光的衍射计算题与答案解析Word版

合集下载

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

5.3光的衍射基础训练(word版含答案)

5.3光的衍射基础训练(word版含答案)

5.3光的衍射基础训练2021—2022学年高中物理鲁科版(2019)选择性必修第一册一、选择题(共15题)1.关于光现象的叙述,以下说法正确的是()A.太阳光照射下肥皂膜呈现的彩色属于光的干涉B.雨后天空中出现的彩虹属于光的衍射C.通过捏紧的两只铅笔间的狭缝观看工作着的日光灯管,看到的彩色条纹,属于光的色散D.阳光照射下,树影中呈现的一个个小圆形光斑,属于光的衍射现象2.利用图1所示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到如图2中甲和乙两种图样.下列关于P处放置的光学元件说法正确的是A.甲对应单缝,乙对应双缝B.甲对应双缝,乙对应单缝C.都是单缝,甲对应的缝宽较大D.都是双缝,甲对应的双缝间距较大3.如图所示,a、b两种单色光平行地射到平行板玻璃,经玻璃后射出的光线分别为a′、b′,两者间距变窄.下列说法正确的是A.光线a在玻璃中的折射率比光线b大B.光线a在玻璃中的传播速度比光线b小C.做双缝干涉实验时,用光线a产生的干涉条纹间距比b大D.光线b比a容易产生明显的衍射现象4.下列现象中属于光的衍射现象的是()A.太阳光通过透明的装满水的金鱼缸后在地面上形成彩色光带B.通过遮光板上的小孔观察远处明亮的电灯,看到电灯周围有一圈彩色光环C.油滴滴在潮湿水泥路面上形成油膜,在阳光照射下油膜上有一圈圈的彩色光环D.吹出的肥皂泡上出现彩色条纹5.关于光的现象,下列说法正确的是()A.某单色光从真空射入普通玻璃,光线传播速度将增大B.光导纤维传输信号,应用了全反射原理C.刮胡须的刀片的影子边缘模糊不清是光的干涉现象D.在镜头前加装一个偏振片可以增强入射光的强度。

6.如图所示的四种明暗相间的条纹,分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(灰黑色部分表示亮纹).则在下面四个图中从左往右排列,亮条纹的颜色依次是()A.红蓝紫黄B.红紫蓝黄C.紫黄蓝红D.黄紫红蓝7.唐代储光羲的《钓鱼湾》诗句“潭清疑水浅,荷动知鱼散”中“疑水浅”是由于发生了()A.光的反射B.光的折射C.光的干涉D.光的衍射8.下列说法正确的是()A.汽车灯光夜间照着自行车“尾灯”,就变得十分明亮,是利用了光的折射B.当波源与观察者相互远离时,波源的频率会减小C.只有狭缝宽度与波长相差不多或比波长小的情况下,才发生衍射现象D.用透明的标准样板和单色光检查工件平面的平整度,利用了光的干涉9.如图,a、b两图是由单色光分别入射到a圆孔和b圆孔形成的图像,由两图可以得出()A.a图是衍射图像,a孔直径小于b孔直径B.a图是干涉图像,a孔直径大于b孔直径C.b图是衍射图像,a孔直径小于b孔直径D.b图是干涉图像,a孔直径大于b孔直径10.下列四种情形中,不属于干涉现象的是()A.图1中激光通过双缝形成等距条纹B.图2中肥皂膜的彩色条纹C.图3中圆盘后呈现泊松亮斑D.图4中检查平面的平整程度11.下列现象中,属于光的衍射现象的是()A.雨后天空出现彩虹B.通过一个狭缝观察日光灯可看到彩色条纹C.镀膜后,望远镜的镜头透入光的亮度增强D.海市蜃楼12.关于甲、乙、丙三个光学现象,下列说法正确的是()甲:激光束通过双缝产生明暗条纹乙:单色光通过劈尖空气薄膜产生明暗条纹丙:激光束通过细丝产生明暗条纹A.三个现象中产生的明暗条纹均为干涉条纹B.甲中,双缝的间距越大,条纹间距越大C.乙中,若被检查平面上有个凹陷,此处对应条纹会向右凸出D.丙中,如果屏上条纹变宽,表明抽制的丝变细了13.下列说法正确的是()A.物体做受迫振动时,驱动力频率越高,受迫振动的物体振幅越大B.医生利用超声波探测病人血管中血液的流速应用了多普勒效应C.两列波发生干涉,振动加强区质点的位移总比振动减弱区质点的位移大D.树荫下的太阳光斑大多成圆形是因为光的衍射14.下列所示的图片、示意图或实验装置图大都来源于课本,则下列判断错误是()A.甲图是薄膜干涉的图像,照相机、望远镜的镜头镀的一层膜是薄膜干涉的应用B.乙图是小孔衍射的图样,也被称为“泊松亮斑C.丙图是在平静无风的海面上出现的“蜃景”,上方是蜃景,下方是景物D.丁图是衍射图像,其最明显的特征是条纹间距不等15.在五彩缤纷的大自然中,我们常常会见到一些彩色光现象,下列现象中,属于光的衍射现象的是()A.雨后天空出现彩虹B.肥皂泡在阳光照射下呈现彩色C.雨后公路上的油膜在阳光照射下出现彩色条纹D.通过一狭缝观察日光灯看到彩色条纹二、填空题(共4题)16.光通过单缝发生衍射时,衍射条纹是一些________的条纹,中央条纹最________、最________,离中央条纹越远,亮条纹的宽度越_________,亮度越________.17.用单色平行光照射狭缝,当缝很窄时,光没有沿直线传播,它绕过了缝的边缘,传播到了_______的地方.这就是光的衍射现象。

18光的衍射习题解答汇总(可编辑修改word版)

18光的衍射习题解答汇总(可编辑修改word版)

) ,第十八章 光的衍射一 选择题1.平行单色光垂直入射到单缝上,观察夫朗和费衍射。

若屏上 P 点处为第 2 级暗纹,则单缝处波面相应地可划分为几个半波带 ()A. 一个B. 两个C. 三个D. 四个解:暗纹条件: a sin = ±故本题答案为 D 。

(2k), k 2= 1,2,3..... ,k =2,所以 2k =4。

2.波长为的单色光垂直入射到狭缝上,若第 1 级暗纹的位置对应的衍射角为 =±π/6,则缝宽的大小为 ( ) A./2B.C. 2D. 3解: a sin = ± (2k ), k = 1,2,3.... k = 1,= ± ,所以 a sin(± = ±2 ⨯ ∴ a = 2。

2 故本题答案为 C 。

6 6 2 3.一宇航员在 160km 高空,恰好能分辨地面上两个发射波长为 550nm 的点光源,假定宇航员的瞳孔直径为 5.0mm ,如此两点光源的间距为 ()A. 21.5mB. 10.5mC. 31.0mD. 42.0m解: = 1.22 = ∆x,∴∆x = 1.22 h = 21.5m 。

1 D h D本题答案为 A 。

4.波长=550nm 的单色光垂直入射于光栅常数 d =2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 ()A. 2B. 3C. 4D. 5解: d sin = k ,k = d sin= 3.64。

k 的可能最大值对应sin = 1 ,所以[k ]= 3 。

故本题答案为 B 。

5.一束单色光垂直入射在平面光栅上,衍射光谱中共出现了 5 条明纹。

若已知此光栅缝宽度与不透明宽度相等,那么在中央明纹一侧的第二条明纹是第几级?()A. 1 级B. 2 级C. 3 级D. 4 级解: d sin = ±k , a + b= 2, 因此±2,±4,±6... 等级缺级。

14光的衍射习题解答

14光的衍射习题解答


(1)条纹相重合就是位置相同,或衍射角相同。 根据暗条纹条件:a sin 1 22 1 2 2 即1是2的两倍。
k1 2 1 (2)同样, a sin k11 k22 k2 1 2
即衍射级别成两倍关系的条纹重合。
第 11 页
三、计算题 2. 波长=600nm的单色光垂直入射到一光栅上,测得第二级明条 纹衍射角为30°,且第三级是缺级。(1) 光栅常数(a+b)等于 多少?(2) 透光缝可能的最小宽度a等于多少? (3) 在选定了上述 (a+b)和a之后,求在屏幕上可能呈现的全部明条纹的级次。
d 3μm k k k 3k ,即k 3, 6.的明条纹谱 线有5条。
第 14 页
光的衍射
习题解答
第 15 页
可能出现的全部主极大的级次为0, 1, 2,共5条
第 12 页
三、计算题 3. 一 衍 射 光 栅 , 每 厘 米 有 200 条 透 光 缝 , 每 条 透 光 缝 宽 为 a=2103mm,在光栅后放一焦距f =1m的凸透镜,现以的单 色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明纹 宽度为多少?(2) 在该宽度内,有几个光栅衍射明条纹?
解 (1)
(a b)sin 30 2 (a b) ... 2.4μm
ab ab (2) k k a k , 已知第三级缺级 a k ab a ... 0.8μm 3 (a b) sin 90 (3) (a b) sin k kmax 4 第三级缺级,

本题中要求考虑缺级问题。 由题意可知:
ab k k 2k a 即k 2, 4...缺级
因此,两侧的两级分别为第1级和第3级。

14光的衍射习题解答解析

14光的衍射习题解答解析


(1)条纹相重合就是位置相同,或衍射角相同。 根据暗条纹条件:a sin 1 22 1 2 2 即1是2的两倍。
k1 2 1 (2)同样, a sin k11 k22 k2 1 2
即衍射级别成两倍关系的条纹重合。
第 11 页
三、计算题 2. 波长=600nm的单色光垂直入射到一光栅上,测得第二级明条 纹衍射角为30°,且第三级是缺级。(1) 光栅常数(a+b)等于 多少?(2) 透光缝可能的最小宽度a等于多少? (3) 在选定了上述 (a+b)和a之后,求在屏幕上可能呈现的全部明条纹的级次。
可能出现的全部主极大的级次为0, 1, 2,共5条
第 12 页
三、计算题 3. 一 衍 射 光 栅 , 每 厘 米 有 200 条 透 光 缝 , 每 条 透 光 缝 宽 为 a=2103mm,在光栅后放一焦距f =1m的凸透镜,现以的单 色平行光垂直照射光栅,求:(1) 透光缝a的单缝衍射中央明纹 宽度为多少?(2) 在该宽度内,有几个光栅衍射明条纹?
习题解答
——14光的衍射
1
第1页
一、选择题 1. 在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a稍稍变宽, 则屏幕C上的中央衍射条纹将[ ] A (A) 变窄 (B) 不变 (C) 变宽 (D) 无法确定

单缝衍射问题。 注意其条纹特点:中央明 条纹是其他各级明条纹宽 度的两倍。 由两侧第一级暗条纹的位 置求出中央明条纹宽为:
第7页
二、填充题 3. 波长为=480nm的平行光垂直照射到宽度为a=0.40mm的单缝上, 单缝后透镜的焦距为f=60cm,当单缝两边缘点A、B射向P点的两 条光线在P点的相位差为时,P点离透镜焦点O的距离等 于 0.36mm 。

光的衍射习题(附答案)

光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

光的衍射习题、答案与解法(2010.11.1)

光的衍射习题、答案与解法(2010.11.1)

光衍射习题、答案与解法一、填空题1.根据惠更斯—菲涅耳原理,若已知光在某时间的波阵面为S ,则S 的前方某点P 的光强取决于波阵面S 上所有面积元发出的子波各自传到P 点( D )(A )振动振幅之和 (B )光强之和 (C )振动振幅之和的平方 (D )振动的相干叠加 2.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变大时,除中央明纹的中心位置不变外,各级衍射条纹 ( A ) (A )对应的衍射角变小 (B )对应的衍射角变大(C )对应的衍射角也不变 (D )光强也不变 参考答案:λϕk a =sin ⎪⎭⎫⎝⎛=-a k λϕ1sin 3.在单缝夫琅禾费单缝衍射实验中,波长λ为的单色光垂直入射到单缝上,对应于衍射角为030的方向上,若单缝处波面可分为6个半波带,则缝宽度a 等于( B )(A )λ (B )λ6 (C )λ2 (D )λ4 参考答案:2sin λϕka = λλλϕλ6212630sin 26sin 20=⨯=⨯==ka4.一束波长为λ的平行单色光垂直入射到一单色AB 上,装置如图1所示,在屏幕P 上形成衍射图样,如果Q 是中央PQCλfALB亮纹一侧第二个暗纹的中心所在位置,则BC 得长度为 ( D )(A )2/λ (B )λ (C )2/3λ (D )λ2 参考答案:λϕk a =sin λλϕ2sin ==k a5. 波长为nm 600=λ)m 10nm 1(9-=的单色光垂直照射到宽mm 3.0=a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕中央明条纹一侧第一个暗条纹和另一侧第一个暗条纹之间的距离为mm 4=∆x ,则凸透镜的焦距f 为 ( C )(A )m 2 (B ) m 1.0 (C )m 1 (D )m 5.0参考答案:⎪⎪⎩⎪⎪⎨⎧==-=∆=-12k x x x x k a f x k k k k λ ()m 1106002103.01042933=⨯⨯⨯⨯⨯=∆=---a x f λ6.一束平行单色光垂直入射在光栅上,当光栅常数()b a +,为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9等级次的明纹均不出现 ( B )(A )a b a 2=+ (B )a b a 3=+(C )a b a 4=+(D )a b a 6=+参考答案:()⎪⎪⎪⎩⎪⎪⎪⎨⎧==='==+963sin sin k k k k a k b a λϕλϕ ===='=+392613k k a b a 7.一束白光垂直照射在一光栅上,在形成的同一级光栅谱中,离中央明纹最近的是 ( A )(A )紫光 (B )绿光 (C )黄光 (D )红光参考答案:()λϕk b a =+sin⎪⎭⎫ ⎝⎛+=-b a k λϕ1sin 红λλ〈3 8.若用衍射光栅准确测定一单色光可见光的波长,在下列各种光栅中选用那一种最为合适?( D )(A )mm 5.0(B ) mm 1(C )mm 01.0(D )mm 100.13-⨯参考答案:()⎪⎪⎩⎪⎪⎨⎧===+21sin πϕλϕk k b a()()mm 107nm 7001107001sin 49--⨯==⨯⨯==+ϕλk b a9.波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上,取⋅⋅⋅⋅±±=2,1,0k ,则决定出现明纹的衍射角θ的公式可写成( C )(A )λθk Na =sin (B )λθk a =sin (C )λθk d =sin (D )λθk Nd =sin 参考答案:()λϕk b a =+sin λϕk d =sin10.提高光仪器分辨率本领的方法是:( B ) ( A )增大透光孔径,增大入射光的波长 ( B )增大透光孔径,减小入射光的波长 ( C ) 减小透光孔径,增大入射光的波长 ( D ) 减小透光孔径,减小入射光的波长 参考答案:λ22.1D R = Dλθ22.1= 二、填空题1.在单缝夫琅禾费衍射实验中,波长nm 400=λ的平行光垂直入射单缝,所用凸透镜焦距m 5.1=f ,第三级暗纹离中央明纹中心m 100.33-⨯,另一波长为0λ的光的第二级暗纹在屏的同一位置上,则单缝的缝宽m 103.5-4⨯=a ,波长nm 0060=λ。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一. 填空题1. 波长入=500 nm (1 nm = 10 -9m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹•今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3_m .2. 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光( 入〜589 nm )中央明纹宽度为4.0 mm,贝U k ~442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为3.0 mm .3. 平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm (或5 X 410- mm).4. 当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3 a时,衍射光谱中第±±…级谱线缺级.5. 一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30角入射,在屏幕上最多能看到第5级光谱.6. 用波长为入的单色平行红光垂直照射在光栅常数d = 2 pm (1 m = 10-6m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透633nm.7. 一会聚透镜,直径为3 cm,焦距为20 cm .照射光波长550nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24 x i0-5rad .这时在透镜焦平面上两个衍射图样中心间的距离不小于 4.47 m .8. 钠黄光双线的两个波长分别是589.00 nm和589.59 nm (1 nm = 10 -9m), 若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9. 用平行的白光垂直入射在平面透射光栅上,波长为21= 440 nm的第3级光谱线将与波长为2=660 nm的第2级光谱线重叠(1 nm = 10 -9m).10. X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长入和2,垂直入射于单缝上.假如入的第一级衍射极小与2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sin a= 1 入 a sin Q = 2 2由题意可知Q= Q, sin Q= sin &代入上式可得2= 2 2(2) a sin Q = k12=2 k12 (k1=1,2,…)sin Q = 2 k12/ aa sin &= k2 A (k2=1,2,…)sin(2= 2 k2 A/ a若k2= 2 k i,贝U e i= 即A的任一k i级极小都有A的2 k i级极小与之重合. 12. 在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长A= 500 nm,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度A x.解:单缝衍射第1个暗纹条件和位置坐标X i为a sin d = AX1 = f tan d ~f sin d ~f A/ a (v d 很小)单缝衍射第2个暗纹条件和位置坐标X2为a sin d= 2 AX2 = f tan d ~f sin d~2 f A/ a (v d很小)单缝衍射中央亮纹旁第一个亮纹的宽度7 4A x1 = X2 - X1 ~f (2 A/ a - A a)= f A/ a= 1.00X5.00X10" /(1.00 X10" ) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,A= 400 nm,A= 760nm (1 nm = 10 "9m).已知单缝宽度a = 1.0 X10-2cm,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a = 1.0X10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1)由单缝衍射明纹公式可知1 1a sin$= (2 k + 1) A= 2 A (取k = 1)1 3a sin礎=^ (2 k + 1) A= ? Atan $ = x1 / f,tan 心=x1 / fsin 帀 ~tan 召,sin 血 ~tan 心由于3所以治=㊁f入/ a3x2= 2 f 入/ a则两个第一级明纹之间距为3A x1 = x2 - x1 = 2 f AA/ a = 0.27 cm(2)由光栅衍射主极大的公式d sin召=k入=1入d sin &= k A= 1 A且有sin © = tan ©二 x / f所以A x1= x2 - x1 = f A A/ a = 1.8 cm14. 一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为A= 480 nm (1nm = 10 "m)的平行光垂直照射双缝,在双缝后放一焦距 f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距I; (2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1)第k级亮纹条件:d sin B= k A第k 级亮条纹位置:X1= f tan 6 ~f sin d ~k f A/ d相邻两亮纹的间距:3A x= X k+1 - X k = (k + 1) f A d - k A/ d = f A/ d = 2.4 X10" m = 2.4 mm ⑵单缝衍射第一暗纹:a sin 6= A单缝衍射中央亮纹半宽度:A = f tan 6 ~f sin 6 ~k f A d = 12 mmA x0/ A x = 5•••双缝干涉第i5级主极大缺级.•••在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±,吃,±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第i5级主极大,同样可得出结论。

2光的衍射参考答案.doc

2光的衍射参考答案.doc

\L (B)变宽,不移动(D)变窄,不移动=3.64 ,所以 = 3。

《大学物理(下)》作业 No ・2 光的衍射(机械)一选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄, 同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央 衍射条纹将 (A) 变宽,同时向上移动 (C)变窄,同时向上移动 [参考解]2 一级暗纹衍射条件:a sin % = Z ,所以中央明纹宽度心中=2/ tan © « 2/ sin= 2/ —。

a衍射角0 = 0的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。

2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A)间距变大 (C)不发生变化 (B)间距变小(D)间距不变,但明纹的位置交替变化[C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的 衍射角,不会引起衍射条纹的变化。

3.波长1=55()0入的单色光垂直入射于光栅常数d=2X10-4cm 的平面衍射光栅上,可能观察到的光 谱线的最大级次为(A) 2(B) 3 (C) 4(D) 5 [B ][参考解] 7T由光栅方程dsin (p = +kA 及衍射角—可知,观察屏可能察到的光谱线的最大级次 2d 2x10" < —= --------------- 2 5500x10"°4.在双缝衍射实验中,若保持双缝Si 和S2的中心之间距离不变,把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少;(B) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变;(C) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多;(D) 单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。

[参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。

7光的衍射习题详解.doc

7光的衍射习题详解.doc

Y» = asin&ua— = 0.2 x 10~3 f ? X |-------- =10"6 m=l 000nm=2/i0.4即"2x2牛吟因此,一、选择题1.在单缝衍射实验小,缝宽d = 0.2mm,透镜焦距/=0.4m,入射光波长/l = 500nm,则在距离中央亮纹中心位置2mm处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为儿个半波带?[ ](A)亮纹,3个半波带;(B)亮纹,4个半波带;(C)暗纹,3个半波带;(D)暗纹,4个半波带。

答案:D解:沿衍射方向&,最人光程羌为根据单缝衍射亮、暗纹条件,可判断出该处是暗纹,从该方向上可分为4个半波带。

2.波长为632.8nm的单色光通过一狭缝发生衍射。

已知缝宽为1.2mm,缝与观察屏Z间的距离为D =2.3mo则屏上两侧的两个第8级极小之间的距离/匕为[ ](A) 1.70cm;(B) 1.94cm;(C) 2.18cm;(D) 0.97cm。

答案:B解:第k级暗纹条件为asin^ = Uo据题意有j 2注:总::Ax = 2D tan 0 « 2£>sin 0 = 2D —a代入数据得A c oa 8x632.8x10—9 2Ax = 2x2.3x --------------- -—— =1.94x10 m=1.94cm1.2x10』3.波长为600nm的单色光垂直入射到光栅常数为2.5xl()-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为[ ](A) 0、±1、±2、±3、±4;(B) 0、±1、±3:(C) ±1、±3;(D) 0、±2、±4o答案:B解:光栅公式dsing",最高级次为k祁=色=2.5"():“ (取整数)。

第4章 第5节 光的衍射 基础(word版含答案)

第4章 第5节 光的衍射 基础(word版含答案)

人教版高中物理选修一第4章第5节光的衍射基础一、单项选择题(共6小题;共24分)1. 如图所示的四个图形中,著名的泊松亮斑的衍射图样是A. B.C. D.2. 观察单缝衍射现象时,把缝宽由0.2mm逐渐增大到0.8mm,看到的现象是A. 衍射条纹的间距逐渐变小,衍射现象逐渐不明显B. 衍射条纹的间距逐渐变大,衍射现象越来越明显C. 衍射条纹的间距不变,只是亮度增强D. 以上现象都不会发生3. 一束红光射向一块有双缝的不透光的薄板,在薄板后的光屏上呈现明、暗相间的干涉条纹,现将其中一条窄缝挡住,让这束红光只通过一条窄缝,则在光屏上可以看到A. 与原来相同的明暗相间的条纹,只是明条纹比原来暗些B. 与原来不相同的明暗相间的条纹,而中央明条纹变宽些C. 只有一条与缝宽对应的明条纹D. 无条纹,只存在一片红光4. 关于光的干涉和衍射现象,下述说法正确的是A. 光的干涉现象遵循波的叠加原理,衍射现象不遵循波的叠加原理B. 光的干涉条纹是彩色的,衍射条纹是黑白相间的C. 光的干涉现象说明光具有波动性,光的衍射现象说明光具有粒子性D. 光的干涉和衍射现象都是光波叠加的结果5. 用卡尺观察单缝衍射现象,当缝宽由0.1mm逐渐增大到0.5mm的过程中A. 衍射条纹间距变窄,衍射现象逐渐消失B. 衍射条纹间距变宽,衍射现象越加显著C. 衍射条纹间距不变,亮度增加D. 衍射条纹间距不变,亮度减小6. 如图所示,甲、乙、丙、丁四个图是不同的单色光形成的双缝干涉或单缝衍射图样,分析各图样的特点可以得出的正确结论是A. 甲、乙是光的干涉图样B. 丙、丁是光的干涉图样C. 形成甲图样的光的波长比形成乙图样的光的波长短D. 形成丙图样的光的波长比形成丁图样的光的波长短二、双项选择题(共2小题;共8分)7. 下列关于光的干涉和衍射的叙述中正确的是A. 光的干涉和衍射都遵循光波的叠加原理B. 光的干涉说明光的波动性,光的衍射说明光不是沿直线传播C. 光的干涉呈黑白间隔条纹,光的衍射呈彩色条纹D. 光的干涉遵循光波叠加原理,光的衍射不遵循这一原理8. 关于光的衍射现象,下面说法正确的是A. 红光的单缝衍射图样是红暗相间的直条纹B. 白光的单缝衍射图样是红暗相间的直条纹C. 光照到不透光小圆盘上出现泊松亮斑,说明发生了衍射D. 光照到较大圆孔上出现大光斑,说明光沿直线传播,不存在光的衍射三、多项选择题(共1小题;共4分)9. 关于衍射的下列说法中,正确的是A. 衍射现象中衍射花样的明暗条纹的出现是光干涉的结果B. 双缝干涉中也存在着光衍射现象C. 一切波都可以产生衍射D. 影的存在是一个与衍射现象相矛盾的客观事实答案第一部分1. B【解析】泊松亮斑的图样特点为中心是一个亮点,亮点周围有一个大的阴影区,然后才是明暗相间的条纹。

(完整版)光的衍射习题(附答案)

(完整版)光的衍射习题(附答案)

光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。

光的衍射(解析版)

光的衍射(解析版)

第5节 光的衍射一、光的衍射和发生明显衍射的条件1.在用水波槽做衍射实验时,若打击水面的振子振动频率是5Hz ,水波在水槽中的传播速度为0.05m/s ,为观察到明显的衍射现象,小孔的直径d 应为( )A .10cmB .50cmC .d >10cmD .d <1cm 【答案】D【详解】水波的波长为0.01m 1cm v fλ===要发生明显的衍射现象,障碍物或空的尺寸应与波长相差不多或比波长小,D 正确。

故选D 。

2.如图所示是通过用两个刀片组成的宽度可以调节的狭缝观察日光灯光源时所看到的四个现象,当狭缝宽度从0.8mm 逐渐变小时,所看到的四个图像的顺序是( )A .bacdB .badcC .abcdD .abdc【答案】C 【详解】当孔、缝的宽度或障碍物的尺寸与波长相近甚至比波长更小时即能发生明显的衍射。

显然0.8 mm 大于光的波长,故不能发生明显的衍射现象,根据光的直线传播的原理,此时我们看到的应该是条纹状的光斑,即图象a ,但随孔缝的宽度的减小,光斑的面积逐渐减小,在发生衍射前看到图象b ;当发生衍射时,随狭缝的宽度逐渐变小时衍射条纹的间距逐渐变大,而条纹间距最小的是c ,条纹间距最大的是d ,所以先观察到c ,再观察到d 。

综上所述当狭缝宽度从0.8 mm 逐渐变小时我们依次看到的四个图象的顺序是abcd 。

故选C 。

二、光的各种衍射3.如图所示,甲、乙、丙、丁四个图是单色光形成的干涉或衍射图样,根据各图样的特点可知()A.甲图是光的衍射图样B.乙图是光的干涉图样C.丙图是光射到圆孔后的干涉图样D.丁图是光射到圆板后的衍射图样【答案】D【详解】A.甲图中条纹间距相等,是光的双缝干涉图样,故A错误;B.乙图中中间亮条纹最宽,向外条纹变窄,间距变小,是光的单缝衍射图样,故B错误;C.丙图为圆孔衍射图样,故C错误;D.丁图是光射到圆板后的衍射图样(光照射在小圆盘上却出现中间亮斑),故D正确。

光的衍射计算题答案

光的衍射计算题答案

《光的衍射》计算题答案1. 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222s i n λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得212λλ= 3分 (2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分 2. 解:(1) 对于第一级暗纹,有a sin ϕ 1≈λ因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = λ / a故中央明纹宽度 ∆x 0 = 2f tg ϕ 1=2f λ / a = 1.2 cm 3分 (2) 对于第二级暗纹,有 a sin ϕ 2≈2λx 2 = f tg ϕ 2≈f sin ϕ 2 =2f λ / a = 1.2 cm 2分3. 解: a sin ϕ = λ 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分∆x =2x 1=1.65 mm 1分4. 解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3 2分因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f 2分= 500 nm 1分5. 解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . 2分 ∴ f ≈a ∆x / λ=400 mm 3分6. 解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分 (2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d 2分且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm 2分7. 解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分 当两谱线重合时有 ϕ1= ϕ2 1分即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ160sin 61λ=d =3.05×10-3 mm 2分 8. 解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分9. 解:对于第一级谱线,有:x 1 = f tg ϕ 1, sin ϕ 1= λ / d 1分 ∵ sin ϕ ≈tg ϕ ∴ x 1 = f tg ϕ 1≈f λ / d 2分λ和λ'两种波长光的第一级谱线之间的距离∆x = x 1 –x 1'= f (tg ϕ 1 – tg ϕ 1')= f (λ-λ') / d =1 cm 2分10. 解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600 nm----760 nm 1分11. 解:由光栅公式得sin ϕ= k 1 λ 1 / (a +b ) = k 2 λ 2 / (a +b )k 1 λ 1 = k 2 λ 2将k 2 / k 1约化为整数比k 2 / k 1=3 / 2=6 / 4=12 / 8 ......k 2 / k 1 = λ 1/ λ 2=0.668 / 0.447 3分 取最小的k 1和k 2 , k 1=2,k 2 =3,3分 则对应的光栅常数(a + b ) = k 1 λ 1 / sin ϕ =3.92 μm2分12. 解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60° 2分 a + b =2λ'/sin ϕ' ϕ'=30° 1分3λ / sinϕ=2λ'/sinϕ'1分λ'=510.3 nm 1分(2) (a + b) =3λ / sinϕ=2041.4 nm 2分2ϕ'=sin-1(2×400 / 2041.4) (λ=400nm) 1分2ϕ''=sin-1(2×760 / 2041.4) (λ=760nm) 1分白光第二级光谱的张角∆ϕ=22ϕϕ'-''= 25°1分13. 解:由光栅公式(a+b)sinϕ=kλk =1,φ =30°,sinϕ1=1 / 2∴λ=(a+b)sinϕ1/ k =625 nm 3分实际观察不到第二级谱线2分若k =2, 则sinϕ2=2λ / (a + b) = 1, ϕ2=90°14. 解:d=1 / 500 mm,λ=589.3 nm,∴sinθ =λ /d=0.295 θ =sin-10.295=17.1°3分第一级衍射主极大: d sinθ = λ2分15. 解:光栅公式,d sinθ =kλ.现d=1 / 500 mm=2×10-3 mm,λ1=589.6 nm,λ2=589.0 nm,k=2.∴sinθ1=kλ1/ d=0.5896,θ1=36.129°2分sinθ2=kλ2 / d=0.5890,θ2=36.086°2分δθ=θ1-θ2=0.043°1分16. 解:光栅常数 d = 1m / (5×105) = 2 ×10-5m.2分设λ1 = 450nm,λ2 = 650nm,则据光栅方程,λ1和λ2的第2级谱线有d sinθ1 =2λ1;dsinθ2=2λ2据上式得:θ1 =sin-12λ1/d=26.74°θ2 = sin-12λ2 /d=40.54°3分第2级光谱的宽度x2 - x1 = f (tgθ2-tgθ1)∴透镜的焦距f = (x1 -x2) / (tgθ2 - tgθ1) =100 cm.3分17. 解:光栅常数d=2×10-6m 1分(1) 垂直入射时,设能看到的光谱线的最高级次为k m,则据光栅方程有d sinθ =k mλ∵sinθ ≤1∴k mλ / d≤1 ,∴k m≤d / λ=3.39∵k m为整数,有k m=3 4分(2) 斜入射时,设能看到的光谱线的最高级次为mk',则据斜入射时的光栅方程有()λθmkd'='+sin30sindkm/sin21λθ'='+∵sinθ'≤1 ∴5.1/≤'dkmλ∴λ/5.1dkm≤'=5.09∵mk'为整数,有mk'=5 5分18. 解:双缝干涉条纹:(1) 第k级亮纹条件:d sinθ =kλ第k级亮条纹位置:x k = f tgθ ≈f sinθ ≈kfλ / d相邻两亮纹的间距:∆x = x k+1-x k=(k+1)fλ / d-kfλ / d=fλ / d=2.4×10-3 m=2.4 mm 5分(2) 单缝衍射第一暗纹:a sinθ1 = λ∆x 0 = f tgθ1≈f sinθ1≈fλ / a=12 mm∆x0 / ∆x =5∴双缝干涉第±5极主级大缺级.3分∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分分别为k = 0,±1,±2,±3,±4级亮纹1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.。

第15章光的衍射习题答案

第15章光的衍射习题答案
(2)由缺级条件:
ab ' k k k 3 a ab ' ab a k 8.0 10 7 m 3 3
(3)由光栅方程:
( a b ) sin 90 k max

k max 4
由第三级缺级,在屏上可能呈现的全部主极大级200条透光缝,每条透光缝宽 为a=2*10-3cm,在光栅后放一焦距f=1m的凸透镜,现 以波长为600nm的单色平行光垂直照射光栅,求: (1)透光缝a的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几个光栅衍射主极大? x 解:(1)单缝衍射中央明纹宽度
7 5.89 10 5.用每毫米有425条刻痕的平面光栅观察 m 的钠光谱,垂直入射时,能看到的最高级次谱线是 第 3 级;以i=30°斜入射时,能看到的最高级次 谱线是第 5 级,原来的0级谱线处现在是第 2 级。
6.在单缝夫琅和费衍射实验中,波长为 的单色光垂 直入射在宽度 a 5 的单缝上,对应于衍射角 的方 向上若单缝处波面恰好可分成5个半波带,则衍射角 = 30° 。
(3)若入射角i为负,衍射角分别为正和负:k=2.1和6.3,所以明纹级次为:k=-5,-4,-2,-1,0,1,2
7.一单色平行光垂直入射一单缝,其衍射第三级明纹 位置恰好与波长600nm的单色光垂直入射该缝时衍射的 第二级明纹重合,则该单色光的波长为 428.6 nm 。 8.衍射光栅主极大公式 ( a b ) sin k , k 0,1, 2 ,在 k=2的方向上第一条缝与第六条缝对应点发出的两条 衍射光的光程差 = 10λ 。 9.在单缝衍射中,衍射角愈大(级数愈大)的那些明 条纹的亮度愈 小 ,原因是 。
第十五章
光的衍射
一、选择题

光的衍射计算题及答案教学提纲

光的衍射计算题及答案教学提纲

《光的衍射》计算题1. 在某个单缝衍射实验中,光源发出的光含有两秏波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问 (1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解:(1) 由单缝衍射暗纹公式得 111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= 3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分2. 波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a =0.10 mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f =1.0 m ,屏在透镜的焦平面处.求: (1) 中央衍射明条纹的宽度∆ x 0;(2) 第二级暗纹离透镜焦点的距离x 2 . 解:(1) 对于第一级暗纹,有a sin ϕ 1≈λ因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = λ / a故中央明纹宽度 ∆x 0 = 2f tg ϕ 1=2f λ / a = 1.2 cm 3分 (2) 对于第二级暗纹,有 a sin ϕ 2≈2λx 2 = f tg ϕ 2≈f sin ϕ 2 =2f λ / a = 1.2 cm 2分3. 在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm ,透镜焦距f =700 mm .求透镜焦平面上中央明条纹的宽度.(1nm=10-9m)解: a sin ϕ = λ 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分∆x =2x 1=1.65 mm 1分4. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3 2分因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f 2分 = 500 nm 1分5. 用波长λ=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . 2分 ∴ f ≈a ∆x / λ=400 mm 3分6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm (1nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分 (2) 由光栅衍射主极大的公式 1111sin λλϕ==k d2221sin λλϕ==k d 2分 且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm 2分7. 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm (1 nm= 10-9m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d .解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分当两谱线重合时有 ϕ1= ϕ2 1分即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6λ1ο60sin 61λ=d =3.05×10-3mm 2分8. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ2解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+οb acm 1036.330sin 341-⨯==+ολb a 3分 (2) ()2430sin λ=+οb a()4204/30sin 2=+=οb a λnm 2分9. 用含有两种波长λ=600 nm 和='λ500 nm (1 nm=10-9 m)的复色光垂直入射到每毫米有200 条刻痕的光栅上,光栅后面置一焦距为f=50 cm 的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距∆x .解:对于第一级谱线,有:x 1 = f tg ϕ 1, sin ϕ 1= λ / d 1分 ∵ sin ϕ ≈tg ϕ ∴ x 1 = f tg ϕ 1≈f λ / d 2分λ和λ'两种波长光的第一级谱线之间的距离 ∆x = x 1 –x 1'= f (tg ϕ 1 – tg ϕ 1')= f (λ-λ') / d =1 cm 2分10. 以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600 nm----760 nm 1分11. 氦放电管发出的光垂直照射到某光栅上,测得波长λ1=0.668 μm 的谱线的衍射角为ϕ=20°.如果在同样ϕ角处出现波长λ2=0.447 μm 的更高级次的谱线,那么光栅常数最小是多少?解:由光栅公式得sin ϕ= k 1 λ 1 / (a +b ) = k 2 λ 2 / (a +b )k 1 λ 1 = k 2 λ 2将k 2 / k 1约化为整数比k 2 / k 1=3 / 2=6 / 4=12 / 8 ......k 2 / k 1 = λ 1/ λ 2=0.668 / 0.447 3分 取最小的k 1和k 2 , k 1=2,k 2 =3,3分 则对应的光栅常数(a + b ) = k 1 λ 1 / sin ϕ =3.92 μm2分12. 用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°. (1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm -760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9 m)解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60° 2分 a + b =2λ'/sin ϕ' ϕ'=30° 1分3λ / sin ϕ =2λ'/sin ϕ' 1分 λ'=510.3 nm 1分 (2) (a + b ) =3λ / sin ϕ =2041.4 nm 2分2ϕ'=sin -1(2×400 / 2041.4) (λ=400nm) 1分 2ϕ''=sin -1(2×760 / 2041.4) (λ=760nm) 1分 白光第二级光谱的张角∆ϕ = 22ϕϕ'-''= 25° 1分13.某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为 30°那么入射光的波长是多少?能不能观察到第二级谱线?解:由光栅公式 (a +b )sin ϕ =k λ k =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 3分 实际观察不到第二级谱线 2分若k =2, 则 sin ϕ2=2λ / (a + b ) = 1, ϕ2=90°14. 用波长为589.3 nm (1 nm = 10-9 m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角.解: d =1 / 500 mm ,λ=589.3 nm ,∴ sin θ =λ / d =0.295 θ =sin -10.295=17.1° 3分 第一级衍射主极大: d sin θ = λ 2分15. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱.钠黄光包含两条谱线,其波长分别为589.6 nm 和589.0 nm .(1nm=10­9m)求在第二级光谱中这两条谱线互相分离的角度.解:光栅公式, d sin θ =k λ.现 d=1 / 500 mm =2×10-3mm ,λ1=589.6 nm ,λ2=589.0 nm ,k=2.∴ sin θ1=k λ1 / d=0.5896, θ1=36.129° 2分sin θ2=k λ2 / d=0.5890, θ2=36.086° 2分 δθ=θ1-θ2=0.043° 1分16.波长范围在450~650 nm 之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm .求透镜的焦距f . (1 nm=10-9 m)解:光栅常数 d = 1m / (5×105) = 2 ×10-5m .2分设 λ1 = 450nm , λ2 = 650nm, 则据光栅方程,λ1和λ2的第2级谱线有d sin θ 1 =2λ1; dsin θ 2=2λ2据上式得: θ 1 =sin -12λ1/d =26.74°θ 2 = sin -12λ2 /d =40.54° 3分第2级光谱的宽度 x 2 - x 1 = f (tg θ 2-tg θ 1)∴ 透镜的焦距 f = (x 1 - x 2) / (tg θ 2 - tg θ 1) =100 cm . 3分17.设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光(λ=589 nm )的光谱线.(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次k m 是多少? (2)当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次mk ' 是多少? (1nm=10-9m)解:光栅常数d=2×10-6m 1分(1) 垂直入射时,设能看到的光谱线的最高级次为k m ,则据光栅方程有d sin θ = k m λ∵ sin θ ≤1 ∴ k m λ / d ≤1 , ∴ k m ≤d / λ=3.39∵ k m 为整数,有 k m =3 4分(2) 斜入射时,设能看到的光谱线的最高级次为mk ',则据斜入射时的光栅方程有 ()λθmk d '='+sin 30sin ο d k m/sin 21λθ'='+ ∵ sin θ'≤1 ∴ 5.1/≤'d k mλ ∴ λ/5.1d k m ≤'=5.09∵ mk '为整数,有 m k '=5 5分18. 一双缝,缝距d=0.40 mm,两缝宽度都是a=0.080 mm,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m的透镜求:(1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N和相应的级数.解:双缝干涉条纹:(1) 第k级亮纹条件:d sinθ =kλ第k级亮条纹位置:x k = f tgθ ≈f sinθ ≈kfλ / d相邻两亮纹的间距:∆x = x k+1-x k=(k+1)fλ / d-kfλ / d=fλ / d=2.4×10-3 m=2.4 mm 5分(2) 单缝衍射第一暗纹:a sinθ1 = λ单缝衍射中央亮纹半宽度:∆x0 = f tgθ1≈f sinθ1≈fλ / a=12 mm∆x0 / ∆x =5∴双缝干涉第±5极主级大缺级.3分∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分分别为k = 0,±1,±2,±3,±4级亮纹1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.。

光的衍射习题及答案

光的衍射习题及答案

第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射单元测试题及答案

光的衍射单元测试题及答案

光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。

1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。

根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。

2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。

- 主极大强度会变弱,即主极大上的亮度会减弱。

- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。

请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。

光的衍射习题(附答案)1(1)

光的衍射习题(附答案)1(1)

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为1 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f = 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1=k1λ1=2k1λ2(k1=1, 2, …)sinθ1=2k1λ2/ aa sinθ2=k2λ2(k2=1, 2, …)sinθ2=2k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m =5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2− x1= 32fΔλ/a = 0.27 cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2− x1 = fΔλ/a = 1.8 cm14.一双缝缝距d = 0.40 mm,两缝宽度都是a = 0.080 mm,用波长为λ = 480 nm(1 nm = 10−9 m)的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ=kλ第k级亮条纹位置:x1= f tanθ1≈f sinθ1≈k f λ/ d相邻两亮纹的间距:Δx= x k +1− x k = (k + 1) fλ/ d −k λ/ d= f λ/ d = 2.4×10−3 m = 2.4 mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mmΔx/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

光的衍射(可编辑word)

光的衍射(可编辑word)

第四章光5 光的衍射根底过关练题组一对光的衍射的理解1.以下对衍射现象的定性分析,不正确的选项是( )A.光的衍射是光在传播过程中绕过障碍物继续传播的现象B.光的衍射条纹图样是光波相互叠加的结果C.光的衍射现象为光的波动说提供了有力的证据D.光的衍射现象完全否认了光沿直线传播的结论2.(多项选择)在单缝衍射实验中,以下说法正确的选项是( )A.将入射光由黄光换成绿光,衍射条纹间距变窄B.使单缝宽度变大,衍射条纹间距变宽C.换用频率较小的光照射,衍射条纹间距变宽D.增大单缝到屏的距离,衍射条纹间距变宽3.(多项选择)关于光的衍射现象,以下说法正确的选项是( )A.红光的单缝衍射图样是红暗相间的直条纹B.白光的单缝衍射图样是红暗相间的直条纹C.光照到不透明的小圆盘上出现泊松亮斑,说明发生了衍射D.光照到较大圆孔上出现边缘模糊的大光斑,说明光沿着直线传播,不存在光的衍射4.(奉贤高三一模)以下图样中有泊松亮斑的是( )5.(东阳中学高二下期中)(多项选择)抽制细丝时可用激光监控其粗细。

如下图,激光束越过细丝时产生的条纹和它通过遮光板上的一条同样宽度的窄缝产生的条纹相同,那么以下描述正确的选项是( )A.这是利用光的干预现象B.这是利用光的衍射现象C.如果屏上条纹变宽,说明抽制的丝变粗了D.如果屏上条纹变宽,说明抽制的丝变细了6.(奉贤高三下质量调研测试)如下图为观察光的衍射现象的装置,让激光束通过一个狭缝,观察到光屏上出现衍射图样。

现保持狭缝到光屏的距离不变,微微减小狭缝的宽度,那么再观察到的条纹是( )A.间距相等的更窄条纹B.间距相等的更宽条纹C.间距不等的更窄条纹D.间距不等的更宽条纹题组二光的衍射和光的干预的比拟7.关于光的干预和衍射现象,以下说法正确的选项是( )A.光的干预现象遵循波的叠加原理,衍射现象不遵循波的叠加原理B.光的干预条纹是彩色的,衍射条纹是黑白相间的C.光的干预现象说明光具有波动性,光的衍射现象不能说明这一点D.光的干预和衍射现象都是光波叠加的结果8.(多项选择)如图甲、乙所示是单色光通过窄缝后形成的明暗相间的两种条纹图样(黑色局部表示暗条纹),以下判断正确的选项是( )A.甲为单缝衍射的图样B.乙为双缝干预的图样C.甲为双缝干预的图样D.乙为单缝衍射的图样9.如下图,a、b、c、d 4幅明暗相间的条纹图样是红光、蓝光各自通过同一个双缝干预仪器形成的干预图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色局部表示亮条纹)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《光的衍射》计算题1. 在某个单缝衍射实验中,光源发出的光含有两秏波长1和2,垂直入射于单缝上.假如1的第一级衍射极小与2的第二级衍射极小相重合,试问 (1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解:(1) 由单缝衍射暗纹公式得 111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ=3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) a k /sin 222λθ=若k 2 = 2k 1,则1 = 2,即1的任一k 1级极小都有2的2k 1级极小与之重合. 2分2. 波长为600 nm (1 nm=10-9m)的单色光垂直入射到宽度为a =0.10 mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f =1.0 m ,屏在透镜的焦平面处.求: (1) 中央衍射明条纹的宽度 x 0;(2) 第二级暗纹离透镜焦点的距离x 2 . 解:(1) 对于第一级暗纹,有a sin 1≈ 因 1很小,故 tg 1≈sin 1 = / a 故中央明纹宽度 x 0 = 2f tg 1=2f/ a = 1.2 cm 3分 (2) 对于第二级暗纹,有 a sin 2≈2x 2 = f tg 2≈f sin 2 =2f / a = 1.2 cm 2分3. 在用钠光(=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm ,透镜焦距f =700 mm .求透镜焦平面上中央明条纹的宽度.(1nm=109m)解: a sin = 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分x =2x 1=1.65 mm 1分4. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.解:设第三级暗纹在3方向上,则有a sin 3 = 3此暗纹到中心的距离为 x 3 = f tg 3 2分因为3很小,可认为tg 3≈sin 3,所以x 3≈3f / a .两侧第三级暗纹的距离是 2 x 3 = 6f / a = 8.0mm∴= (2x 3) a / 6f 2分= 500 nm 1分5. 用波长=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为 1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离x = x 3 –x 2≈f / a . 2分 ∴ f ≈a x / =400 mm 3分 6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,1=400 nm ,=760 nm (1nm=10-9 m).已知单缝宽度a =1.0×10-2cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于11tg sin ϕϕ≈ , 22tg sin ϕϕ≈ 所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分 (2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d 2分且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm 2分7. 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,1=440 nm ,2=660 nm (1nm = 10-9m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角=60°的方向上.求此光栅的光栅常数d .解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分当两谱线重合时有 1=21分即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6160sin 61λ=d =3.05×10-3mm 2分8. 一束具有两种波长1和2的平行光垂直照射到一衍射光栅上,测得波长1的第三级主极大衍射角和2的第四级主极大衍射角均为30°.已知1=560 nm (1 nm= 10-9m),试求: (1) 光栅常数a +b(2) 波长2解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+b a()4204/30sin 2=+=b a λnm 2分9. 用含有两种波长=600 nm 和='λ500 nm (1 nm=10-9m)的复色光垂直入射到每毫米有200 条刻痕的光栅上,光栅后面置一焦距为f=50 cm 的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距x .解:对于第一级谱线,有:x 1 = f tg 1, sin 1= / d 1分 ∵ sin ≈tg ∴ x 1 = f tg 1≈f / d 2分 和'两种波长光的第一级谱线之间的距离 x = x 1 –x 1'= f (tg 1 – tg 1')= f (-') / d =1 cm 2分10. 以波长400 nm ─760 nm (1 nm =10-9m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围. 解:令第三级光谱中=400 nm 的光与第二级光谱中波长为的光对应的衍射角都为, 则 d sin =3,d sin =2λ'λ'= (d sin / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600 nm----760 nm 1分11. 氦放电管发出的光垂直照射到某光栅上,测得波长=0.668 m 的谱线的衍射角为 =20°.如果在同样角处出现波长2=0.447 m 的更高级次的谱线,那么光栅常数最小是多少?解:由光栅公式得sin = k 1 1 / (a +b ) = k 2 2 / (a +b )k 1 1 = k 2 2将k 2 k 1约化为整数比k 2 k 1=3 / 2=6 / 4=12 / 8 ...... k 2 k 1 = 1/ 2=0.668 / 0.447 3分取最小的k 1和k 2, k 1=2,k 2=3,3分 则对应的光栅常数(a + b ) = k 1 1 / sin =3.92 m2分12. 用钠光(=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°. (1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm -760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9m)解:(1) (a + b ) sin = 3a +b =3 / sin , =60° 2分a +b =2'/sin ϕ' ϕ'=30° 1分3 / sin =2'/sin ϕ' 1分'=510.3 nm 1分(2)(a + b ) =3 / sin =2041.4 nm 2分2ϕ'=sin -1(2×400 / 2041.4) (=400nm) 1分 2ϕ''=sin -1(2×760 / 2041.4) (=760nm) 1分 白光第二级光谱的张角=22ϕϕ'-''= 25° 1分13.某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为 30°那么入射光的波长是多少?能不能观察到第二级谱线?解:由光栅公式 (a +b )sin =k k =1, =30°,sin =1 / 2∴=(a +b )sin / k =625 nm 3分实际观察不到第二级谱线 2分若k =2, 则 sin =2 / (a + b ) = 1, 2=90°14. 用波长为589.3 nm (1 nm = 10-9m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角.解: d =1 / 500 mm ,=589.3 nm ,∴ sin = d =0.295 =sin -10.295=17.1°3分第一级衍射主极大: d sin=2分15. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱.钠黄光包含两条谱线,其波长分别为589.6 nm 和589.0 nm .(1nm=10­9m)求在第二级光谱中这两条谱线互相分离的角度.解:光栅公式, d sin =k .现 d=1 / 500 mm =2×10-3mm ,1=589.6 nm ,2=589.0 nm ,k=2.∴ sin 1=k 1 / d=0.5896, 1=36.129° 2分 sin 2=k 2 / d=0.5890, 2=36.086° 2分 =1-2=0.043° 1分16.波长范围在450~650 nm 之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm .求透镜的焦距f . (1 nm=10-9m)解:光栅常数 d = 1m / (5×105) = 2 ×105m .2分设 1 = 450nm , 2 = 650nm, 则据光栅方程,1和2的第2级谱线有d sin 1 =21; dsin 2=22据上式得: 1 =sin 121/d =26.74°2 = sin 12 2 /d =40.54° 3分第2级光谱的宽度 x 2 x 1 = f (tg 2tg 1) ∴ 透镜的焦距 f = (x 1 x 2) / (tg 2 tg 1) =100 cm . 3分17.设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光(=589 nm )的光谱线.(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次k m 是多少? (2)当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次mk ' 是多少? (1nm=109m)解:光栅常数d=2×10-6m 1分(1) 垂直入射时,设能看到的光谱线的最高级次为k m ,则据光栅方程有d sin = k m∵ sin ≤1 ∴ k m / d ≤1 , ∴ k m ≤d / =3.39∵ k m 为整数,有k m =3 4分(2) 斜入射时,设能看到的光谱线的最高级次为mk ',则据斜入射时的光栅方程有 ()λθmk d '='+sin 30sind k m/sin 21λθ'='+ ∵ sin '≤1 ∴ 5.1/≤'d k mλ ∴λ/5.1d k m ≤'=5.09 ∵ mk '为整数,有 m k '=5 5分18. 一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.080 mm ,用波长为=480 nm (1 nm = 10-9m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜求: (1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N 和相应的级数.解:双缝干涉条纹:(1) 第k 级亮纹条件: d sin =k 第k 级亮条纹位置:x k = f tg ≈f sin ≈kf / d相邻两亮纹的间距:x = x k +1-x k =(k +1)f / d -kf / d =f / d=2.4×10-3m=2.4 mm 5分(2) 单缝衍射第一暗纹: a sin 1 = 单缝衍射中央亮纹半宽度:x 0 = f tg 1≈f sin 1 ≈f / a =12 mm x 0/x =5∴ 双缝干涉第±5极主级大缺级. 3分 ∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分 分别为 k = 0,±1,±2,±3,±4级亮纹 1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档