2014年高考试题
2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)
2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
2014高考试题及答案
2014高考试题及答案2014年高考试题及答案一、语文试题1. 阅读理解阅读下面的文章,回答下列问题:(文章内容略)(1)文章中提到的“XX”一词,在文中具体指的是什么?(2)作者通过哪些细节描写来表现“XX”的特点?2. 古文翻译将下列古文翻译成现代汉语:(古文内容略)(1)请翻译文中划线的句子。
(2)文中“XX”一词在古代和现代的含义有何不同?3. 作文请以“XX”为题,写一篇不少于800字的议论文。
二、数学试题1. 选择题(1)下列哪个选项是正确的?A. XXB. XXC. XXD. XX2. 填空题(1)计算下列表达式的值:XX = ________。
3. 解答题(1)证明:XX定理。
三、英语试题1. 阅读理解阅读下面的文章,选择最佳答案:(文章内容略)(1)What is the main idea of the passage?A. XXB. XXC. XXD. XX2. 完形填空(文章内容略)(1)In the context, the word "XX" most probably means ________.3. 写作Write an essay of at least 120 words on the topic "XX".四、综合试题(以物理、化学为例)1. 物理选择题(1)根据牛顿第二定律,下列哪个选项是正确的?A. XXB. XXC. XXD. XX2. 化学填空题(1)写出下列化学反应方程式:XX + XX → XX。
3. 实验题(1)设计一个实验来验证XX定律,并写出实验步骤和预期结果。
五、答案1. 语文(1)答案:XX(2)答案:XX2. 数学(1)答案:C(2)答案:XX(3)答案:略3. 英语(1)答案:B(2)答案:XX(3)答案:略4. 综合(1)答案:A(2)答案:XX(3)答案:略请注意,以上内容仅为模板示例,具体试题和答案需要根据实际的高考内容来制定。
2014高考试题及答案
2014高考试题及答案一、选择题(每题3分,共30分)1. 下列关于细胞结构的描述,错误的是:A. 细胞壁是植物细胞特有的结构B. 细胞膜具有选择透过性C. 细胞核是细胞的控制中心D. 线粒体是细胞的能量工厂答案:A2. 下列关于遗传物质的描述,正确的是:A. DNA是所有生物的遗传物质B. RNA是所有生物的遗传物质C. 病毒的遗传物质可以是DNA或RNAD. 细胞的遗传物质只能是DNA答案:C3. 下列关于生态系统的描述,错误的是:A. 生态系统由生物部分和非生物部分组成B. 生态系统的稳定性与生物多样性有关C. 生态系统中能量的流动是单向的D. 生态系统中物质循环是可逆的答案:D4. 下列关于化学反应速率的描述,正确的是:A. 温度升高,化学反应速率一定加快B. 浓度增加,化学反应速率一定加快C. 催化剂可以改变化学反应速率D. 反应物的表面积增大,化学反应速率一定加快答案:C5. 下列关于牛顿运动定律的描述,错误的是:A. 牛顿第一定律描述了物体的惯性B. 牛顿第二定律描述了力和加速度的关系C. 牛顿第三定律描述了作用力和反作用力的关系D. 牛顿运动定律只适用于宏观物体答案:D6. 下列关于电磁波的描述,错误的是:A. 电磁波可以在真空中传播B. 电磁波的传播速度等于光速C. 电磁波的频率越高,波长越长D. 电磁波可以传递信息答案:C7. 下列关于光合作用的描述,错误的是:A. 光合作用是植物利用光能制造有机物的过程B. 光合作用需要叶绿素作为催化剂C. 光合作用的产物是氧气和葡萄糖D. 光合作用只能在有光的条件下进行答案:B8. 下列关于热力学第一定律的描述,正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量守恒定律D. 能量的转移和转化是有方向性的答案:C9. 下列关于原子结构的描述,错误的是:A. 原子由原子核和电子组成B. 原子核由质子和中子组成C. 电子在原子核外绕核运动D. 原子核的体积很小,但质量很大答案:C10. 下列关于相对论的描述,错误的是:A. 相对论是由爱因斯坦提出的B. 相对论认为时间和空间是相对的C. 相对论认为光速是宇宙中最快的速度D. 相对论认为质量与速度无关答案:D二、填空题(每题4分,共20分)1. 细胞分裂过程中,染色体数目加倍的时期是______。
2014高考试题及答案
2014高考试题及答案2014年高考是中国教育史上的重要里程碑,也是许多学生们奋斗多年的结果。
高考题目及答案描述了那一年的试卷内容,下面将详细介绍2014年高考试题及答案。
政治题目及答案第一大题1. 中国特色社会主义理论体系的形成源自()。
a.中国特色社会主义实践b.中国共产党c.中国共产党领导d.中国人民答案:b第二大题2. 首次提出中国特色社会主义理论体系是()。
a. 1982年b. 2002年c. 2012年d. 1949年答案:c第三大题3. 古代丝绸之路起点是()。
a. 长安b. 广州c. 鄂尔多斯d. 西安答案:d语文题目及答案第一大题1. 下面陈述中,不符合实际情况的是()。
a. 黄粱一梦是《红楼梦》中贾母的一部分梦境b. 赵无极为小说《和空天一样蓝》的作者c.《水浒传》的作者是施耐庵d. 章节齐全、语言通畅的阅读资料就是好读物答案:c第二大题2. 下列哪一组成语的出处与其他不同()。
a. 棋逢对手:出自《庐山谣》b. 自相矛盾:出自《鹿鼎记》c. 足智多谋:出自《水浒传》d. 扔下家仆滚下山:《红楼梦》答案:b数学题目及答案第一大题1. 已知二次函数图像的顶点为(-2, 3),且过点(1, 4),则该二次函数的解析式是()。
a. y = 2x^2 + 3x + 4b. y = -2x^2 + 3x + 4c. y = 2x^2 + 3x - 4d. y = -2x^2 + 3x - 4答案:d第二大题2. 对于任意整数n,若7n+5能被3整除,那么n的取值范围是()。
b. n=2c. n=3d. n=4答案:c英语题目及答案第一大题1. If I ____ you, I would take that job offer.a. wasb. werec. amd. is答案:b第二大题2. The book, as well as the pen, ____ on the table.a. isb. arec. wasd. were以上为部分2014年高考的试题及答案。
2014高考试题及答案
2014高考试题及答案一、选择题1. 下列关于细胞结构的描述,不正确的是:A. 细胞壁是植物细胞特有的结构B. 细胞膜具有选择透过性C. 线粒体是细胞内的能量工厂D. 细胞核是遗传物质储存和复制的场所答案:A2. 根据题目所给的化学反应式,计算反应物A的摩尔质量:2A + B → 3C + D已知:B的摩尔质量为32g/mol,C的摩尔质量为40g/mol,D的摩尔质量为18g/mol。
答案:反应物A的摩尔质量为44g/mol。
二、填空题3. 请写出下列化合物的化学式:(1) 碳酸钙:__________(2) 氧化铁:__________答案:(1) CaCO3;(2) Fe2O34. 在生态系统中,生产者、消费者和分解者分别指的是:生产者:__________,消费者:__________,分解者:__________答案:生产者:植物;消费者:动物;分解者:细菌、真菌。
三、简答题5. 简述光合作用的过程及其意义。
答案:光合作用是植物、藻类和某些细菌利用光能将水和二氧化碳转化为葡萄糖和氧气的过程。
光合作用的意义在于:(1) 为生物体提供能量和有机物质;(2) 维持大气中氧气和二氧化碳的平衡;(3) 是生态系统能量流动和物质循环的基础。
四、计算题6. 已知某化学反应的速率常数k=0.05/min,反应物初始浓度为0.1 mol/L,求5分钟后反应物的浓度。
答案:根据一阶反应的速率方程:Ct = C0 * e^(-kt),其中Ct为t 分钟后的浓度,C0为初始浓度。
将已知数值代入公式得:Ct = 0.1 * e^(-0.05*5) ≈ 0.0765 mol/L。
五、论述题7. 论述全球气候变化对生态系统的影响。
答案:全球气候变化对生态系统的影响主要表现在以下几个方面:(1) 温度升高导致生物种群分布范围的变化;(2) 极端气候事件增多,影响生物的生存和繁殖;(3) 海平面上升,威胁沿海生态系统;(4) 气候变化可能导致生物多样性的减少;(5) 气候变化影响水循环,进而影响生态系统的水分供应。
2014年全国高考数学试题及答案word版
2014年全国高考数学试题及答案word版一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是正确的。
1. 若函数f(x) = ax^2 + bx + c,其中a ≠ 0,且f(1) = 3,f(-1) = 1,则f(0)的值为:A. 2B. 3C. -1D. 12. 设等差数列{an}的前n项和为Sn,若a1 = 1,a4 = 4,则S5的值为:A. 15B. 10C. 5D. 33. 若复数z满足|z| = 1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i4. 设函数f(x) = x^3 - 3x^2 + 2,若f(x)在区间(1,2)内有极值,则该极值点为:A. 1B. 2D. 1/25. 若直线l:y = kx + b与圆C:x^2 + y^2 = 1相交于两点A、B,且|AB| = √2,则k的取值范围为:A. (-∞, -1] ∪ [1, +∞)B. [-1, 1]C. (-1, 1)D. [0, 1]6. 设函数f(x) = x^2 - 4x + 3,若f(x)在区间[0,3]上单调递增,则f(x)的最大值为:A. 0B. 3C. 9D. 127. 若向量a = (1, 2),b = (2, 1),则向量a与向量b的数量积为:A. 3B. 4C. 5D. 68. 若直线l的倾斜角为45°,则直线l的斜率为:A. 1B. -1C. √2D. -√29. 设函数f(x) = x^3 - 3x^2 + 2x,若f(x)在区间(0,1)内有极值,则该极值点为:B. 1C. 2/3D. 1/210. 若复数z满足|z| = 1,且z的实部为1,则z的虚部为:A. 0B. 1C. -1D. √3/211. 设等比数列{an}的前n项和为Sn,若a1 = 2,q = 2,则S4的值为:A. 30B. 16C. 8D. 412. 若函数f(x) = x^2 - 4x + 3,若f(x)在区间[1,3]上单调递减,则f(x)的最小值为:A. 0B. 3C. -1D. 2二、填空题:本题共4小题,每小题5分,共20分。
2014年高考语文真题(word版)——新课标Ⅰ卷(试题+答案解析)
2014年普通高等学校招生全国统一考试(课标卷Ⅰ)语文试题第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成第1~3题。
悲剧产生于社会的矛盾、两种社会力量的冲突。
冲突双方分别代表着真与假、善与恶、新与旧等对立的两极,却总是以代表真、善、新等美好的一方的失败、死亡、毁灭为结局,他们是悲剧的主人公。
因为他们的力量还比较弱小,还无法与强大的旧势力或邪恶力量抗衡,正义的要求不能实现,于是形成了悲剧。
古希腊学者亚里士多德指出,悲剧描写了比现实中更美好同时又是“与我们相似的”人物,通过他们的毁灭“引起怜悯和恐惧来使感情得到陶冶”,即产生净化的作用。
《马身人首》(罗丹)悲剧的审美价值的载体只能是文学艺术。
因为人生有价值的东西、美好事物的毁灭是令人伤悲的,因此现实中的悲剧不能作为直接的审美对象来欣赏,否则人就是泯灭了人性的人了。
现实中的悲剧只能激起人的同情、义愤,迫使人采取严肃的伦理态度和实践行动。
民主革命时期,在演出歌剧《白毛女》的过程中,曾多次出现扮演地主黄世仁的演员被打甚至险遭枪击的事件,这是人们以实际的道德评价代替了审美活动。
现实的悲剧只在客观上具有悲剧的审美性质,它们必须以文学艺术的形式表现出来,才能成为欣赏的对象,美学上所谓的“以悲为美”才能实现。
悲剧成为审美对象只能以文学艺术的形式出现,原因在于它需要建立悲剧事件与人的心理距离。
不仅遥远的时间会使过去的现实悲剧的悲惨因素淡化,就是很近的时间间隔也可以使人不陷入现实。
这里还有一个空间的间隔,悲剧艺术展现的毕竟是一个人们不熟悉或有点陌生的空间,这就使人们不容易介入其中,而能够客观、超然地看待。
当然,在欣赏中审美主体可以“审美地”加入悲剧冲突,体验悲剧客体的巨大和狂暴、悲剧主体的抗争和悲痛,从而感受到强烈的震撼和刺激,获得悲剧感和审美愉悦。
悲剧表现的不是人生的欢乐或全然的幸福,而是悲剧主体对待痛苦和死亡的方式,这是人类社会和人类活动中十分重要、严肃的一面。
2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014全国卷语文高考真题试卷及答案解析
2014年普通高等学校招生全国统一考试(全国大纲卷)语文试题第Ⅰ卷一、(12分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是(B)A.龃龉.(yǔ) 系.鞋带(xi) 舐.犊情深(shi) 曲.意逢迎(qū)B.倜傥.(tǎng) 纤.维素(xiān) 羽扇纶.巾(guān ) 针砭.时弊(biān)C.感喟.(kuì) 揭疮.疤(chuāng) 按捺.不住(nài) 大相径.庭(jing)D.霰.弹(xiàn ) 涮.羊肉(shuàn) 以儆.效尤(jǐng) 纵横捭.阖必(bì)2.下列各句中,加点的成语使用恰当的一项是(A)A.在评价某些历史人物时,我们不能只是简单地对他们盖棺论定....,,还应该学科网特别注意研究他们的人生经历和思想变化轨迹。
B.这把吉他是我最要好的朋友出国前存在我这里的,本来说存一年,结果朋友一直没回来,这吉他到现在巳经由我敝帚自珍....了十年。
C.最美的是小镇的春天,草长莺飞,风声鹤唳....,走进小镇就如同置身于世外桃源,来此旅游的人一定会被这里的美丽景色深深吸引。
D.这个剧院的大型话剧、歌剧等演出票价不菲,让许多有艺术爱好而又收入不高的普通人叹为观止....,无法亲临现场享受艺术大餐。
3.下列各句中,没有语病的一句是答:DA.有的人看够了城市的繁华,喜欢到一些人迹罕至的地方去游玩,但这是有风险的,近年来已经发生了多次背包客被困野山的案情。
B.他家离铁路不远,小时候常常去看火车玩儿,火车每当鸣着汽笛从他身边飞驰而过时,他就很兴奋,觉得自己也被赋予了一种力量。
学科网C.新“旅游法”的颁布实施,让很多旅行社必须面对新规定带来的各种新问题,不少旅行社正从过去拼价格向未来拼服务转型的阵痛。
D.哈大高铁施行新的运行计划后,哈尔滨至北京、上海等地的部分列车也将进一步压缩运行时间,为广大旅客快捷出行提供更多选择。
4.依次填人下面一段文字横线处的语句,衔接最恰当的一组是答:C信息时代给人们带来了一种新的极其便捷的阅读方式,那就是网络阅读。
2014年高考全国Ⅰ理科数学试题及答案(word解析版)
2014 年一般高等学校招生全国一致考试(全国Ⅰ)数学(理科)第 Ⅰ 卷一、选择题:本大题共 12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.( 1)【 2014 年全国Ⅰ,理 1, 5 分】已知会集 Ax x 22x 30 , Bx 2x 2,则AB =()(A ) 2,1 (B ) 1,2 (C )1,1 (D ) 1,2【答案】 A【剖析】∵ Ax x 22x 3 0x x1 或 x3 , B x 2 x 2 ,∴ A B x 2 x 1 ,应选 A .3( 2)【 2014 年全国Ⅰ,理2,5 分】 1 i1 2i (A )1i ( B ) 1 i ( C ) 1i (D ) 【答案】 D()1 i【剖析】∵(1i) 32i(1 i)2 1 i ,应选 D . (1 i) 2i( 3)【 2014 年全国Ⅰ,理 3, 5 分】设函数 f x , g x 的定义域为 R ,且 fx 是奇函数, g x 是偶函数,则以下结论中正确的选项是()( A ) f ( x) g (x) 是偶函数( B ) f (x) g( x) 是奇函数( C ) f ( x) | g( x) |是奇函数( D ) | f (x)g ( x) | 是奇函数【答案】 C【剖析】∵ f x 是奇函数, g x 是偶函数,∴f (x) 为偶函数, g( x) 为偶函数.再依照两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f (x) | g (x) | 为奇函数,应选 C .( 4)【 2014 年全国Ⅰ,理 4, 5 分】已知 F 是双曲线 C : x 2my 23m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为()( A ) 3 ( B ) 3(C ) 3m ( D ) 3m 【答案】 A 【剖析】由 C : x 2my 23m(m0) ,得 x 2y 2 1 , c 2 3m 3,c3m 3,设 F3m 3,0 ,一条渐近线3m3y3my0 ,则点 F 到 C 的一条渐近线的距离d3m33 ,应选 A .x ,即 x1 m3m( 5)【 2014 年全国Ⅰ,理 5, 5 分】 4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率() ( A ) 1(B ) 3(C )5(D )78 8 88 【答案】 D【剖析】由题知 F 13,0 , F 23,0 且x 02y 0 2 1,因此 MF 1 MF 23 x 0 , y 03 x 0 , y 02x 02 y 023 3y 021 0 ,解得3 y 0 3,应选 D .3 3( 6)【 2014 年全国Ⅰ,理 6,5 分】如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角x 的始边为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP的距离表示为 x 的函数 f (x) ,则 y f ( x) 在 0, 上的图像大体为()(A ) (B )( C )(D )【答案】 B【剖析】如图:过 M 作 MDOP 于D ,则 PM sin x , OMcos x ,在 Rt OMP 中,OM PMcos x sin x1 1 MDcos x sin x sin 2 x ,∴f xsin 2x (0 x ) ,OP122应选 B .( 7)【 2014 年全国Ⅰ,理 7, 5 分】执行以下列图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的M ()( A ) 20(B ) 16(C ) 7 (D ) 1535 28【答案】 D【剖析】输入 a1, b 2, k 3 ; n 1时:M 11 3 , a 2,b 3 ;222n 2 时: M 228, a3,b8; n 3时: M3 3 15 , a 8,b 15 ;33 2328 8 38n 4 时:输出 M15,应选 D .81sin( 8)【 2014 年全国Ⅰ,理 8, 5分】设(0,) , (0, ) ,且 tan,则()cos22 (A ) 3(B ) 2(C ) 3 2 (D ) 2 2【答案】 B 22【剖析】∵ tansin 1 sin coscoscos sin, sincossin,coscos ,∴ sin222 ,0 2,∴2,即 2,应选 B .22x y 1的解集记为 D .有下面四个命题: p 1 : ( x, y) D , x 2 y 2 ,( 9【) 2014 年全国Ⅰ,理 9,5 分】不等式组2y 4 xp 2 : (x, y) D, x 2 y 2 , P 3 : ( x, y) D , x 2 y 3 , p 4 : (x, y)D , x 2 y 1 .其中真命题是()( A ) p 2 , p 3 ( B ) p 1 , p 4 (C ) p 1 , p 2 ( D ) p 1 ,p 3 【答案】 C【剖析】作出可行域如图: 设 x 2 y z ,即 y1x z,当直线过 A 2, 1 时,zmin2 2 0 ,2 2∴ z 0 ,∴命题 p 1 、 p 2 真命题,应选 C .( 10)【 2014 年全国Ⅰ,理 10,5 分】已知抛物线 C : y 28x 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF 与 C 的一个交点,若FP4FQ ,则 |QF |()( A ) 7 (B ) 5(C )3(D )22 2【答案】 C【剖析】过 Q 作 QMl 于 M ,∵ FPPQ 3 ,又QM PQ 3 3 ,4FQ ,∴44PF,∴ QMPF4由抛物线定义知 QF QM3,应选 C .( 11)【 2014 年全国Ⅰ,理 11,5 分】已知函数 fxax 3 3x 2 1 ,若 f ( x) 存在唯一的零点 x 0 ,且 x 00 ,则 a的取值范围为()(A ) 2,(B ), 2 (C ) 1,( D ), 1【答案】 B【剖析】解法一:由已知 a0 , f ( x)3ax 26 x ,令 f (x) 0 ,得 x 0 或 x2 ,a当 a0 时, x,0 , f (x) 0; x0,2, f ( x) 0; x2 , , f (x) 0 ;aa且 f (0) 10 , f (x) 有小于零的零点,不吻合题意.当 a0 时, x2 0; x2 , f (x) 0; x0,, f (x),, f ( x) ,0aa要使 f (x) 有唯一的零点x 0 且 x 00 ,只需 2) 0 ,即 a2, a2 ,应选 B .f ( 4a解法二:由已知 a0 , f x ax33x21 有唯一的正零点,等价于a 3 1 13 有唯一的正零根,令 t1,则t 3t 3 x xx 问题又等价于 a3t 有唯一的正零根,即y a 与 y3t 有唯一的交点且交点在在 y 轴右侧记f (t )t 3 3t , f (t)3t 2 3 ,由 f (t )0 , t 1 , t, 1 , f (t) 0;t1,1 , f (t )0; ,t 1,, f (t ) 0 ,要使 a33t 有唯一的正零根,只需 af ( 1)2 ,应选 B .t ( 12)【 2014 年全国Ⅰ,理 12, 5 分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()( A ) 6 2 (B ) 4 2 (C )6(D )4【答案】 C【剖析】以下列图,原几何体为三棱锥D ABC ,其中 ABBC 4,AC 4 2,DB DC 2 5,26 ,应选 C .DA4 24 6 ,故最长的棱的长度为 DA第II 卷本卷包括必考题和选考题两部分.第( 13)题 ~第( 21)题为必考题,每个试题考生都必定作答.第( 22)题 ~第( 24)题为选考题,考生依照要求作答.二、填空题:本大题共 4 小题,每题 5 分( 13)【 2014 年全国Ⅰ,理 13, 5 分】 (x y)( xy)8的张开式中 x 2 y 2 的系数为.(用数字填写答案)【答案】 20【剖析】 (x y)8 张开式的通项为T r 1 C 8r x 8 r y r (r0,1, ,8) ,∴ T 8C 87 xy 7 8xy 7 , T 7 C 86 x 2 y 628x 2 y 6 ,∴ (xy)( x y)8 的张开式中 x 2 y 7 的项为 x 8 xy 7 y 28 x 2 y 6 20 x 2 y 7 ,故系数为20 .( 14)【 2014 年全国Ⅰ,理 14, 5 分】甲、乙、丙三位同学被问到可否去过 A 、 B 、 C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由 此可判断乙去过的城市为. 【答案】 AA 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B【剖析】由乙说:我没去过 C 城市,则乙可能去过 城市,则乙只能是去过 A , B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的 城市为 A . ( 15)【 2014 年全国Ⅰ,理 15,5 分】已知 A , B , C 是圆 O 上的三点,若 AO1(ABAC),则 AB 与 AC 的2夹角为.【答案】 900【剖析】∵ AO 1 ( AB AC) ,∴ O 为线段 BC 中点,故 BC 为 O 的直径,∴BAC 900,∴ AB 与 AC 的夹2角为 90 0 .a,b,c 分别为A,B,C 的对边, a( 16 )【 2014 年全国Ⅰ,理16, 5 分】已知ABC 的三个内角2 ,且(2 b )(sin AsinB ) c ( b ) sinC ,则 ABC 面积的最大值为.【答案】 3【剖析】由 a2且(2 b)(sin A sin B)(c b)sin C ,即 (a b)(sin A sin B) (cb)sin C ,由及正弦定理得:2221,∴(a b )(ab) (c b)c ,∴ b 2c 2 a 2bc ,故 cos Abc a A 600 ,∴ b 2c 2 4 bc ,12bc24 b 2 c 2 bcbc ,∴ S ABCbc sin A3 . 2三、解答题:解答应写出文字说明,证明过程或演算步骤.( 17)【 2014 年全国Ⅰ,理 17,12 分】已知数列 a n 的前 n 项和为 S n , a 11 , a n 0 , a n a n 1S n 1,其中为常数.( 1)证明: a n 2 a n;( 2)可否存在 ,使得 a n 为等差数列?并说明原由.解:( 1)由题设 a n a n 1S n 1 , a n 1 a n 2S n 1 1,两式相减 a n 1an 2a na n 1 ,由于 a n0 ,因此 a n 2 a n.6分( 2)由题设 a 1 1 , a 1a 2S 1 1,可得 a 211,由( 1)知 a 31假设 a n 为等差数列,则 a 1 ,a 2 ,a 3 成等差数列,∴ a 1 a 3 2a 2 ,解得4 ;证明4 时, a n 为等差数列:由 a n2a n 4 知:数列奇数项构成的数列a2 m 1是首项为 1,公差为4 的等差数列 a 2m14m 3 ,令 n 2m 1, 则 m n 1,∴ a n 2n 1 ( n 2m 1)2n ,数列偶数项构成的数列 a2m 是首项为 3,公差为 4 的等差数列 a 2m 4m 1 ,令 n 2m, 则 m ∴2 1 ,∴ ( * ),2a n n ( n 2m) a n2n 1 n n 1a n2N a因此,存在存在4 ,使得 a n 为等差数列.12 分( 18)【 2014 年全国Ⅰ,理 18, 12 分】从某企业的某种产品中抽取 500 件,测量这些产品的一项质量指标值,由测量结果得以下频率分布直方图:( 1)求这 500 件产质量量指标值的样本平均数x 和样本方差 s 2 (同一组数据用该区间的中点值作代表) ;( 2)由频率分布直方图可以认为,这种产品的质量指标值Z 遵从正态分布 N ( , 2 ) ,其中 近似为样本平均数 x , 2 近似为样本方差 s 2 .( i )利用该正态分布,求 P(187.8 Z 212.2) ;( ii )某用户从该企业购买了 100 件这种产品,记 X 表示 100 件产品中质量指标值为区间(187.8,212.2 )的产品件数,利用( i )的结果,求 EX .附: 15012.2 .若 Z N ( , 2) ,则 P(Z) 06826.,P(2Z2 ) =0.9544.解:( 1)抽取产质量量指标值的样本平均数x 和样本方差 s 2 分别为:x 170 0.02 1800.09 1900.22 200 0.33 2100.24 220 0.08 2300.02 200s 230 220.0920.22 00.33 10220.08302150 .0.0220100.24200.02 6 分( 2)(ⅰ)由(1)知 Z N(200,150),从而 P(187.8 Z212.2) P(200 12.2 Z200 12.2)0.6826. 9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为 0.6826依题意知 X B(100,0.6826),因此 EX 100 0.6826 68.26 .12 分( 19)【 2014 年全国Ⅰ,理 19, 12 分】如图三棱柱ABC A 1 B 1C 1 中,侧面 BB 1C 1C 为菱形, ABB 1C .( 1)证明: AC AB 1 ;( 2)若 ACAB 1 ,CBB 1 60 o, AB BC ,求二面角 A A 1B 1 C 1 的余弦值.解:( 1)连结 BC 1 ,交 B 1C 于 O ,连结 AO .由于侧面 1 1 为菱形, 因此 B 1CBC 1 ,BBC C且O 为 B 1C 与 BC 1 的中点.又 AB B 1C ,因此 B 1C 平面 ABO ,故 B 1 C AO又 B 1O CO ,故 AC AB 1 . 6分( 2)由于 AC AB 1 且 O 为 B 1C 的中点,因此 AOCO ,又由于 AB BC ,因此 BOABOC ,故 OA OB ,从而 OA , OB , OB 1 两两互相垂直. 以 O 为坐标原点, OB 的方向为 x 轴正方 向,OB 为单位长,建立以下列图空间直角坐标系O xyz .由于CBB 1 600 , 因此 CBB 1 为等边三角形. 又 ABBC ,则 A 0,0,3,B 1,0,0, 0,3 ,B 1,033C 0,3 ,0 , AB 1 0, 3 , 3, A 1B 1 AB1,0,3 ,33 33B C1 BC1, 3 ,0 ,设 nx, y, z 是平面的法向量,则n AB 1,即13n A 1B 13y3 03zm A 1 B 13因此可取 n1, 3,3 ,设 m 是平面的法向量,则,同理可取3n B 1C 1xz 03m1,3, 3 ,则 cos n, mn m 1 ,因此二面角 AA 1B 1C 1 的余弦值为1.12分n m 77223,F 是( 20)【 2014 年全国Ⅰ,理 20, 12 分】已知点 A 0, 2 ,椭圆 E :xy 1(a b 0) 的离心率为a 2b 22椭圆的焦点,直线 AF 的斜率为23, O 为坐标原点.( 1)求 E 的方程;3( 2)设过点 A 的直线 l 与 E 订交于 P,Q 两点,当OPQ 的面积最大时,求 l 的方程.解:( 1)设 F c,0 ,由条件知2 2 3,得 c 3 ,又c3 ,c 3a 2因此 a2 , b2a2c21,故 E 的方程x 2y 21 . 6分42( 2)依题意当 lx 轴不合题意, 故设直线 l :y kx 2 ,设 P x 1y, 1 Q, x y 2 , 2,将 y kx 2 代入xy 2 1 ,4得 14k 2x216kx12 0 ,当16(4 k23)0 ,即 k23时, x 1,2 8k 2 4 k 2 341 4k 2从而 PQk21 x 1x 24 k21 4k 23,又点 O 到直线 PQ 的距离 d2 ,因此 OPQ 的1 4k 2k 2 1 面积 S OPQ14 4k 2 3,设4k 23 t ,则 t0 ,S OPQ4t41 ,d PQ12t 2 4424ktt当且仅当 t2 , k7等号建立,且满足0 ,因此当 OPQ 的面积最大时,l 的方程为:2y77x 2 或 yx 2 ..12 分22be x 1( 21)【 2014 年全国Ⅰ,理 21, 12 分】设函数 f xae x ln x,曲线 y f ( x) 在点 1, f 1 处的切线为xy e(x 1) 2 .( 1)求 a, b ;( 2)证明: f ( x) 1.解:( 1)函数 f (x) 的定义域为 0,,xa xb x 1 b x 1xex 2exef (x) ae ln x由题意可得 f (1)2, f (1) e ,故 a 1,b2 . 6分x2e x 1 x2( 2)由( 1)知, f (x)ln x,从而 f ( x) 1 等价于 x ln x xex ln x ,则ex,设函数 g( x)eg (x) xln x ,因此当 x0, 1 时, g ( x) 0 ,当 x1 ,时, g (x) 0,故 g( x) 在 0,1单调减,eee在1,单调递加,从而 g( x) 在 0,的最小值为g( 1)1. 8分eee设函数 h(x)xex2,则 h (x) ex1 x,因此当 x0,1 时, h (x)0 ,当 x1,时, h ( x) 0 ,e故 h(x) 在 0,1 单调递加,在 1,单调递减,从而 h( x) g( x) 在 0,的最小值为 h(1)1 . 综上:当 x0 时, g( x)h( x) ,即 f ( x) 1.12e分请考生在( 22)、( 23)、( 24)三题中任选一题作答.注意:只能做所选定的题目.若是多做,则按所做第一个题目计分,做答时,请用 2B 铅笔在答题卡大将所选题号后的方框涂黑. ABCD 是( 22)【 2014 年全国Ⅰ,理 22,10 分】(选修 4-1:几何证明选讲)如图,四边形O 的内接四边形, AB 的延长线与 DC 的延长线交于点 E ,且 CBCE .( 1)证明: D E ;( 2)设 AD 不是O 的直径, AD 的中点为 M ,且 MBMC ,证明: ABC 为等边三角形.解:( 1)由题设得, A , B , C , D 四点共圆,因此, D CBE又 CB CE , CBE E ,因此 D E5 分( 2)设 BC 的中点为 N ,连结 MN ,则由 MB MC 知MN BC ,故 O 在直线 MN 上,又AD 不是 O 的直径, M 为 AD 的中点,故 OM AD ,即 MN AD ,因此 AD / /BC ,故 A CBE ,又 CBE E ,故 A E ,由( 1)知, D E ,因此 ADE 为等边三角形.10 分2 2( 23)【 2014 年全国Ⅰ,理 23,10 分】(选修 4-4:坐标系与参数方程)已知曲线C :xy1 ,49直线 l : x 2 t ( t 为参数).y 2 2t( 1)写出曲线 C 的参数方程,直线l 的一般方程;( 2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A ,求 PA 的最大值与最小值.解:( 1)曲线 C 的参数方程为x 2cos (为参数)直线 l 的一般方程为 2xy 60 . 5分y3sin( 2)曲线 C 上任意一点 P(2cos,3sin) 到 l 的距离为 d5| 4cos3sin6 |,5则|PA|d2 5 | 5sin() 6| ,其中为锐角,且 tan4 ,sin3053当 sin()1时, | PA | 获取最大值,最大值为2255当 sin() 1时, | PA | 获取最小值,最小值为 25 .10 分50 且11( 24)【 2014 年全国Ⅰ,理 24, 10 分】(选修 4-5:不等式选讲)若 a0 , bab .( 1)求 a 3 b 3 的最小值;ab( 2)可否存在 a, b ,使得 2a 3b 6?并说明原由.解:( 1)由 ab 1 1 2,得 ab 2 ,且当 a b 2 时等号建立.a bab故 a 3 b 32 a3 b 34 2 ,且当 a b 2 时等号建立,因此a 3b 3 的最小值为 4 2 .5分( 2)由( 1)知, 2a 3b 2 6 ab 4 3,由于 4 3 6 ,从而不存在 a,b ,使得 2a 3b 6 .10 分。
2014年高考全国Ⅰ卷理科综合试题(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试理科综合能力测试适用地区:注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后.将本试题和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 F 19 A 127 P 31 S 32Ca 40 Fe 56 Cu 64 Br 80 Ag 108第Ⅰ卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于细胞膜结构和功能的叙述,错误的是A. 脂质和蛋白质是组成细胞膜的主要物质B. 当细胞衰老时,其细胞膜的通透性会发生改变C. 甘油是极性分子,所以不能以自由扩散的方式通过细胞膜D. 细胞产生的激素与靶细胞膜上相应受体的结合可实现细胞间的信息传递2.正常生长的绿藻,照光培养一段时间后,用黑布迅速将培养瓶罩上,此后绿藻细胞的叶绿体内不可能发生的现象是A. O2的产生停止B. CO2的固定加快C. ATP/ADP比值下降D.NADPH/NADP+比值下降3.内环境稳态是维持机体正常生命活动的必要条件,下列叙述错误的是A. 内环境保持相对稳定有利于机体适应外界环境的变化B. 内环境稳态有利于新陈代谢过程中酶促反应的正常进行C. 维持内环境中Na+、学科网K+浓度的相对稳定有利于维持神经细胞的正常兴奋性D. 内环境中发生的丙酮酸氧化分解给细胞提供能量,有利于生命活动的进行4.下列关于植物细胞质壁分离实验的叙述,错误的是A. 与白色花瓣相比,采用红色花瓣有利于实验现象的观察B. 用黑藻叶片进行实验时,叶绿体的存在会干扰实验现象的观察C. 用紫色洋葱鳞片叶外表皮不同部位观察到的质壁分离程度可能不同D. 紫色洋葱鳞片叶外表皮细胞的液泡中有色素,有利于实验现象的观察5.下图为某种单基因常染色体隐性遗传病系谱图(深色代表的个体是该遗传病患者,其余为表现型正常个体)。
2014高考试题及答案
2014高考试题及答案2014年普通高等学校招生全国统一考试语文试题及答案解析一、语文知识运用(共15小题;每小题3分,满分45分)1. 下列词语中加点的字,读音全部正确的一项是:A. 湍急(tuān)星宿(xiù)拾掇(duó)绯红(fēi)B. 峥嵘(zhēng)缜密(zhěn)筵席(yán)睥睨(nì)C. 讣告(fù)涸泽(hé)缱绻(quǎn)斡旋(wò)D. 倥偬(kǒng)缥缈(miǎo)翩跹(xiān)缄默(jiān)2. 下列各组词语中,没有错别字的一组是:A. 妨碍妨碍妨害妨碍B. 观摩观摹观磨观摩C. 妨碍妨害妨碍妨害D. 观摩观摹观磨观摹3. 依次填入下面一段文字横线处的词语,最恰当的一组是:在这个过程中,我们不仅要______新知识,还要学会______已有的知识,更要善于______和运用这些知识。
A. 吸收整合应用B. 整合吸收应用C. 应用吸收整合D. 应用整合吸收4. 下列句子中,没有语病的一项是:A. 通过这次活动,使大家对团队协作有了更深刻的认识。
B. 他的话虽然简单,但却意味深长,让人回味无穷。
C. 这本书的内容深入浅出,对于初学者来说,是一本难得的好书。
D. 为了避免不再发生类似事故,我们必须加强安全管理。
5. 根据语境,选择正确的句子填空:春天到了,______,万物复苏,处处充满了生机。
A. 冰雪融化B. 秋风萧瑟C. 夏日炎炎D. 冬雪皑皑...(此处省略其他题目)二、阅读理解(共20小题;每小题3分,满分60分)(一)现代文阅读(共5小题;每小题3分,满分15分)阅读下面的文字,完成6-10题。
6. 作者在文中提到的“绿色革命”主要是指什么?A. 农业生产方式的转变B. 环境保护意识的提升C. 可持续发展战略的实施D. 生态农业的推广7. 文章中提到的“三农”问题,具体指的是什么?A. 农业、农村、农民B. 农业、农村、粮食C. 农业、畜牧业、渔业D. 农业、农村、农产品8. 根据文章内容,以下哪项不是解决“三农”问题的措施?A. 推进农业产业化B. 加强农村基础设施建设C. 提高农产品出口量D. 完善农村社会保障体系9. 作者认为,发展农村经济的关键在于什么?A. 政府的政策支持B. 农民的自我发展能力C. 农业科技的进步D. 农产品市场的扩大10. 文章最后提到的“绿色经济”概念,主要强调的是什么?A. 经济增长与环境保护的平衡B. 资源的高效利用C. 农业的可持续发展D. 农村地区的经济发展...(此处省略其他题目)三、写作(共60分)21. 阅读下面的材料,根据要求写一篇不少于800字的文章。
2014年高考试题及答案
2014年高考试题及答案2014年高考是中国教育史上一个重要的年份,也是每一位参加高考的考生和家长们关注的焦点。
本文将为您提供2014年高考试题及答案,以便了解当年高考的难度和趋势。
一、语文试题及答案1. 阅读理解题目:阅读下面的文字,完成后面的要求。
某校的培训中心开设了英语口语课,课程由外籍教师教授。
请你根据下列要点,给外籍教师Mr. Smith写一封信。
1)表达对英语口语课程的兴趣;2)介绍自己;3)询问课程的时间、地点等具体信息;4)期望获得积极的回复。
请按要求完成信件。
解答例:Dear Mr. Smith,I am writing to express my great interest in participating in the English oral class held in your training center. I believe that by attending this course, I will greatly improve my spoken English.Allow me to introduce myself. My name is Li Hua, a 17-year-old high school student from Beijing. I have been studying English for over eight years and have always struggled with my speaking skills. I have heard about your excellent reputation as an English teacher and your ability to make language learning fun and effective, which is why I am hoping to join your class.Could you please provide some specific information about the course? I am curious to know the exact dates and times of the classes, as well as the location of the training center. Additionally, it would be helpful if you could let me know the duration of each class and any materials or textbooks required.I sincerely hope that you can respond to my request and provide me with the information I need. Thank you very much for your attention, and I look forward to hearing from you soon.Yours sincerely,Li Hua2. 改错题题目:下面句子中有五个单词划有横线,请找出并改正错误。
2014年全国高考文科数学试题及答案(山西、河南、河北、陕西)
2014年全国高考文科数学试题及答案(山西、河南、河北、陕西)2014年普通高等学校招生全国统一考试数学(文科)(课标I)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1)已知集合$M=\{x|-1\leq x\leq 3\}$,$B=\{x|-2\leq x\leq 1\}$,则$MB=$()A。
$(-2,1)$。
B。
$(-1,1)$。
C。
$(1,3)$。
D。
$(-2,3)$2)若$\tan\alpha>0$,则()A。
$\sin\alpha>0$。
B。
$\cos\alpha>0$。
C。
$\sin2\alpha>0$。
D。
$\cos2\alpha>0$3)设$z=\frac{1}{1+i}$,则$|z|=$()A。
$\frac{1}{\sqrt{2}}$。
B。
$\sqrt{2}$。
C。
$1$。
D。
$2\sqrt{2}$4)已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0)$的离心率为$2$,则$a=$()A。
$2$。
B。
$\frac{\sqrt{65}}{2}$。
C。
$1$。
D。
$\sqrt{22}$5)设函数$f(x)$,$g(x)$的定义域为$\mathbb{R}$,且$f(x)$是奇函数,$g(x)$是偶函数,则下列结论中正确的是()A。
$f(x)g(x)$是偶函数。
B。
$|f(x)|g(x)$是奇函数C。
$f(x)|g(x)|$是奇函数。
D。
$|f(x)g(x)|$是奇函数6)设$D$,$E$,$F$分别为$\triangle ABC$的三边$BC$,$CA$,$AB$的中点,则$EB+FC=$()A。
$AD$。
B。
$\frac{1}{2}AD$。
C。
$\frac{1}{2}BC$。
D。
$BC$7)在函数①$y=\cos|2x|$,②$y=|cosx|$,③$y=\cos(2x+\frac{\pi}{3})$,④$y=\tan(2x-\frac{\pi}{64})$中,最小正周期为$\pi$的所有函数为()A。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年江苏高考试卷 (含答案)
试题 ㊁ 参考答案
目 录
语文Ⅰ试题 …………………………………………………………… 1 语文Ⅰ试题参考答案 ………………………………………………… 4 语文Ⅱ( 附加题) …………………………………………………… 5 语文Ⅱ( 附加题) 参考答案 ………………………………………… 6 英语试题 ……………………………………………………………… 6 英语试题参考答案 ………………………………………………… 15 数学Ⅰ试题 ………………………………………………………… 16 数学Ⅰ试题参考答案 ……………………………………………… 17 数学Ⅱ( 附加题) …………………………………………………… 21 数学Ⅱ( 附加题) 参考答案 ………………………………………… 22 政治试题 …………………………………………………………… 24 政治试题参考答案 ………………………………………………… 29 历史试题 …………………………………………………………… 30 历史试题参考答案 ………………………………………………… 35 地理试题 …………………………………………………………… 37 地理试题参考答案 ………………………………………………… 43 物理试题 …………………………………………………………… 45 物理试题参考答案 ………………………………………………… 49 化学试题 …………………………………………………………… 51 化学试题参考答案 ………………………………………………… 56 生物试题 …………………………………………………………… 57 生物试题参考答案 ………………………………………………… 63
ห้องสมุดไป่ตู้
语文Ⅰ试题
2014高考全国1数学试卷及解析
2014年普通高等学校招生全国统一考试(I)一.选择题(共12小题)1.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2) B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]2.=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.211.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 B.6 C.4 D.4二.填空题(共4小题)13.(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA ﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三.解答题(共7小题)17.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.22.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.23.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2018年04月22日fago的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2) B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.2【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 B.6 C.4 D.4【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二.填空题(共4小题)13.(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA ﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三.解答题(共7小题)17.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得+2到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,(a n+2﹣a n)=λa n+1∴a n+1≠0,∵a n+1﹣a n=λ.∴a n+2(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n﹣a n=0,∴2d=0,解得d=0,+2∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(6分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.22.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.23.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试日语第一部分日语知识运用(共40小题;每小题1分,满分40分从A、B、C、D四个选项中选出最佳选项。
1、彼は文房具を売る6階でエレベーター()降りた。
AをBはCにDも2、その言葉()うそは尐しもなかった。
AにBへCとDや3、新しくて白い建物()見えるでしょう。
あれが王さんの家です。
AでBにCをDが4、肉体の若さ()、精神の若さのほうが大切だ。
AほどBからCよりDとは5、桜の花が咲く頃()、雨がよく降る。
AではBにはCとはDへは6、人に()ことをちゃんとやらなければなりません。
A頼んだB頼めたC頼ませたD頼まれた7、彼は立ちあがり、回りのほうを()ようにして、ドアに向かった。
A見てB見ずC見ないD見ないで8、本当のことが()、気分が晴れるようになった。
A話してB話せてC話したD話させた9、王さんは留学してまだ半年だが、家族のことが心配で国に帰り()。
AたいBようCらしいDたがっている10、お母さんは子供に肩を揉んでもらって、気持ち()でした。
AいいようBよさそうCいいみたいDよいらしい11、中村さんは朝から頭が痛いと言っています。
風邪の()です。
AようBそうCみたいDらしい12、本棚の横に、望遠鏡が掛けて()。
AいたBみたCあったDおいた13、歌手としての道は厳しいですが、これからも歌で食べて()つもりです。
AくるBいくCおくDしまう14、これは簡単なことかどうか、まず自分でやって()ことだ。
AいるBおるCみるDある15、ゆうべお茶を飲みすぎた()か、よく寝られなかった。
AものBせいCことDおかげ16、昨日、雨に降られて、ひどい()に遭ったよ。
A気B耳C目D口17、激しく降っていた雨が()止んで、美しく晴れ上がった。
AしっかりBすっかりCけっしてDまったく18、あの高校では3年生になると、文科系と理科系の2つの()に分かれる。
AコピーBコーラCコートDコース19、本を読み終わったら、きちんと元へ()ください。
A帰ってB戻ってC戻してD帰らせて20、新聞でその記事を読んだような()が、あまり覚えていない。
A気もするB気になるC気にするD気がつく21、田中さんの服装はとても高級な()がする。
A感心B気分C考えD感じ22、帰宅したら、母と弟から手紙が1()ずつ来ていました。
A本B通C冊D度23、井上さんはいつも()のに、今日は静かですね。
A元気B元気なC元気でD元気だ24、わたしはもう尐しで橋から落ちるところだったが、兄が助けて()。
AくれたBあげたCやったDくださった25、子供は自分の感情を表現できないこともあるので、その時大人が助けて()。
AくれましょうBあげましょうCもらいましょうDさしあげましょう26、指導教官に紹介して()人と結婚することになりました。
AくれたBやったCあげたDいただいた27、わたしは来月北京へ()予定でございます。
A参るB参られるC来られるDいらっしゃる28、先生、今晩留学生たちの忘年会がありますが、()か。
A伺いませんBまいりませんCお伺いしませんDおいでになりません29、「わたしもお手伝いしましょうか。
」「()。
」AこちらこそBそうしますCお願いしますDどういたしまして30、「部長、今夜のパーティーにいらっしゃいますか。
」「ええ、()。
」A行かないよBどうしようCそのつもりだよDまだ分からないよ31、今日の試験は、思った()難しくありませんでした。
AほどBしかCさえDばかり32、あの鳥が日本で見られるのは、11月から3月()です。
AにかけてBをかねてCにそってDをもとに33、部屋で本を()としていると、先生に呼ばれました。
A読めB読もうC読みようD読むよう34、今の若者()、インターネットは車よりも魅力的なものです。
Aに対してBに関してCにとってDについて35、面接試験では、話し方()、服装などにも気をつける必要がある。
Aの反面BとしてはCに過ぎずDはもちろん36、「昨日、ジョンさんに会いましたよ。
」「そうですか。
ジョンさん()、A社に就職が決まったそうですね。
」AといえばBといってはCと話せばDと話すなら37、彼の携帯電話に何度もかけたが全然出ない。
きっと部屋に忘れて出かけた()。
AべきだBはずだCかもしれないDにちがいない38、現状()、その計画を実行するのは無理です。
AについてBにとってCからいってDといっても39、内容をご確認の()、署名をお願いします。
A上をB上でC上にD上は40、()は日本の農業の中で最も重要な作物で、酒、お餅、寿司などを作るのになくてはならないものです。
A米B豆C小麦Dジャガいも第二部分阅读理解(共20小题;每小题2.5分,满分50分)阅读下列短文,从A、B、C、D四个选项中选出符合文章内容的最佳选项。
(一)人から聞いた話だが、酒も飲まず、たばこも吸わずに規則正しい生活をし、節制に頑張ってきた人が、50歳で不治の病にかかってしまった。
この人の嘆き(哀叹)は強く、自分はこれほどまでに節制に頑張ってきたのに、早く死ぬことになるのに対して、自分の同僚であまり節制もせず勝手に生きてきた人が、病気にもならずにピンピンしている(硬朗)のは、まったく話が合わないと言っていた。
この人の嘆きには、その通りだと同情を禁じ得ない(禁不住)が、「節制すれば長いきができるはずだ」と思っているのも、尐し一面的のように感じられる。
(ア)、節制することは健康にいいだろう。
しかし、それは節制しないのに比べると、その人の命を延ばすことに役立つかもしれないが、別に他人と比較することがないだろう。
人にはそれぞれの生き方がある。
もっと考えれば、無理な節制によるストレスが、この人にとってはよくなかったのかもしれない。
とにかく、人間の寿命なんてものは、それほど単純な因果関係で分かるものではなさそうである。
41、文中に「話が合わない」とあるが、それの指すことはどれか。
()A節制しても、節制しなくても長生きできない。
B節制しても長生きできないが、節制しなければ早く死ぬ。
C節制すれば長生きできるが、節制しなければ長生きできない。
D節制している人は早く死ぬのに、節制していない人は元気でいる42、文中に「同情を禁じ得ない」とあるが、誰が禁じ得ないのか()A筆者B勝手に生きてきた人C不治の病にかかった人Dたばこを吸って病気になった人43、文中の(ア)に入れるのに最も適当なものはどれか()AつまりBそしてCたしかにDところで44、文中の「それ」の指すことはどれか()A命を延ばすことB節制をすることC勝手に生きることD他人と比較すること45、「人間の寿命と節制」について筆者が最も言いたいことはどれか()A寿命と節制はあまり関係がないB無理に節制すると、早く死んでしまうCあまり節制しないほうが長く生きられるD節制すれば、他の人より長く生きられる(二)汗は、いろいろな場合に出る。
暑い時はもちろんであるが、精神作用の強い場合にも出る。
普通、冷汗などと言われているものは後者の汗である。
暑い時の汗と精神作用による汗とは、調べてみるとまったく(ア)ものであることが分かる。
暑さによる汗は、全身に出るけれども、手のひら(手心)と足の裏との2か所だけには出ない。
これは、夏に全身から汗の流れ落ちる時でも、手のひらからは汗の流れることのないことからでも分かる。
精神作用による時は、全身には汗が出なくて、手のひらと足の裏と腋の下の3か所に出るのが普通である。
また、汗の出方にも違いがある。
全身の汗は、初めは尐しずつ出て、だんだんにその量が多くなり、ついには流れ落ちるほどになることもあるが、手のひらなどでは、精神感動があればすぐにぱっと(一下子)汗が出て、感動が止めばすぐに止む。
(イ)、その量はあまり多くない。
このように、人類の汗は温熱性発汗と精神性発汗の2種類に分けることができるが、運動の時はこの2種の発汗が同時に現れる場合がある。
それは、運動により体が暖まり、また、勝敗を争ったり、記録の更新をしようといったことから、精神が緊張するからである。
46、文中の「後者の汗」の指すものはどれか。
()A全身に出る汗B暑い時に出る汗C運動の時に出る汗D精神作用による汗47、文中の(ア)に入れるのに最も適当なものはどれか。
()A同じB違ったC似ているD間違った48、文中の(イ)に入れるのに最も適当なものはどれか。
()AそしてBするとCつまりDあるいは49、文中に「2種の発汗が同時に現れる」とあるが、その理由はどれか。
()A運動すれば体が暖まるからB運動すれば汗が出やすいからC運動が激しければ精神が緊張し、勝敗がつくからD運動により体が暖まり、また、精神が緊張するから50、精神性発汗の特徴に合っているものはどれか。
()A体のどの部分にも出るB全身に尐しずつ出て、だんだん流れ落ちるC限られたところにぱっと出て、すぐ止み、量が多くないD初めは尐しずつ出るが、だんだん流れ落ちるほどになる(三)Aさんは今画壇で知らない人がいないほどの、かなり高名な画家です。
このAさんにわたしはある時、「どうして画家になられたんですか」と、聞いたことがあるのですが、その問いにAさんは、次のように答えてくれました。
Aさんが小学校の低学年の頃、家で一生懸命絵を描いていたら、隣のおばさんが遊びに来て、偶然、Aさんの絵を見て、こう言ったそうです。
「へえ、Aちゃん、絵が上手なんだね。
(ア)びっくりしちゃった。
」その褒められた一言がうれしくて、また一生懸命描いていると、再びおばさんが来て、Aさんの絵を褒めてくれた。
「すごい、前より、また(イ)。
」それがうれしくて、また頑張って描くと、また褒められた。
このように、褒められたのがうれしくて懸命に描くと、また褒められて、それがきっかけになって、また一生懸命描く。
褒められると頑張る、という、この2つが歯車(齿轮)のようにいいほうに回転して、気がつくと画家になっていた、というのです。
「それだけです」と、Aさんは尐し申し訳なさそうに言われました。
Aさんがすばらしい画家になれた、そのきっかけを作ってくれたのは隣のおばさんです。
隣のおばさんが何気なく(无意中)褒めてくれたその一言で、調子よく図に乗った(一表扬就来劲儿)Aさんは、単純に図に乗る才能を持っていた画家、と言ってもいいでしょう。
51、文中の(ア)に入れるのに最も適当なものはどれか。
()A筆者B画家CAさんDおばさん52、文中の(イ)に入れるのに最も適当なものはどれか。
()AうまくなったねB元気になったねC美しくなったねD大きくなったね53、文中の「それがきっかけになって」の「それ」は何を指すか。