kx b =+y mx n =+()2,3P -0k m >>kx b mx n +≤+2x >-2x ≥-2x <-2x ≤-9890179171739.如图,将四根木条用钉子钉成一个矩形框架,,.然后向左扭动框架,得到新的四边形(点E 在的上方).若在扭动后四边形面积减少了8,点P 和Q 分别为四边形和四边形对角线的交点,则的长为()D.29题图 10题图10.1765年数学家欧拉在其著作《三角形几何学》中首次提出定理:三角形三边的垂直平分线的交点,三条中线的交点以及三条高线的交点在一条直线上,这条线也被称为欧拉线.如图,已知的三个顶点分别为,,,则的欧拉线的解析式为( )A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡的指定位置.11._______.12.一次函数的图象不经过第_______象限.13.小明在课间活动中进行了8次一分钟跳绳练习,所跳个数分别为160,163,160,157,160,161,162,165.则160,163,160,157,160,161,162,165这8个数的众数为_______.14.如图,点E 为正方形对角线上一点,,点F 在边上,,则_______15.已知一次函数(k 为常数),其图象为直线l.下列四个结论:①无论k 取何值,直线l 都过点;②一次函数的图象与直线l 没有公共点,则;③直线l 不经过第三象限,则;④点和在直线l 上,若,则;其中正确的是_______.(填序号)16.如图,点O 为等边边的中点.以为斜边作(点A 与点D 在同侧且点D 在外),点F 为线段上一点,延长到点E 使,,若,,则ABCD 5AB =8AD =BCEF BC ABCD BCEF PQ OAB △()0,0O ()2,4A ()6,0B OAB △22y x =-3xy =4y x =-+2023y x =-+=32y x =-ABCD AC 20ADE ∠=︒AB ED BF =FED ∠=4y kx k =++()1,4A -2y x =2k =40k -≤<()11,B x y ()22,C x y ()()12120x x y y --<1k >-ABC △CB BC Rt DBC △BC ABC △OD AF EF AF =ABD DBE ∠=∠2OF =5CE =_______。

山东省德州市德城区2023-2024学年八年级下学期期末考试数学试卷(含答案)

山东省德州市德城区2023-2024学年八年级下学期期末考试数学试卷(含答案)

2023--2024学年度第二学期期末检测八年级数学试卷一、选择题(本大题共12小题,共48分)1. 下列各式中,事最简二次根式的是()A.2B.4C.8D.122. 直角三角形的两条直角边长分别为a,b,斜边长为c,若a=5,c=13,则b的值为()A. 4B. 8C.12D.1443. 下面计算正确的是()A. B. C. D.4. 若一次函数y=(k-3)x+2的函数值y随x的增大而增大,则k的取值范围是()A.k>0B.k<0C.k>3D.k<35. 如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A. 3B.C.D.46. 小明在班上做节约用水意识的调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:4,4,6,7,8,9,10. 他发现,若去掉其中两个数据后,这组数据的中位数和众数保持不变,则去掉的两个数可能是()A.4,10B. 4,9C. 7,8D.6,87. 在平面直角坐标系xOy中,若一次函数y=kx+b的图象由直线y=kx(k>0)向上平移3个单位长度得到,则一次函数y=kx+b的图象经过的象限是()A.第一、二、三象限B.第一、三、四象限C. 第一、二、四象限D.第二、三、四象限8.如图,在菱形ABCD中,点E是边AB上一点,DE=AD,连接EC. 若∠ADE=36°,则∠BCE的度数为()A.20°B.18°C. 15°D.12°9.如图,在平面直角坐标系中,已知点A(-2,0),B(0,3),以点A为圆心,AB长为半径画弧,交x的正半轴于点C,则点C的横坐标为()A. B. C. D.10.下面四个问题中都有两个变量:①圆的面积y与它的半径x;②汽车从A地匀速行驶到B地,油箱内的生余油量y与行驶时间x;③将水箱中的水匀速放出,直至放完,水箱中的生余水量y与放水时间x;④矩形的面积一定,一边长y与相邻的另一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①③B.①④C.②③D.②④11.如图,AB=12,∠A=45°,点D是射线AF上的一个动点,DC⊥AB,垂足为C,点E为DB的中点,则线段CE的长的最小值为()A.6B.C.D.12.如图,矩形ABCD中,AB=4,AD=6,P,Q分别是边AD,BC上的动点,点P从A点出发到D停止运动,点Q从C点出发到B停止运动,若P,Q两点以相同的速度同时出发,匀速运动,下面四个结论中下列结论不正确的是()A.存在四边形APQB是矩形B.存在四边形APQB是正方形C.存在四边形APCB是菱形D.存在四边形APCB是矩形二、填空题(本答题共6小题,共24分)13. 若式子在实数范围内有意义,则x的取值范围是.14. 在□ABCD中,若∠A+∠C=140°,则∠B=.15. 如图,是甲、乙两名运动员的10次射击训练成绩的折线统计图,要选一位成绩稳定的运动员去参加比赛,应选择的运动员是.(选“甲”或“乙”)16. 如图,在菱形ABCD中,∠B=120°,以A为圆心,AD长为半径画弧,交对角线AC于点E,则CE=.CD17. 如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上,AC=2,则AE2+AD2的值为.18. 已知点A(2,2)关于直线y=kx(k>0)的对称点在坐标轴上,则k的值为.三、解答题(本题共7小题,共78分)19. (8分)计算:(1);(2)20.(10分)某校七、八年纪各有700名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试。

八年级数学(下)期末考试试卷含答案

八年级数学(下)期末考试试卷含答案

得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)平行四边形的对边相等(B)平行四边形的对角相等
(C)平行四边形的对角线互相平分(D)平行四边形的对角线互相垂直
7.用反证法证明“a<b”时应假设()
(A)a>b(B)a≥b(C)a=b(D)a≤b
8.一元二次方程x2-4x-6=0,经过配方可变形为()
(A)(x-2)2=10(B)(x-2)2=6(C)(x-4)2=6(D)(x+2)2=10
16.已知等腰梯形的上、下底边长分别是6、12,腰长是5,则这个梯形的高是.
17.如图,在 ABCD中,∠BAD的平分线AE交BC于E,EC=2,BE=4,那么 ABCD的周长=。
三、作图题(本题6分)
18.如图,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图(1),图(2),图(3)中分别画出满足以下各要求的图形.(用阴影表示)
(1)使得图形成为轴对称图形,而不是中心对称图形;
(2)使得图形成为中心对称图形,而不是轴对称图形;
(3)使得图形既是轴对称图形,又是中心对称图形.
四、解答题(共43分)
19.计算:(共5分)(1)
20.(4+4=8分)解方程⑴ ⑵
21.(6分)统计八年级部分同学的跳高测试成绩,得到如下频数分布直方图:
11.五边形的内角和等于__________;
12.二次根式 中的字母 的取值范围是__________;
13.命题“全等三角形对应角相等”的逆命题是,
它是一个命题(填“真”或“假”).
14.菱形的对角线长分别为10cm和24cm,则此菱形的面积为________ ,周长为________ .
15.已知正方形的面积为4,则正方形的边长为________,对角线长为________.
A)4B)6C)8D)9
4.如果一个三角形的边长分别为3、4、5,那么连结各边中点所成的三角形的周长为()
A)6 B)6.5 C)7 D)8
5.在直角三角形中AB=8,BC=6,M是斜边AC上的中点,
则BM的长是( )
A.A.10 B.5 C.6 D.4
6.在下列关于平行四边形的各命题中,假命题是()
八年级下数学期末考检测卷
2009.05
一、选择题(每小题3分,共30分)
1.下列性质中,菱形具有而平行四边形不具有的性质是()
A、对角线互相平分B、邻角互补C、对角相等D、每条对角线平分一组对角
2.下
3.下列各数中,可以用来说明命题“任何合数都是2的倍数”是假命题的反例是()
9.平行四边形两条对角线分别为10和16,则它的一边长可以是( )
(A)15(B)12 (C)13 (D) 14
10.下列说法正确的是()
A、对角线相等的四边形是矩形B、有一组邻边相等的矩形是正方形
C、菱形的四条边、四个角都相等D、三角形一边上的中线等于这边的一半。
二、填空题(每小题3分,共21分)
(2)经过多少时间,四边形AQPD成为等腰梯形?
(3)在运动过程中,P、Q、B、C四点有可能构成正方形吗?为什么?
24、(2+4=6分))某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.
天气渐热,为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱饮料每降价
1元,每天可多售出2箱.针对这种饮料的销售情况,请解答以下问题:
(1)当每箱饮料降价20元时,这种饮料每天销售获利多少元?
(2)在要求每箱饮料获利大于80元的情况下,要使每天销售饮料获利14400元,
问每箱应降价多少元?
25.(2+2+2=6分)已知:如图,四边形ABCD中,∠B=900,BC=8cm,CD=24cm,
AB=26Cm,点P从C出发,以1cm/s的速度向D运动,点Q从A出发,以3cm/s
的速度向B运动,其中一动点达到端点时,另一动点随之停止运动。
从运动开始,(1)经过多少时间,四边形AQPD是平行四边形?
(1)参加测试的总人数有多少人?
(2)写说出频数最大一组的组中值;
(3)组距为多少米?写出最后一组边界值。
22.(6分)已知:如图4-22,E和F是□ABCD对角钱AC上两点,AE=CF.
求证:四边形BFDE是平行四边形.
23.如图,矩形ABCD的对角线相交于点O,过点D作DE∥AC,过点C作CE∥BD,DE、CE交于点E,四边形OCED是什么四边形?并说明理由。(1+5=6分)
相关文档
最新文档