第8届全国大学生数学竞赛(非数学类)预赛试卷及答案

合集下载

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n c o sx x c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。

2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。

3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。

则21xx yy w w c-=_________。

解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。

所以1221=4xx yy w w f c-。

4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。

这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。

第8届全国大学生数学竞赛(非数学类)预赛参考解答

第8届全国大学生数学竞赛(非数学类)预赛参考解答

第8届全国大学生数学竞赛(非数学类)预赛参考解答 (2016年10月)一 填空题(满分30分,每小题5分)1. 若()f x 在点x a =可导,且()0f a ≠,则1()lim ()nn f a n f a →+∞⎛⎫+ ⎪ ⎪ ⎪⎝⎭= 。

解: 1()lim ()nn f a n f a →+∞⎛⎫+ ⎪ ⎪ ⎪⎝⎭=()()11()()()lim ()nf a f a n f a f a n n e f a ο'→+∞⎛⎫'++ ⎪= ⎪ ⎪⎝⎭。

2. 若(1)=0f ,'(1)f 存在,求极限220(sin cos )tan 3lim (1)sin x x f x x xI e x→+=- .解: 222200(sin cos )3(sin cos )lim 3lim x x f x x x f x x x x x →→+⋅+=⋅I= 所以2222022''22200'(sin cos )(1)sin cos 1=3lim sin cos 1sin cos 1sin 1cos 3(1)lim 3(1)lim()133(1)(1)='(1)22x x x f x x f x x x x x x x x x f f x x x f f →→→+-+-⋅+-+--==-=-I3. 设)(x f 有连续导数,且2)1(=f .记)(2y e f z x=,若z xz=∂∂,求)(x f 在0>x 的表达式. 解: 由题设得)()('222y e f y e y e f xzx x x ==∂∂. 令2y e u x =,得到当0>u 有 )()('u f u u f =, 即uu f u f 1)()('=, 从而())'(ln ')(ln u u f =. 所以有1ln )(ln c u u f +=,cu u f =)(. 再而由初始条件得u u f 2)(=. 故当0>x 有x x f 2)(=.4. 设()sin 2x f x e x =,求(4)(0)f 。

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷
—1—
余弦函数,以及它们的和与积 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和
f ( y) x2[1 f ( y)]3
1 x2 (1 f ( y))
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
解法 2 方程 xe f (y) ey ln 29 取对数,得 f ( y) ln x y ln ln 29
(1)
方程(1)的两边对 x 求导,得 f ( y) y 1 y x
4.设函数 y y(x) 由方程 xe f ( y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,

d2 y dx 2
________________.
解法 1 方程 xe f ( y) ey ln 29 的两边对 x 求导,得
e f ( y) xf ( y) ye f ( y) e y y ln 29

[ 1 f ( y) y]xe f ( y) ye y ln 29 x
因 e y ln 29 xe f ( y) 0 ,故 1 f ( y) y y,即 y
1
,因此
x
x(1 f ( y))
d2 y dx 2
y
1 x2 (1 f
( y))
f ( y) y x[1 f ( y)]2
点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

第八届全国大学生数学竞赛决赛试题参考答案(非数学类,

第八届全国大学生数学竞赛决赛试题参考答案(非数学类,

(3)
∫∫∫( ) ∫ ∫ ∫ I = 1
1− (x2 + y2 + z2)
x2 + y2 + z2 dv = 1
2π dθ
π sin ϕ
1
(1 −
ρ 2 )ρ 3dρ
=
π
.

20
0
0
6
3
五、设 n 阶方阵 A, B 满足 AB = A+B ,证明:若存在正整数 k ,使 Ak = O ( O 为零矩阵),则 行列式 B + 2017 A = B .
1 k

ln
n
.
(1)证明:极限
lim
n→∞
an
存在;

∑ (2)记
lim
n→∞
an
=
C
,讨论级数
n =1
(an
−C)
的敛散性.
解 (1)利用不等式:当 x > 0 时, x < ln(1+ x) < x ,有 1+ x
1
an

an−1
=
1 n

ln
n n −1
=
1 n

ln
⎛⎜⎝1 +
1⎞ n −1⎟⎠
第八届全国大学生数学竞赛决赛试题参考答案
(非数学类, 2017 年)
一、填空题
1.过单叶双曲面
x2 4
+
y2 2
− 2z2
= 1 与球面
x2
+
y2
+
z2
=
4
的交线且与直线
⎧x = 0 ⎨⎩3y + z

历年全国大学生高等数学竞赛真题及答案

历年全国大学生高等数学竞赛真题及答案

第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解 令,则,,(*) 令,则,,,,2.设是连续函数,且满足, 则____________.解 令,则,,解得。

因此。

3.曲面平行平面的切平面方程是__________. 解 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由=--++⎰⎰y x yx x yy x Dd d 1)1ln()(D 1=+y x v x u y x ==+,v u y v x -==,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu u t-=121t u -=dt 2d t u -=42221t t u +-=)1)(1()1(2t t t u u +-=-⎰+--=0142d )21(2(*)t t t ⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t )(x f ⎰--=222d )(3)(x x f x x f =)(x f ⎰=2d )(x x f A23)(2--=A x x f A A x A x A 24)2(28d )23(22-=+-=--=⎰34=A 3103)(2-=x x f 2222-+=y x z 022=-+z y x 022=-+z y x )1,2,2(-2222-+=y x z ),(00y x )1),,(),,((0000-y x z y x z y x )1),,(),,((0000-y x z y x z y x )1,2,2(-,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面 的切平面方程是。

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sinn π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。

全国大学生数学竞赛初赛2016年第八届《非数学专业》竞赛题目及答案解析高清无水印版

全国大学生数学竞赛初赛2016年第八届《非数学专业》竞赛题目及答案解析高清无水印版

2016年第八届全国大学生数学竞赛初赛(非数学类)试卷及参考答案一、填空题(满分30分,每小题5分)1.若()f x 在点x a =处可导,且()0f a ≠,则()()1/lim n n f a n f a →+∞⎡⎤+⎢⎥=⎢⎥⎢⎥⎣⎦.【参考解答】:由于 101lim limxx x x f a f a x x f a f a , 由已知条件: f x 在点x a 处可导,且 0f a ,由带皮亚诺余项的泰勒公式,有()()()()()f x f a f a x a o x a '=+-+-可得()()()()f a x f a f a x o x '+=++,将其代入极限式,则有111011lim1lim lim lim 1lim 1.n xxxn n x f a x o x x f a f a o x f a f a x o x f a x f a f a n f a x f a f a x o x f a x o x f a f a f a f a x o x ee f a2.若()()10,1f f '=存在,则极限()220sin cos tan 3lim1sin x x f x x xI e x →+==⎛⎫⎪- ⎪⎪ ⎝⎭.【参考解答】:22220sin cos 3sin cos lim3limx x f x x xf x x I x x x 22220sin cos 1sin cos 13lim sin cos 1x f x x f x x x x x 2222200sin cos 1sin cos 131lim 31lim x x x x x x f f x x x133111.22f f 3.设()f x 有连续导数,且()1 2.f = 记()2x z f e y =,若zz x∂=∂,()f x 在0x >的表达式为.【参考解答】:由题设,得222x x x zf e y e y f e y x. 令2x u e y ,得到当0u ,有 f u u f u ,即1ln ln .f u f u u f u u所以有 1ln ln , f u u C f u Cu . 再由初值条件 12 f ,可得2C =,即 2f u u .所以当0x 时,有 2.f x x 4.设()sin 2x f x e x =,则()()40f=.【参考解答】:由带皮亚诺余项余项的麦克劳林公式,有323341111222!3!3!f x x x x o x x x o x所以 f x 展开式的4次项为 3441223!3!x x x x ,即有4014!f ,故 4024.f 5.曲面222x z y =+平行于平面220x y z +-=的切平面方程为.【参考解答】: 移项,曲面的一般式方程为 22,,02x F x y z y z ,有,,,,,2,1x y z n x y z F F F x y . ()()()121221,,//,,//,,n x y z n x y ⇒--,可得21.221x y 由此可得2,1 x y ,将它代入到曲面方程,可得3 z ,即曲面上点()213,,处切平面与已知平面平行,所以由平面的点法式方程可得切平面方程为222130x y z ,即22 3.x y z 第二题: (14分)设()f x 在[0,1]上可导,()00f =,且当()0,1x ∈,()01f x '<<. 试证:当()0,1a ∈时,有()()2300d d .a a f x x f x x ⎛⎫ ⎪> ⎪ ⎪⎝⎭⎰⎰ 【参考解答】:不等式的证明转换为证明不等式2300.aaf x dx f x dx 于是对函数求导,302xF x f x f t dt f x202xf x f t dt f x 已知条件 00f ,可得()00F '=,并且由 01f x ,所以函数()f x 在()01,内单调增加,即()0f x >,所以只要证明 220 xg x f t dt f x .又()00g =,所以只要证明()0g x '>,于是有22210g x f x f x f x f x f x 所以()g x 单调增加,所以 0,0g x x . 所以也就有 202xg x f t dt f x ,即()0F x '>,可得()0F x >,因此230xxF x f t dtf t dt单调增加,所以()()00F a F >=,即有2233aaaaF a f t dt f t dt f t dt f t dt.第三题:(14分)某物体所在的空间区域为222:22x y z x y z ++≤++,密度函数为222x y z ++,求质量()222d d d .M xy z x y z=++⎰⎰⎰【参考解答】:令111222,,u x v y w z ⎫⎪=-=-=-⎪⎪⎭,即111222,,x u y v z =+=+=+,则椭球面转换为变量为,,u v w 的单位球域,即222:1 uvw u v w . 则由三重积分的换元法公式,即222,,,,.,,uvwx y z M x y z dxdydz F u v w dudvdw u v w2222221113,,22224w F u v w u v u u v v10,,01,,00x x x uv w x y z yy y u v w uv w z y yuv w所以原积分就等于222324uvw w M u u v v由于单元圆域222:1 uvwu v w关于三个坐标面都对称,所以积分也就等于2222uvw uvw w M uv dudvdw dudvdwuvwdudvdw由于积分区域具有轮换对称性,所以有222uvwuvwuvwu dudvdw v dudvdw w dudvdw222222255226uvw uvw uvww u v dudvdw u dudvdw u v w dudvdw所以222222152122000021sin 2cos .255uvw uvw w u v dudvdw u v w dudvdw r d d r r dr所以最终的结果就为M=+=+=第四题:(14分)设函数()f x在闭区间0,1⎡⎤⎢⎥⎣⎦上具有连续导数,()()00,1 1.f f==证明:()1111lim d.2nn kkn f x x fn n→∞=⎛⎫⎛⎫⎪⎪⎪-=-⎪⎪⎪⎪⎝⎭⎪⎝⎭∑⎰【参考解答】:将区间0,1n等份,分点kkxn,则1kxn,且111111lim lim kkn n nxk kxn nk k kkn f x dx f n f x dx f x xn n1111lim limk kk kn nx x kk kx xn nk k kf x f xn f x f x dx n x x dxx x111lim,,kkn xk kk k k kxnk k kf f xn x x dx x xx1211111011lim lim2111lim.222kkn nxk k k k kxn nk knk k knkn f x x dx n f x xf x x f x dx第五题:(14分)设函数()f x在区间0,1⎡⎤⎢⎥⎣⎦上连续,且()1d0.I f x x=≠⎰证明:在()0,1内存在不同的两点12,x x,使得()()12112.If x f x+=【参考解答】:设1,xF x f t dtI则00,1 1.F F由介值定理,存在0,1,使得1.2F 在两个子区间0,,,1上分别应用拉格朗日中值定理:11122201/2,0,,11/2,,1,11f x F FF x xIf x F FF x xI12121112.1/21/2I If x f x F x F x第六题:(14分) 设()f x在(),-∞+∞上可导,且()()(2f x f x f x=+=+,用傅里叶(Fourier)级数理论证明()f x为常数。

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

(*) 2 0 (1 2t 2 t 4 )dt 1
2
1 0
(1 2t 2
t 4 )dt
2t
2 t3 3
1 5
t
5
1 0
16 15
2.设 f (x) 是连续函数,且满足 f (x) 3x2
2
f (x)dx 2 , 则 f (x) ____________.
0
解 令 A 2 f (x)dx ,则 f (x) 3x2 A 2 , 0
n
x0
n

A lim ex e2x enx n e
x0
n
x
e lim ex e2x enx n
x0
nx
e lim ex 2e2x nenx e 1 2 n n 1 e
x0
n
n
2
因此
lim ( ex
e2x
e
nx
)
e x
eA
n1e
e 2
x0
n
解法 2 因
(x0 , y0 ) 处 的 法 向 量 为 (zx (x0 , y0 ), z y (x0 , y0 ),1) , 故 (zx (x0 , y0 ), z y (x0 , y0 ),1) 与
(2,2,1) 平行,因此,由 zx x , z y 2 y 知 2 zx (x0 , y0 ) x0 ,2 z y (x0 , y0 ) 2 y0 ,
y(1
f ( y))
因此
—4—
y
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
二、(5
分)求极限 lim ( ex
e2x
e nx
e
)x

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)第三届全国大学生数学竞赛预赛试题一. 计算下列各题(共3小题,每小题各5分,共15分)(1).求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭; (2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e ⎧=+⎪⎨=-⎪⎩,求22d ydx。

二.(10分)求方程()()2410x y dx x y dy +-++-=的通解。

三.(15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=。

四.(17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值。

五.(16分)已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S的正法向的方向余弦。

计算:(1)(),,S zdS x y z ρ⎰⎰;(2)()3S z x y z dS λμν++⎰⎰六.(12分)设f(x)是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛。

七.(15分)是否存在区间[]0,2上的连续可微函数f(x),满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、?请说明理由。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

全国大学生数学竞赛第八届答案

全国大学生数学竞赛第八届答案
2 2 −1
从而
x0
=
2
,
y0
=
1
,

z0
=
x20 2
+ y02
=
3
,
从而所求切平面为
2(x − 2) + 2(y − 1) − (z − 3) = 0
即 二 (本题满分 14 分)
2x + 2y − z = 3
设 f (x) 在 [0, 1] 可导, f (0) = 0, 且当 x ∈ (0, 1) , 0 < f ′(x) < 1 .
,n
.
lim
(∫ n
1
f (x) dx −
1
∑n ( k )) f
n→∞
0
( ∑n

xk
n
n
k=1
)
∑n
= lim n
f (x) dx − hf (xk)
n→∞
k=1 xk1
k=1
∑n ∫ xk (
)
= lim n
f (x) − f (xk) dx
n→∞ k=1 xk1
∑n ∫ xk = lim n
2π ∫ dφ
π∫ dθ
1 r2 · r2 sin θ dr = 4π
0
0
0
5
Σ
由于 u2, v2, w2 在 Σ 上积分都是 I , 故 3
(
)

M = √1
111
52
+ + I+A= π
23 3 6
6
准考证号
学校
省市
第 3 页, 共 6 页
四 (本题满分 14 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 −1
从而
x0
=
2
,
y0
=
1
,

z0
=
x20 2
+ y02
=
3
,
从而所求切平面为
2(x − 2) + 2(y − 1) − (z − 3) = 0
即 二 (本题满分 14 分)
2x + 2y − z = 3
设 f (x) 在 [0, 1] 可导, f (0) = 0, 且当 x ∈ (0, 1) , 0 < f ′(x) < 1 .
座位号
考场号
姓名
第八届全国大学生数学竞赛预赛试卷参考答案
(非数学类, 2016 年 10 月)
绝密 ⋆ 启用前
(14 金融工程-白兔兔)
考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分
题号 一





总分
满 分 30
14
14
14
14
14
100
得分
注意:1.所有答题都须写在试卷密封线右边, 写在其他纸上一律无效. 2.密封线左边请勿答题, 密封线外不得有姓名及相关标记. 3.如答题空白不够, 可写在当页背面, 并标明题号.
(∫ a
)2 ∫ a
试证当 a ∈ (0, 1) ,
f (x) dx > f 3(x) dx .
0
0
(∫ x
)2 ∫ x
证明 设 F (x) =
f (t) dt − f 3(t) dt , 则 F (0) = 0 且要证明 F ′(x) > 0
0
0
∫x
设 g(x) = 2 f (t) dt − f 2(x) , 则 F ′(x) = f (x)g(x)
e f(a)
n→+∞
f (a)
n→+∞
f (a)
2.

f (1)
=
0,
f ′(1)
存在,
则极限
I
=
lim
x→0
f (sin2 x + cos x) tan 3x (ex2 − 1) sin x
=

I
=
lim
x→0
f (sin2 x + cos x) tan (ex2 − 1) sin x
3x
= lim f (sin2 x + cos x) × 3x = 3 lim f (sin2 x + cos x)
. . . . . . . . . . . . . . . . . . . . . . . . ⃝ . . . . . . . . . . . . . . . . . . . . . . . . ⃝ 密封线 答题时不要超过此线 ⃝ . . . . . . . . . . . . . . . . . . . . . . . . ⃝ . . . . . . . . . . . . . . . . . . . . . . . .
座位号
考场号
姓名
三 (本题满分 14 分)
某物体所在的空间区域为 Ω : x2 + y2 + 2z2 ⩽ x + y + 2z,
密度函数为 x2 + y2 + z2 , 求质量
∫∫∫
M=
(x2 + y2 + z2) dx dy dz


由于

:
( x

1 )2
+
( y

1 )2
+
2
( z

1 )2

2! 3!
3!
所以 f (x) 展开式的 4 次项 −1 (2x)3 × x + 1 x3 × (2x) = −x4 , 从而 f (4)(x) = 1 ,
3!
3!
4!
故 f (4)(0) = 24
5. 曲面 z = x2 + y2 平行于平面 2x + 2y − z = 0 的切平面方程为 2
解 该曲面在点 (x0, y0, z0) 的切平面的法向量为 (x0, 2y0, −1) 。又该切平面于 已知平面平行,从而两平面法向量平行,故 x0 = 2y0 = −1
1
,
是一个椭球
2
2
2
其体积为
V
=
4π π
,
作变换 u = x − 1, v
1
√(
) 1
= y− ,w = 2 z −
3
2
2
一 (填空题, 本题满分 30 分, 共 5 小题, 每小题 6 分)
1.
若 f (x) 在点 x = a 可导, 且 f (a) ̸= 0, 则
lim
( f
( a
+
1 ) )n
n
=
n→+∞
f (a)

lim
( f
( a
+
1 ) )n
n
=
lim
( f (a)
+
f
′(a)
1 n
+
o
(
1 n
)
)n
=
f ′(a)
. . . . . . . . . . . . . . . . . . . . . . . . ⃝ . . . . . . . . . . . . . . . . . . . . . . . . ⃝ 密封线 答题时不要超过此线 ⃝ . . . . . . . . . . . . . . . . . . . . . . . . ⃝ . . . . . . . . . . . . . . . . . . . . . . . .
=
x→0
3 li x (sin2 x + cos x)
sin2 x + cos x
− −
f 1
x→0
(1) sin2 ·
x
x2 + cos
x2
x

1
)
=
3f ′(1)
lim
x2

1 2
x2
+
o(x2)
x→0
x2
= 3 f ′(1) 2
3. 设 f (x) 有连续导数, 且 f (1) = 2 . 记 z = f (exy2), 若 ∂z = z, 则当 x > 0 , ∂x
0
由于 f (0) = 0 , f ′(x) > 0 , 故 f (x) > 0 ,
从而只要证明 g(x) > 0 , x > 0
而 g(0) = 0 , 我们只要证明 g′(x) > 0 , 0 < x < a
[
]
而 g′(x) = 2f (x) 1 − f ′(x) > 0 , 得证
第 2 页, 共 6 页
f (x) =
准考证号
学校
省市
第 1 页, 共 6 页
解 由题设得 ∂z = f ′(exy2)exy = f (exy2) , 令 u = exy2 , ∂x
得到当 u > 0 有 f ′(u)u = f (u) , 即 f ′(u) = 1 , 从而 ( ln f (u))′ = (ln u)′ f (u) u
所以有 ln f (u) = ln u + C1 , f (u) = Cu . 再而由初始条件得 f (u) = 2u
故当 x > 0 有 f (x) = 2x
4. 设 f (x) = ex sin 2x , 则 f (4)(0) =
解 由 Taylor 展开式得
[
][
]
f (x) = 1 + x + 1 x2 + 1 x3 + o(x3) 2x − 1 (2x)3 + o(x4)
相关文档
最新文档