(完整版)圆锥曲线综合练习题(有答案)
(完整版)圆锥曲线的综合经典例题(含答案解析)
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】① .②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。
圆锥曲线综合测试题(含详细答案)
圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。
圆锥曲线综合训练题(分专题,含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线大题综合(含答案)
圆锥曲线大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.2.(2022秋·广东江门·高二校考期中)已知抛物线22(0)y px p =>的焦点F 到其准线的距离为4.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .4.(2022秋·广东江门·高二校考期中)椭圆C :22221(0)x y a b a b +=>>2.(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.5.(2022秋·广东江门·高二校考期中)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,2a =.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :22221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点()11,0F -,圆()222116F x y -+=:,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.10.(2022秋·广东广州·高二校联考期中)已知两定点()4,0A -,()1,0B -,动点P 满足2PA PB =,直线:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.12.(2022秋·广东江门·高二校考期中)动点N (x ,y )与定点F (1,0)的距离和N 到定直线2x =的距离的比是常数22.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l 的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a b Γ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;15.(2022秋·广东江门·高二校考期中)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在椭圆C 上,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于M ,N 两点,则在x 轴上是否存在一点P ,使得直线l 绕点F 无论怎样转动都有0PM PN k k +=?若存在,求出点P 的坐标;若不存在,请说明理由.16.(2022秋·广东广州·高二南海中学校考期中)在平面直角坐标系xOy 中,已知点()4,0A -,()4,0B ,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.17.(2022春·广东汕头·高二校考期中)已知椭圆C :()222210x y a b a b +=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆2222:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.19.(2022春·广东广州·高二二师番禺附中校考期中)已知点A的坐标为()-,点B的坐标为(),且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :22221(0)x y a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.21.(2022春·广东深圳·高二校考期中)已知抛物线()2:20C x py p =>的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆221:1164x y E +=,()22222:10,4x y E a b a a b+=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).24.(2022秋·广东广州·高二校联考期中)如图,中心在原点O 的椭圆Γ的右焦点为()F ,长轴长为8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()222210x y a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,B ⎛ ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()2222:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点)P,圆Q :(2216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M 到A (﹣2,0)和到B (2,0)的斜率之积为﹣14.(1)求曲线Γ的轨迹方程;(2)若点P (x 0,y 0)(y 0≠0)为直线x =4上任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()2222:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.圆锥曲线大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是()3,0-,()3,0的双曲线;(2)离心率为45,短轴长为6的椭圆.(1)求p 的值;(2)过焦点F 且斜率为1的直线与抛物线交于A ,B 两点,求||AB .则直线AB 的方程为2,y x =-设()()1122,,,A x y B x y ,联立228y x y x=-⎧⎨=⎩,整理可得21240xx -+=,所以1212x x +=,由抛物线的性质可得12||12416AB x x p =++=+=.3.(2022秋·广东深圳·高二深圳市南头中学校考期中)椭圆C 的中心在坐标原点O ,焦点在x 轴上,椭圆C 经过点()0,1且长轴长为(1)求椭圆C 的标准方程;(2)过点()1,0M 且斜率为1的直线l 与椭圆C 交于A ,B 两点,求弦长AB .(1)求椭圆C 的标准方程;(2)经过点A (2,3)且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求|MN |.(1)求椭圆C 的标准方程;(2)经过点(2,3)A 且倾斜角为π4的直线l 与椭圆交于M ,N 两点,求线段MN 的长.6.(2022秋·广东梅州·高二校考期中)已知P 为椭圆E :221x y a b+=(0)a b >>上任意一点,F 1,F 2为左、右焦点,M 为PF 1中点.如图所示:若1122OM PF +=,离心率e =(1)求椭圆E 的标准方程;(2)已知直线l 倾斜角为135°,经过(2,1)-且与椭圆交于A ,B 两点,求弦长|AB|的值.7.(2022秋·广东广州·高二校联考期中)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 是大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M .若||2||MQ QF =,求直线l 的斜率.8.(2022秋·广东深圳·高二深圳市南头中学校考期中)已知椭圆C :()222210x y a b a b+=>>过点()2,1P ,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B两点,若AB =l 方程.9.(2022秋·广东深圳·高二深圳外国语学校校考期中)已知点1,圆2,点在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程.:l ()()211530m x m y m +++--=.(1)求动点P 的轨迹方程,并说明轨迹的形状;(2)记动点P 的轨迹为曲线E ,把曲线E 向右平移1个单位长度,向上平移1个单位长度后得到曲线E ',求直线l 被曲线E '截得的最短的弦长;(3)已知点M 的坐标为()5,3,点N 在曲线E '上运动,求线段MN 的中点H 的轨迹方程.11.(2022秋·广东江门·高二台山市第一中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的离心率为12,且经过点31,2P ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)若直线y kx m =+与椭圆C 交于M N 、两点,O 为坐标原点,直线OM ON 、的斜率之积等于34-,试探求OMN 的面积是否为定值,并说明理由.的比是常数2.(1)求动点N 的轨迹C 的方程;(2)过点F 的直线l 与曲线C 交于A ,B 两点,点(2,0)M ,设直线MA 与直线MB 的斜率分别为1k ,2k .随着直线l的变化,12k k +是否为定值?请说明理由.13.(2022秋·广东广州·高二校考期中)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为12,F F ,且122F F =,(1)求椭圆Γ的方程;(2)若直线L 与椭圆Γ相切,求证:点12,F F 到直线L 的距离之积为定值.【详解】(1)因为12||22F F c ==,则c =1,因为2222,3a b a c ==-=,所以椭圆Γ的方程22143x y +=;(2)证明:椭圆Γ的左、右焦点分别为12(1,0),(1,0)F F -,①当直线l 垂直于x 轴时,因为直线l 与椭圆Γ相切,所以直线l 的方程为2x =±,此时点12,F F 到直线l 的距离一个为11d =,另一个为23d =,所以123d d =,②当直线l 不垂直于x 轴时,设直线l 的方程为y =kx +b ,联立2234120y kx b x y =+⎧⎨+-=⎩,消去y ,整理得222(34)84120k x kbx b +++-=,所以,222222644(34)(412)16(9123)k x k b k b ∆=-+-=+-,因为直线l 与椭圆Γ相切,Δ=0,所以,2234b k =+,因为1(1,0)F -到直线l 的距离为12||1-=+k b d k ,2(1,0)F 到直线l 的距离为22||1+=+k b d k ,所以,222221222222|||||||(34)||33|311111k b k b k b k k k d d k k k k k-+--++=⋅====+++++,所以点12,F F 到直线l 的距离之积为定值,且定值为3.14.(2022秋·广东广州·高二校联考期中)如图,已知圆22:430M x x y -++=,点()1,P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;【详解】(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,设PM 的中点为N ,所以点A ,B 在以PM 为直径的圆N 上,又点A ,B 在圆M 上,所以线段AB 为圆N 和圆M 的公共弦,因为圆22:430M x x y -++=①,AB的中点设为F点,由HF始终垂直干当P点在x轴上时,F点与H点的重合,M,得HM的中点坐标为⎛(2,0)⎝圆去掉点M,圆C上,点F是椭圆C的右焦点.(1)求椭圆C的方程;(2)过点F的直线l与椭圆C交于M,N两点,则在x轴上是否存在一点P,使得直线l绕点F无论怎样转k k+=?若存在,求出点P的坐标;若不存在,请说明理由.动都有0PM PN,M 是一个动点,且直线AM ,BM 的斜率之积是34-,记M 的轨迹为E .(1)求E 的方程;(2)若过点()2,0F 且不与x 轴重合的直线l 与E 交于P ,Q 两点,点P 关于x 轴的对称点为1P (1P 与Q 不重合),直线1PQ 与x 轴交于点G ,求点G 的坐标.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求PAB 面积的最大值.18.(2022春·广东广州·高二华南师大附中校考期中)如图,已知圆22:1(0)x y C a b a b+=>>的左顶点(2,0)A -,过右焦点F 的直线l 与椭圆C 相交于M ,N 两点,当直线l x ⊥轴时,||3MN =.(1)求椭圆C 的方程;(2)记,AMF ANF 的面积分别为12,S S ,求12S S 的取值范围.且动点M 到点A 的距离是8,线段MB 的垂直平分线交线段MA 于点P .(1)求动点P 的轨迹C 的方程;(2)已知(2,1)D -,过原点且斜率为k (0k >)的直线l 与曲线C 交于E 、F 两点,求DEF 面积的最大值.20.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)已知椭圆C :221(0)a b a b+=>>的焦距为2,点31,2P ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两个动点,O 为坐标原点,且直线PM ,PN 的倾斜角互补,求OMN 面积的最大值.交于A ,B 两点,当A ,B 两点的纵坐标相同时,4AB =.(1)求抛物线C 的方程;(2)若P ,Q 为抛物线C 上两个动点,()0PQ m m =>,E 为PQ 的中点,求点E 纵坐标的最小值.22.(2022秋·广东深圳·高二校考期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为22,短轴顶点分别为M 、N ,四边形12MF NF 的面积为32.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A ,B 两点,若AB 的中点坐标为()2,1-,求直线l 的方程.23.(2022秋·广东广州·高二校联考期中)已知椭圆1:1164x y E +=,()222:10,4E a b a a b +=>><的离心率相同.点()00,P x y 在椭圆1E 上,()11,A x y 、()22,B x y 在椭圆2E 上.(1)若2OP OQ =,求点Q 的轨迹方程;(2)设1E 的右顶点和上顶点分别为1A 、1B ,直线1AC 、1B D 分别是椭圆2E 的切线,C 、D 为切点,直线1AC 、1B D 的斜率分别是1k 、2k ,求2212k k ⋅的值;(3)设直线PA 、PB 分别与椭圆2E 相交于E 、F 两点,且()AB tEF t =∈R,若M 是AB 中点,求证:P 、O 、M 三点共线(O 为坐标原点).8.椭圆Γ上有两点P 、Q ,连接OP 、OQ ,记它们的斜率为OP k 、OQ k ,且满足14OP OQ k k ⋅=-.(1)求椭圆Γ的标准方程;(2)求证:22OP OQ +为一定值,并求出这个定值;(3)设直线OQ 与椭圆Γ的另一个交点为R ,直线RP 和PQ 分别与直线x =M 、N ,若PQR 和PMN 的面积相等,求点P 的横坐标.25.(2022秋·广东·高二校联考期中)设椭圆Γ:()2210a b a b +=>>,1F ,2F 是椭圆Γ的左、右焦点,点A ⎛ ⎝⎭在椭圆Γ上,点()4,0P 在椭圆Γ外,且24PF =-(1)求椭圆Γ的方程;(2)若1,2B ⎛- ⎝⎭,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记OMN ,PMN 的面积分别为1S ,2S ,求221122S S S S -+的最小值.26.(2022秋·广东阳江·高二统考期中)已知椭圆()22:10y x C a b a b+=>>的上、下焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,且四边形1122A F A F 是面积为8的正方形.(1)求C 的标准方程.(2)M ,N 为C 上且在y 轴右侧的两点,12//MF NF ,2MF 与1NF 的交点为P ,试问12PF PF +是否为定值?若是定值,求出该定值;若不是,请说明理由.)27.(2022春·广东广州·高二广东番禺中学校考期中)已知定点P ,圆Q :216x y +=,N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M .(1)求点M 的轨迹Γ的方程;(2)直线l :x ky n =+与曲线Γ相交于A ,B 两点,且以线段AB 为直径的圆经过点C (2,0),求ABC 面积的最大值.(1)因为N 为圆Q 上的动点,线段NP 的垂直平分线和半径NQ 相交于点M ,28.(2022春·广东广州·高二广州科学城中学校考期中)已知椭圆22:1(0)x y C a b a b+=>>的焦距为其短轴的两个端点与右焦点的连线构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN 的面积最大时,求l 的方程.(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.29.(2022秋·广东深圳·高二深圳市高级中学校考期中)曲线Γ上动点M到A(﹣2,0)和到B(2,0)的斜率之积为﹣1 4.(1)求曲线Γ的轨迹方程;(2)若点P(x0,y0)(y0≠0)为直线x=4上任意一点,PA,PB交椭圆Γ于C,D两点,求四边形ACBD 面积的最大值.【点睛】熟练掌握直线与圆锥曲线位置关系及函数单调性是解题关键30.(2022春·广东汕头·高二金山中学校考期中)已知椭圆()22:10,0x y C a b a b+=>>的焦距为,经过点()2,1P -.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM PN ,分别交椭圆于A ,B .PQ AB ⊥,Q 为垂足.是否存在定点R ,使得QR 为定值,说明理由.。
圆锥曲线综合练习(含解析)
圆锥曲线综合练习一、选择题(本大题共53小题,共265.0分)1.直角坐标系xOy中,双曲线x24−y212=1的左焦点为F,A(1,4),P是右支上的动点,则|PF|+|PA|的最小值是()A. 8B. 9C. 10D. 12【答案】B【解析】解:由题意得a=2,b=2√3,c=4,则F(−4,0),右焦点G(4,0).由双曲线的定义可得|PF|−|PG|=4,∴|PF|+|PA|=4+|PG|+|PA|≥4+|AG|=4+√(1−4)2+(4−0)2=4+5=9.故选:B.2.已知双曲线x2a2−y2b2=1(a>0,b>0)的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O,A两点,若△AOF的面积为b2,则双曲线的离心率是()A. √3B. √5C. 32D. √52【答案】D解:焦点F(c,0),一条渐近线y=ba x,即bx−ay=0,则点F到此条渐近线的距离,即FA=√a2+b2=b,在Rt△OAF中,OA=a.∴12×OA×FA=b2,即12ab=b2,化为2b=a,∴此双曲线的离心率e=ca =√a2+b2a2=√52.故选D.3.已知点E(3,0),椭圆x236+y29=1上有两个动点P,Q,若EP⊥EQ,则EP⃗⃗⃗⃗⃗ ⋅QP⃗⃗⃗⃗⃗ 的最小值为()A. 6B. 3−√3C. 9D. 9−6√3【答案】A【解析】解:设P(x,y),椭圆x236+y29=1,y2=9−x24,∵EP⊥EQ,EP⃗⃗⃗⃗⃗ ⋅QP⃗⃗⃗⃗⃗ =丨EP⃗⃗⃗⃗⃗ 丨⋅丨QP⃗⃗⃗⃗⃗ 丨cos∠EPQ=EP2,而EP2=(x−3)2+y2=34(x−4)2+6,由P在椭圆x236+y29=1,∴−6≤x≤6,当x=4时,EP2=(x−3)2+y2=34(x−4)2+6,有最小值6,故答案选:A.4.已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2−b2,c>0)与椭圆C在第一象限的交点为P,若cos∠PF1F2=45,则椭圆C的离心率为()A. √5−12B. 3−√22或3+√22C. √3−12D. 4−√79或4+√79【答案】D【解析】解:作抛物线的准线l ,则直线l 过点F 1,过点P 作PE 垂直于直线l ,垂足为点E ,由抛物线的定义知|PE|=|PF 2|,易知,PE//x 轴,则∠EPF 1=∠PF 1F 2, ∴cos∠EPF 1=cos∠PF 1F 2=|PE||PF 1|=|PF 2||PF 1|=45,设|PF 1|=5t(t >0),则|PF 2|=4t ,由椭圆定义可知, 2a =|PF 1|+|PF 2|=9t ,在△PF 1F 2中,由余弦定理可得|PF 2|2=|PF 1|2+|F 1F 2|2−2|PF 2|⋅|F 1F 2|cos∠PF 1F 2,整理得|F 1F 2|2−8t|F 1F 2|+9t 2=0,解得|F 1F 2|=(4+√7)t 或|F 1F 2|=(4−√7)t .当|F 1F 2|=(4+√7)t 时,2c 2a=4+√79;当|F 1F 2|=(4−√7)t 时,离心率为e =2c 2a=4−√79.综上所述,椭圆C 的离心率为4−√79或4+√79.故选:D .5. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上一点,且PF 2⊥x 轴,直线PF 1与C 的另一个交点为Q ,若|PF 1|=4|F 1Q|,则C 的离心率为( )A. 2√55B. √22C. √155D. √217【答案】D【解析】解:由题意,可将点P 坐标代入椭圆C 方程得c 2a2+|PF 2|2b 2=1,解得|PF 2|=b 2a.如图所示,过Q 点作QE ⊥x 轴,垂足为点E ,设Q(x 0,y 0), 根据题意及图可知,Rt △PF 2F 1∽Rt △QEF 1, ∵|PF 1||F 1Q|=4,∴|F 1F 2||EF 1|=|PF 2||QE|=4,∴|EF 1|=|F 1F 2|4=2c 4=c2,∴x 0=−c −c2=−3c2.又∵y0=−|QE|=−|PF2|4=−b24a.∴点Q坐标为(−3c2,−b24a).将点Q坐标代入椭圆方程,得9c24a2+b216a2=1.结合b2=a2−c2,解得e=ca =√217,故选:D.6.设F1、F2分别是椭圆y2a2+x2b2=1(a>b>0)的焦点,过F2的直线交椭圆于P、Q两点,且PQ⊥PF1,|PQ|=|PF1|,则椭圆的离心率为()A. √3−√2B. √6−√3C. 2−√2D. 9−6√2【答案】B【解析】解:由PQ⊥PF1,|PQ|=|PF1|可得|QF1|=√2|PF1|,所以由题意的定义可得:√2|PF1|+2|PF1|=4a,所以|PF1|=2(2−√2)a,|PF2|=2a−|PF1|=2(√2−1)a,在直角三角形F1PF2中,|F1F2|2=|PF1|2+|PF2|2,即(2c)2=[2(2−√2)a]2+[2(√2−1)a]2,整理可得:c2=(9−6√3)a2,解得e=√6−√3,故选:B.7.已知经过原点O的直线与椭圆x2a2+y2b2=1(a>b>0)相交于M,N两点(M在第二象限),A,F分别是该椭圆的右顶点和右焦点,若直线MF平分线段AN,且|AF|=4,则该椭圆的方程为()A. x29+y25=1 B. x236+y24=1 C. x236+y232=1 D. x225+y224=1【答案】C【解析】解:由|AF|=4,得a−c=4,设线段AN的中点为P,M(m,n),则N(−m,−n),又A(a,0),∴P(a−m2,−n2),F(a−4,0),∵点M、F、P在同一直线上,∴k MF=k FP,即n−0m−(a−4)=−n2−0a−m2−(a−4),化简即可求得a=6,∴c=2,则b2=a2−c2=32.故椭圆方程为x236+y232=1.故选:C.8.设椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,经过原点O的直线与椭圆C相交于点A,B,若|AF|=2,|BF|=4,椭圆C的离心率为√73,则△AFB的面积是()A. √5B. 2√5C. 2√3D. √3【答案】C【解析】解:设椭圆的左焦点为F′,由椭圆的对称性可知,|AF′|=|BF|=4,∴|AF′|+|AF|=2+4=6=2a ,∴a =3,又e =√73,∴c =√7,由余弦定理可得,cos∠FAF′=16+4−282×4×2=−12,故sin∠FAF′=√32.∴S △AFB =S △AFF′=12|AF′||AF|sin∠FAF′=12×4×2×√32=2√3故选:C .9. 已知F 1,F 2分别为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的点,O 为坐标原点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =0,|PF 1⃗⃗⃗⃗⃗⃗⃗ |=3|PF 2⃗⃗⃗⃗⃗⃗⃗ |,则该椭圆的离心率为( )A. √105B. √104C. √103D. √102【答案】B 解:点P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2分别为椭圆的左、右焦点, 由题意知∠F 1PF 2=90°,且|PF 1|=3|PF 2|,如图:设|PF 2|=m ,则|PF 1|=3m ,所以{4m =2a 9m 2+m 2=4c 2,所以4c 2=52a 2, 所以e =c a =√104.故选:B .10. 直线x +4y +m =0交椭圆x 216+y 2=1于A ,B ,若AB 中点的横坐标为1,则m =( ) A. −2B. −1C. 1D. 2【答案】A解:由题意,设点A(x 1,y 1),B(x 2,y 2),则y 2−y 1x2−x 1=−14,x 1+x 22=1,∵x 1216+y 12=1,x 2216+y 22=1,两式相减,y 2−y 1x 2−x 1=−116⋅x 1+x2y 1+y 2,结合直线的斜率为−14,AB 中点横坐标为1,∴AB 中点纵坐标为14,将点(1,14)代入直线x +4y +m =0中,得m =−2.故选:A .11. 已知椭圆C:x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,上顶点为B ,左焦点为F 1,右焦点为F 2,以F 1F 2为直径的圆与直线AB 相切,e 为离心率,则e 2的值为( )A. √3−12B. 3−√52 C. √5−12 D. √5+12【答案】B 解:由椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,上顶点为B ,得A(−a,0),B(0,b),令F 1(−c,0),F 2(c,0),得直线AB 的方程为x−a +yb =1,即bx −ay +ab =0,以F 1F 2为直径的圆的方程为x 2+y 2=c 2,∵以F 1F 2为直径的圆与直线AB 相切,∴√b 2+(−a )2=c ,两边同时平方整理得a 2b 2=c 2(a 2+b 2)=(a 2−b 2)(a 2+b 2)=a 4−b 4,可得b 4+a 2b 2−a 4=0,两边同时除以a 4,得(b 2a2)2+b 2a2−1=0,且b 2a 2>0,解得b 2a 2=√5−12,因此e 2=c 2a2=a 2−b 2a 2=1−b 2a 2=3−√52.故选B .12. 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,直线l 过F 1交椭圆C 于A ,B 两点,交y轴于C 点,若满足F 1C ⃗⃗⃗⃗⃗⃗⃗ =32AF 1⃗⃗⃗⃗⃗⃗⃗ 且∠CF 1F 2=30°,则椭圆的离心率为( ) A. √33B. √36C. 13D. 16【答案】A解:设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,F 1(−c,0).直线l 过F 1交椭圆C 于A ,B 两点,交y 轴于C 点,若满足F 1C ⃗⃗⃗⃗⃗⃗⃗ =32AF 1⃗⃗⃗⃗⃗⃗⃗ 且∠CF 1F 2=30°, 可得C(0,√33c),设A(x,y),则(c,√33c)=32(−c −x,−y),解得A(−53c,−2√39c).可得:25c 29a 2+12c 281b2=1即:259e 2+4e 227(1−e 2)=1,e ∈(0,1).解得e =√33.故选:A . 13. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为其右焦点,若∠F 1F 2P =30°,则椭圆的离心率为( )A. √22B. 13C. 12D. √33【答案】D解:显然△PF 1F 2是直角三角形,根据正弦定理:e =c a =2c2a =|F 1F 2||PF 1|+|pF 2|,故选:D .14. 设F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点,A 是椭圆E 的左顶点,P 为直线x =3a 2上一点,△APF 是底角为30°的等腰三角形,则椭圆E 的离心率为( )A. 34B. 23C. 12D. 13【答案】B解:设x=3a2交x轴于点M,∵△FPA是底角为30°的等腰三角形∴∠PFA=120°,|PF|=|FA|,且|PF|=2|FM|∵P为直线x=3a2上一点,∴2(3a2−c)=a+c,解之得2a=3c∴椭圆E的离心率为e=ca=23故选:B.15.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线E:y2=2px(p>0)的焦点,点A为C与E的一个交点,且直线AF1的倾斜角为45°,则C的离心率为() A. √5−12B. √2−1C. 3−√5D. √2+1【答案】B解:由题意可得:c=p2=√a2−b2.直线AF1的方程为:y=x+c.联立{y=x+cy2=4cx,解得x=c,y=2c.∴A(c,2c),代入椭圆方程可得:c2a2+4c2b2=1,∴c2a2+4c2a2−c2=1,化为:e2+4e21−e2=1,化为:e4−6e2+1=0,解得e2=3−2√2,解得e=√2−1.故选:B.16.过坐标原点O且斜率为k(k<0)的直线l与椭圆x24+y2=1交于M、N两点若点A(1,12),则△MAN面积的最大值为()A. √2B. 2√2C. √22D. 1【答案】A【解析】解:由题,直线l的方程为:y=kx(k<0),联立{y=kxx24+y2=1,解得{x2=41+4k2y2=4k21+4k2,∣MN∣=2√x2+y2=4√1+k21+4k2,设点A(1,12)到直线l的距离d=∣∣k−12∣∣√1+k2=12⋅2k−1√1+k2,∴△MAN面积S=12⋅∣MN∣⋅d=2k−12=√4k2−4k+11+4k2=√1+4−1k−4k,∵k <0,−1k−4k ≥2⋅√−1k⋅(−4k)=4.(当且仅当k =−12时等式成立),∴√1+4−1k−4k ≤√2.即△MAN 面积的最大值为√2.故选:A .17. 已知椭圆x 2a+y 2b =1(a >b >0)的左顶点和左焦点分别为A 和F ,|AF|=3,直线y =kx 交椭圆于P ,Q 两点(P 在第一象限),若线段AQ 的中点在直线PF 上,则该椭圆的方程为( )A.x 29+y 25=1B. x 216+y 215=1C.4x 281+y 218=1D. x 281+y 245=1【答案】C【解析】解:由题意知a −c =3,∴a =c +3,A(−a,0),F(−c,0),设P(x′,y′), 则由题意知,Q(−x′,−y′),设AQ 的中点为D ,则D(−x′−a 2,−y′2),因为线段AQ 的中点在直线PF 上,所以FP⃗⃗⃗⃗⃗ =λFD ⃗⃗⃗⃗⃗ ,即(x′+c,y′)=λ(−x′−a 2+c,−y′2)=λ(−x′+c−32,−y′2),∴x′+c−x′+c−32=y′−y′2=−2,∴x′+c =x′−c +3,整理2c =3,∴c =32,a =c +3=92,b 2=a 2−c 2=18,所以椭圆的方程为:4x 281+y 218=1;故选:C .18. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 为椭圆上一点,MF ⃗⃗⃗⃗⃗⃗ 1⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,线段MF 2的延长线交椭圆C 于点N ,若|MF 1|,|MN|,|NF 1|成等差数列,则椭圆C 的离心率为( )A. √22B. √32C. √23D. √33【答案】A【解析】解:设|MF 2|=m ,∵|MF 1|,|MN|,|NF 1|成等差数列,∴2|MN|=|MF 1|+|NF 1|, ∴|MN|=|MF 2|+|NF 2|=2a −|MF 1|+2a −|NF 1|=4a −2|MN|,∴|MN|=43a , ∴|NF 2|=43a −m ,∴|NF 1|=2a −(43a −m)=23a +m ,∵MF ⃗⃗⃗⃗⃗⃗ 1⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,∴MF 1⊥MF 2,∴Rt △F 1MN 中,|NF 1|2=|MN|2+|MF 1|2,∴(2a −m)2+(43a)2=(23a +m)2,整理可得m =a ,∴|MF 2|=a ,|MF 1|=a ,∴|F 2F 1|2=|MF 2|2+|MF 1|2, ∴4c 2=2a 2,∴e =ca=√22,故选:A . 19. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线方程是y =√2x ,过其左焦点F(−√3,0)作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长|AB|=( )A. 2√5B. 4√5C. 10D. 10√2【答案】C解:∵双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线方程是y=√2x,∴ba=√2,即b=√2a,∵左焦点F(−√3,0),∴c=√3,∴c2=a2+b2=3a2=3,∴a2=1,b2=2,∴双曲线C的方程为x2−y22=1,可得直线l的方程为y=2(x+√3),设A(x1,y1),B(x2,y2),由{y=2(x+√3)x2−y22=1,消y可得x2+4√3x+7=0,可知:Δ>0,∴x1+x2=−4√3,x1x2=7,∴|AB|=√1+22⋅√(x1+x2)2−4x1x2 =√1+4×√48−28=√5×√20=10,故选:C.20.已知双曲线x24−y2b2=1(b>0)的左右焦点分别为F1、F2,过点F2的直线交双曲线右支于A、B两点,若△ABF1是等腰三角形,且∠A=120°,则△ABF1的周长为()A. 16√33+8 B. 4(√2−1) C. 4√33+8 D. 2(√3−2)【答案】A解:由双曲线x24−y2b2=1(b>0),可得:a=2.如图所示,设|AF2|=m,|BF2|=n.可得:|AF1|=4+m,|BF1|=4+n.因为△ABF1是等腰三角形,且∠A=120°,∴4+m=m+n.作AD⊥BF1,垂足为D,D为线段BF1的中点.∠F1AD=60°.∴|DF1|=√32(4+m),∴√3 2(4+m)×2=4+n,即√3(4+m)=4+n,又4+m=n+m,联立解得:n=4,m=8√33−4.∴△ABF1的周长=4+m+m+n+4+n=8+2(m+n)=8+16√33.故选:A.21.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则双曲线离心率的取值范围是()A. (53,2] B. (1,53] C. (1,2] D. [53,+∞)【答案】B解:根据题意,双曲线x 2a 2−y 2b 2=1 (a >0,b >0)中,点P 在双曲线的右支上,则|PF 1|−|PF 2|=2a ,又由|PF 1|=4|PF 2|,则|PF 2|=2a3,|PF 1|=8a3,又|PF 1|+|PF 2|≥|F 1F 2|,则有2a 3+8a 3≥2c ,即可得:e ≤53,则双曲线的离心率取值范围为(1,53].故选B . 22. 双曲线的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2,若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,则双曲线的离心率是( )A. √5−1B. 3+√52C. √5+12D. √3+1【答案】C解:由题意可得A 1(−a,0),A 2(a,0),B 1(0,−b),B 2(0,b),F 1(−c,0),F 2(c,0),且a 2+b 2=c 2,菱形F 1B 1F 2B 2的边长为√b 2+c 2,由以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D ,由面积相等,可得12⋅2b ⋅2c =12a ⋅4√b 2+c 2,即为b 2c 2=a 2(b 2+c 2),即有c 4+a 4−3a 2c 2=0,由e =ca ,可得e 4−3e 2+1=0, 解得e 2=3±√52,因为e >1,所以e 2=3+√52,可得e =√3+√52=1+√52.故选C .23. 若双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线被圆(x −2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A. 2B. √3C. √2D. 2√33【答案】A解:双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线不妨设为:bx−ay=0,圆(x−2)2+y2=4的圆心(2,0),半径为2,由双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线被圆(x−2)2+y2=4所截得的弦长为2,可得圆心到bx−ay=0的距离为d=√22−12=√3=|2b|√a2+b2,及即b2= 3a2,又c2=a2+b2=4a2,可得e2=4,即e=2.故选A.24.已知F1,F2是双曲线E:x2a2−y2b2=1(a>0,b>0)的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=13,则E的离心率为()A. 2B. 32C. √3D. √2【答案】D解:如图所示:∵MF1与x轴垂直,sin∠MF2F1=13,∴设MF1=m,则MF2=3m,由双曲线的定义得3m−m=2a,即m=a,在直角三角形MF2F1中,9m2−m2=4c2,即2m2=c2,即2a2=c2,则e=√2.故选D.25.已知双曲线x2m −y23m=1的一个焦点为(0,4),椭圆y2n−x2m=1的焦距为4,则m+n=()A. 8B. 6C. 4D. 2【答案】C记双曲线的焦距为2c,椭圆的焦距为c′,由双曲线的焦点为(0,4),知双曲线焦点在y轴,且c2=(−3m)+(−m)=−4m=16,可得m=−4,从而椭圆方程为y2n +x24=1,又焦距为4,知c′=2,当n>4时,有n−4=4,得n=8,当n<4时,4−n=4,n=0(舍去),于是m+n=4,故选:C.26.设双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,直线4x−3y+20=0过点F且在第二象限与C的交点为P,O为原点,若|OP|=|OF|,则C的离心率为()A. 5B. √5C. 53D. 54【答案】A解:如图,设双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为N.∵|OP|=|OF|=|ON|=c,则△PFN是以FN为斜边的直角三角形,∵直线4x−3y+20=0过点F,∴c=5,在Rt△PFN中,tan∠PFN=43,FN=10.∴PN=8,PF=6,则2a=2,a=1,则C的离心率为e=ca=5,故选A.27.已知点F1,F2分别是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,O为坐标原点,点P在双曲线C的右支上,|F1F2|=2|OP|,△PF1F2的面积为4,且该双曲线的两条渐近线互相垂直,则双曲线C的方程为()A. x22−y22=1 B. x24−y24=1 C. x28−y24=1 D. x22−y24=1【答案】B解:如图,由|F 1F 2|=2|OP|,可得|OP|=c ,即有△PF 1F 2为直角三角形,且PF 1⊥PF 2, ∵△PF 1F 2的面积为4,∴|PF 1|⋅|PF 2|=8,∵|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|−|PF 2|)2=|PF 1|2+|PF 2|2−2|PF 1|⋅|PF 2|,由双曲线定义可得|PF 1|−|PF 2|=2a ,∴4a 2=4c 2−16,∴b 2=4,∵该双曲线的两条渐近线互相垂直, ∴a =b ,∴双曲线C 的方程为x 24−y 24=1,故选:B .28. 设双曲线C :x 2a 2−y 2b2=1 (a >0,b >0)的左,右焦点分别为F 1、F 2,过F 1的直线l 分与双曲线左右两支交于M ,N 两点,以MN 为直径的圆过F 2,且MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MN ⃗⃗⃗⃗⃗⃗⃗ =12MN ⃗⃗⃗⃗⃗⃗⃗ 2,以下结论正确的个数是( )①双曲线C 的离心率为√3;②双曲线C 的渐近线方程y =±√2x ;③直线l 的斜率为1.A. 0B. 1C. 2D. 3【答案】C【解析】解:由MN 为直径的圆过F 2,且MF 2⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MN ⃗⃗⃗⃗⃗⃗⃗ =12MN ⃗⃗⃗⃗⃗⃗⃗ 2, 可得MF 2⊥NF 2,且|MF 2|=|NF 2|,设|MF 2|=|NF 2|=m ,则|MN|=√2m ,由|MF 2|−|MF 1|=2a ,|NF 2|−|NF 1|=2a ,两式相减可得|NF 1|−|MF 1|=|MN|=4a ,即有m =2√2a ,设H 为MN 的中点,在直角三角形HF 1F 2中,可得4c 2=4a 2+(2a +2√2a −2a)2,化为c 2=3a 2,e =ca =√3,故①正确; 又√1+b 2a2=ca=√3,可得b a =√2,故②正确;因为|HF 2|=12|MN|=2a ,所以|HF 1|=√|F 1F 2|2−|HF 2|2=2√c 2−a 2,所以直线l 的斜率为|HF 2||HF 1|=2a2√c 2−a 2=√22,故③错误. 故选:C .29. 双曲线y 2−ax 2=1的离心率为√62,则其渐近线方程是( )A. y =±2xB. y =±12xC. y =±√2xD. y =±√22x【答案】C【解析】解:根据题意可得e =√1+1a1=√62,解得a =2,则双曲线方程表示为:y 2−x 212=1,所以渐近线方程为y =±√112x =±√2x ,故选:C . 30. 已知F 为双曲线E :x 2a2−y 2b 2=1(a >0,b >0)的左焦点,过点F 的直线与圆O :x 2+y 2=12(a 2+b 2)于A ,B 两点(A 在F ,B 之间),与双曲线E 在第一象限的交点为P ,O 为坐标原点,若FA =BP ,∠AOB =120°,则双曲线的离心率为( )A. √133B. √143C. √13+√23D. √14+√23【答案】D【解析】解:如图,由圆O 的方程x 2+y 2=12(a 2+b 2)=12c 2,得圆O 的半径为OA =OB =√22c .过O 作AB 的垂线OH ,则H 为AB 的中点,又FA =BP ,∴H 为FP 的中点,设双曲线的右焦点为F 1,连接PF 1,则OH 为三角形FF 1P 的中位线,可得OH//PF 1,则PF 1⊥PF , 由∠AOB =120°,可得OH =12OA =√24c .∴PF 1=√22c ,则PF =√22c +2a ,在Rt △PFF 1中,由勾股定理可得:(√22c +2a)2+(√22c)2=4c 2,整理得:3e 2−2√2e −4=0.解得:e =√14+√23或e =√2−√143(舍).故选:D .31. 过抛物线E :x 2=2py(p >0)的焦点F 作两条互相垂直的弦AB ,CD ,设P 为抛物线上的一动点,Q(1,2).若1|AB|+1|CD|=14,则|PF|+|PQ|的最小值是( )A. 1B. 2C. 3D. 4【答案】C解:显然直线AB的斜率存在且不为0,设直线AB的斜率为k,则直线AB的方程为y=kx+p2,联立方程{y=kx+p2x2=2py,消去y得:x2−2pkx−p2=0,设A(x1,y1),B(x2,y2),则x1+x2=2pk,y1+y2=k(x1+x2)+p=2pk2+p,由抛物线的性质可知:|AB|=y1+y2+p=2pk2+2p,∵AB⊥CD,∴直线CD的斜率为:−1k ,∴|CD|=2p(−1k)2+2p=2pk2+2p=2p+2pk2k2,∴1|AB|+1|CD|=12pk2+2p+k22p+2pk2=k2+12p+2pk2=14,∴2p+2pk2=4+4k2,解得p=2,∴抛物线方程为:x2=4y,准线方程为:y=−1,设点P到准线y=−1的距离为d,由抛物线的性质可知:|PF|+|PQ|=d+|PQ|,而当QP垂直于准线时,d+|PQ|的值最小,最小值为2+1= 3,如图所示:∴|PF|+|PQ|的最小值为3,故选:C.32.抛物线y2=4x的焦点为F,点A(5,3),M为抛物线上一点,且M不在直线AF上,则△MAF周长的最小值为()A. 10B. 11C. 12D. 6+√29【答案】B【解析】解:求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为x A−(−1)=5+1=6,∵|AF|=√(5−1)2+(3−0)2=5,∴△MAF周长的最小值为11,故选:B.33. 经过抛物线y 2=2px(p >0)的焦点且倾斜角为π4的直线与抛物线相交于A 、B 两点,若|AB|=1,则p =( )A. 1B. 12C. 13D. 14【答案】D【解析】解:由题意可知,抛物线焦点坐标为(p 2,0),∴直线AB 的方程为:y =x −p2, 联立方程{y =x −p2y 2=2px.消去y 得:x 2−3px +p 24=0,∴x A +x B =3p ,由抛物线的定义可知:|AB|=x A +x B +p ,∴4p =1,∴p =14,故选:D .34. 已知抛物线C :x =4y 2的焦点为F ,若斜率为18的直线l 过点F ,且与抛物线C 交于A ,B 两点,则线段AB 的中点到准线的距离为( )A. 658B. 654C.12916D.1298【答案】A【解析】解:抛物线C :x =4y 2,可得准线方程为:x =−116,过点F(116,0)且斜率18的直线l :y =18(x −116),由题意可得:{x =4y 2y =18(x −116),可得x 2−1298x +1256=0,直线l 与抛物线C 相交于A 、B 两点,则线段AB 的中点的横坐标为:12916, 则线段AB 的中点到抛物线C 的准线的距离为:12916+116=658.故选:A .35. 如图,在底面半径和高均为√2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点.已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A. 12B. 1C. √104 D. √52【答案】D【解析】解:如图所示,过点E 作EH ⊥AB ,垂足为H . ∵E 是母线PB 的中点,圆锥的底面半径和高均为√2, ∴OH =EH =√22.∴OE =1.在平面CED 内建立直角坐标系如图. 设抛物线的方程为y 2=2px . (p >0),F 为抛物线的焦点. C(1,√2), ∴2=2p ⋅1. 解得p =1. F(12,0).即OF =12,EF =12, ∵PB =2,PE =1,∴该抛物线的焦点到圆锥顶点P 的距离为√PE 2+EF 2=√52 故选:D .36. 已知点A(0,√3),抛物线C :y 2=2px(p >0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N.若|FM|:|MN|=1:2,则p 的值等于( )A. 1B. 2C. 3D. 4【答案】B解:依题意F 点的坐标为(p2,0),设M 在准线上的射影为K 由抛物线的定义知|MF|=|MK|,∵|FM|:|MN|=1:2,∴|KN|:|KM|=√3:1,∴|OA ||OF |=√3p 2=√3,∴√3p =2√3,∴p =2.故选:B .37. 已知抛物线C:y 2=4x 的焦点为F ,其准线l 与x 轴交于点A ,点M 在抛物线C 上,当|MA||MF|=√2时,△AMF 的面积为 ( )A. 1B. √2C. 2D. 2√2【答案】C解:设M (x 0,y 0),过M 作MN ⊥l 于点N ,则|MF|=|MN|,因为|MA||MF|=√2,所以|MA||MN|=√2,故∠NAM =45°,所以|AN|=|MN|,故|y 0|=x 0+1,又点M 在抛物线上,所以y 02=4x 0,由{|y 0|=x 0+1,y 02=4x 0,,解得{x 0=1,|y 0|=2,,所以S △AMF =12|AF|·|y 0|=12×2×2=2.故选C .38. 已知抛物线y 2=4x 的焦点为F ,准线为l.若l 与双曲线x 2a 2−y 2b 2=1 (a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB|=4|OF|(O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5【答案】D解:∵抛物线y 2=4x 的焦点为F ,准线为l .∴F(1,0),准线l 的方程为x =−1, ∵l 与双曲线x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB|=4|OF|(O 为原点),∴|AB |=2ba,|OF |=1,∴2b a=4,∴b =2a .∴c =√a 2+b 2=√5a ,∴双曲线的离心率为e =ca =√5.故选D .39. 已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A 、B 两点,O 为坐标原点,若|AB|=6,则△AOB 的面积为( )A. √6B. 2√2C. 2√3D. 4【答案】A解:根据题意,抛物线y 2=4x 的焦点为F(1,0),当直线AB 的斜率不存在时,x =1,不妨设点A 在第一象限,此时A(1,2),B(1,−2),|AB|=4,不满足要求当直线AB 的斜率存在时,设直线AB 的斜率为k ,可得直线AB 的方程为y =k(x −1),设A(x 1,y 1)、B(x 2,y 2),由{y =k(x −1)y 2=4x ,消去x ,得y 2−4k y −4=0, y 1+y 2=4k ,y 1y 2=−4,则x 1+x 2=y 1+y 2k+2=4k 2+2,|AB|=x 1+x 2+p =4k 2+2+2=6,则k =±√2,|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=2√6,S △AOB =S △AOF +S △BOF =12|OF|⋅|y 1−y 2|=12×1×2√6=√6,△AOB 的面积√6,故选:A .40. 过抛物线C :y 2=2px(p >0)的焦点F 的直线与抛物线C 交于A ,B 两点,且AF ⃗⃗⃗⃗⃗ =3 FB ⃗⃗⃗⃗⃗ ,直线AB 与抛物线C 的准线l 交于点D ,AA 1⊥l 于A 1,若△AA 1D 的面积等于8√3,则p =( )A. 32B. 2C. 52D. 4【答案】B【解析】解:抛物线C :y 2=2px(p >0)的焦点F(p 2,0),准线方程为x =−p2, 设|BF|=t ,由AF ⃗⃗⃗⃗⃗ =3 FB ⃗⃗⃗⃗⃗ ,可得|AF|=3t ,|AB|=4t , 过B 作BN ⊥l 于N ,可得|BN|=|BF|=t , 又|AA 1|=|AF|=3t , 在△AA 1D 中,|BN||AA 1|=|BD||AD|,即为t 3t =|BD||BD|+4t ,可得|BD|=2t ,在△DMF 中,|BN||MF|=|DB||DF|,即为t p =2t2t+t , 解得p =32t ,又△AA 1D 的面积等于8√3,可得12⋅3t ⋅√(6t)2−(3t)2=8√3,解得t =43, 则p =32×43=2.故选:B41. 已知抛物线C :y 2=2px(p >0)的焦点F 到准线的距离为2,点P 在抛物线上,且|PF|=32,延长PF交C 于点Q ,则△OPQ 的面积为( )A. 3√22B. 3√24C. 3√28D. 3√216【答案】A解:由题意,可得p =2,则抛物线C :y 2=4x .设直线PQ 的斜率为k ,在l PQ :y =k(x −1). 联立{y =k(x −1)y 2=4x ,整理,得k 2x 2−2(k 2+2)x +k 2=0.则x 1+x 2=2(k 2+2)k 2,x 1⋅x 2=1.∵1|PF|+1|QF|=2p ,即132+1|QF|=1,解得|QF|=3.∴|PQ|=|PF|+|QF|=32+3=92. 又∵|PQ|=x 1+x 2+p =2(k 2+2)k 2+2=92.∴解得k 2=8,k =±2√2.设点O 到直线PQ 的距离为d ,则d =|k⋅0−0−k|√1+k 2=2√2√1+8=2√23.∴S △OPQ =12⋅|PQ|⋅d =12⋅92⋅2√23=3√22. 故选:A .42. 已知抛物线C :y 2=2px(p >0)的焦点为F ,点M(x 0,2√2)(x 0>p2)是抛物线C 上一点,以点M 为圆心的圆与直线x =p2交于E ,G 两点,若sin∠MFG =13,则抛物线C 的方程是( )A. y 2=xB. y 2=2xC. y 2=4xD. y 2=8x【答案】C【解析】解:画出图形如右图所示,作MD ⊥EG ,垂足为D ,由题意得点M(x 0,2√2),(x 0>p2)在抛物线上,则8=2px 0,① 由抛物线的性质,可知|DM|=x 0−p2,因为sin∠MFG =13,所以|DM|=13|MF|=13(x 0+p2),所以x 0−p2=13(x 0+p 2),解得x 0=p ,②由①②解得x 0=p =−2(舍去)或x 0=o =2. 故抛物线C 的方程为y 2=4x .故选:C .43. 抛物线y 2=x 的焦点为F ,O 为坐标原点,点P 在抛物线上,向量FP ⃗⃗⃗⃗⃗ 与OF ⃗⃗⃗⃗⃗ 的夹角为60°,过P 作抛物线准线的垂线,垂足为H ,线段HF 和抛物线交于点Q ,则|HF||FQ|=( )A. 1B. 2C. 3D. 23【答案】C【解析】解:由抛物线定义知PH =PF ,结合∠HPF =60°,知△HPF 为等边三角形.故HF 和准线夹角θ=30°,作QE ⊥准线,垂足为E ,则QF =QE , 则sinθ=sin30°=|QE||QH|=|QF||QH|=12, 故|HF||FQ|=|HQ|+|QF||QF|=2|QF|+|QF||QF|=3,故选:C .44. 已知点F 为抛物线x 2=2py(p >0)的焦点,经过点F 且倾斜角α为钝角的直线与抛物线交于A ,B 两点,△OAB(O 为坐标原点)的面积为−8cos 3α,线段AB 的垂直平分线与y 轴交于点M ,则|FM|=( )A. 4B. 2C. √2D. 1【答案】A【解析】解:抛物线x 2=2py(p >0)的焦点F(0,p2),设直线AB 的方程为y =kx +p2,代入抛物线x 2=2py ,得x 2−2pkx −p 2=0, 设A ,B 的横坐标分别为x 1,x 2,则x 1+x 2=2pk ,x 1x 2=−p 2,所以△OAB的面积为S=12|OF|⋅|x1−x2|=12⋅p2⋅√(x1+x2)2−4x1x2=p4√4p2k2+4p2=p22√1+k2=p2 2⋅√1+tan2α=p22⋅√1+sin2αcos2α=p22⋅1−cosα=−8cos3α,则p=4cos2α,又AB的中点坐标为(pk,pk2+p2),所以AB的中垂线方程为y−pk2−p2=−1k(x−pk),令x=0,则y=pk2+p2+p,即M(0,pk2+p2+p),所以|FM|=pk2+p=p(1+k2)=4cos2α⋅(1+tan2α)=4(cos2α+sin2α)=4,故选:A.45.已知抛物线C:y2=2px(p>0)的焦点F,点M(x0,6√6)(x0>p2)是抛物线上一点,以M为圆心的圆与直线x=p2交于A、B两点(A在B的上方),若sin∠MFA=57,则抛物线C的方程为()A. y2=4xB. y2=8xC. y2=12xD. y2=16x 【答案】C解:如图所示,过M点作CM⊥直线x=p2,垂足为C,交准线于D,∴sin∠MFA=57=MCMF,由抛物线定义可得:MF=MD,∴MCMF=x0−p2x0+p2=57,5x0+52p=7x0−72p,∴x0=3p,∵点M(x0,6√6)(x0>p2)是抛物线上一点,∴(6√6)2=2px0,36×6=6p2,∴p=6,∴y2=12x,故选:C.46.已知抛物线y2=2px(p>0)交双曲线x2a2−y2b2=1(a>0,b>0)的渐近线于A,B两点(异于坐标原点O),若双曲线的离心率为√5,△AOB的面积为32,则抛物线的焦点为()A. (2,0)B. (4,0)C. (6,0)D. (8,0)【答案】B解:双曲线的离心率为√5,可得ca=√5,可得b=2a,渐近线方程为:2x±y=0,抛物线y2=2px与2x±y=0可得x=p2,y=±p,△AOB的面积为32,所以12×p2×2p=32,解得p=8,所以抛物线的焦点坐标为:(4,0).故选:B.47.已知抛物线C:y2=x的焦点为F,过点F且斜率为√3的直线交抛物线C于点A、B两点,则|AF|⋅|BF|等于()A. 13B. 43C. 1D. 4【答案】A【解析】解:抛物线C:y2=x的焦点为F,过点F且斜率为√3的直线交抛物线C于点A、B两点,以F为极点的抛物线的极坐标方程为:ρ=p1−cosα=12−2cosα,A(ρ,α),B(ρ,π+α),|AF|=P1−cosα=P1−cos60∘,|BF|=P1+cosα=P1+cos60∘,|AF||BF|=P1−cos60∘×p1+cos60∘=p2sin260∘=1434=13,故选:A.48.已知抛物线C:y2=4x的焦点为F,准线为l,l与x轴的焦点为P,点A在抛物线C上,过点A作AA′⊥l,垂足为A′,若cos∠FAA′=35,则四边形AA′PF的面积为()A. 8B. 10C. 14D. 28【答案】C【解析】解:由条件得,p=2,过点F作FF′⊥AA′,垂足为F′.设|AF′|=3x,∵cos∠FAA′=35,∴|AF|=5x,|F′F|=4x.由抛物线定义可得:|AF|=|AA′|=5x.则|A′F′|=|PF|=5x−3x=2x=p=2,解得x=1.则|AF′|=3x=3,|AF|=|AA′|=5x=5,|F′F|=4x=4.∴四边形AA′PF的面积S=(|PF|+|AA′|)⋅|PA′|2=(2+5)×42=14.故选:C.49.已知直线l:kx−y−k=0(k∈R)与抛物线C:y2=2px(p>12)相交于A,B两点,O为坐标原点,则△AOB为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定【答案】C【解析】解:设A(x 1,y 1),B(x 2,y 2),则y 12=2px 1,y 22=2px 2,联立直线l :kx −y −k =0(k ∈R)与抛物线C :y 2=2px(p >12),可得(kx −k)2=2px ,即为k 2x 2−(2k 2+2p)x +k 2=0,则△=(2k 2+2p)2−4k 4=4p 2+8pk 2>0,x 1x 2=1,则(y 1y 2)2=4p 2x 1x 2=4p 2,由于直线l 恒过定点(1,0),且与抛物线有两个交点,可得y 1y 2<0,则y 1y 2=−2p ,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=1−2p ,由p >12,可得1−2p <0,可得OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ <0,即∠AOB 为钝角,则△AOB 为钝角三角形.故选:C .50. 已知抛物线C :y 2=4x 的焦点为F ,其准线l 与x 轴相交于点M ,过点M 作斜率为k 的直线与抛物线C 相交于A ,B 两点,若∠AFB =60°,则k =( )A. ±12B. ±√24 C. ±√22 D. ±√32【答案】D【解析】解:抛物线y 2=4x 的焦点为F(1,0),准线方程为x =−1,M(−1,0), 过点M 作斜率为k 的直线方程设为y =k(x +1),联立抛物线方程,可得k 2x 2+(2k 2−4)x +k 2=0,k ≠0,设A(x 1,y 1),B(x 2,y 2),可得|AF|=x 1+1,|BF|=x 2+1,则△=(2k 2−4)2−4k 4>0,即−1<k <1,且k ≠0,x 1+x 2=4k 2−2,x 1x 2=1,可得|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√(4k2−2)2−4=4⋅√1−k 4k 2,在△AFB 中,由余弦定理可得|AB|2=|AF|2+|BF|2−2|AF|⋅|BF|⋅cos60°=(x 1+1)2+(x 2+1)2−2(x 1+1)(x 2+1)⋅12=(x 1+x 2)2+(x 1+x 2)−2=(4k 2−2)2+(4k 2−2)−2=16k 4−12k 2=16(1−k 4)k 4,解得k =±√32,故选:D .51. 如图所示点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆x 2+y 2−4x −12=0的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值范围是( )A. (6,10)B. (8,12)C. [6,8]D. [8,12]【答案】B解:抛物线的准线l :x =−2,焦点F(2,0),由抛物线定义可得|AF|=x A +2, 圆(x −2)2+y 2=16的圆心为(2,0),半径为4,∴△FAB 的周长=|AF|+|AB|+|BF|=x A +2+(x B −x A )+4=6+x B ,由抛物线y 2=8x 及圆(x −2)2+y 2=16可得交点的横坐标为2,∴x B ∈(2,6),∴6+x B ∈(8,12),故选B .52. 抛物线y 2=2px(p >0)的焦点为F ,直线l 过点F 且与抛物线交于点M ,N(点N 在x 轴上方),点E 为轴上F 右侧的一点,若|NF|=|EF|=3|MF|,S △MNE =12√3,则p =( )A. 1B. 2C. 3D. 9【答案】C【解析】解:设直线MN 的方程为:x =my +p 2,N(y 122p ,y 1),M(y 222p ,y 2), 联立直线MN 与抛物线的方程{x =my +p2y 2=2px,整理可得:y 2−2pmy −p 2,y 1y 2=−p 2,∗由题意|NF|=3|FM|可得3MF ⃗⃗⃗⃗⃗⃗ =FN ⃗⃗⃗⃗⃗⃗ ,即3(p2−y 222p ,−y 2)=(y 122p,y 1)可得y 1=−3y 2代入∗中可得3y 22=p 2,所以y 2=−√33p ,y 1=−3y 2=√3p ,y 122p =32p ,所以N(32p,√3p),由抛物线的性质到焦点的距离等于到准线的距离,所以|NF|=|EF|=32p +p2=2p , 所以S △NME =12|EF|⋅|y 1−y 2|=12⋅2p ⋅(√3p +√33p)=4√33p 2, 由题意可得4√33p 2=12√3,解得p =3,故选:C .53. 已知A 、B 是抛物线y 2=2px(p >0)上的两点,直线AB 垂直于x 轴,F 为抛物线的焦点,射线BF 交抛物线的准线于点C ,且|AB|=4√55|AF|,△AFC 的面积为2√5+2,则p 的值为( )A. √2B. 1C. 2D. 4【答案】C【解析】解:设A点的坐标为(m,n),且点A在第一象限内,则B(m,−n),∴n2=2pm,①由F(p2,0),准线方程为x=−p2,∴|AB|=2n,∴|AF|=m+p2=n22p+p2,∵|AB|=4√55|AF|,∴2n=4√55(m+p2),②∵△AFC的面积为2√5+2,S△ACB−S△ABF=S△AFC,∴12×2n(m+p2)−12×2n(m−p2)=2√5+2,∴np=2√5+2,③,由①②③解得p=2,选:C.二、填空题(本大题共6小题,共30.0分)54.设点P为椭圆:x249+y224=1上一点,F1、F2分别是椭圆的左、右焦点,G为△PF1F2的重心,且PF1⊥PF2,那么△GPF2的面积为______.【答案】8【解析】解:因为G为△PF1F2的重心,所以S△GPF2=13S△PF1F2,因为PF1⊥PF2,设PF1=x,PF2=2a−x,所以(2c)2=x2+(2a−x)2,由椭圆的方程可得:a2=49,b2=24,所以c2=a2−b2=49−24=25,a=7,所以方程整理可得x2−14x+ 48=0,解得x1=6,x2=8,当x1=6时,PF1═6,PF2=2a−6=2×7−6=8,则S△PF1F2=12×6×8=24,所以S△PGF2=13S△PF1F2=8,同理x2=8时,S△PGF2=13S△PF1F2=8,故答案为:8.55.已知椭圆C:x2a2+y2b2=1(a>b>0),的左、右焦点分别为F1,F2,右焦点F2与抛物线E:y2=2px(p>0)的焦点重合.椭圆C与抛物线E交于A,B两点,A,F2,B三点共线,则椭圆C的离心率为______.【答案】√2−1【解析】解:如图,根据题意可得抛物线准线l 过左焦点F 1,作AA′⊥l 交于点l 于点A′,则AA′=AF 2.则易得四边形A′AF 2F 1是正方形, 故椭圆C 的离心率e =|F 1F 2||AF 1|+|AF 2|=1√2+1=√2−1.故答案为:√2−1.56. 已知直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且|AB|=|AF 1|,则椭圆的方程为______. 【答案】x 25+y 2=1【解析】解:由题意直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,令y =0可得x =2,所以右焦点F 2(2,0),即c =2,左焦点F 1(−2,0),由题意令x =0,可得y =4,所以B(0,4)所以线段BF 1的中点C(−1,2), 直线BF 1的斜率为4−00−(−2)=2,所以线段BF 1的中垂线方程为:y −2=−12(x +1),即x +2y −3=0,因为|AB|=|AF 1|,所以线段BF 1的中垂线过A 点,所以A 为{x +2y −3=02x +y −4=0的交点,解得x =53,y =23,即A(53,23), 而A 在椭圆上,所以{259a 2+49b 2=1c 2=a 2−b 2c =2解得:a 2=5,b 2=1,所以椭圆的方程为:x 25+y 2=1,故答案为:x 25+y 2=1.57. 已知F 1,F 2分别为椭圆C :x 2a2+y 2=1(a >1)的左、右焦点,点F 2关于直线y =x 的对称点Q 在椭圆上,则长轴长为______;若P 是椭圆上的一点,且|PF 1|⋅|PF 2|=43,则S △F 1PF 2=______.【答案】2√2 , √33【解析】求出点F 2关于直线y =x 的对称点Q ,代入椭圆方程求得a ,则长轴长可求;利用余弦定理结合椭圆定义求得sin∠F 1PF 2,代入三角形面积公式得答案. 解:由椭圆C :x 2a 2+y 2=1(a >1),知c =√a 2−1.∴F 2(√a 2−1,0),点F 2关于直线y =x 的对称点Q(0,√a 2−1),由题意可得:√a 2−1=1,即a =√2,则长轴长为2√2;∴椭圆方程为x 22+y 2=1.则|PF 1|+|PF 2|=2a =2√2,又|PF 1|⋅|PF 2|=43,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2−2|PF 1||PF 2|−|F 1F 2|22|PF 1||PF 2|=8−83−483=12.∴sin∠F 1PF 2=√32.则S △F 1PF 2=12|PF 1||PF 2|sin∠F 1PF 2=12×43×√32=√33. 故答案为:2√2;√33.58. 设F 1,F 2分别为椭圆C :C:x 24+y 2=1的左、右焦点,A ,B 分别为C 上第二、四象限的点,若四边形AF 1BF 2为矩形,则该矩形的面积是 ,AB 所在直线的方程是 . 【答案】2;y =−√24x.解:由椭圆的方程可得a =2,b =1,所以c =√3,由椭圆的定义可得|AF 1|+|AF 2|=2a①,|AF 1|2+|AF 2|2=4c 2②,①2−②得|AF 1|⋅|AF 2|=2,∴矩形AF 1BF 2的面积为S =|AF 1|⋅|AF 2|=2.因为矩形AF 1BF 2的外接圆方程为x 2+y 2=c 2=3,与椭圆C 的方程联立得A(−2√63,√33).又AB 过坐标原点,∴AB 的斜率为k AB =tanα=−√24, ∴AB 所在直线的方程为y =−√24x .故答案分别为:2,y =−√24x.59. 已知椭圆x 2m 2+y 2=1(m >0)的焦点为F 1,F 2,若在长轴A 1A 2上任取一点M ,过点M 作垂直于A 1A 2的直线交椭圆于点P ,若使得PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ <0的点M 的概率为√63,则m 的值为______.【答案】2或12 【解析】解:联立椭圆x 2m 2+y 2=1(m >0),x 2+y 2=c 2,当m >1时,解得x =±m√c 2−1c ,故只要在长轴A 1A 2上任取一点M ,过点M 作垂直于A 1A 2的直线交椭圆于点P , 若使得PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ <0的点M 的概率为√63,可得2m √c 2−1c2m=√63,m=2.当0<m <1时,解得y =±√c 2−m 21−m2,由2√c2−m 21−m 22=√63,解得m =12.故答案为:2或12. 三、解答题(本大题共21小题,共252.0分)60. 已知抛物线C :y 2=2px(p >0),抛物线C 与圆D :(x −1)2+y 2=4的相交弦长为4.(1)求抛物线C 的标准方程;(2)点F 为抛物线C 的焦点,A 、B 为抛物线C 上两点,∠AFB =90°,若△AFB 的面积为2536,且直线AB 的斜率存在,求直线AB 的方程.。
圆锥曲线综合练习及答案
圆锥曲线综合练习及答案 Last updated on the afternoon of January 3, 2021圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。
(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。
2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。
(132322=+y x ) 变式2、斜率为1的直线与双曲线1222=-y x 相交于A 、B 两点,又AB 中点的横坐标为1。
(1)求直线的方程 (2)求线段AB 的长(1)y=x+1(2)AB=62变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。
(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值 变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程;(2)求m 的取值范围。
例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程;(Ⅱ)当△AMN 得面积为103时,求k 的值.解:(1)由题意得222222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=. (2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=.设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+.所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k +++.由因为点A(2,0)到直线(1y k x =-)的距离212d k=+,所以△AMN 的面积为21||46||2k k S MN d +=⋅=.由22||4610123k k k +=+,解得1k =±. 变式1、已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔=[来源:学|科|网Z|X|X|K]1AF B ∆面积211133sin 60()40310,5,53225S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+=⇔===变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭,将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x k x x x x =-=++-222214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
圆锥曲线综合练习及答案
圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。
(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。
2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。
(132322=+y x ) 变式2、斜率为1的直线与双曲线1222=-y x 相交于A 、B 两点,又AB 中点的横坐标为1。
(1)求直线的方程 (2)求线段AB 的长 (1)y=x+1 (2)AB=62 变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。
(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值 变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程; (2)求m 的取值范围。
例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为22.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN 得面积为103时,求k 的值. 解:(1)由题意得222222a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=. (2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=.设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+. 所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k+++. 由因为点A(2,0)到直线(1y k x =-)的距离2||12k d k=+,所以△AMN 的面积为221||46||212k k S MN d k +=⋅=+. 由22||4610123k k k +=+,解得1k =±. 变式1、1已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=. (Ⅰ)求椭圆C 的离心率; (Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯ 2223(2)5a m m a am m a ⇔-=++⇔= [来源:学|科|网Z|X|X|K]1AF B ∆面积211133sin 60()40310,5,532252S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+⨯=⇔=== 变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.x Ay 11 2 M N B O设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=. 又222121212||1||1()4AB k x x kx x x x =+-=++-2222114(1)11622k kk k ⎛⎫=+-⨯-=++ ⎪⎝⎭.22216111684k k k +∴=++,解得2k =±.即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
(完整版)圆锥曲线练习题含标准答案(最新整理)
当 0 m 1 时,
y2 1
x2 1
1, e2
a2 b2 a2
1m
3,m 4
1 ,a2 4
1 m
4, a
2
m
20. x2 y2 1 20 5
设双曲线的方程为 x2 4 y2 , ( 0) ,焦距 2c 10, c2 25
5 /9
当
0 时,
x2
y2
1,
4
25,
20 ;
4
当
0
时,
y2
x2
1,
(
)
4
25,
20
4
21. (, 4) (1, ) (4 k)(1 k) 0, (k 4)(k 1) 0, k 1,或k 4
22. x 3 2 p 6, p 3, x p 3
2
22
23.1
焦点在 y 轴上,则 y2 x2 1, c2 5 1 4, k 1
28. ( 7, 0) 渐近线方程为 y m x ,得 m 3, c 7 ,且焦点在 x 轴上 2
29. b2 a2
设A( x1 ,y1), NhomakorabeaB(x2 ,
y2
)
,则中点
M
(
x1
2
x2
,
x
, 2
x2
8x
4
0,
x1
x2
8,
y1
y2
x1
x2
4
4
中点坐标为 ( x1 x2 , y1 y2 ) (4, 2)
2
2
27. , 2
t2 设 Q(
,t) ,由
PQ
a
t2 得(
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线综合测试题(含答案)
圆锥曲线综合测试题一、选择题(每题5分)1、双曲线x 2-5y 2=0的焦距为( ) A.6 B.26 C.23 D.432、顶点在原点,且过点(-4,4)的抛物线的标准方程是( )A.y 2=-4xB.x 2=4yC. y 2=-4x 或x 2=4yD.y 2=4x 或x 2=-4y3、若椭圆19222=+m y x (m>0)的一个焦点坐标为(1,0),则m 的值为( ) A.5 B.3 C.23 D.224、已知方程11122=--+ky k x 表示双曲线,则k 的取值范围是( ) A.-1<k<1 B.k>0 C.k ≥0 D.k>1或k<-15、已知双曲线15222=-y a x 的右焦点为(3,0)则该双曲线的离心率为( ) A.14143 B.423 C.23 D.34 6、如果点P (2,y 0)在以点F 为焦点的抛物线y 2=4x 上,则PF=( )A.1B.2C.3D.47、双曲线12222=-b y a x 与椭圆12222=+by m x (a >0,m>b>0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8、已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB=( )A.3B.6C.9D.129、已知双曲线12222=-by a x (a >0,b>0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,∆AOB 的面积为3,则p=( )A.1B.23 C.2 D.3 10、已知F 1,F 2为椭圆191622=+y x 的两个焦点,过点F 2的直线交椭圆与A ,B 两点,在∆A F 1B 中,若有两边之和等于10,则第三边的长度为( )A.6B.5C.4D.311、已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆12、若直线mx +ny=4与圆O: x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆14922=+y x 的交点个数为( )A.至多一个B.2C.1D.0二、填空题(每题5分)13、抛物线x 2=4y 上一点P 到焦点的距离为3,则点P 到y 轴的距离为 。
(完整版)圆锥曲线大题20道(含标准答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
(完整版)圆锥曲线综合练习题(有答案)
2、选择题:圆锥曲线综合练习2已知椭圆—10 A. 4 直线x 2y设双曲线1的长轴在 2 0经过椭圆 B .C .72y y J 5y 轴上,若焦距为4,则m 等于(D . 8 1(a b0)的一个焦点和一个顶点,则该椭圆的离心率为(2y_9 B . 31 (a 0)的渐近线方程为 若m 是2和8的等比中项, 则圆锥曲线 x 23x 2y 0 ,则a 的值为(1的离心率是(已知双曲线 点.若OM A .」已知点 F 1 , 2 2x y 2 2 1(aa b ON ,则双曲线的离心率为( B .匚2 F 2是椭圆 2 x 25A . 22 或 2双曲线2P 为双曲线— 9的最大值为( A . 6 已知点 0 , b 0),过其右焦点且垂直于实轴的直线与双曲线交于 M , N 两点,O 为坐标原2 2 x 2y2的两个焦点,点P 是该椭圆上的一个动点, uur 那么| PF ! PF, i 的最小值是1上的点到一个焦点的距离为 12,则到另一个焦点的距离为( B . 2 y_ 16 7 C . 22 1的右支上一点, D . 2M , N 分别是圆(x 5)2 y 2 4 和(x 5)2 y 2 1上的点,则|PMIPN |2 P (8, a )在抛物线y 4px 上,且P 到焦点的距离为10,则焦点到准线的距离为 8 D . 16 uuur 1 uuu.在正△ ABC 中,D AB , E AC ,向量DE -BC ,则以B ,C 为焦点,且过D , 2A 」 3 9 .两个正数a 'b的等差中项是 ,一个等比中项是2.5,且a b ,则抛物线y 2E 的双曲线离心率为-x 的焦点坐标是(a2 B . ( 7,0)52x .已知A 1 , A 分别为椭圆C: p aA .(16,0) 1C . ( -, 0)52每1(a b 0)的左右顶点,椭圆C 上异于A , b恒满足k PA k%9,则椭圆C 的离心率为(1. 2. 3. 4. 5. 6. 7. 8. 9.10 1112A . m pB . pm为Q , O 为坐标原点,若 △ FQQ 与四边形OF 2PQ 的面积之比为1:2,则该椭圆的离心率等于( )C . 4 2 3D . 3 1220. 已知双曲线方程为x 2 丁 1,过P (2 , 1)的直线L 与双曲线只有一个公共点,则直线 |的条数共有()A . 4条B . 3条C . 2条D . 1条21.已知以F 1( 2 , 0) , F 2(2 , 0)为焦点的椭圆与直线 x 3y 4 0有且仅有一个交点,则椭圆的长轴长为 ()D . 4 2b 0)的离心率互为倒数,那么以 a , b , m 为边长的三角形是13.已知R 、 C . 5 922F 2分别是椭圆笃占 a b1(a b0)的左、右焦点,A 是椭圆上位于第一象限内的一点, 点B 也在椭圆 上, 且满足 uur uunOA OB (O 为坐标原点),A - y fx B- y T xUUJU LULU — -2 AF 2 FF 2 0,若椭圆的离心率等于2,则直线AB 的方程是(2D 贞 D . y x214.已知点 P 是抛物线2x 上的一个动点, 则点 P 到点M (0 , 2)的距离与点 P 到该抛物线准线的距离之和的最A . 3C .9B ..5D .222 22215.若椭圆—y_ 1与双曲线— y_ 1(m , n , p , q 均为正数)有共冋的焦点m n p q小值为F 1, F 2, P 是两曲线的一个公共点,则 IPF 1IIPF 2I 等于 ()16.若 P(a , b)是双曲线 4x 216y 2m( m 0)上一点,且满足a 2b 0 , a 2b 0,则该点P 一定位于双曲线(A .右支上B .上支上C .右支上或上支上D .不能确定17.如图,在厶ABC 中,CABCBA 30o , AC , BC 边上的高分别为 BD , AE ,则以A , B 为焦点,且过D , E的椭圆与双曲线的离心率的倒数和为()B . 1C . 2,318方程2 xsin 2 sin .3 2——J 1表示的曲线是(cos 、2 cos < 3A .焦点在x 轴上的椭圆 C .焦点在y 轴上的椭圆2 219. 已知F 1, F 2是椭圆笃^2 1(a ba bB .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线0)的左、右焦点,点 P 在椭圆上,且秆巳-记线段PF 1与y 轴的交点A . 3 2B .26 C . 2.7222 .双曲线务a 2丄 2 b21与椭圆x 2m2L2b 1 (a 0 , m()23 .已知点A ( 1 , 0), B (1, 0)及抛物线y 2 2x ,若抛物线上点P 满足PA mPB ,则m 的最大值为()实轴长为(A 是椭圆上一动点,圆 C 与F 1A 的延长线、F 1F 2的延长线以| AF | 3,则此抛物线方程为( A. y 2 9x B. y 2 6x2C. y 3x2 230.已知F 1 , F 2分别是椭圆 ——1的左、右焦点,4 332,3 c9、3 23A.——B.C.D. --------23227229 .若椭圆— 2—1(m 0, n 0)与曲线x 2 y 2 |mn|无焦点, 则椭圆的离心率 e 的取值范围是()m n3 A .(〒,1)B . (0 , 34 2) C . ( 2 川) D . (0,()及线段AF 2相切,若 M (t , 0)为一个切点,则(C . t 2D . t 与2的大小关系不确定 31.如图,过抛物线2px(p 0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC | 2| BF |,且A .锐角三角形B •直角三角形C •钝角三角形D .等边三角形24 .设 F i , 三角形, 1 A .- 2F 2是椭圆E.p ra bE 的离心率为(2 B.-31(a0)的左、右焦点, 3P 为直线x ^a 上一点,△ F 2PF 1是底角为30°的等腰25.等轴双曲线 C 的中心在原点, 焦点在 2x 轴上,C 与抛物线y16x 的准线交于A , B 两点,B . 2 2C . 4D . 826 .已知直线l 过抛物线C 的焦点,且与 则厶ABP 的面积为()C 的对称轴垂直,l 与C 交于A , B 两点, | AB| 12 , P 为C 准线上一点,A . 18B . 24C . 3627.中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点D . 48(4 , 2),则它的离心率为(C .込228 .椭圆ax2by 1与直线 x 交于A , B 两点, 过原点与线段 AB 中点的直线的斜率为D. y23x22uur uuu ,亠 2y 2的两个焦点,点P 是该椭圆上的一个动点,那么| PF , PF 2I 的最小值是(A . 2.2| PF 1 | 3| PF 2 |,则双曲线C 的离心率e 的取值范围为( )A . (1, 2]B . (2 ,2]C . (、一2 ,2)D . (1, 2)点,若AB // x 轴,且—1 X 2,则A NAB 的周长I 的取值范围为()32 •已知椭圆 iur 使得PF , 2X二uuuPF 2 y 1的焦点为F ,、 0的M 点的概率为F 2,在长轴入A 上任取一点M ,过M 作垂直于AA 的直线交椭圆于 P ,则C .D . 33 .以 O 为中心, F i ,uuuF 2为两个焦点的椭圆上存在一点M ,满足|MF , |uui Luur2|MO | 2 | MF 21,则该椭圆的离心率为A . ( 2 ,9)B . (0,5)C . (2 , 9)D . (1, 6)36.若点0和点F2X 分别为椭圆-4 2' 1的中心和左焦点, 3点P 为椭圆上的任意一点,uuu 则0P uuu FP 的最大值为()A . 2 B. 3 C . 6D . 837 .直线3x 4y4 0与抛物线 2 2x 4y 和圆x2(y 1)1从左到右的交点依次为 A , B , C ,D ,则I"!的值为条直线同时与抛物线和圆 5x 2 5y 2 36相切,则抛物线的顶点坐标为( )( )34.已知点F i , F 2是椭圆35.在抛物线yx 2 ax 5(a0)上取横坐标为X 4 , X 2 2的两点,过这两点引一条割线,有平行于该割线的一 A . 161638 .如图,双曲线的中心在坐标原点O , A , C 分别是双曲线虚轴的上、下端点, B 是双曲线的左顶点,F 是双曲线的左焦点, 直线 AB 与FC 相交于点 57 5 7 7工14 5 7 14239 .设双曲线 C : —2 a 2每1(a 0, b 0)的左、右焦点分别为 b F 2,若在双曲线的右支上存在一点P ,使得40 .已知A (X 1 , yj 是抛物线y 2 4x 上的一个动点,2 2B (X 2,祠是椭圆—乂 4 31上的一个动点,N (1, 0)是一个定D. F 1 ,BDF 的余弦是(2A . (10 ,5)B • (8 ,4)C • (!° ,4)D • (11 ,5)3 33 32 2XV241.设双曲线2y2 1(a 0 , b 0)的离心率e 2 ,右焦点F (c , 0),方程ax bx c 0的两个根分别为X i , x ,a b则点 P(X i , X 2)在()2 2 2 2A .圆x V 10内B .圆x V 10上C .圆x 2y 210外D .以上三种情况都有可能2 2X 42.过双曲线p a y 2 2 2詁 1(a 0,b 0)的右焦点F 作圆x y a 的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点 ,则双曲线的离心率是()A . 2B . 3C . 2D . 5x 243 .若双曲线2a 2y 21 (a 0,b0)上不存在点 bP 使得右焦点 F 关于直线 O P ( O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为()A . (2,)B . [ 2,)C . (1, 2]D . (1, 2)2 244.已知以椭圆 一~ -V^ 1(a b 0)的右焦点F 为圆心, a b椭圆的离心率的取值范围是()2 245.椭圆C 1 :— — 1的左准线I ,左.右焦点分别为 F 1. F 2,抛物线C 2的准线为|,焦点是F 2, C 1与C 2的一4 3个交点为P ,则|PF 2|的值等于( )48A .B .C .4D . 83 32246.已知F 1、X F 是双曲线 y 1 (a > 0, b > 0)的两焦点,以线段 F 1F 2为边作正三角形 MF 1F 2,若边 MF 1a b 2的中点在双曲线上,则双曲线的离心率是()A . 4+ 2、3B. 3 +1C. 3 — 1C . 5 1247 .已知双曲线 1(a 0,b 则该双曲线离心率 e 的值为( 0)的左顶点、右焦点分别为) A 、F ,点 B (0, b ),若 BA BF BA BF48.直线l 是双曲线7 b 21(a 0,b 0)的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为a 为半径的圆与椭圆的右准线交于不同的两点,则该C . 5 1(丁 ,1)(0 ,D .2 2A .5B . . 3C .2 2D .22x 49 .从双曲线 2 a 2 y b 2 1(a 0,b 0)的左焦点 F 引圆x 22 2 y a2:1的两段,则双曲线的离心率为() 于P 点,若M 为线段FP 的中点,O 为坐标原点,的切线,切点为T ,延长FT 交双曲线右支 MO MT b a C . MO| |MT| b a 50 .点P 为双曲线C i : 2 2xy 1 a—21 aa b2 PF 1F 2 PF 2F 1,其中F i , F 2为双曲线 51.设圆锥曲线 r 的两个焦点分别为 F 1 , F 2 , 率等于 则 |M0| MT 与 M0| |MT| b D .不确定. 0,b 0和圆C 2 C i 的两个焦点,则双曲线 b a 的大小关系为 x 2 y 2 a 2 b 2C i 的离心率为( 若曲线r 上存在点P 满足|PF 1|:|F 1F2|:|PF 』 1或32 B . 或2C . 1 或 2D . 2或 32 23 2 3 2 A . 252 .已知点P 为双曲线 的一个交点,且 =4:3:2 0)右支上一点,F 1 , F 2分别为双曲线的左、右交点, ,则曲线r 的离心I PF 2F 2 的内心,若S |PF 1IPF%F1F 2成立,则的值为A .三 2aB .C . 二、填空题: 53 .已知R , F 2为椭圆 2 2 25 7 1的两个焦点, 过F 1的直线交椭圆于A , B 两点.若RAI |F 2B| 12 ,则|AB| 54.中心在原点,焦点在 x 轴上,且长轴长为 4,离心率为1的椭圆的方程为 255. 56 . 29.已知双曲线x 2工1 a 2 y_ 4 的一条渐近线与直线 x 2y 3 0垂直,则a 2x 已知P 为椭圆一91上的点,F 1 , F 2是椭圆的两个焦点,且 F 1PF 2 60° ,则厶F 1PF 2的面积2x 57.已知双曲线—a则双曲线的方程为2y_1(a 2 x0 , b 0)和椭圆一162才1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,58 .若双曲线笃爲1(a 0 , b 0)的一条渐近线与椭圆—-1的焦点在x 轴上的射影恰为该椭圆的焦点,则 a b4 3双曲线的离心率为2x59.已知双曲线ra265 .已知抛物线 C:y 2px(p 0)过点A(1, 2).(I)求抛物线 C 的方程,并求其准线方程;(H)是否存在平行于 OA ( O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线 OA 与L 的距离等 于一5 ?若存在,求直线l 的方程;若不存在,请说明理由.566 .已知抛物线x 22 py( p 0).1(a 0, b 0)的左、右焦点分别为F i , F 2 ,过点F 2做与x 轴垂直的直线与双曲线一个焦点P ,且 PF 1F 2 30°, 则双曲线的渐近线方程为 60.已知 F-i > F 2分别为椭圆 2x25 y2uuir umu£ 1的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若| PF | |PF 2 | 4 ,9umr 则PQ uur (PR ULUDPF ) 61 .已知圆 C :x 2 6x 8y 21 0,抛物线y 2 8x 的准线为I ,设抛物线上任意一点 P 到直线I 的距离为m ,则m |PC|的最小值为 _________________ . 2 262 .设双曲线—壬1的右顶点为A ,右焦点为F .过点 9 16则厶AFB 的面积为 F 平行双曲线的一条渐近线的直线与双曲线交于点63 .已知直线l i :4x 3y三、解答题:64 .已知椭圆 2y_ b 2(I)求椭圆 (n)若直线2 C :笃 a C 的方程;l 过点M (1(a b 0)的两个焦点为F i , F 2,414 点 P 在椭圆 C 上,且 PF 1 PF 2, IPF 1I, |PF 2| 332,1),交椭圆C 于A , B 两点,且点M 恰是线段AB 的中点,求直线l 的方程.2的距离之和的最小值6 0和直线l 2 :x 0 ,抛物线y 2(I)已知值是(i)(ii)P点为抛物线上的动点,点P在x轴上的射影是点M,点A的坐标是(4 , 2),且|PA| |PM |的最小4.求抛物线的方程;设抛物线的准线与y轴的交点为点(n)设过抛物线焦点F的动直线l交抛物线于求证:以CD为直径的圆过焦点F . E,过点E作抛物线的切线,求此切线方程;A , B两点,连接AO , BO并延长分别交抛物线的准线于C , D两点,2 2定点的坐标;如果不是,请说明理由.67.如图所示,已知椭圆 C:% 占1(a b 0), A i , A 2分别为椭圆C 的左、右顶点. a b(I)设F i , F 2分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,|PF i |取得最小值与最大值;(H)若椭圆C 上的点到焦点距离的最大值为 (川)若直线l :y kx m 与(H)中所述椭圆证明:直线l 过定点,并求出该定点的坐标.2y是该椭圆的一个顶点. (I)求椭圆C 的方程; 2x68 .已知椭圆C : ja(H)已知圆o :x 2y 22的切线l 与椭圆相交于3B 两点,那么以 AB 为直径的圆是否经过定点?如果时,求出3,最小值为1,求椭圆C 的标准方程;1(a b 0)的离心率。
圆锥曲线综合试题(全部大题目)含答案
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
(完整版)圆锥曲线大题综合测试(含详细答案)
圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
【免费下载】圆锥曲线综合试题全部大题目含答案
【免费下载】圆锥曲线综合试题全部⼤题⽬含答案1. 平⾯上⼀点向⼆次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线外⼀点00(,)P x y 的任⼀直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 22x py =的交点为Q 。
(1)求证:抛物线切点弦的⽅程为00()x x p y y =+;(2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0==?(1)动点N 的轨迹⽅程;(2)线l 与动点N 的轨迹交于A ,B 两点,若,求304||64,4≤≤-=?AB OB OA 且直线l 的斜率k 的取值范围.3. 如图,椭圆的左右顶点分别为A 、B ,P 为双曲线右134:221=+y x C 134:222=-y x C ⽀上(轴上⽅)⼀点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的⾯x 积相等,求直线PD 的斜率及直线CD 的倾斜⾓.4.已知点(2,0),(2,0)M N -,动点P满⾜条件||||PM PN -=记动点P的轨迹为W .(Ⅰ)求W 的⽅程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ? 的最⼩值.5. 已知曲线C 的⽅程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有⼀条渐近线的倾斜⾓是60°,求此双曲线的⽅程;(Ⅲ)满⾜(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线⽅程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平⾯上的两点,动点P 满⾜:6.PM PN +=(1)求点P 的轨迹⽅程;(2)若2·1cos PM PN MPN -∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B .1222=-b y a x (I )若3MON π∠=,双曲线的焦距为4。
完整版)圆锥曲线综合练习题(有答案)
完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。
4B。
5C。
7D。
82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。
若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b -=与椭圆22221x y m b+=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( )B. C.D. 29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(030.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF ∠的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.的离心率2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( )ABCD44F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2| )A B C .4 D .846.已知F 1、F 2是双曲线 a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A . 147A 、F ,点B (0,b )则该双曲线离心率e 的值为( )A B C D 48.直线l 是双曲线O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .D . 49的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则与a b -的大小关系为A BCD .不确定.50.点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( )ABCD .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P ,则曲线r 的离心率等于A B 2 C D 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= .61.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则||m PC +的最小值为 .62.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB △的面积为 . 63.已知直线1l :4360x y -+=和直线2:0l x =,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .三、解答题:64.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且12PF PF ⊥,14||3PF =,214||3PF =.(Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过点M (21)-,,交椭圆C 于A B ,两点,且点M 恰是线段AB 的中点,求直线l 的方程. 65.已知抛物线2:2(0)C y px p =>过点(12)A -,.(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与L 的距离等?若存在,求直线l 的方程;若不存在,请说明理由. 66.已知抛物线22(0)x py p =>.(Ⅰ)已知P 点为抛物线上的动点,点P 在x 轴上的射影是点M ,点A 的坐标是(42)-,,且||||PA PM +的最小值是4.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程; (Ⅱ)设过抛物线焦点F 的动直线l 交抛物线于A B ,两点,连接AO BO ,并延长分别交抛物线的准线于C D ,两点,求证:以CD 为直径的圆过焦点F .67.如图所示,已知椭圆2222:1(0)x y C a b a b+=>>,12A A ,分别为椭圆C 的左、右顶点.(Ⅰ)设12F F ,分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,1||PF 取得最小值与最大值;(Ⅱ)若椭圆C 上的点到焦点距离的最大值为3,最小值为1,求椭圆C 的标准方程;(Ⅲ)若直线l :y kx m =+与(Ⅱ)中所述椭圆C 相交于A B ,两点(A B ,不是左、右顶点),且满足22AA BA ⊥,证明:直线l 过定点,并求出该定点的坐标.68.已知椭圆2222:1(0)x y C a b a b+=>>的离心率2e =12的交点F 恰好是该椭圆的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3O x y +=的切线l 与椭圆相交于A B ,两点,那么以AB 为直径的圆是否经过定点?如果时,求出定点的坐标;如果不是,请说明理由.。