数学建模-房价评估模型
研究生数学建模房地产行业的数学模型
研究生数学建模-房地产行业的数学模型题目房地产行业的数学模型摘要:本文以商品房为例,建立了房地产行业住房需求的BP神经网络模型、住房供给的GM(1,1)模型、房地产行业与国民经济其他行业关系的灰色关联度模型和房价预测的Markov模型.对于住房需求问题,选取商品房年度销售面积作为反映住房需求的指标,把年底城镇总人口数等七个变量作为影响需求的因素,建立了BP神经网络模型,对住房需求进行了很好的预测.对于住房供给问题,选取商品房年竣工面积作为商品房当年的供给量,建立了GM(1,1)模型,并用残差、关联度和后验差对所得的模型进行了检验,最后对全国房地产市场2011-2015年的商品房年竣工面积进行了合理预测.对于房地产行业与国民经济其他行业关系问题,运用灰色关联度分析和信息熵对全国房地产市场与其他行业的关联度进行了定量分析,并按其关联性的强弱进行了排序.对于房价预测问题,首先用三次插值多项式对1991-2009年商品房年销售价格进行模拟,运用Markov过程得到状态转移概率矩阵,建立了Markov模型,并对2010年的商品房年销售价格进行了预测.然后通过房地产开发综合景气指数的变化对我国近几年房地产市场的发展态势进行了分析,再用房屋销售价格环比指数对房地产政策的成效进行了评价,提出了房地产政策严厉度对政策的严厉性进行量化.最后,对模型的优缺点进行了分析,并对模型进行了评价.关键词:BP神经网络GM(1,1) 灰色关联度Markov预测一、问题重述房地产行业既是国民经济的支柱产业之一,又是与人民生活密切相关的行业之一,同时自身也是一个庞大的系统,该系统的状态和发展对国民经济的整个态势和全国人民的生活水平影响很大.近年来,我国房地产业发展迅速,不仅为整个国民经济的发展做出了贡献,而且为改善我国百姓居住条件发挥了决定性作用.但同时房地产业也面临较为严峻的问题和挑战,引起诸多争议,各方都坚持自己的观点,然而多是从政策层面、心理层面和资金层面等因素来考虑,定性分析多于定量分析.显然从系统的高度认清当前房地产行业的态势、从定量角度把握各指标之间的数量关系、依据较为准确的预见对房地产行业进行有效地调控、深刻认识房地产行业的经济规律进而实现可持续发展是解决问题的有效途径.因此通过建立数学模型研究我国房地产问题是一个值得探索的方向.利用附录中提供的及可以查找到的资料建立房地产行业的数学模型,建议包括1.住房需求模型;2.住房供给模型;3.房地产行业与国民经济其他行业关系模型;4.对我国房地产行业态势分析模型;5.房地产行业可持续发展模型;6. 房价模型等.并利用模型进行分析,量化研究该行业当前的态势、未来的趋势,模拟房地产行业经济调控策略的成效.希望在深化认识上取得进步,产生若干结论和观点.如果仅就其中几个问题建立模型也是适宜的,对利用附件给的天津市的数据建模并进行分析同样鼓励.研究房地产问题并不需要很多、很深的专业知识,问题也不难理解.作者也完全可以独立自主地提出自己希望解决的房地产中的新问题,建立相应的数学模型予以解决,所建的每个模型要系统、深入,至少应该自成兼容系统,数据可靠,结论和观点有较多的数据支撑、有较强的说服力、有实际应用价值.二、模型假设1. 城镇房地产市场是中国房地产行业的主要部分;2. 商品房本年竣工面积作为商品房当年的供给量;3. 近期内没有经济危机影响房地产行业.三、符号说明符号符号说明i A影响住房需求的因素()1,2,,7i =()()0x i 商品房年销售面积的原始序列值()1,2,,20i = ()()0ˆx i 商品房年销售面积的估计序列值()1,2,,20i = ()()0y i 商品房年竣工面积的原始序列值()1,2,,17i = ()()0ˆy i 商品房年竣工面积的估计序列值()1,2,,17i =()()1y i商品房年竣工面积原始值的累加生成序列()1,2,,17i =()i ε 原始序列()()0y i 与估计序列()()0ˆyi 的绝对误差()1,2,,17i = ()i δ 原始序列()()0y i 与估计序列()()0ˆy i 的相对误差()1,2,,17i =()i η关联度系数()1,2,,17i =ρ分辨率()01ρ<< r 关联度()0Y原始序列()()0y i 的均值ε 绝对误差()i ε的均值 i S方差()1,2i = C 方差比 P小误差概率0i ∆ 参考序列与比较序列的绝对差值()1,2,,13i =i H信息熵()1,2,,13i =i w 评价指标的熵权()1,2,,13i = t p商品房年销售价格()1,2,,19t =ˆt p 商品房年销售价格预测值()1,2,,19t =i Ω状态区域()1,2,,4i =V 状态转移矩阵 L房地产政策的严厉度四、模型的建立与求解房地产行业是一个庞大的系统,可以从微观和宏观两个角度进行分析,其中住房是房地产行业的核心部分.从微观角度看,房地产市场上存在住房需求与住房供给的经济运动.从宏观角度看,房地产行业作为国民经济的支柱产业,与整个国家的经济发展密切相关,政府的调控政策对房地产市场的发展也会产生一定影响.以下用住房需求、住房供给、房地产行业与国民经济其他行业关系和房价预测四个模型对房地产业进行分析. 1. 住房需求模型本节以商品房的住房需求为例,构建BP 神经网络模型,并利用Matlab 神经网络工具箱中的相关函数对住房需求进行预测.选取商品房本年销售面积()()0x i 作为反映住房需求的指标,把年底城镇总人口数1A 、城镇家庭平均每人可支配收入2A 、人均国内生产总值(现价)3A 、城镇新建住宅面积4A 、城镇固定资产投资5A 、城镇储蓄存款6A 和城镇家庭平均每人全年实际收入7A 七个变量作为影响住房需求的因素 (具体数据见附录) .其中人是住房的最终消费者,人口数量的增长必然会对住房的需求提出更高的要求,所以人口数量是决定住房需求的基本因素.城镇人均可支配收入指城镇居民家庭人均可用于最终消费支出和其它非义务性支出以及储蓄的总和,即居民家庭可以用来自由支配的收入,它从购买力方面影响住房需求.人均国内生产总值是一个国家核算期内实现的国内生产总值与这个国家的常住人口的比值,是衡量人民生活水平的一个标准,它从宏观层面影响住房需求.城镇新建住宅面积和城镇固定资产投资反映了国家的城镇化水平,是城镇吸引力的体现,具有较强吸引力的城镇会吸引周边地区乃至全国范围内的住房购买需求. 城镇储蓄存款和城镇家庭平均每人全年实际收入反映了城镇家庭拥有财富的能力.购买住房就需要支出,所以住房需求受制于家庭的收入.神经网络是一种模仿人脑结构及其功能的信息处理方法,它通过对样本数据的反复训练实现对未知信息的推理.由于神经网络对数据没有特殊的要求,输出结果能够达到很高的精度,且非常适合用于预测.其预测原理为神经网络的训练是根据样本数据反复进行的,训练过程中,处理单元对数据进行汇总和转换,它们之间的连接被赋予不同的权值.当输出的结果在指定的精度级别上与已知结果相吻合时,对网络的训练就不再进行.通过对神经网络的训练和学习,使网络可以总结出内在的规律,从而对输出变量进行预测.本节所创建的BP 神经网络的指标分别取:学习速率选取为0.01,网络输入变量为7,隐藏层神经元的个数选为13,网络输出误差精度设为0.001. [1]该神经网络图1所示.输入层隐藏层 输出层图1 神经网络图假定输入层的第i 个节点得到的输入为i A ,输入到隐藏层的第h 个节点的则为这些值的加权平均ihi iwA ∑,最终通过传输函数f 从输出层输出()ih i if w A θ-∑,θ为隐藏层神经元的阈值.由于原始数据的单位不同,造成了指标量纲不统一的情况.为了加快网络的收敛速度,在训练前对数据做了标准化变换.标准化准则为*,ij jij jA A A σ-=其中11n j ij i A A n ==∑,11()()1nj ti i tj j t A A A A n σ==---∑.采用Levenberg-Marquardt 算法对数据进行训练,由下面的训练结果图可以看出,网络训练6次后即可达到误差要求,预测值的均方误差达到了0.000054175,预测效果较好.图2 训练结果图下面对给定的商品房年销售面积的原始序列()()()()()()(){}{}00001,2,,203025.5,4288.9,,104349X x x x ==进行估计,得出的估计值()()0ˆxi 如表1: 表1 销售面积的原始序列及估计序列(单位:万平方米)年度1991199219931994199519961997原始序列()()0x i 3025.5 4288.9 6688 7230 7906 7900901估计序列()()0ˆx i 3703.3 5189.4 7660 8268 8731 87629684年度1998199920002001200220032004原始序列()()0x i 12185 14557 18637 22412 26808 33718 38232估计序列()()0ˆx i 12767 14875 18729 22209 26337 33241 37544年度200520062007200820092010原始序列()()0x i 55486 61857 77355 65970 94755 104349估计序列()()0ˆx i 54018 60408 75839 65290 92490 100744图3展示了商品房年销售面积的原始序列及估计序列的曲线,从图中可以看出两个序列的拟合程度较高.4时间(年)销售面积(万平方米)商品房本年销售面积模型估计值图3销售面积的原始值及估计值序列图本节对影响住房需求的影响因素进行了分析,采用BP 神经网络建立了住房需求的预测模型,估计值与原始值之间的均方误差很小,证明了采用神经网络进行住房需求预测的有效性.2. 住房供给模型2.1 GM(1,1)模型的建立根据全国房地产市场1994-2010年的年度商品房本年竣工面积的统计资料,下面采用灰色系统理论,建立灰色GM(1,1)预测模型,对未来五年的商品房销售价格做出合理预测.对给定的商品房竣工面积的原始序列()()()()()()(){}{}00001,2,,1711637,14873.85,,75961Y y y y ==,作累加生成1—AGO 序列()()()()101,1,2,,17.ki y k y i k ===∑详细数据见表2:年份 1994 1995 1996 1997 1998 1999 原始序列()()0y i1163714873.85 15356.7115819.717566.621410.8生成116326514186576875259666序列()()1y i7 0.85 7.56 7.26 3.86 4.66年份 2000 2001 2002 2003 2004 2005 原始序列()()0y i25104.929867.434975.841464.142464.953417生成序列()()1y i121769.56 151636.96 186612.76 228076.86 270541.76 323958.76 年份 2006 2007 2008 2009 2010 原始序列()()0y i55830.960606.766544.872677.475961生成序列()()1y i379789.66 440396.36 506941.16 579618.56 655579.56图4为原始序列及1—AGO 生成序列的散点图,图中清晰地展现了每年商品房的竣工面积及其累计和.012345675时间(年)住房供给量(万平方米)原始序列生成序列图4 竣工面积原始序列及1—AGO 生成序列的散点图采用一阶单变量微分方程进行估计,得到白化形式的GM(1,1)模型()()11,dY aY u dt+= (1) 式中,a u 为待估计参数.求解白化方程(1),得到GM(1,1)模型的形式为()()()()10ˆ11,0,1,,16,ai u u yi y e i a a -⎛⎫+=-+= ⎪⎝⎭(2)还原后的预测模型为()()()()()()011ˆˆˆ11,1,,16,y i y i y i i +=+-=(3)其中()()()()0ˆ11yy =. 记参数向量[]ˆTaa u =,用最小二乘法求解得 ()1ˆ.T T N aB B B Y -= (4) 式中,B 为累加生成矩阵,N Y 为向量,二者的构造为()()()()()()()()()()()()()()()11111111212-19073.92511-34189.20512312-617599.0611161712y y y y B y y ⎡⎤-+⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-+⎢⎥⎣⎦,()()()()()()[]0002,3,,1714873.85,15356.71,,75961.N Y y y y ⎡⎤==⎣⎦将,N B Y 带入(4)式得到[]ˆ0.111213693Ta=-. 根据以上数据带入式子(3)和(4)可求得商品房竣工面积的GM(1,1)预测模型为:()()0.11121ˆ1134780123140,0,1,,16i yi e i +=-=()()()()()()()()0.111210.1112000ˆ1134780,1,,16.ˆ11i i y i ee i y x -⎧+=-=⎪⎨=⎪⎩ (5)由(5)式可得到1994-2010年住房竣工面积的估计值,并将其与原始序列的真实值比较,详见表3:年份 原始序列()()0y i估计序列()()0ˆyi年份 原始序列()()0y i估计序列()()0ˆyi1994 11637 116372003 41464.1 38582.8300 1995 14873.85 15851.4776 2004 42464.9 43120.5826 1996 15356.71 17715.7805 2005 5341748192.0234 1997 15819.7 19799.3454 2006 55830.9 53859.9198 1998 17566.6 22127.9598 2007 60606.7 60194.4213 199921410.824730.4441200866544.867273.92782000 25104.9 27639.0083 2009 72677.4 75186.0598 2001 29867.4 30889.6507 20175961 84028.7430 200234975.834522.6033图5展示了实际值与估计值这两个序列,从图中可以看出,两个序列之间拟合的程度高.1234567894时间(年)住房供给量(万平方米)实际值估计值图5竣工面积实际值及估计值序列图2.2 模型检验下面从残差、关联度和后验差三个方面对所得的模型进行检验. (1) 残差检验计算原始序列()()0y i 与估计序列()()0ˆy i 的绝对误差()i ε及相对误差()i δ,其中()()()()()()()()()()0000ˆ,1,2,,17,100%,1,2,,17.i y i yi i i i i y i εεδ=-==⨯=(2)关联度检验关联度系数定义为()()()()()()()()min max ,1,2,,17.max i i i i i i ερεηερε+==+其中ρ为分辨率且01ρ<<,本例中取0.5ρ=.运用Matlab 求解,得到的结果详见表4:年份 绝对误差()i ε相对误差()i δ关联度系数()i η19940 0 1 1995 977.6276 6.5728% 0.8049 1996 2359.0705 15.3618% 0.6310 1997 3979.6454 25.1563% 0.5034 1998 4561.3598 25.9661% 0.4693 1999 3319.6441 15.5045% 0.5486 2000 2534.1083 10.0941% 0.6142 2001 1022.2507 3.4226% 0.7978 2002 453.1967 1.2957% 0.8990 2003 2881.2700 6.9488% 0.5833 2004 655.6826 1.5441% 0.8602 2005 5224.9766 9.7815% 0.4357 2006 1970.9802 3.5303% 0.6718 2007 412.2787 0.6803% 0.9073 2008 729.1278 1.0957% 0.8469 2009 2508.6598 3.4518%0.61662010 8067.7430 10.6209%0.3333由于关联度系数的信息较为分散,不便于比较.为此,综合各个时刻的关联度系数,得到关联度r .通常0.5ρ=时,0.6r >便可认为关联度可以满意[2]. 关联度r 定义为()11.ni r i n η==∑本例中,()110.6778ni r i n η===∑.(3)后验差检验首先计算原始数列的()0Y 的均值()0Y 及均方差1S ,其定义为()()()0011,ni Y y i n ==∑ ()()()()2011.1ni y i Y S n =-=-∑然后计算绝对误差()i ε的均值ε及方差2S ,其定义为()11,ni i n εε==∑()()212.1ni i S n εε=-=-∑计算方差比21C S S =及小误差概率(){}10.6745P i S εε=-<. 确定模型级别,方法如表5.表5 模型级别 等级 好合格 勉强合格不合格取值PC P C PC PC 0.95>0.35<0.8> 0.5< 0.7> 0.65<0.7≤ 0.65≥将实际数据代入计算,得到后验差检验结果如表6.项目()0Y1Sε2SC P模型级别结果 43.856410⨯ 84.825210⨯32.450410⨯64.86110⨯ 0.0093 1好(I 级)由模型的检验可知,关联度0.6778r =,大于0.6,,C P 的取值均满足I 级模型的要求,说明模型的精确度较高,可用于实际预测.利用公式(5)对全国房地产市场2011-2015年的商品房竣工面积进行预测,得到表7:年份2011 2012 2013 2014 2015预测值()()0ˆyi 93911 104960 117300 131100 1465103. 房地产行业与国民经济其他行业关系模型本节以《中国统计年鉴2011》国民经济核算中的分行业增加值为基础数据,运用灰色关联度分析并结合信息熵对房地产相关行业进行权重赋值的方法,对全国房地产业与其他行业的关联度进行定量分析,进一步确定了全国房地产业与其他行业的关联程度,为制定合理的政策和战略提供参考.下面对灰色关联度模型的理论作一下简单阐述.设系统有n 个待优选的评价对象,对每个对象又有m 个评价因素,每个评价对象在相应各个评价因素下的属性值构成如下属性矩阵:1112121222121,2,,.1,2,n n ik m m mn x x x x x x i m X k n x x x ⎡⎤⎢⎥=⎢⎥= , ⎢⎥=⎢⎥⎣⎦这里的ik x 表示第k 个评判对象在第i 个评判因素下的指标属性.根据实际情况确定参考因素和比较因素.设:参考序列为0()x k ,且1,2,,k n =;比较序列为()i x k ,且1,2,,i m =和1,2,,k n=.根据国民经济体系的行业分类,选取以下13个行业:A 农林牧渔业,B 工业,C 建筑业,D 交通运输、仓储和邮政业,E 信息传输、计算机服务和软件业,F 批发和零售业,G 住宿和餐饮业,H 金融业,I 租赁和商务服务业,J 科学研究、技术服务和地质勘查业,K 居民服务和其他服务业,L 卫生、社会保障和社会福利业,M 公共管理和社会组织.全国房地产业与以上行业的国内生产总值增加值如表8所示:行年份业2005 2006 2007 2008 2009 A 22420 24040 28627 33702 35226B 77230.779091310.9363110534.8760130260.2387135239.9499C 10367.315012408.605315296.481618743.200022398.8267D 10666.163012182.984614601.039416362.503216727.1098E 4904.06875683.45196705.58077859.67318163.7861F 13966.175016530.722320937.835326182.339028984.4658G 4195.71664792.58575548.11376616.071297118.1671H 6086.82628099.082212337.549314863.250517767.5262I 3129.13883790.76934694.85405608.21776191.3598J 2163.98752684.78593441.33983993.35144721.7311K 3127.98863541.69993996.48294628.04855271.4826L 2987.3034 3326.2433 4013.7670 4628.7477 5082.5559 M 7361.1579 8836.6491 10830.4327 13783.7177 15161.7375 X8516.432410370.456013809.746314738.699318654.8792上表最后一行为房地产业的国内生产总值,作为参考序列0X .由行A M →构成比较序列()1,2,,i X i m =,也就是上面提到的属性矩阵ik X .根据房地产行业与相关行业的关系,采用公式min 1,2,,1,2,,max min ik ikiik ik iki ix x i m Z k n x x ⎛⎫-=⎪= , ⎪=-⎝⎭(6)对指标进行归一化处理.由公式(6)对ik X 进行无量纲化处理结果如表9.行业 年份 2005 2006 20072008 2009A 0 0.1265 0.4847 0.8810 1B 0 0.2427 0.5741 0.9142 1C 0 0.1697 0.4097 0.6962 1D 0 0.2503 0.6492 0.9398 1E 0 0.2391 0.5527 0.9067 1F 0 0.1708 0.4642 0.8134 1G 0 0.2042 0.4628 0.8282 1 H0.1723 0.5351 0.75141I 0 0.2161 0.5113 0.8096 1 J 0 0.2036 0.4994 0.7152 1 K 0 0.1930 0.4052 0.6998 1 L 0 0.1618 0.4899 0.7834 1 M 0 0.1892 0.4447 0.8233 1 X0.1829 0.5221 0.61371需要说明的是,后面我们会用到所有其他行(比较序列)与参考序列的差计算绝对差值序列,所以这里把参考序列也放入属性矩阵中进行归一化,如上表9中的X 行.表9即为归一化后的矩阵ik Z (参考序列不包括在内).绝对差值序列是参考序列与比较序列的绝对差值00()().i i z k z k ∆=- (7)运用公式(7),得到绝对差序列详见表10.表10 全国房地产业的国内生产总值增加值的绝对差值序列i∆行业 年份 2005 2006 20072008 2009A 0 0.0564 0.0374 0.2673 0B 0 0.0599 0.0520 0.3004 0C 0 0.0132 0.1124 0.0824 0D 0 0.0674 0.1271 0.3261 0E 0 0.0562 0.0306 0.2930 0F 0 0.0121 0.0579 0.1997 0G 0 0.0214 0.0593 0.2145 0 H0.0106 0.0130 0.1376I 0 0.0332 0.0108 0.1958 0 J 0 0.0207 0.0227 0.1015 0 K 0 0.0101 0.1169 0.0861 0 L 0 0.0211 0.0322 0.1697 0 M0.0063 0.0774 0.2096根据上式(公式7)可以得出min ∆和max ∆分别为绝对差值的最小值和最大值.其中min 0max 0,,min ()(),max 1,2,,.1,()()2,,,.i i i ki kz k z k z k i k n z m k ∆=-∆===-由上式可得,min max 0,0.3261.∆=∆=()i Y k 对0()Y k 的灰色关联度系数如下min max0max().i k ρηρ∆+∆=∆+∆(8)式中ρ是分辨率,本文取0.5ρ=.利用公式(8),灰色关联度系数矩阵如表11所示.表11 灰色关联度系数()k η行业 年份 20052006200720082009A 1 0.7431 0.8134 0.3789 1B 1 0.7315 0.7582 0.3518 1C 1 0.9251 0.5919 0.6642 1D 1 0.7076 0.5619 0.3333 1E 1 0.7436 0.8422 0.3576 1F 1 0.9309 0.7380 0.4495 1G 1 0.8842 0.7332 0.4319 1H 1 0.9390 0.9260 0.5423 1I 1 0.8309 0.9379 0.4543 1J 1 0.8871 0.8778 0.6163 1K 1 0.9415 0.5824 0.6545 1L 1 0.8854 0.8351 0.4900 1M 1 0.9629 0.6782 0.4375 1由于灰色关联度系数仅表示各年度数据间的灰色关联程度,为了进一步对整个序列进行比较,即()i Z k 和0()Z k 的比较,根据信息论知识可知,某项指标值变化程度越大,信息熵越小,该指标权重就应该越大,反之也成立.所以,可根据各个指标的变化情况,利用客观赋值法中的信息熵法计算出评价因素权重,以便能够更加准确和科学地计算灰色关联度.按照熵思想,人们在决策中获得信息的多少和质量,是决策的精度和可靠性大小的决定因素之一.所以熵在应用于不同决策过程中的评价或案例的效果评价时是一个很理想的尺度. [3]评价指标的信息熵如下面公式所示,1ln .ni ij ij j H K f f ==-∑在此,我们得到的信息熵值为()0.7479,0.7936,0.7617,0.7984,0.7915,0.7660,0.7766,0.7744,0.7854,0.7826,0.7693,0.7662,0.7698.i H =假定,0ij f =时,ln 0ij ij f f =;其中,1ijij nijj z f z==∑,1ln K n=.计算得0.6213K =.评价指标的熵权i w 公式11i i mii H w m H =-=-∑.计算得到()0.0864,0.0708,0.0817,0.0691,0.07150,0.0802,0.0766,0.0774,0.0736,0.0745,0.0791,0.0802,0.0789.w =灰色关联度的计算公式为1().mi k i r w i η==∑带入数据,得到()0.3401,0.2719,0.3416,0.2490,0.2819,0.3304,0.3102,0.3409,0.3107,0.3266,0.3305,0.3376,0.3219.r =对0()Z k 和评价因素()i Z k ,其关联度分别为()1,2,,i r i m =,按从大到小的顺序,即得灰色关联度顺序,例如设12m r r r >>>,表明1Z 和0Z 的关联度最大,或者对0Z 的影响最大,2Z 次之.由上面得到的灰色关联度如图6.卫生福居民服批发零科研技公共管租赁商住宿餐信息软工业交通邮建筑金融农林牧图6 灰色关联度条形图根据以上对全国的房地产业与相关产业的关联度的计算和分析可以看出:全国房地产业与建筑业的关联程度最大,关联度为0.3416;此处房地产业与金融业、农林牧渔业、卫生、社会保障和社会福利业、居民服务和其他服务业、 批发和零售业、科学研究、技术服务和地质勘查业和公共管理和社会组织的关联度也较大,灰色关联度分别为0.3409,0.3401,0.3376,0.3305,0.3304,0.3266,0.3219.可见,房地产业的发展将对相关产业的发展起到很强的拉动作用,同时对国民经济的发展也具有重大的影响. 4. 房价预测模型Markov 链是时间和状态均为离散变量的随机过程.它的特点是无后效性,即在0t 时刻的状态为已知时,它在时刻0t t >的状态与其在0t 之前的状态无关[4].Markov 模型能充分利用历史数据给予的信息,为随机波动较大的数据预测工作提供了一种新的方法,提高预测的精度.因此本文采用Markov 模型对房价进行预测.依据附录中1991-2009年商品房年销售价格{},1,2,,19t p t =,其中2010年商品房年销售价格从中国统计年鉴中查到,详细数据见表12:年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000销售价格tp7869951291 1409 1591 1806 1997 2063 2053 2112年份 2001 2002 2003 2004 2005 2006 2007 2008 2009销售价格tp2170 2250 2359 2778 3168 3367 3864 3800 4681将时间1991-2009年离散为时间序列1-19,商品房年销售价格t p 用三次插值多项式进行拟合,得到其拟合曲线为32ˆ 1.431136.2213394.6141387.8186,1,2,,19.t pt t t t =-++=运用Markov 模型预测2010年商品房的销售价格.首先对商品房年销售价格t p 的数据序列进行状态区间划分,为保证预测的准确度和计算的方便性,并结合近几年商品房销售价格的具体情况,将数据序列化分为四个状态,分别记为,1,2,,4i i Ω=,这里i Ω的划分按与拟合曲线ˆt p的变化趋势相一致的准则,即以ˆt p 为基准曲线,作四条平行于ˆt p的曲线而得到四个条形区域,每一个条形区域代表一个状态,即使i Ω所属于的一个状态区域,如图7示:tpt实际值拟合曲线状态分割线↑Ω1↑Ω2Ω3↓Ω4↓图7 状态分割曲线其中每个区域的上、下界见如下的状态划分标准表:状态1Ω 2Ω 3Ω 4Ω 状态下界 ˆ300t p - ˆ150t p - ˆt pˆ150t p+ 状态上界 ˆ150t p- ˆt p ˆ150t p+ ˆ300t p + 从图7中可以得到1991-2009年商品房年销售价格t p 的Markov 转移情况,得到表14:状态1Ω 状态2Ω 状态3Ω 状态4Ω 合计 状态1Ω 0 0 2 0 2 状态2Ω 1 3 2 0 6 状态3Ω 0 3 3 2 8 状态4Ω112继而得到状态转移概率矩阵010*******.03314120120V ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由图7可知2009年商品房年销售价格19p 处于状态区间3Ω,根据状态转移矩阵知19p 转移到20p 时分别以概率3处于状态区间2Ω、38处于状态区间3Ω和14处于状态区间4Ω,故根据Markov 模型估计的2010年的商品房年销售价格()()()()2020202020202020ˆˆˆˆˆˆ15015015030033145ˆ5145.6.8282422p p p p p p p p-++++++⎛⎫⎛⎫⎛⎫=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭查《中国统计年鉴2011》[5]可知:2010年商品房年销售价格为5230元,两者的绝对误差1.61%.五、房地产发展态势与政策成效分析1. 房地产市场发展态势分析本节首先运用房地产开发综合景气指数的变化对我国近几年的房地产市场的发展态势进行分析.房地产开发景气指数,指对企业景气调查中的定性经济指标通过定量方法加工汇总,综合反映某一特定调查群体或者发展趋势的一种指标.房地产开发景气指数是反映房地产业发展景气状况的综合指数.1998年1月至2011年七月的房地产开发景气指数详见图8,其中2009-2011年1月的数据缺失,为了便于分析,文中采用相邻样本均值插补法对缺失值进行插补,插补后的数据分别为95.6、104.57和102.35.929496982000—072008—012005—072003—011998—012011—082010—07图8 房地产开发综合景气指数近年来,国务院对房地产业出台了一系列调控政策.1998年,国务院发布了《城市房地产开发经营管理条例》,我国开始进行住房制度的改革.由上图可以看出,从1998年到2001年末,房地产开发综合景气呈上升趋势.2002年,建设部等六部委发布了《关于加强房地产市场宏观调控促进房地产市场健康发展的若干意见》,国家开始遏制房价过快上涨势头,以促进房地产业和国民经济健康发展,当时的调控手段比较单一,主要通过土地和金融政策类约束开发商的投资或居民的购房需求.2006年5月29日,国务院办公厅转发建设部等九部门《关于调整住房供应结构稳定住房价格的意见》,国家开始对房地产市场的供应结构进行调整和规范.2008年受经济危机影响,我国房地产市场进入低迷时期.由于为应对经济危机超发的货币和调控政策的松动,2009年房地产市场迅速由低迷变为亢奋,房地产开发综合景气指数迅速上升.2010年4月,为了切实解决城镇居民住房问题,国务院发布了《国务院关于坚决遏制部分城市房价过快上涨的通知》(简称“新国十条”).该通知加大了调控力度,要求实行更为严格的差别化住房信贷政策,发挥税收政策对住房消费和房地产收益的调节作用.多种调控方式取得了一定效果,由图中可以看出2010年房地产开发综合景气指数大体呈下降趋势.2011年1月,国务院发布了《关于进一步做好房地产市场调控工作有关问题的通知》(简称“新国八条”),房地产开发综合景气指数在小幅上涨后又回落.房地产价格走势涉及到人民群众切身利益,关系到经济健康发展好社会和谐稳定.拥有住房是人民正常生活的重要条件,通过上面的分析可以看出,国务院对房地产市场实施调控的决心是坚定的, 并取得了一定成效,通过国家政策可以对房地产市场进行宏观调控,进而改善人民生活状况.2. 房地产政策的成效分析下面通过房屋销售价格环比指数对房地产政策的成效进行评价,并提出了房地产政策严厉度对政策的严厉性进行量化.房屋销售价格指数是反映一定时期房屋销售价格变动程度和趋势的相对数,它是通过百分数的形式来反映房价在不同时期的涨跌幅度, 直接反映了房价的变动情况.房屋销售价格环比指数是以上月价格为100的基准数得到的指数. 国务院出台政策调控房地产市场的目的是把遏制房价上涨, 房地产政策严厉度L用房地产政策发布后引起房屋销售价格环比指数的变化量来描述.严厉度越大,表明国家对房地产市场监管的越严格,政策取得的成效越大.房屋销售价格环比指数的数据取自于国家统计局官方网站[6],2010年和2011年的房屋销售价格环比指数详见图9和10:其中2011年的房屋销售价格环比指数采用的是七十个大中城市新建住宅和二手住宅销售价格环比指数的平均值.2010—12010—32010—52010—72010—92010—11图9 2010年房屋销售价格环比指数如图所示,2010年4月“新国十条”发布后,房屋销售价格环比指数明显下降.从2010年5月到2010年8月期间,房屋销售价格环比指数累计减少了1.4,达到了抑制房价快速上涨的目的,故此时严厉度1L 为1.4.99.9100100.1100.2100.3100.4100.5100.6100.72011—22011—42011—62011—8图10 2010年房屋销售价格环比指数由图10可知:2011年1月“新国八条”发布后,房屋销售价格环比指数持续下降,但下降的幅度较小.从2011年2月到2010年8月,房屋销售价格环比指数累计减少了0.7157,所以“新国八条”的严厉度20.7157L =.从政策的内容来看,“新国十条”通过提高贷款首付比例和贷款利率来限制贷款投机性购房,对定价过高、涨幅过快的房地产开发项目进行重点清算和稽查, 大幅度增加公共租赁住房、经济适用住房和限价商品住房供应.“新国八条”的目的在于进一步做好房地产市场调控工作,调整完善相关税收政策,继续有效遏制投资投机性购房[7].从前面的严厉度数据得出12L L >,所以“新国十条”也被称。
数学建模竞赛论文-基于灰色模型的房地产价格分析
摘要本文以重庆市为例,考察房地产价格变化关系。
首先要确定影响房地产价格变化的主要因素,然后建立房地产价格变化与各主要影响因素间的定量关系,接着着重研究住房保障规模变化对房地产价格的影响,并对房地产价格变化趋势进行合理的短期预测,最后针对上述结果,为稳定房地产价格提出相应的调控措施。
在第一问中,要求确定房地产价格的主要影响因素。
首先通过查找相关资料我们先确定影响房地产价格的可能影响因素及其相关统计数据。
然后通过建立灰色关联度分析模型,判断各可能影响因素与房地产价格之间的关联程度。
最后通过分析比较各因素与房地产价格的关联程度,从中找出影响房地产价格的主要因素,分别是土地交易价格、建筑材料价格、经济适用房面积、城镇化率、人均可支配收入。
在第二问中,要求找出房地产价格与各主要因素之间的数学模型。
首先我们选取问题一结论中的五个主要因素,以表1中各主要因素所对应年份的统计数据为分析对象,建立灰色(0,)GM N 模型。
然后根据灰色(0,)GM N 模型的分析方法得到(),GM 0N 估计式为()(1)(1)123()()()1.4968-0.282-0.5919-0.4894ˆ1x k =x k x k (1)(1)(1)456()+()()2.4368-0.0979x k x k x k ,代入相关年份的序号即可计算得到模拟序列。
最后利用后验差检验法将计算得到的预测值与原始值进行比较验证,通过验证后即可利用上述模型关系式进行预测。
在第三问中,要求利用上述模型考察未来三年保障房建设力度变化时,房地产价格的变化趋势。
首先由于数据缺失,我们需要分别对除房地产价格及保障房建设力度以外的4个因素建立灰色GM(1,1,)模型,对未来三年这4个因素的统计值进行预测,将房价的多因变量转化成一个因变量:保障房力度。
然后利用模型二得到的估计式,建立房地产价格与保障房建设力度之间的线性关系。
最后分析两者之间的定量关系,得到在不同保障房建设力度下,预测房价的变化趋势,并且得出结论:为了稳定房价,要保证保障房的建设面积每年比上一年翻一番。
房地产价格指数交易综合评价(数学建模论文)
房地产价格指数交易综合评价摘要本文主要针对房地产价格指数综合评价体系进行研究。
对于问题一,我们建立GM(1,1)模型来预测未来房地产的价格指数;考虑到题中所给的价格指数灵敏度过高,我们采用改进的灰色模型,把原数据三种价格指数换算为相对于2000年为100计算的价格指数,预测好值后再还原。
结果表明,这种改进使得拟合效果非常好。
最后我们得到2008年全国及35个大中城市的房屋租赁价格见表2,并对结果进行分析和解释。
对于问题二,考虑到题目中给出兰州市各年份房地产交易价格指数的相邻关系,拟可以建立回溯递推模型,通过2008年的房屋平均销售价格和房屋租赁平均价格求出2001年的房屋平均销售价格和房屋租赁平均价格分别为:3333.0元和14.6元。
对于问题三,我们通过一定的方法将数据予以排序筛选,找出了这35个城市8年间房屋销售价格增长速度最快和增长速度最慢的三个城市见表5。
对于问题四,通过对所得数据的分析,我们对全国各个城市分类分析,分别说明了各个类型的特点、发展趋势以及国家应采取的措施。
关键词:GM(1,1)模型最小二乘法 EXCEL数据处理 MATLAB拟合1. 问题的提出房地产开发与交易严重影响着城市居民的生活水平与生活质量,也影响着一个城市的经济发展水平。
近10年来,随着国家开发力度的加大和居民的生活需求的不断增多,全国的房地产销售也一路攀升,特别是近几年,住房价格的上升超出了城市居民的承受能力,给许多家庭带来了严重的住房压力,而且这几乎是个全国的普遍性问题。
面对这个问题,政府及时进行了有效的调控,但由于全国的各省市的经济发展不平衡,需要针对各地的不同情况进行有针对性的调控,再加上房地产交易这种商品的特殊性,使得政府往往无法获得全面的信息,且获得信息也需要有一定的周期。
因此,这种特殊性就给政府的调控带来了一定的难度。
房地产价格指数包括房屋销售价格指数、房屋租赁价格指数和土地交易价格指数。
目前,我国房地产市场主要集中在大中城市,据估计,全国35个大中城市的房地产投资额约占全国的70%多,,附表给出了我国35个大中城市从2001—2008年房地产交易价格指数的调查数据,通过对该调查数据的统计分析,解决一下问题:(1) 附表中2008年的土地交易价格指数和房屋租赁价格指数数据暂时缺少,采用一定的数据处理方法给出该年度的房屋租赁价格指数。
大学生数学建模_房价预测
西安邮电学院第九届大学生数学建模竞赛参赛作品参赛队编号: 016赛题类型代码: A题2 房价问题摘 要随着我国房地产市场的不断升温,居民买房难愈来愈严重。
定一个合适的房价既照顾到居民的需求也满足方差开发商的盈利需要是十分必要的,要达到这些目的都要用到数学模型来进行量化。
在本文中,我们经研究解决了城市房价模型,找出了影响房价的主要因素,建立预测下一阶段的房产均价的一个模型,同时也对政策对调控房价所起的作用作了详细的分析说明。
在解决房价模型问题时,我们用了多元线性回规模型和蛛网模型同时对相关变量进行分析和处理,最终找出了影响房价的主要因素为生产成本和供需关系。
并对房价的形成、演化机理和房地产投机进行了深入细致的分析。
模型一,我们通过比较西安房价近11年来的变化及城镇居民收入变化情况,找到买房难的根结。
模型二,在房价预测方面,我们选用多元线性回归,蛛网模型同时对相关变量进行分析和处理,最终找出影响房价的主要因素为生产成本和供需关系,求出房价预测的计算表达式。
模型三,我们取定一个时间段内某几个房价新政,结合新政出台时间前后某地房价的变化情况分析了房价新政对房价的调控作用。
我们选取房价新政的标准是根据政策内容对相关经济指标有直接作用效果。
最终我们发现,新政出台后,虽然房价依然是居高不下,但房价上涨速率得到了一定的控制,变化渐缓。
关键字:楼市 预测 蛛网模型 线性回归一、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。
2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度宽松的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。
但有的城市房价过高,上涨过快,加大了居民通过市场解决住房问题的难度,另一方面,部分投机者也通过各种融资渠道买入房屋囤积,期望获得高额利润,也是导致房价居高不下的原因之一。
数学建模——线性方程组构建房价预测模型2[1]
一 问题重述和分析房地产价格问题一直是引起广泛争论的热点问题。
关于目前中国的房地产价格,老百姓普遍认为太贵、天价,所以,当地产商华远集团总裁任志强在博鳌论坛上抛出“30年间,和工资收入相比,房子等于没有涨价”的所谓“房价没涨论”后,立即激起舆论围攻。
有人号召全国的老百姓联合起来,不买任志强们的房子,让房地产商们的房子闲着、烂着、空置着,看他们能挺到什么时候?看他们还忽悠房价上涨不?高房价厌恶者反对一切看涨。
中国社科院日前日发布2009房地产蓝皮书认为,今年上半年房价总体下行,下半年市场有回暖可能。
“回暖”观点一出,毫无疑问地遭到网友一致炮轰,认为其“言过其实”。
只有倾听更多理性的声音,才能帮助百姓理性地理解房价、最终准确地判断房价的走势。
下文中,我们收集全国房地产的相关数据和长春市房地产的相关数据,分析确定影响房屋销售价格的主要因素,并建立全国房地产价格预测模型。
利用本模型对长春市房价做了预测。
二 模型假设与符号说明影响房价的因素很多,如人口数量、建房成本、GDP 、储蓄存款、人均可支配收入、消费者需求因素、房地产的住宅总投资、房地产每年的竣工面积、银行利率、供需关系等因素有关。
1) 假设房价与建房成本、人均GDP 、人均储蓄存款、人均可支配收入呈线性关系;2) 房屋建造成本用全国每年住宅的投资额与房地产竣工面积或者房地产总投资及每年开工面积来衡量;3) 全国经济发展用人均GDP 来衡量;4) 房价购买能力用人均储蓄存款、人均可支配收入来表示5) 消费者心理因素如对房价的期望忽略;消费者对房屋无偏好,如无学校、公园等; 6) 假设银行利率每年保持稳定,房屋供需处于平衡状态;7) 忽略一些配套设施对建房成本的影响,忽略人为的炒作和政府调控。
本文遇到的符号说明符号 符号表示的意义符号 符号表示的意义1ix第一个自变量,表示第i 年的人均可支配收入(元) 1iw ,. 自变量1ix 的系数参数2i x 第二个影响房价的自变量,表示第i 年的人均GDP (元).2iw自变量2i x,,的系数参数3i x 第三个影响房价的自变量,表示第i 年的房屋造价(元/平)3i w自变量3i x 的系数参数4i x第四个影响房价的自变量,表示第i 年的人均储蓄额(元)4iw自变量4i x的系数参数1x为一年的人均可支配收入(元)。
数学建模-房价评估模型
数学建模选拔作业《房价评估》房价影响因素评估摘要:自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。
但是,房价的高低影响着国家的发展和人民生活水平的提高,因此,我们有必要了解影响我国房价的主要因素,政府才能针对性的采取措施,进一步推动房产行业的发展,发挥其龙头作用。
在问题一中,我们主要是分析影响我国房价变化的各个因素,确定其主要因素,该文通过在中国国家统计局和其他网站搜的相关数据,建立回归统计模型,确定房价和土地价值、人均可支配收入等其他因素的相关性系数,通过分析指数模型、线性模型,确定了线性模型,从而进一步确定了影响房价的最主要因素是国家土地增值税(亿元)、五年购房贷款利率、城镇居民家庭人均可支配收入(元)城市人口密度(人/平方公里),比如,房价和五年购房贷款利率的关系为9.6223361.3501+-=B W 其中,相关指数为0.97464,非常接近于1,这也说明,我国国家正在国家政策上控制房价。
最终可知最主要的因素是国家土地增值税(亿元),也就是我们所说的土地价值。
在问题二中,我们把房价与位置的关系定在同一个城市中,以这个条件为限制,而不去考虑东西部、南北方这样的大位置,房子的位置影响因素进一步表示为交通C 1、教育C 2、卫生C 3、工作C 4、环境C 5五个相关因素,通过层次分析法,建立模型,得到了相关权重,也就是房子的价格54321*0824.0*0787.0*2365.0*4731.0*1292.0C C C C C W ++++= 此问题得到解决。
在问题三中,主要是对前两个模型的检验,我们利用在网上收集北京市相关数据带入检验,并且在模型二中,通过对五个位置因素的分析,检验我们所得到的模型,着重分析了天津市,发现我们建立的模型基本符合实际,因此较为可靠。
关键词:回归统计 层次分析法 模型检验一、问题重述1.1 问题背景自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业,但是房价的高低却影响着国家的发展和社会的进步,我们有必要充分了解房价与各影响因素之间的关系。
房地产定价数学建模
利用该模型可以快速准确地预测房 地产价格,为开发商和投资者提供 决策依据。
应用案例二
01
时间序列模型
时间序列模型是一种基于时间序列数据的数学建模方法,通过分析历史
数据来预测未来房地产价格走势。
02
模型建立
将房地产价格数据按照时间序列进行排列,并选择适当的时间序列模型
(如ARIMA模型、指数平滑模型等)进行拟合。
使用测试数据对训练好的模型进行评 估,计算模型的准确率、召回率、F1 值等指标,以衡量模型的性能。
模型优化
通过调整模型参数、增加或减少特征 等方式优化模型,提高预测精度。可 以采用交叉验证、网格搜索等技术进 行参数调优。
04
房地产定价的时间序列模型
时间序列模型的建立
1 2
确定模型类型
根据房地产市场的历史数据和变化趋势,选择适 合的时间序列模型,如ARIMA、指数平滑等。
02
房地产定价数学模型的基本 原理
线性回归模型
总结词
线性回归模型是一种预测模型,通过找出影响房地产价格的 主要因素,并建立它们之间的线性关系来预测房地产价格。
详细描述
线性回归模型假设房地产价格与诸如建筑成本、地价、利率 等变量之间存在线性关系。通过最小二乘法等统计技术,可 以估计出这些变量的系数,从而预测房地产价格。
数学建模在房地产定价中的作用
提高定价的准确性和科学性
数学建模能够综合考虑各种因素,建立合理的定价模型,提高定 价的准确性和科学性。
优化资源配置
通过数学建模,可以对不同地区、不同类型、不同时间段的房地产 进行合理定价,优化资源配置,促进市场健康发展。
促进市场公平竞争
数学建模能够减少信息不对称和市场垄断等问题,促进市场公平竞 争,保护消费者利益。
大学生数学建模_房价预测
大学生数学建模_房价预测
一、问题的提出房地产问题一直是人们的热议话题,尤其是近几年更是成为人们关注的问题。
不错,房地产作为一个行业,不仅关系国家经济命脉,它还是影响民生问题的主要因素,所以搞好房产建设不仅是国家与房产商的任务,我们也应了解其中的一些运作原理来帮助我们更好的适应社会环境。
为此,对房产业的了解就显得颇为紧急,而房价问题一直是人们关注的首要问题,下面我们将用数学模型来解决房产中的以下实际问题,仔细分析影响房价的因素以及它们之间的关系。
问题一:通过分析找出影响房价的主要原因并且通过建立一个城市房价的数学模型对其进行细致的分析。
问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。
问题三:选择某一地区(以西安为例),通过分析____年至____年房价变化与影响因素之间的关系,预测下一阶段该地区房价的走势。
问题四:通过分析结果,给出房产商和购房者的一些合理建议。
二、模型假设和符号说明假设假设
一、房地产产品具有一定的生产周期假设
二、房价的计算只考虑人均可支配收入和生产成本假设
三、理想房价是仅基于成本得到的房价,不考虑供求假设
四、成本的花费包括地价(地面地价)、建筑费用和各种税收假设
五、不考虑其他影响如(地理位置,环境等)符号说明:_1代表人均可支配收入,_2代表建造成本,y为房产均价,其中a和
三、模型建立与求解我们主要用到的是数学模型是用最小二乘法对影响房价的各个因素进行拟合,从而解除出性方程组,其中用到的主要数学软件是matla。
关于房价问题数学建模分析
关于房价问题数学建模分析近几年,我国出台了一系列事关民生国情的利民政策,但房价的持续增高仍让很多人把买房当成了一种奢望。
本文根据题目要求,进行了合理假设,主要从影响房价的因素方面考虑,建立相应数学模型,根据数据分析了我国当前房价的合理性,预测房价未来走势,提出具体措施使房价回归合理,并进行定量分析。
分析题目,我们分为三个问题进行讨论建模:问题一,房价合理性评判;问题二,未来房价走势;问题三,房价的应对及建议。
问题一中针对各代表性城市现今房价是否合理的问题,我们以代表性城市上海、西安为例,做出合理的假设,采用了经济学领域的关于正态分布的模型,评定房价的合理性。
最后我们认为2008年以来上海高速增长的房价是不合理的;而西安虽然房价在不断上涨,但城市居民收入水平也有了比较大的提高,其增长比例基本还能维持协调,故西安的房价比较稳定合理。
问题二,利用了灰色马尔科夫预测对未来两年的具有代表性的几个城市的房价进行了定量的预测,从而得出这样的结论:西安房价增长相对来说较为平稳,涨幅不大;有较明显上升趋势的是成都和徐州的房价,在未来几年里,成都、徐州、西安的房价大致在5000 元左右;而北京、上海的房价,从10 年起有很明显的上升趋势,而且涨幅在8000~10000 元左右,若没有国家政策等特别因素影响,未来两年里,仍然会呈现出持续增高的趋势,并且涨幅不会低于8000 元。
问题三,主要就针对现实的房价问题对社会造成的影响及提出了一些建设性的意见。
关键词:房价升高数学模型正态分布模型灰色马尔科夫预测意见一.问题重述房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。
我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。
数学建模之住房的合理定价问题
住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。
本文依照题中所给出的数据,对3个问题分别建立模型并求解。
针对问题1,首先利用Excel 建立图表,绘制出历年房价走势图。
然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。
同时,求出确定性系数2R ,依据2R 是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。
计算得出的指数型及二阶多项式型拟合方程:0.12811()678.81i x i e =、22()12.5950.274716.38x i i i =++,由此预测出2010年房价分别为4080元/平米、3888元/平米。
为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。
通过比较实际值与预测值的平均偏差值ME 的大小,选择出合适的α。
预测出2010年的房价为3800元/平米。
最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量1x 、2x 、3x 的原始数据,以实际房价()P i 作为因变量,用Matlab 软件拟合出多元线性方程:1123()0.02020.1389() 1.1319()0.0084()f P i x i x i x i ∧=--⨯+⨯+⨯。
代入相关数据,求出历年的最终房价预测值为3866元/平米。
针对问题2,通过Excel 绘制出历年平均房价与人均GDP 的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数2R 。
2R 的值分别为:0.8673;0.9929;0.9982;0.9986。
由此判断,因2阶多项式型拟合方程的2R 不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:2()(706)[()]0.3236()177.06P i E G i G i ∧=--⨯+⨯-为平均房价与人均GDP 的关系方程。
最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP 的关系。
房价预测数学建模
一、摘要房价对经济发展和社会稳定有重大影响,本题的提出是为了探讨各房价的相关影响因素对房价的影响作用并依据相关分析结果给出调节房价的相关措施,并最终将房价的变动反映到经济发展上来.在目前民众普遍关注房价变动的情况下,本题的求解具有很大的应用价值为解决合理性评估问题,我们建立了房屋购买力模型:0XKY式中X代表城镇居民年人均可支配收入,Y代表每平米房价。
给合理性评估提供了一个参考标准,从而有效地评估了房价的合理性。
为解决房价走势问题,我们建立了多元线性回归分析和基于主成分分析的回归分析两个模型,在多元回归分析模型中,通过对各因素的回归拟合分析,建立回归方程,从而达到预测走势的目的。
在主成分分析模型中,通过相关算法,求解出主成分,并建立房价和综合主成分的回归方程,达到预测目的。
二、问题的提出房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。
我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,在这种情况下,对房价的合理性判断及走势的预测对于国家制定相关政策,稳定经济发展有重要意义.本题就是在这种背景下提出的.请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量分析;根据分析结果,进一步探讨使得房价合理的具体措施,以及可能对经济发展产生的影响,并进行定量分析。
三、条件假设1: 本模型是针对基础房价进行讨论,基础房价指的是不考虑宏观调控政策影响的完全市场行为下的房价.2: 建筑成本有房地产投资总额和固定房屋竣工面积来反映.3: 忽略一些炒作对房价的影响.4:忽略经济危机等突发性事件对房价的影响。
四、符号约定五、问题分析.经过对问题的审阅,题目中包含四个问题:1.结合相关数据,定量分析有代表性的几类城市房价的合理性.2.结合相关数据,定量分析有代表性的几类城市房价的未来走势.3.根据以上分析结果,提出调控房价的具体措施.4.定量分析房价走势对经济发展的影响.在对问题有了初步认识后,我们查阅了经济学以及房地产的相关资料,给出了问题中所要求的对房价有影响的相关因素的数据,主要包括:房地产投资总额(亿元)、房屋竣工面积(2m)、生产总值(亿元)、总人口数、居民消费水平、人均GDP、商品房销售面积、城镇居民家庭人均可支配收入。
数学建模__中国城市房价分析__模拟
中国城市房价分析摘要随着近年来中国经济的快速发展,房地产业也得以迅猛地发展,其势头受到世人的瞩目,它作为国民经济的支柱产业不仅对国家宏观经济运行产生巨大的影响,而且与广大百姓的自身利益休戚相关。
本论文从实际出发,选取具有代表性的几个城市,结合其城镇居民的人均可支配收入,并参考国际房价合理性标准,从而研究我国房价的合理性。
然后根据数据预测未来几年各个城市的房价走势,并结合现阶段国家政策下的实际房价提出合理的措施。
最后根据搜集的数据,结合20世纪下半叶日本房地产与GDP的关系,预测房地产行业未来将会对中国经济产生的影响。
关键词:城市房价;合理性;GDP;国民经济1.问题重述房价问题关系到一个社会人民生活的切身利益,也对国家的经济发展与社会稳定有重要影响。
1998年6月,国务院决定,党政机关停止实行40多年的实物分配福利房的做法,推行住房分配货币化,让房地产业成为了中国经济新的增长点。
但是在居民收入持续上升的同时,房价也不断飙升。
尤其是近几年来,房价不断大幅度增加的问题引起了社会各界的广泛关注。
但是房价的合理性,以及房价未来的走势,至今也没有统一的认识。
因此,判断当今房价是否合理,预测未来房价走势,以及提出使房价合理化的措施,分析房价对经济发展产生的影响成为亟待解决的问题。
考虑到用楼房建造成本、土地成本等数据的搜集难度,我们不采用“结合楼房建造成本、土地成本、开发商利润”这个方法分析房价的合理性。
基于以上问题,我们下面分成四个问题进行讨论:问题1.首先选取我国几个具有代表性的城市,搜集其历年房价、历年城镇居民的人均可支配收入,分析判断各个城市房价的合理性;问题2.根据数据来预测未来几年所选取的各个城市的房价走势;问题3.根据所搜集的数据,结合近年国家所采取的调控政策,对房价问题提出合理的措施;问题4.根据所搜集的数据,选取日本上世纪的例子作比较,粗略预测房地产行业对中国经济发展的影响。
2.问题分析2.1 对问题1的分析房价的合理性不仅影响到经济发展,而且关系到社会稳定。
房价预测数学建模
房价预测数学建模房价预测是指通过数学建模方法,对未来一定时期内的房价进行预测和分析。
房价预测在经济学和金融领域具有重要的应用价值,对政府、房地产市场参与者以及普通居民都有重要意义。
本文将介绍房价预测的数学建模方法,并探讨其应用和局限性。
房价预测的数学建模方法主要包括回归分析、时间序列分析和机器学习方法。
首先,回归分析是一种常用的房价预测方法。
它基于统计学原理,通过将房价作为因变量,收集并整理一系列可能影响房价的自变量数据,建立回归模型来分析它们之间的关系。
常用的回归模型包括线性回归、多项式回归和逻辑回归等。
通过对历史数据的回归分析,可以得到房价与自变量之间的数学关系,从而对未来的房价进行预测。
其次,时间序列分析也是一种常见的房价预测方法。
它基于时间序列数据的特点,通过分析房价随时间的变化趋势和周期性变动,建立时间序列模型来预测未来的房价。
常用的时间序列模型包括移动平均模型、自回归移动平均模型和季节性模型等。
时间序列分析方法对于具有一定规律性和周期性的房价数据预测较为有效。
此外,机器学习方法在房价预测领域也得到了广泛应用。
基于大数据和人工智能技术,机器学习方法可以通过对大量房价数据的学习和模式识别,建立复杂的预测模型来预测未来的房价。
常用的机器学习方法包括神经网络、支持向量机和决策树等。
机器学习方法在房价预测中具有较高的灵活性和准确性。
房价预测的数学建模方法具有一定的局限性。
首先,房价受到很多因素的影响,包括宏观经济因素、政策因素、地理因素等。
单一的数学模型并不能完全反映这些复杂的影响因素。
其次,房价预测存在一定的不确定性,无法完全准确预测未来的房价。
最后,数学模型的建立需要大量的房价数据和有效的指标,而这些数据并不总是容易获取。
综上所述,房价预测的数学建模方法包括回归分析、时间序列分析和机器学习方法。
这些方法在房价预测中发挥着重要作用,但仍然存在一定的局限性。
未来的研究可以进一步探索新的建模方法,提高房价预测的准确性和可靠性。
关于房价的数学建模
关于房价的数学建模随着经济的发展和城市化的加速,房价成为了人们关注的焦点。
房价的高低影响着人们的生活、财产和社会发展等方方面面。
因此,研究房价的数学建模显得尤为重要。
我国房地产行业发展较晚,房地产市场的供给和需求关系十分复杂。
而房价的数学建模需要考虑的因素与变量也十分繁多,例如贷款利率、房屋面积、建筑年代、周边配套设施、城市发展规划等因素。
在建立房价数学模型时,可以采用多元回归分析的方法,即假设房价与多项因素相关。
具体分析包括以下方面:1. 房屋基本属性的分析房屋的基本属性包括面积、楼层数、建筑时间等。
在分析中,可以将这些属性作为自变量,房价作为因变量,尝试构建回归方程。
2. 区域属性分析区域属性包括周边交通、商圈、学校、医院等。
这些与房价的关系需要通过建立一些指标来分析,例如交通指数、商圈指数等。
分析时需要考虑到指标的调整系数,再将各项指标拟合成一个合适的模型。
3. 财政政策和货币政策分析财政政策和货币政策的变化都会影响房价的变化。
例如,一些地方会采取土地出让方式来控制房价上涨,或者中央央行的调控政策等。
因此在分析中需要考虑到这些因素的影响。
土地属性方面主要考虑到土地价格和土地改造情况。
土地价格的变化受到城市发展、金融政策等多种因素的影响。
土地改造情况则与城市更新或城市扩张相关。
除了上述分析之外,还需要考虑到其他因素的干扰。
例如,一些购房者的心理因素和行为也可能会对房价产生影响。
这些因素都需要在数学建模中进行系统性地分析和探讨,才能更准确地预测房价的变化趋势。
总之,房价数学建模是一项艰巨和复杂的工作,需要在坚实的实证分析基础上进行建模分析。
只有准确地把握各种因素之间的相互关系,才能对房地产市场作出判断和预测。
房地产定价数学建模
二,建模过程与方法
UC p= = 1 R TC BA(1 (M + ε + ∑ yi))
i =1 n
ห้องสมุดไป่ตู้
二,建模过程与方法
其中,TC为总成本;BA为可销售建筑面积; 为同类型行业的平均利润率;为客户群等 市场环境对利润率的影响大小.至此,完 成了对于房产项目的定价.
1,基本概念
成本加成定价方法是指通过房地产项目的总成 本,加上预期的利润率而构成待估房地产项目 的价格.其理论公式为: 价格=单位成本十单位成本×成本利润率=单 ÷ 位成本(l十成本利润率)
2,成本定价法应遵循如下原则:
合理性原则.必须采用科学的方法和步骤 对成本和利润进行计算. 市场性原则.市场性原则是指在定价过程 中,要充分考虑市场的接受程度,即目标 客户群的收入水平,购买力,消费心理. 以及整个房地产市场的发展态势,升值空 间,项目所在地的平均房价,消费结构等 市场因素.这些因素极大的影响该房产项 目的市场售价.
∑
i =1
二,建模过程与方法
综合上述几个结论,可知单位建筑面积利润率R n 为:R= (2-2) M + ε + ∑ yi M i =1 由此,分别得出了单位建筑面积成本(UC)和 单位建筑面积利润率(R).
二,建模过程与方法
将(2-1)(2-2)合并,即可得成本加成 定价法的模型.设房地产单位项目建筑面 积的售价为P,则 P=UC+P*R
2,成本定价法应遵循如下原则:
规范性原则.规范性原则是指成本加成定 价法中成本和利润的计算过程要规范化, 彻底改变传统成本法中的经验主义的做法. 要遵循科学的方法和步骤,确定合理的利 润率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模选拔作业《房价评估》房价影响因素评估摘要:自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。
但是,房价的高低影响着国家的发展和人民生活水平的提高,因此,我们有必要了解影响我国房价的主要因素,政府才能针对性的采取措施,进一步推动房产行业的发展,发挥其龙头作用。
在问题一中,我们主要是分析影响我国房价变化的各个因素,确定其主要因素,该文通过在中国国家统计局和其他网站搜的相关数据,建立回归统计模型,确定房价和土地价值、人均可支配收入等其他因素的相关性系数,通过分析指数模型、线性模型,确定了线性模型,从而进一步确定了影响房价的最主要因素是国家土地增值税(亿元)、五年购房贷款利率、城镇居民家庭人均可支配收入(元)城市人口密度(人/平方公里),比如,房价和五年购房贷款利率的关系为-=BW其中,相关指数为0.97464,非常接近于1,这3501+9.6223361.也说明,我国国家正在国家政策上控制房价。
最终可知最主要的因素是国家土地增值税(亿元),也就是我们所说的土地价值。
在问题二中,我们把房价与位置的关系定在同一个城市中,以这个条件为限制,而不去考虑东西部、南北方这样的大位置,房子的位置影响因素进一步表示为交通C1、教育C2、卫生C3、工作C4、环境C5五个相关因素,通过层次分析法,建立模型,得到了相关权重,也就是房子的价格54321*0824.0*0787.0*2365.0*4731.0*1292.0C C C C C W ++++= 此问题得到解决。
在问题三中,主要是对前两个模型的检验,我们利用在网上收集北京市相关数据带入检验,并且在模型二中,通过对五个位置因素的分析,检验我们所得到的模型,着重分析了天津市,发现我们建立的模型基本符合实际,因此较为可靠。
关键词:回归统计 层次分析法 模型检验一、问题重述1.1 问题背景自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业,但是房价的高低却影响着国家的发展和社会的进步,我们有必要充分了解房价与各影响因素之间的关系。
1.2 问题影响房价的因素有很多,通过建立模型,确定影响房价的主要因素。
位置是影响房价的主要因素,建立模型分析位置与房价的关系。
以某个城市为例,检验前两个模型。
二、问题分析1.2.1 问题一这是一个评价模型,通过建立回归统计模型,确定各个因素对房价的影响力,影响房价的因素有很多,该问题的难点在于怎么样缩小影响因子,我们通过在网上收集大量参考文献,在中国国家统计局和其他网站收集相关数据,建立模型,得到答案。
1.2.2 问题二这是一个动态模型,通过分析关于位置的影响因素对房价的影响来分析各个因素对房价影响力大小的高低程度,在这里,我们通过层次分析法,建立线性函数,分析各个影响因素的权重,确定位置和房价的关系。
1.2.3 问题三这是一个检测问题,在模型一和模型二已经给出来的情况下对模型进行检测,以此为限制条件,这个问题的难点在于准确有效数据的收集和整理,并对数据做进一步加工处理。
三、模型假设1.假设我们在网上搜集的信息有效准确;2.假设经济性适用房的销售价格可以代表保障性住房的价格,从而进行本题的研究。
3.房地产价格受众多因素的影响,假设只考虑本文所研究的几个个因素,以外的其他因素对房产价格的影响可暂时忽略。
4.假设本文所研究的各项因素的误差是不相关的。
5.假设本文数据挖掘及处理研究过程中只出现有系统误差,无随机误差。
四、符号说明W——我国经济住房房价C1——交通因素影响力B1——国家土地增值税(亿元)C2——教育因素影响力B3——城镇居民家庭人均可支配收入(元)C3——卫生因素影响力B3——城镇居民家庭人均可支配收入(元)C4——工作因素影响力B4——城市人口密度(人/平方公里)C5——环境因素影响力β1、β2、β3、β4、β5——C1、C2、C3、C4、C5的权重A——正反比矩阵Λ——A的最大特征值五、模型建立与求解5.1 问题一5.1.1 模型分析我们在中国统计局和其他网站搜的如下数据房价和国家土地增值税(亿元)、五年购房贷款利率、城镇居民家庭人均可支配收入(元)城市人口密度(人/平方公里),说明一下,由于国家土地增值税的存在意义,我们在这里把国家土地增值税理解为土地价值。
相关数据如下:平方公里)因为某些原因,我们没有得到完整的数据,但可以肯定,我们得到的数据真实有效。
在处理相关关系的时候,我们可以采取这样的方法,比如处理房价和五年购房贷款利率时,采取2005年到2011年的有效数据,但处理房价和城镇居民家庭人均可支配收入时,便采取2005年到2012年数据。
当然,通过中国国家统计局网站,我们还可以得到更多的影响房价的而问题,但是在翻看大量关于房价问题的参考文献的情况下,我们着重考虑这四种情况,这并不排除其他因素的不重要性。
5.1.2模型建立和求解我们把得到的数据通过散点图表述出来,就房价和国家土地增值税来说,他们的近似关系如下:为进一步确定其关系,我们建立两种模型: 指数模型为x e y 00094.0221.15=。
线性模型为9.49494122.1-=x y 。
在这里,其中y 为房价,x 为国家土地增值税,也就是土地价值。
在这两种模型中,我们分别带入国家土地增值税的真实值求房价,统计他们的相对误差,结合线性模型的相关指数为0.91544,非常接近于1,于是决定采取线性模型。
通过类似的曲线模拟,我们得如下图案:得到如下线性关系:房价与五年购房贷款利率的关系为9.=B-W,相关指数为6162233.3501+0.97464房价与国家土地增值税的线性关系为9.=xy,相关指数为41224949.1-0.91544房价和城镇居民家庭人均可支配收入关系为8..4-y,相关指数=x32809133为0.9607房价和人口密度线性关系为2.y,相关指数为0.5432=x12055584.1+由相关指数可以确定,对房价影响最大的因素为城镇居民家庭人均可支配收入,其次是土地价值和五年购房贷款利率,最后是人口密度,这就是我们考虑的四个因素与房价的相关性,其余类似。
5.2问题二5.2.1 模型分析确定房价问题类似地相当于一个决策问题,考虑到房价是居民购买房子的最关键、最主要的因素,我们需要建立模型分析位置对房价有什么影响和关系。
因此,可以采用层次分析法进行判断。
进一步分析位置关系,考虑到社会的发展,大多购房者对住址的要求,例如,房子附近的教育环境、交通是否便利等等,良好的位置应该最大可能满足居民在教育、卫生、交通等方面的要求,我们分为五类,分别是,教育、环境、卫生、交通、工作,关系如下:5.2.2 模型建立和求解通过分析五个因素,我们利用层次分析法,建立正反比矩阵A ,也就是在矩阵A 中,jiij a a 1=,得到 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=123/16/13/12/112/14/12/13212/1364216323/16/11A 利用MATLAB 求得A 的最大特征根为 10595665=λ,其一致性指标为 087.0455105956651n CI =--=--=n λ随机一致性指标RI 的数值如下:随机一致性指标RI 的数值可得A 的一致性比率1.0077.012.1087.0CR <===RI CI 即通过一致性检验,所得正反比矩阵可用。
利用MATLAB 求得最大特征根对应的特征向量为T2283338241734215786717896711063247),,,,(=ϖ 数据归一化处理后得:T 0824.00787.0,2365.0,4731.0,1292.0),(=ϖ即得房价与位置的关系为54321*0824.0*0787.0*2365.0*4731.0*1292.0C C C C C W ++++=也就是说,在位置中,对房价影响最大的是教育,其次是卫生,然后是交通、环境,最后是工作。
5.3 问题三5.3.1 问题分析及模型检验通过网上的数据,我们得到天津市近十年房价如下:我们把得到的上述数据带到模型一中,得到天津市的这些数据也符合模型一建立的回归模型,因此模型可靠。
模型二中,我们在网上得到,往往一个城市的学区房是这个城市中房价最高的地方,靠近各个学校,从幼儿园到大学,只要在学区房内,房价就高于其他房价。
在医院附近,房价也是很高的,其房价略低于学区房,在环境优美的地方,比如公园附近,房价较高,在市中心,虽然环境较差,但由于交通便利,其房价也高居不下。
六、模型评价6.1 模型优点1.数据来自国家统计局,具有真实性和权威性;2.通过查阅参考文献,适当选择所要研究的影响因素,忽略次要因素,简化了模型,但是根本方法依然给出,其他因素可以按照这种模型进行评估。
3.运用matlab软件实现数据拟合,使模型方案清晰明了;(4)采用抽样等数学思想,使模型简单且具有代表性;6.2 模型缺点1.数据采集不够精确,具有一定局限性,跟实际有所出入;2.没有考虑由于金融危机、大型自然灾害等意外情况以及政府调整政策等对此的影响,缺乏实际性。
3.在模型一中,没有比较其他相关性模型,例如冥属数模型等,假设所研究的因素相互无关,但在生活实际中,他们具有一定的联系。
6.2 模型改进在问题三中,我们采用灰度预测对所建模型进行评价,可以让我们的模型更加具有说服力。
七、参考文献[1]数学建模第八章离散模型,高等教育出版社,第二版,姜启源,谢金星,叶俊主编[2]MATLAB基础及应用教程数组和矩阵电子工业出版社尚涛主编。