高一数学必修一月考

合集下载

高一数学 第一学期第一次月考模拟卷(含答案)

高一数学 第一学期第一次月考模拟卷(含答案)

高一数学第一学期月考模拟卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,22.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{|3x x >-且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+> B.2y x = C.y = D.2y x=7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B =R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .110.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.1311.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件D.1a b >-≥,则11a b a b≥++三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=_______________.16.已知函数()f x ,则函数()y f x =的定义域为______________;函数(21)y f x =+的定义域是___________________.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.18.已知命题p :[1,2]x ∀∈,20x a -≥,命题q :x R ∃∈,2220x ax a +-=+.若命题p 与q 都是真命题,求实数a 的取值范围.19.解关于x 的不等式2(23)60()ax a x a R -++>∈.20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.高一数学第一学期月考模拟卷答案一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,2【解析】交集是两个集合的公共元素,故{}0,1P Q ⋂=.【答案】B 2.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+【解析】【详解】A 中的函数22,0,0x x y x x x x ⎧≥==⎨-<⎩,故两个函数的对应法则不同,故A 中的两个函数不是相同的函数;B 中函数y =R ,而2y =的定义域为[)0,+∞,故两个函数不是相同的函数;C 中的函数2x xy x+=的定义域为()(),00,-∞⋃+∞,而1y x =+的定义域为R ,故两个函数不是相同的函数;D 中的函数定义域相同,对应法则相同,故两个函数为同一函数,综上,选D.3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{3xx -且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-【解析】根据二次根式的性质结合分母不为0,求出函数的定义域即可.【详解】由题意得:3010x x +≥⎧⎨+≠⎩,解得:3x ≥-且1x ≠-.故选:A .4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】设A ={x |x >0},B ={x |x <1-,或x >0},判断集合A ,B 的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【详解】设A ={x |x >0},B ={x |x <1-,或x >0},∵A ≠⊂B ,故“x >0”是“20x x +>”成立的充分不必要条件.故选A .5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<【解析】【详解】因为21y x ax =-+有负值,所以必须满足二次函数的图象与x 轴有两个不同的交点,2()40Δa =-->,24a >,即2a >或2a <-,故选A .6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+>B.2y x =C.y =D.2y x=【解析】A 、函数21y x =+在(0,)+∞上是增函数,∴函数的值域为(1,)+∞,故错;B 、函数20y x = ,函数的值域为[)0,+∞,故错;C 、函数y =的定义域为(,1)(1,)-∞-+∞ 0>0>,故函数的值域为(0,)+∞D 、函数2y x=的值域为{|0}y y ≠,故错;故选:C .【点睛】本题考查,二次函数,一次函数的值域,考查学生发现问题解决问题的能力,属于基础题.7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【答案】A8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B = R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-【解析】【详解】集合{}2|340(1,4)A x x x =--<=-,集合{|()[(2)]0}(,)(2,)B x x m x m m m =--+>=-∞⋃++∞,若A B = R ,则124m m >-⎧⎨+<⎩,解得(1,2)m ∈-,故选C.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .1【答案】AC10.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.13【解析】28150x x -+= 的两个根为3和5,{}3,5A \=,A B B = ,B A ∴⊆,B ∴=∅或{}3B =或{}5B =或{}3,5B =,当B =∅时,满足0a =即可,当{}3B =时,满足310a -=,13a ∴=,当{}5B =时,满足510a -=,15a ∴=,当{}3,5B =时,显然不符合条件,∴a 的值可以是110,,35.【答案】ABD11.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥【解析】A.当0,0a b <<时,2a b+不成立,故错误;B.a (1﹣a )22111244a a a ⎛⎫-+=--+≤ ⎪⎝⎭,故正确;C.2222222,2,2a b ab a c a cc b cb +≥+≥+≥,两边同时相加得a 2+b 2+c 2≥ab +bc +ca ,故正确D.当,a b 异号时,不成立,故错误;故选:BC 12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件 D.1a b >-≥,则11a ba b≥++【解析】A .当2,1a b ==-时,不等式成立,所以A 正确.B.当0a =时,0=02x ⋅<,不等式不成立,所以B 不正确.C.当0,0a b =≠时,220a b +≠成立,此时=0ab ,推不出0ab ≠.所以C 不正确.D.由(1)(1)11(1)(1)(1)(1)a b a b b a a b a b a b a b +-+--==++++++,因为1a b >-≥,则11a b a b≥++,所以D 正确.【答案】AD三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.,【解析】由题意得若命题“2R,(1)10x x a x ∃∈+-+<”是假命题,则命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题,则需()2014013a a ∆≤⇒--≤⇒-≤≤,故本题正确答案为[]1,3-.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.【解析】∵不等式2520ax x +->的解集是M ,2M ∈且3M ∉,∴4809130a a +>⎧⎨+≤⎩,解得–2a <139≤-15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=___________.【解析】【详解】由于{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则{}3X Y =I ,由题中定义可得(){}1,2,4,5,6,7,8U X Y X Y *==I ð,则(){}2,4,7U X Y Z =I I ð,因此,()(){}1,3,5,6,8UUX Y Z X Y Z **==⎡⎤⎣⎦I I ,故答案为{}1,3,5,6,8.16.已知函数f (x ),则函数y =f (x )的定义域为_____;函数(21)y f x =+的定义域是_____.【答案】(1).[]1,4-(2).31,2⎡⎤-⎢⎣⎦【解析】(1)令2340x x -++≥,解得14x -≤≤,()f x ∴的定义域为[]1,4-;(2)()f x 的定义域为[]1,4-,∴在函数(21)f x +中,满足1214x -£+£,解得312x -≤≤,(21)f x ∴+的定义域为31,2⎡⎤-⎢⎥⎣⎦.故答案为:(1)[]1,4-(2)31,2⎡⎤-⎢⎣⎦.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1){}23A B x x ⋂=≤<,{}13A B x x ⋃=<≤;(2)12a <<【解析】(1)当1a =时,{}{}2|430|13A x x x x x =-+<=<<,集合B {|23}x x =≤≤,所以{|23},{|13}A B x x A B x x ⋂=≤<⋃=<≤.(2)因为0a >,所以{}|3A x a x a =<<,B {|23}x x =≤≤,因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A ≠⊂,所以2,33,a a <⎧⎨>⎩解得:12a <<.18.已知命题p :任意x ∈[1,2],x 2-a ≥0,命题q :存在x ∈R ,x 2+2ax +2-a =0.若命题p 与q 都是真命题,求实数a 的取值范围.【答案】{a |a ≤-2,或a =1}.【解析】【详解】由命题p 为真,可得不等式x 2-a ≥0在x ∈[1,2]上恒成立.所以a ≤(x 2)min ,x ∈[1,2].所以a ≤1.若命题q 为真,则方程x 2+2ax +2-a =0有解.所以判别式Δ=4a 2-4(2-a )≥0.所以a ≥1或a ≤-2.又因为p ,q 都为真命题,所以112a a a ≤⎧⎨≥≤-⎩或所以a ≤-2或a =1.所以实数a 的取值范围是{a |a ≤-2,或a =1}.19.解关于x 的不等式ax 2-(2a +3)x +6>0(a ∈R ).【答案】详见解析【解析】【详解】原不等式可化为:(ax ﹣3)(x ﹣2)>0;当a =0时,化为:x <2;当a >0时,化为:(x 3a-)(x ﹣2)>0,①当3a >2,即0<a 32<时,解为:x 3a >或x <2;②当3a =2,即a 32=时,解为:x ≠2;③当3a <2,即a 32>时,解为:x >2或x 3a<,当a <0时,化为:(x 3a -)(x ﹣2)<0,解为:3a<x <2.综上所述:当a <0时,原不等式的解集为:(3a,2);当a =0时,原不等式的解集为:(﹣∞,2);当0<a 32<时,原不等式的解集为:(﹣∞,2)∪(3a,+∞);当a 32=时,原不等式的解集为:(﹣∞,2)∪(2,+∞);当a 32>时,原不等式的解集为:(﹣∞,3a)∪(2,+∞)20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.【答案】(1)34a b =⎧⎨=⎩;(2)4a ≤【解析】【详解】解:(1)关于x 的不等式()0f x <的解集为()1,b ,即1x =,x b =为方程2(2)40x a x -++=的两解,所以124b a b +=+⎧⎨=⎩解得34a b =⎧⎨=⎩(2)对任意的[]1,4x ∈,()1f x a ≥--恒成立,即2(2)50x a x a -+++≥对任意的[]1,4x ∈恒成立,即()2251x x a x -+≥-恒成立,①当1x =时,不等式04≤恒成立,此时a R∈②当(]1,4x ∈时,2254111x x a x x x -+≤=-+--,因为14x <≤,所以013x <-≤,所以4141x x -+≥=-当且仅当411x x -=-时,即12x -=,即3x =时取等号,所以4a ≤,综上4a ≤21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.【答案】(1)20018400400y x x ⎛⎫=++ ⎪⎝⎭,(4,50)x ∈;(2)当x =时,总造价最低为18400+元.【解析】【详解】(1)由矩形的长为()m x ,则矩形的宽为200(m)x,则中间区域的长为()4m x -,宽为2004(m)x-,则定义域为(4,50)x ∈,则200200100(4)4200200(4)4y x x x x ⎡⎤⎡⎤⎛⎫⎛⎫=⨯--+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,整理得20018400400y x x ⎛⎫=++⎪⎝⎭,(4,50)x ∈.(2)200x x +≥=,当且仅当200x x =时取等号,即(4,50)x =,所以当x =时,总造价最低为18400+元.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.【答案】(1)2()22f x x x =++(2)见解析.【解析】【详解】(1)设2()f x ax bx c =++,(0)2f c \==,(1)()23f x f x x +-=+ ,()()()221123a x b x c ax bx c x \++++-++=+,即223ax a b x ++=+,223a a b ì=ï\í+=ïî,1,2a b ∴==,2()22f x x x ∴=++;(2)由(1)知()[]2()222,1,3h x x t x x =+-+Î,()h x ∴的对称轴为1x t =-,当11t -≤,即2t ≤时,()h x 在[1,3]单调递增,()min ()152h x h t \==-,当113t <-<,即24t <<时,()h x 在()1,1t -递减,在()1,3t -递增,()2min ()121h x h t t t \=-=-++,当13t -³,即4t ≥时,()h x 在[1,3]单调递减,()min ()3176h x h t \==-,综上:当2t ≤时,min ()52h x t =-;当24t <<时,2min ()21h x t t =-++;当4t ≥时,min ()176h x t =-.。

必修一数学第一次月考试卷

必修一数学第一次月考试卷

必修一数学第一次月考试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2 - 3x + 2 = 0},则A=()A. {1}B. {2}C. {1, 2}D. varnothing2. 已知全集U = R,集合A={xx > 1},则∁_UA=()A. {xx≤slant1}B. {xx < 1}C. {xx≥slant1}D. {xx > - 1}3. 函数y = √(x - 1)的定义域为()A. [1,+∞)B. (1,+∞)C. (-∞,1]D. (-∞,1)4. 下列函数中,在区间(0,+∞)上为增函数的是()A. y=(1)/(x)B. y = - x + 1C. y=log_2xD. y = ((1)/(2))^x5. 若函数f(x)=x^2+2(a - 1)x + 2在区间(-∞,4]上是减函数,则实数a的取值范围是()A. a≤slant - 3B. a≥slant - 3C. a≤slant5D. a≥slant56. 已知f(x)是一次函数,且f(f(x)) = 4x + 3,则f(x)=()A. 2x + 1B. - 2x - 3C. 2x+1或-2x - 3D. 2x - 1或-2x + 37. 函数y = f(x)的图象与函数y=log_3x(x > 0)的图象关于直线y = x对称,则f(x)=()A. 3^x(x∈ R)B. 3^x(x > 0)C. ((1)/(3))^x(x∈ R)D. ((1)/(3))^x(x > 0)8. 设a=log_32,b=log_52,c=log_23,则()A. a > c > bB. b > c > aC. c > a > bD. c > b > a9. 若2^x=3,4^y=5,则2^x - 2y的值为()A. (3)/(5)B. -2C. (3√(5))/(5)D. (6)/(5)10. 函数y = a^x - 2+1(a > 0,a≠1)的图象恒过定点()A. (2,2)B. (2,1)C. (3,1)D. (3,2)11. 已知函数f(x)=x^2+1,x≤sla nt0 - 2x,x > 0,若f(x)=10,则x=()A. -3B. -3或-5C. -5D. ±312. 设f(x)是定义在R上的奇函数,当x≥slant0时,f(x)=2^x+2x + b(b为常数),则f(-1)=()A. 3B. 1C. -1D. -3二、填空题(每题5分,共20分)13. 若集合A = {0,1,2},B={1,m},若A∩ B = {1},则m=_(m≠1)。

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

高一数学必修1第一次月考试卷(含答案解析)

高一数学必修1第一次月考试卷(含答案解析)

高一数学必修1第一次月考试卷(含答案解析)高一数学必修1第一次月考试卷(含答案解析)一、选择题1. 若集合A={2,4,6,8},集合B={1,3,5,7},则A∪B=()A. {1, 2, 3, 4, 5, 6, 7, 8}B. {1, 2, 3, 4, 5, 6, 7}C. {2, 4, 6, 8}D. {1, 3, 5, 7}解析:集合的并就是包含所有元素的集合,所以A∪B={1, 2, 3, 4, 5, 6, 7, 8},选项A正确。

2. 已知二次函数y=ax²+bx+c的顶点坐标为(1,2),则a+b+c的值为()A. 3B. 4C. 5D. 6解析:二次函数的顶点坐标为(h,k),所以a+b+c=a(h²)+b(h)+c=a(1²)+b(1)+c=a+b+c=k=2,选项B正确。

3. 若点P(3,4)在直线5x-ky=3上,则k的值为()A. 1B. 2C. 3D. 4解析:点P(3,4)在直线5x-ky=3上,代入坐标得到5(3)-k(4)=3,化简得15-4k=3,解得k=3,选项C正确。

二、填空题4. 根据等差数列的通项公式an=a1+(n-1)d,已知a1=3,a4=9,求公差d为_____。

解析:代入已知条件,9=3+(4-1)d,化简得3=3d,解得d=1。

公差d为1。

5. 在△ABC中,∠A=60°,BC=8,AB=4,则∠B=_____。

解析:根据三角形内角和为180°,∠B+60°+∠C=180°,化简得∠B+∠C=120°。

由已知BC=8,AB=4,利用正弦定理sinB=BC/AB=8/4=2,所以∠B=30°。

三、解答题6. 已知集合A={x|2x+1<5},求A的解集。

解析:将不等式2x+1<5移项得到2x<4,再除以2得到x<2。

所以集合A的解集为{x|x<2}。

数学高一月考试题及答案

数学高一月考试题及答案

数学高一月考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2+3x-5,则f(-2)的值为:A. 3B. -3C. -1D. 12. 在等差数列{a_n}中,若a_3=7,a_5=11,则公差d为:A. 2B. 3C. 4D. 53. 已知圆的方程为x^2+y^2-6x-8y+25=0,该圆的半径为:A. 2B. 4C. 5D. 64. 若sinθ=1/3,且θ为第一象限角,则cosθ的值为:A. 2√2/3B. √2/3C. √6/3D. 2√6/35. 函数y=x^3-3x+2在x=1处的导数为:B. 1C. 2D. 36. 集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 47. 已知等比数列{a_n}的首项a_1=2,公比q=3,那么a_5的值为:A. 162B. 486C. 729D. 9728. 若直线y=2x+1与圆x^2+y^2=25相切,则该直线与x轴的交点坐标为:A. (-1/2, 0)B. (1/2, 0)C. (-1, 0)D. (1, 0)9. 函数f(x)=x^2-2x+3的最小值为:A. 2B. 1C. 0D. -110. 已知向量a=(3, -4),向量b=(-2, 6),则向量a与向量b的夹角A. 0°B. 90°C. 180°D. 45°二、填空题(每题4分,共20分)1. 若函数f(x)=x^3-6x^2+11x-6的零点为x_0,则f'(x_0)的值为________。

2. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,那么a_4的值为________。

3. 圆心在原点,半径为5的圆的方程为________。

4. 若sinα=3/5,且α为第二象限角,则cosα的值为________。

5. 函数y=|x-2|+|x+3|的最小值为________。

高一数学必修(一)第一次月考试题

高一数学必修(一)第一次月考试题

高一数学必修(一)第一次月考试题一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一个是符合题目要求的)1.已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于 ( )A. NB.MC.RD.∅2.下列各组函数是同一函数的是 ( )①1)(-=x x f 与2()1x g x x=-;②x x f =)(与()g x ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--. A.①② B.①③ C.③④ D.①④3.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 等于( )A .1+-xB .1--xC .1+xD .1-x 4.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为 ( )A .0B .2C .3D .65.已知集合{1,2,3,4},{,,,}A B a b c d ==,B A f →:为集合A 到集合B 的一个函数,那么该函数的值域C 的不同情况有 ( ) A .4种 B .8种 C .12种 D .15种 6.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是 ( ) A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)7.已知集合{|},{|12},()R A x x a B x x A C B R =<=<<=,则实数a 的取值范围是( )A . 2a ≥B .2a >C . 1a ≤D .1a <8已知函数223y x x =-+在区间[]0,m 上的最大值为3,最小值为2,则m 的取值范围是( ) A .[)1,+∞ B .[]0,2 C .[]1,2 D .(],2-∞ 9.已知函数[]的取值范围上单调递减,则实数,在a ax x y 23822-+-=( )A .[)+∞,2B . [)+∞,1C .[)3,2D .[]3,210.已知偶函数)(x f 在区间),0[+∞上单调递增,则满足不等式)31()12(f x f <+的x 的取值范围是 ( )A .)31,32[--B .)31,32(--C .)21,32(--D .)21,32[-- 11.已知⎩⎨⎧≥<+-=)1(,)1(,1)2()(2x ax x x a x f 满足对任意21x x ≠,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是 ( )A .3[,2)2B .3(1,]2C .(1,2) D.),1(+∞12.对实数a b 和,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈.若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(1,1](2,)-⋃+∞B .(2,1](1,2]--⋃C .(,2)(1,2]-∞-⋃D .[-2,-1]二、填空题(本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上)13.若集合{}{}2|230,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为. 14. 函数12-+=x x y 的值域为 .15.已知函数=++++++=)41()31()21()4()3()2(,1)(22f f f f f f x x x f 则 .13. . 14. . 15. .16.定义在R 上的函数()f x ,如果存在函数()(,g x kx b k b =+为常数),使得()f x ≥()g x 对一切实数x 都成立,则称()g x 为()f x 的一个承托函数.现有如下命题:①对给定的函数()f x ,其承托函数可能不存在,也可能无数个;② 定义域和值域都是R 的函数()f x 不存在承托函数;③若函数()g x x a =-为函数2()f x ax =的承托函数,则a 的取值范围是12a ≥;其中正确命题的序号是 .三、解答题(本大题有4小题,共36分.解答应写出文字说明,证明过程或演算步骤)17.(本小题8分)设=A {x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x-8=0}.(1)若B A =,求a 的值; (2)若∅A ∩B ,A ∩C =∅,求a 的值18.(本小题8分) 已知函数()122-+-=ax x x f ,若()x f 在[]1,1-上的最大值为()g a ,求()g a 的解析式.18.(本小题10分)函数()21x b ax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f .(1)用定义证明()x f 在()1,1-上是增函数;(2)解不等式()()01<+-x f x f .20.(本小题10分)已知函数()f x 定义在()1,1-上,对于任意的,(1,1)x y ∈-,有()()()1x y f x f y f xy++=+,且当0x <时,()0f x >;(1)判断()f x 的奇偶性并说明理由;(2)若1()12f -=,试解关于x 的方程1()2f x =-.高一第一次月考试卷参考答案一、ACBDD BACDB AB二、13. 0或1或31-14.[)+∞,2, 15.3 16.①③ 三、解答题:17.解:由题知 {}2,3B =,{}4,2C =-.(1)若B A =,则2,3是方程01922=-+-a ax x 的两个实数根, 由根与系数的关系可知 ⎩⎨⎧⨯=-+=3219322a a ,解得5=a . (2)∵∅A ∩B ,∴A B φ≠,则2,3至少有一个元素在A 中,又∵AC φ=,∴2A ∉,3A ∈,即293190a a -+-=,得52a =-或而5a A B ==时,与AC φ=矛盾,∴2a =-18.解:()()122-+--=a a x x f1当1a ≤-时,()f x 在[]1,1- 上单调减,()()max 122f x f a ∴=-=--2当11a -<<时,()f x 在[]1,a - 上单调增,在(],1a 上单调()()2max 1f x f a a ∴==-3当1a ≥时,()f x 在[]1,1- 上单调增,()()max 122f x f a ∴==-()222,11,1122,1a a g a a a a a --≤-⎧⎪∴=--<<⎨⎪-≥⎩19.解:(1)由已知()21xbax x f ++=是定义在()1,1-上的奇函数, ()00=∴f ,即0,0010=∴=++b b .又5221=⎪⎭⎫ ⎝⎛f ,即52211212=⎪⎭⎫⎝⎛+a,1=∴a . ()21xxx f +=∴.证明:对于任意的()1,1,21-∈x x ,且21x x <,则()()()()()()()()()()()()()()22212121222112212122212122212222112111111111111x x x x x x x x x x x x x x x x x x x x x x x x x f x f ++--=++-+-=+++-+=+-+=-()()011,0222121>++<-∴x x x x ,01,12121>-∴<∴x x x x .()()021<-∴x f x f ,即()()21x f x f <.∴函数()21x xx f +=在()1,1-上是增函数.(2)由已知及(1)知,()x f 是奇函数且在()1,1-上递增,∴()()()()()()2102111201111111101<<⇔⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧<<<-<<⇔-<-<<-<-<-⇔-<-⇔-<-⇔<+-x x x x x x x x x f x f x f x f x f x f ∴不等式的解集为⎪⎭⎫ ⎝⎛21,0.20. 解:(1)令0==y x ,0)0(=∴f ,令x y -=,有0)0()()(==+-f x f x f ,)(x f ∴为奇函数(2)设1121<<<-x x ,则01,02121>-<-x x x x ,012121<--x x x x ,则0)1()()()()(21212121>--=-+=-x x x x f x f x f x f x f ,0)()(21>-x f x f ,∴()f x 在()1,1-上是减函数11()1()122f f -=∴=-原方程即为2212()1()()()()12x f x f x f x ff x =-⇔+==+, 2221410212x x xx x ∴=⇔-+=⇔=±+(1,1)2x x ∈-∴= 故原方程的解为2x =。

高一数学第一次月考卷01(新高考地区,集合与逻辑+不等式)(全解全析)

高一数学第一次月考卷01(新高考地区,集合与逻辑+不等式)(全解全析)

2024-2025学年高一数学上学期第一次月考卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:集合与常用逻辑用语+不等式。

5.难度系数:0.65。

第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合A =x ∈Z x ≤-3或x >3 ,B =0,3 ,则∁U A ∩B =()A.1,2B.1,2,3C.0,1,3D.1,2【答案】D【详解】由已知可得∁U A =-2,-1,0,1,2,3 ,又B =0,3 ,∴∁U A ∩B =1,2 .故选:D .2.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是()A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)【答案】B【详解】根据给出在R 上定义运算x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),由x ⊙(x -2)<0得(x +2)(x -1)<0,解之得-2<x <1,故该不等式的解集是(-2,1).故选:B3.若两个正实数x ,y 满足4x +y =xy ,且存在这样的x ,y 使不等式x +y4<m 2+3m 有解,则实数m 的取值范围是()A.-1,4B.-4,1C.-∞,-4 ∪1,+∞D.-∞,-3 ∪0,+∞【答案】C【详解】由4x +y =xy ,x ,y >0,可得4y +1x=1,所以x +y 4=x +y 4 ⋅4y +1x=2+4xy +y 4x≥2+24x y ⋅y 4x =4,当且仅当4x y =y 4x,即y =4x =8时等号成立.所以m 2+3m >4,m 2+3m -4=m +4 m -1 >0,解得m <-4或m >1,所以实数m 的取值范围是-∞,-4 ∪1,+∞ .故选:C .4.对于∀x ∈R ,用x 表示不大于x 的最大整数,例如:π =3,-2.1 =-3,则“x >y ”是“x >y ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【详解】当x >y 时,如x =3.2,y =3.1,不能得到x >y ,由x >y ,则x >y ≥y ,又x ≥x ,所以一定能得到x >y ,所以“x >y ”是“x >y ”成立的充分不必要条件.故选:A .5.已知全集为U ,集合M ,N 满足M ÜN ÜU ,则下列运算结果为U 的是( ).A.M ∪NB.∁U N ∪∁U MC.M ∪∁U ND.N ∪∁U M【答案】D 【详解】如图,因为M ÜN ÜU ,所以M ∪N =N ≠U ,故A 错误;因为∁U N ∪∁U M =∁U M ∩N =∁U M ≠U ,故B 错误;因为M ÜN ÜU ,所以M ∪∁U N ≠U ,故C 错误;因为M ÜN ÜU ,所以N ∪∁U M =U ,故D 正确.故选:D6.关于x 的一元二次方程x 2+x +m =0有实数解的一个必要不充分条件的是()A.m <12B.m ≤14C.m <-12D.m <14【答案】A【详解】因为一元二次方程x 2+x +m =0有实根,所以Δ=1-4m ≥0,解得m ≤14.又-∞,14 是-∞,12的真子集,所以“-∞,12 ”是“-∞,14”的必要不充分条件.故选:A7.不等式ax +1x +b >1的解集为x x <-1 或x >4 ,则x +abx -1≥0的解集为()A.x -6≤x <-14B.x -1≤x <1C.x -6≤x ≤-14D.x -14≤x ≤1 【答案】A 【详解】不等式ax +1x +b>1可转化为a -1 x -b +1 x +b >0,其解集为x x <-1 或x >4 ,所以a >1,且方程ax -x -b +1 x +b =0的两个根为x 1=-1,x 2=4,则-a +1-b +1=04+b =0或4a -4-b +1=0-1+b =0 ,解得a =6b =-4 或a =1b =1 (舍去),即有x +6-4x -1≥0,即x +6 -4x -1 ≥0-4x -1≠0 ,解得-6≤x <-14.所以不等式的解集为x -6≤x <-14.故选:A .8.已知x +y =1x +4y+8(x ,y >0),则x +y 的最小值为()A.53B.9C.4+26D.10【答案】B【详解】x +y =1x +4y +8⇒x +y -8=1x +4y,两边同时乘以“x +y ”得:(x +y -8)(x +y )=1x +4y(x +y ),所以(x +y -8)(x +y )=1x +4y(x +y )=5+y x +4xy ≥9,当且仅当y =2x 时等号成立,令t =x +y ,所以(t -8)⋅t ≥9,解得t ≤-1或t ≥9,因为x +y >0,所以x +y ≥9,即(x +y )min =9,故选:B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下面命题正确的是()A.若x ,y ∈R 且x +y >2,则x ,y 至少有一个大于1B.“任意x <1,则x ²<1”的否定是“存在x <1,则x 2≥1”C.设x ,y ∈R ,则“x ≥2且y ≥2”是x ²+y ²≥4的必要而不充分条件D.设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件【答案】ABD【详解】对于A ,假设x ,y 都不大于1,即x ≤1,y ≤1,则x +y ≤2与已知矛盾,假设是错的,原命题为真命题,A 正确;对于B ,“任意x <1,则x 2<1”的否定为“存在x <1,则x 2≥1”,B 正确;对于C ,x ≥2则x 2≥4,y ≥2则y 2≥4,x 2+y 2≥8,则x 2+y 2≥4成立,满足充分性,C 错误;对于D ,当a ≠0时,ab 可能为零,当ab ≠0时,a 一定不等于零,则“a ≠0”是“ab ≠0”的必要不充分条件,D 正确.故选:ABD .10.若a >b >0,则下列不等式成立的是()A.b a >abB.ab >b 2C.b a <b +1a +1D.a +1b>b +1a 【答案】BCD【解析】对A ,若a >b >0,则a 2>b 2,两边同时除以ab ,所以a b>ba ,A 错误;对B ,由a >b >0可得ab >b 2,B 正确;对C ,因为a (b +1)-b (a +1)=a -b >0,所以a (b +1)>b (a +1)>0,即b +1a +1>ba,C 正确;对D ,由a >b >0可得,1b >1a >0,所以a +1b>b +1a ,D 正确.故选:BCD .11.已知关于x 的一元二次不等式ax 2+bx +c >0的解集为M ,则下列说法正确的是()A.若M =∅,则a <0且b 2-4ac ≤0B.若a a =b b =c c,则关于x 的不等式a x 2+b x +c>0的解集也为M C.若M ={x |-1<x <2},则关于x 的不等式a (x 2+1)+b (x -1)+c <2ax 的解集为N ={x |x <0,或x >3}D.若M ={x |x ≠x 0,x 0为常数},且a <b ,则a +3b +4cb -a的最小值为5+25【答案】ACD【详解】A 选项,若M =∅,即一元二次不等式ax 2+bx +c >0无解,则一元二次不等式ax 2+bx +c ≤0恒成立,∴a <0且b 2-4ac ≤0,故A 正确;B 选项,令a a =b b =c c=t (t ≠0),则a =a t 、b =b t 、c =ct ,∴a x 2+b x +c >0可化为1t(ax 2+bx +c )>0,当t <0时,1t(ax 2+bx +c )>0可化为ax 2+bx +c <0,其解集不等于M ,故B 错误;C 选项,若M ={x |-1<x <2},则a <0,且-1和2是一元二次方程ax 2+bx +c =0的两根,∴-1+2=-b a ,且-1×2=ca,∴b =-a ,c =-2a ,∴关于x 的不等式a (x 2+1)+b (x -1)+c <2ax 可化为a (x 2+1)-a (x -1)-2a <2ax ,可化为a (x 2-3x )<0,∵a <0,∴x 2-3x >0,解得x <0或x >3,即不等式a (x 2+1)+b (x -1)+c <2ax 的解集为N ={x |x <0,或x >3},故C 正确;D 选项,∵M ={x |x ≠x 0,x 0为常数},∴a>0且b2-4ac=0,∴a+3b+4cb-a =a+3b+b2ab-a,∵b>a>0,∴b-a>0,令b-a=t>0,则b=a+t,∴a+3b+b2ab-a=a+3(a+t)+(a+t)2at=5at+ta+5≥25a t⋅t a+5=25+5,当且仅当t=5a,则b=(1+5)a,c=3+5a2,且a为正数时,等号成立,所以a+3b+4cb-a的最小值为5+25,故D正确.故选:ACD.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.已知1≤a+b≤4,-1≤a-b≤2,则4a-2b的取值范围为.【答案】-2,10【详解】解:设4a-2b=x a+b+y a-b=x+ya+x-yb,所以x+y=4x-y=-2,解得x=1y=3,因为1≤a+b≤4,-1≤a-b≤2,则-3≤3a-b≤6,因此,-2≤4a-2b≤10.故答案为:-2,10.13.已知关于x的不等式组-x2+4x+5<02x2+5x<-2x+5k的解集中存在整数解且只有一个整数解,则k的取值范围为.【答案】-6,2∪3,4【详解】由x2-4x-5=x-5x+1>0,得x<-1或x>5,所以2x2+2k+5x+5k=2x+5x+k<0的解集与{x∣x<-1或x>5}的交集中存在整数解,且只有一个整数解.当k<52时,2x2+2k+5x+5k<0的解集为x-52<x<-k,此时-2<-k≤6,即-6≤k<2,满足要求;当k=52时,2x2+2k+5x+5k<0的解集为∅,此时不满足题设;当k>52时,2x2+2k+5x+5k<0的解集为x-k<x<-52,此时-4≤-k<-3,即3<k≤4,满足要求.综上,k的取值范围为-6,2∪3,4.故答案为:-6,2∪3,414.定义集合P={x|a≤x≤b}的“长度”是b-a,其中a,b∈R.已如集合M={x m≤x≤m+12,N={x n-35≤x≤n,且M,N都是集合{x|1≤x≤2}的子集,则集合M∩N的“长度”的最小值是;若m =65,集合M ∪N 的“长度”大于35,则n 的取值范围是.【答案】110/0.185,1710 ∪95,2【详解】集合M ={x m ≤x ≤m +12,N ={x n -35≤x ≤n ,且M ,N 都是集合{x |1≤x ≤2}的子集,由m ≥1m +12≤2 ,可得1≤m ≤32,由n -35≥1n ≤2,可得85≤n ≤2.要使M ∩N 的“长度”最小,只有当m 取最小值、n 取最大或m 取最大、n 取最小时才成立.当m =1,n =2,M ∩N =x 75≤x ≤32 ,“长度”为32-75=110,当m =32,n =85,M ∩N =x 32≤x ≤85 ,“长度”为85-32=110,故集合M ∩N 的“长度”的最小值是110;若m =65,M =x 65≤x ≤1710,要使集合M ∪N 的“长度”大于35,故n -35<1710-35或n >65+35,即n <1710或n >95,又85≤n ≤2,故n ∈85,1710 ∪95,2.故答案为:110;85,1710 ∪95,2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合A ={x |-2≤x -1≤5}、集合B ={x |m +1≤x ≤2m -1}(m ∈R ).(1)若A ∩B =∅,求实数m 的取值范围;(2)设命题p :x ∈A ;命题q :x ∈B ,若命题p 是命题q 的必要不充分条件,求实数m 的取值范围.【详解】(1)由题意可知A ={x |-2≤x -1≤5}={x |-1≤x ≤6},又A ∩B =∅,当B =∅时,m +1>2m -1,解得m <2,当B ≠∅时,m +1≤2m -1,m +1>6或2m -1<-1,解得m >5,综上所述,实数m 的取值范围为-∞,2 ∪5,+∞ ;............................6分(2)∵命题p 是命题q 的必要不充分条件,∴集合B 是集合A 的真子集,当B =∅时,m +1>2m -1,解得m <2,当B ≠∅时,m +1≤2m -1m +1≥-12m -1≤6(等号不能同时成立),解得2≤m ≤72,综上所述,实数m 的取值范围为-∞,72.............................13分16.(15分)甲、乙两位同学参加一个游戏,规则如下:每人在A 、B 、C 、D 四个长方体容器中取两个盛满水,盛水体积多者为胜.甲先取两个容器,余下的两个容器给乙.已知A 、B 的底面积均为x 2,高分别为x 、y ;C 、D 的底面积均为y 2,高分别为x 、y (其中x ≠y ).在未能确定x 与y 大小的情况下,请给出一个让甲必胜的方案(即指出甲取哪两个容器可以获胜),并说明此方案必胜的理由.【详解】设A,B,C,D的体积分别为V A,V B,V C,V D,则V A=x3,V B=x2y,V C=xy2,V D=y3,甲从A,B,C,D中任选2个,有AB,AC,AD,BC,BD,CD,共6种可能,............................4分当x>y时,则x3>x2y>xy2>y3,即V A>V B>V C>V D,则V A+V B>V C+V D,V A+V C>V B+V D,即甲取BD,CD均不能够稳操胜券;..........................7分当x<y时,则y3>y2x>yx2>x3,即V D>V C>V B>V A,则V D+V C>V B+V A,V D+V B>V C+V A,即甲取AC,AB均不能够稳操胜券;............................10分若甲先取AD,则V A+V D-V B+V C=x3+y3-xy2+x2y=(x-y)2(x+y)>0,即V A+V D>V B+V C,即甲先取AD能够稳操胜券,选BC不能够稳操胜券;综上所述:甲必胜的方案:甲选AD.............................15分17.(15分)已知实数a、b满足:9a2+b2+4ab=10.(1)求ab和3a+b的最大值;(2)求9a2+b2的最小值和最大值.【详解】(1)∵9a2+b2+4ab=10,∴9a2+b2=10-4ab,∵9a2+b2≥6ab,∴10-4ab≥6ab,∴ab≤1,当且仅当a=33、b=3或a=-33、b=-3时等号成立,∴ab的最大值为1,∵9a2+b2+4ab=10,∴(3a+b)2-10=2ab,∵2ab=23×3a×b≤23×3a+b22=(3a+b)26,∴(3a+b)2-10≤(3a+b)26,∴(3a+b)2≤12,∴3a+b≤23,当且仅当a=33、b=3时等号成立,∴3a+b的最大值为23;............7分(2)∵9a2+b2+4ab=10,∴ab=10-9a2-b24,∵9a2+b2≥6ab,∴9a2+b2≥6×10-9a2-b24,即9a2+b2≥6,当且仅当a=33、b=3或a=-33、b=-3时等号成立,∴9a2+b2的最小值为6,又9a2+b2≥-6ab,∴9a2+b2≥-6×10-9a2-b24,即9a2+b2≤30,当且仅当a=153、b=-15或a=-153、b=15时等号成立,∴9a2+b2的最大值为30.............................15分18.(17分)已知函数y=m+1x2-m-1x+m-1.(1)若不等式m+1x2-m-1x+m-1<1的解集为R,求m的取值范围;(2)解关于x的不等式m+1x2-2mx+m-1≥0;(3)若不等式m+1x2-m-1x+m-1≥0对一切x∈x-12≤x≤12恒成立,求m的取值范围.【详解】(1)由题意,当m +1=0,即m =-1时,2x -2<1,解集不为R ,不合题意;当m +1≠0,即m ≠-1时,(m +1)x 2-(m -1)x +m -2<0的解集为R ,∴m +1<0Δ=(m -1)2-4(m +1)(m -2)<0 ,即m <-13m 2-2m -9>0故m <-1时,m <1-273.综上,m <1-273.............................6分(2)由题意得,在(m +1)x 2-2mx +m -1≥0,即[(m +1)x -(m -1)](x -1)≥0,当m +1=0,即m =-1时,解集为x x ≥1 ;当m +1>0,即m >-1时,x -m -1m +1(x -1)≥0,即m -1m +1=1-2m +1<1,解集为x x ≤m -1m +1或x ≥1 ;当m +1<0,即m <-1时,x -m -1m +1(x -1)≤0,∵m -1m +1=1-2m +1>1,∴解集为x 1≤x ≤m -1m +1.综上,当m <-1时,解集为x 1≤x ≤m -1m +1;当m =-1时,解集为x x ≥1 ;当m >-1时,解集为x x ≤m -1m +1或x ≥1 .............................11分(3)由题意,(m +1)x 2-(m -1)x +m -1≥0,即m x 2-x +1 ≥-x 2-x +1,∵x 2-x +1>0恒成立,∴m ≥-x 2-x +1x 2-x +1=-1+2(1-x )x 2-x +1,设1-x =t ,则12≤t ≤32,x =1-t∴1-x x 2-x +1=t (1-t )2-(1-t )+1=t t 2-t +1=1t +1t -1,∵t +1t ≥2,当且仅当t =1时取等号,∴1-x x 2-x +1≤1,当且仅当x =0时取等号,∴当x =0时,-x 2-x +1x 2-x +1max=1,∴m ≥1,∴m 的取值范围为1,+∞ ...........................17分19.(17分)已知S n =1,2,⋯,n n ≥3 ,A =a 1,a 2,⋯,a k k ≥2 是S n 的子集,定义集合A *=a i -a j a i ,a j ∈A 且a i >a j ,若A *∪n =S n ,则称集合A 是S n 的恰当子集.用X 表示有限集合X 的元素个数.(1)若n =5,A =1,2,3,5 ,求A *并判断集合A 是否为S 5的恰当子集;(2)已知A =1,a ,b ,7 a <b 是S 7的恰当子集,求a ,b 的值并说明理由;(3)若存在A 是S n 的恰当子集,并且A =5,求n 的最大值.【解析】(1)若n =5,有S 5=1,2,3,4,5 ,由A =1,2,3,5 ,则A *=1,2,3,4 ,满足A *∪5 =S 5,集合A 是S 5的恰当子集;-------------------------3分(2)A =1,a ,b ,7 a <b 是S 7的恰当子集,则A *=1,2,3,4,5,6 ,7-1=6∈A *,由5∈A *则7-a =5或b -1=5,7-a =5时,a =2,此时b =5,A =1,2,5,7 ,满足题意;b -1=5时,b =6,此时a =3,A =1,3,6,7 ,满足题意;a =2,b =5或a =3,b =6.-------------------8分(3)若存在A 是S n 的恰当子集,并且A =5,当n =10时,A =1,2,3,7,10 ,有A *=1,2,3,4,5,6,7,8,9 ,满足A *∪10 =S 10,所以A =1,2,3,7,10 是S 10的恰当子集,---------------------11分当n =11时,若存在A 是S 11的恰当子集,并且A =5,则需满足A *=1,2,3,4,5,6,7,8,9,10 ,由10∈A *,则有1∈A 且11∈A ;由9∈A *,则有2∈A 或10∈A ,-----------------------13分2∈A 时,设A =1,2,a ,b ,11 3≤a <b ≤10 ,经检验没有这样的a ,b 满足A *=1,2,3,4,5,6,7,8,9,10 ;当10∈A 时,设A =1,a ,b ,10,11 2≤a <b ≤9 ,经检验没有这样的a ,b 满足A *=1,2,3,4,5,6,7,8,9,10 ,----------------------------16分因此不存在A 是S 11的恰当子集,并且A =5,所以存在A 是S n 的恰当子集,并且A =5的n 的最大值为10.-------------17分。

高一数学必修1第一次月考试卷

高一数学必修1第一次月考试卷

高一数学必修1第一次月考试卷(含答案解析)数学试卷(时间:120分钟总分:150分)一.选择题:(本大题共10小题;每小题5分;共50分. 在每小题给出的四个选项中;只有一项是符合题目要求的.)1.集合{1;2;3}的真子集共有()A、5个B、6个C、7个D、8个2.图中的阴影表示的集合中是()A.B.C.D.3.以下五个写法中:①{0}∈{0;1;2};②{1;2};③{0;1;2}={2;0;1};④;⑤;正确的个数有()A.1个B.2个C.3个D.4个4.下列从集合A到集合B的对应f是映射的是()A B A B A B A BA B C D5.函数的定义域为()A.B.C.D.6.若函数;则的值为()A.5 B.-1C.-7D.27.已知函数;;那么集合中元素的个数为………………………………………………………()A.1 B.0 C.1或0 D.1或28.给出函数如下表;则f〔g(x)〕的值域为()A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合;若A∩B≠;则a的取值范围是()A.B.C.D.10.设, 与是的子集, 若∩=,则称(,)为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(,)与(,)是两个不同的“理想配集”)A. 4B. 8C. 9D. 16二.填空题(本大题共5个小题;每小题4分;共20分)11.已知集合;则=12.若函数;则=_ __ __13.若函数的定义域为[-1;2];则函数的定义域是14.函数在区间上递减;则实数的取值范围是_ __15.对于函数;定义域为;以下命题正确的是(只要求写出命题的序号)①若;则是上的偶函数;②若对于;都有;则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若;则是上的递增函数。

三.解答题:(本大题共6小题;共80分;解答应写出文字说明;证明过程或演算步骤)。

16.(本小题13分).全集U=R;若集合;;则(1)求;, ;(2)若集合C=;;求的取值范围;(结果用区间或集合表示)17.(本小题13分).已知函数的定义域为集合;;(1)求;;(2)若;求实数的取值范围。

高一数学上学期第一次月考试题附答案

高一数学上学期第一次月考试题附答案

已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0

D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素

2024-2025学年河北省保定市保定一中高一(上)第一次月考数学试卷(含答案)

2024-2025学年河北省保定市保定一中高一(上)第一次月考数学试卷(含答案)

2024-2025学年河北省保定一中高一(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若集合A={x∈Z|4x−x2>0},则满足A⋃B={1,2,3,4,5}的集合B的个数为( )A. 2B. 4C. 8D. 162.设函数f(x)={x+2,(x<0)3x+1,(x≥0),则f[f(−2)]=( )A. 3B. 1C. 0D. 133.已知a>0,b>0,则“a+b=1”是“1a +4b≥9”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.下列图象中,表示定义域、值域均为[0,1]的函数是( )A. B.C. D.5.已知a<0,−1<b<0,则有( )A. ab>ab2>aB. ab2>ab>aC. ab>a>ab2D. a>ab>ab26.已知命题p:a−4a≤0,命题q:不等式ax2+ax+1≤0的解集为⌀,则p成立是q成立的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知1≤a≤2,3≤b≤5,则下列结论错误的是( )A. a+b的取值范围为[4,7]B. b−a的取值范围为[2,3]C. ab的取值范围为[3,10]D. ab 的取值范围为[15,23]8.关于x的不等式x2−(a+1)x+a<0的解集中恰有2个整数,则实数a的取值范围是( )A. [−2,−1)∪(3,4]B. [−2,−1]∪[3,4]C. (−1,0)∪(2,3)D. [−1,0]∪[2,3]二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.下列各组函数中,是相同函数的是( )A. f(x)=x 2,x ∈{−1,0,1}与g(x)={0,x =0,1,x =±1B. f(x)=x ⋅|x|与g(x)={x 2,x ≥0,−x 2,x <0C. f(x)=x 与g(x)= x 2D. f(x)=1x (x >0)与g(x)=x +1x 2+x (x >0)10.下列说法中正确的有( )A. 命题p :∃x 0∈R,x 20+2x 0+2<0,则命题p 的否定是∀x ∈R ,x 2+2x +2≥0B. “|x|>|y|”是“x >y ”的必要条件C. 命题“∀x ∈Z ,x 2>0”的是真命题D. “m <0”是“关于x 的方程x 2−2x +m =0有一正一负根”的充要条件11.若函数f(x)={x 2−2x,x ≥a,−x,x <a,存在最小值,则实数a 的可能取值为( )A. −1B. 1C. 2D. 3三、填空题:本题共3小题,每小题5分,共15分。

高一数学必修一月考试卷及答案

高一数学必修一月考试卷及答案

高一数学必修一月考试卷及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。

广西钦州市2024-2025学年高一上学期10月同步月考数学测试卷(一)(含解析)

广西钦州市2024-2025学年高一上学期10月同步月考数学测试卷(一)(含解析)

2024~2025学年度高中同步月考测试卷(一)高一数学测试模块:必修第一册考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本试卷主要命题范围:北师大版必修第一册第一章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则集合的子集个数为( )A .4B .8C .10D .162.不等式的解集为( )A . B . C . D .3.已知集合,若,则实数a 的值为( )A .B .3C .3或D .64.已知实数a ,b ,c ,d 满足,则下列结论正确的是( )A .B .C .D .5.已知关于x 的不等式的解集为,其中a ,b ,c 为常数,则不等式的解集是( )A .B .C .D .6.某校高一年级组织趣味运动会,有跳远球类跑步三项比赛,共有24人参加比赛,其中有12人参加跳远比赛,有11人参加球类比赛,有16人参加跑步比赛,同时参加跳远和球类比赛的有4人,同时参加球类和跑步比赛的有5人,没有人同时参加三项比赛,则( )A .同时参加跳远和跑步比赛的有4人B .仅参加跳远比赛的有3人{2,3,4},{0,1}A B =={,,}C z z x y x A y B ==+∈∈∣342x ≤-1124x x ⎧⎫<≤⎨⎬⎩⎭,2114x x x ⎧⎫≥<⎨⎬⎩⎭或1124x x ⎧⎫≤≤⎨⎬⎩⎭11,24x x x ⎧⎫≥≤⎨⎬⎩⎭或{,||,3}A a a a =-3A ∈3-3-0a b c d >>>>a d b c ->-ab cd >a c b d ->-ac bd>20ax bx c ++>{27}xx -<<∣20cx bx a ++≤211,7x x x ⎧⎫≤-≥⎨⎬⎩⎭或11,27x x x ⎧⎫≤-≥⎨⎬⎩⎭或1127x x ⎧⎫-≤≤⎨⎬⎩⎭1172x x ⎧⎫-≤≤⎨⎬⎩⎭C .仅参加跑步比赛的有5人D .同时参加两项比赛的有16人7.已知全集U ,集合M ,N 满足,则( )A . B .C .D .8.已知实数x 满足,则的最小值为( )A .9B .18C .27D .36二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列结论中正确的是( )A .B .C .D .10.已知,若q 是的充分条件,则q 可以是( )A .B .C .D .11.定义,则下列说法正确的是( )A .B .对任意的且C .若对任意实数恒成立,则实数a 的取值范围是D .若存在,使不等式成立,则实数a 的取值范围是三、填空题:本题共3小题,每小题5分,共15分.12.命题“”的否定是_________.13.已知集合,若,则实数m 的最大值为__________.14.已知实数a ,b 满足,且,则的最小值为____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知集合.(1)若成立的一个必要条件是,求实数m 的取值范围;(2)若,求实数m 的取值范围.16.(本小题满分15分)M N U ⊆⊆()()U U M N =∅ ððM N M = ()U M N M = ð()()U U M N M= ðð103x <<11213x x+-0∈∅{0}=∅{}∅∈∅{0}∅⊆:2p x ≥p ⌝3x ≥1x ≤2x >0x <*(1)(1)x y x y =+-1*33*2=2x >-111,*112x x x≠-=++,(1)*(23)33x x a x a ----≥--{13}aa -<<∣2x ≥(1)*(23)33x a x a ----≤--27a a ⎧⎫≥⎨⎬⎩⎭23,430x x x ∈++=R {3,2,0,2,3},{}M N xx m =--=≥∣M N M = 11a b -<<<2a b +=1311aa b ++-{26},{22}A xx B x m x m =-<<=-<<+∣∣x B ∈x A ∈A B =∅记全集,集合,.(1)若,求;(2)若,求a 的取值范围;(3)若,求a 的取值范围.17.(本小题满分15分)已知实数a ,b 满足.(1)求实数a ,b 的取值范围;(2)求的取值范围.18.(本小题满分17分)如图所示,为宣传某运动会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为,为了美观,要求海报上四周空白的宽度均为,两个宣传栏之间的空隙的宽度为,设海报纸的长和宽分别为.(1)求y 关于x 的函数表达式;(2)为节约成本,应如何选择海报纸的尺寸,可使用纸量最少?19.(本小题满分17分)已知:,q :关于x 的方程的两根均大于1.(1)若p 为真命题,求实数a 的取值范围;(2)若p 和q 中一个为真命题一个为假命题,求实数a的取值范围.U =R {221,}A xa x a a =-≤≤+∈R ∣{3,7}B x x x =≤≥∣或4a =()U A B ðA B =R A B A = 18,34a b a b ≤+≤≤-≤25a b -2700dm 2dm 3dm dm,dm x y 2:1,30p x x ax a ∀≥---+≥2260 x ax a -+-=2024~2025学年度高中同步月考测试卷(一)·高一数学参考答案、提示及评分细则1.D ,故其子集的个数为16.故选D .2.B 不等式,即,等价于解得或,所以原不等式的解集为.故选B .3.A 由,,则,不符合集合元素的互异性;若,则或(舍),,此时符合集合元素的特征;若,即,则不符合集合元素的互异性.故.故选A .4.A 对于A ,,所以,则,故A 正确;对于BCD ,取,,,,满足,显然,,故BCD 错误.故选A .5.C 关于x 的一元二次不等式的解集为,则,且,7是一元二次方程的两根,于是解得则不等式化为,即,解得,所以不等式的解集是.故选C .6.C 设同时参加跳远和跑步比赛的有x 人,由题意画出韦恩图,如图,则,解得,故A 错误;仅参加跳远比赛的人数为,故B 错误;仅参加跑步比赛的人数为,故C 正确;同时参加两项比赛的人数为,故D 错误.故选C .{}2,3,4,5C =342x ≤-11402x x -≤-(114)(2)0,20,x x x --≤⎧⎨-≠⎩114x ≥2x <11,24x x x ⎧⎫≥<⎨⎬⎩⎭或3A ∈3a =||3a =||3a =3a =-3a =36a -=-{3,3,6}A =--33a -=6a =||6a =3a =-0a b c d >>>>0d c ->->a d b c ->-2a =1b =2c =-4d =-0a b c d >>>>28,45ab cd a c b d =<=-=<=-4ac bd =-=20ax bx c ++>{27}xx -<<∣0a <2-20ax bx c ++=0,27,27,a b a c a ⎧⎪<⎪⎪-+=-⎨⎪⎪-⨯=⎪⎩5,14,0,b a c a a =-⎧⎪=-⎨⎪<⎩20cx bx a ++≤1450ax ax a --+≤2214510x x +-≤1127x -≤≤20cx bx a ++≤1127x x ⎧⎫-≤≤⎨⎬⎩⎭84251124x x x -+++++-=6x =862-=1165-=46515++=7.B 全集U ,集合M ,N 满足,绘制图,如图:对于A:,故A 错误;对于B:,故B 正确;对于C:,故C 错误;对于D:,故D 错误.故选B .8.C 因为,所以,又因为,所以(当且仅当,即时等号成立).故选C .9.CD 是不含任何元素的集合,所以是指元素为的集合,所以,故AB 错误,C 正确;是任何集合的子集,所以,故D 正确.故选CD .10.BD 因为条件,所以,对于A ,因为不能推出,所以不是的充分条件,故A 错误;对于B ,因为能推出,所以是的充分条件,故B 正确;对于C ,因为不能推出,所以不是的充分条件,故C 错误;对于D ,因为能推出,所以是的充分条件,故D 正确.故选BD .M N U ⊆⊆Venn ()()U U U M N N = ðððM N M = ()U M N =∅ ð()()U U U M N M = ððð103x <<0131x <-<3(13)1x x +-=1123123121336[3(13)]1515271331331313x x x x x x x x x x x x -⎛⎫+=+=+-⨯+=++≥+= ⎪----⎝⎭133613x x x x -=-19x =∅0,{}∉∅∅∅{}∅∈∅∅{0}∅⊆:2p x ≥:2p x <3x ≥2x <3x ≥2x <1x ≤2x <1x ≤2x <2x >2x <2x >2x <0x <2x <0x <2x <11.ABD 对于A ,,即,故A 正确;对于B ,,故B 正确;对于C , 恒成立,即恒成立,则,解得,故C 错误;对于D ,由题可知存在,使得成立,即成立,又,得a 的取值范围是,故D 正确.故选ABD .12. 由特称量词命题的否定为全称量词命题得,命题“”的否定为“”.13. 因为且,所以,则,所以m 的最大值为.14由题易得,则,又,即时等号成立,的最小值为.15.解:(1)是的一个必要条件,,显然,,且,解得,即m 的取值范围为. 6分(2)若,,或,解得,或,即m 的取值范围为,或. 13分16.解:(1)因为,所以,所以,或, 2分1*3(11)(13)4,3*2(13)(12)4=+⨯-=-=+⨯-=-1*33*2=111121*111121212x x x x x x x x++⎛⎫⎛⎫=+-=⋅= ⎪⎪++++++⎝⎭⎝⎭(1)*(23)(11)x a x x a ----=+--2[1(23)]()(33)3(33)333x x a x x a x a a ---=-+=+--≥--2(1)10x a x +-+≥2(1)40a ∆=--≤13a -≤≤2x ≥2(1)10x a x +-+≤11a x x ≥++min 1712x x ⎛⎫++= ⎪⎝⎭72a a ⎧⎫≥⎨⎬⎩⎭2,430x x x ∀∈++≠R 2,430x x x ∃∈++=R 2,430x x x ∀∈++≠R 3-{3,2,0,2,3},{}M N xx m =--=≥∣M N M = M N ⊆3m ≤-3-1-2a b =-13163133111111a b a b a b a b -+=+=+-+-+-+-133(1)1[(1)(1)]13441111a b a b a b b a +-⎛⎫++-+=+++≥+=+ ⎪+--+⎝⎭13211a b ∴+≥++-3(1)111a b b a +-=-+2,4a b ==1311aa b ∴++-231+=x A ∈ x B ∈B A ∴⊆B ≠∅26m ∴+≤22m -≥-04m ≤≤{04}mm ≤≤∣A B =∅ 26m ∴-≥22m +≤-8m ≥4m ≤-{4m m ≤-∣8}m ≥4a ={29}A xx =≤≤∣U {2A xx =<∣ð9}x >所以,或. 4分(2)因为,所以6分解得,故a 的取值范围为. 8分(3)因为,所以,9分①当,即时,,显然满足,符合题意;11分②当,即时,,因为,所以,或,所以,或,14分综上所述,,或,即a 的取值范围为,或. 15分17.解:(1),①,②①②两式相加,得,.3分,③ 5分∴①③两式相加,得, 7分的取值范围为的取值范围为. 8分(2)令,,9分,10分,11分又,,12分, 14分的取值范围为.15分18.解:(1)由题知,两个矩形宣传栏的长为,宽为, 2分U (){2A B x x =< ∣ð9}x >A B =R 23,217,a a -≤⎧⎨+≥⎩35a ≤≤{35}aa ≤≤∣A B A = A B ⊆221a a ->+3a <-A =∅A B ⊆221a a -≤+3a ≥-A ≠∅A B ⊆27a -≥213a +≤9a ≥31a -≤≤1a ≤9a ≥{1aa ≤∣9}x ≥18ab ≤+≤ 34a b ≤-≤4212a ≤≤26a ∴≤≤34,43a b b a ≤-≤∴-≤-≤- 35325,22b b -≤≤∴-≤≤a ∴{26},aa b ≤≤∣3522b b ⎧⎫-≤≤⎨⎬⎩⎭,x a b y a b =+=-,22x y x ya b +-∴==737325()()2222a b y x a b a b ∴-=-=--+21734,()1422a b a b ≤-≤∴≤-≤ 18,8()1a b a b ≤+≤∴-≤-+≤-3312()22a b ∴-≤-+≤-37325()()2222a b a b ∴-≤--+≤25a b ∴-325252522a b a b -⎧⎫⎨-≤≤⎩-⎬⎭72x -4y -, 6分整理得.8分(2)由(1)知,即,10分,∴由基本不等式可得,12分令,解得(舍去)或.14分,当且仅当即时等号成立, 16分∴海报长,宽时,用纸量最少,最少用纸量为. 17分19.解:(1)若p 为真命题,即为真命题,当时,成立,此时;2分当时,,所以在内恒成立, 4分令,则,所以,当且仅当,即时等号成立. 7分所以,故实数a 的取值范围为, 8分(2)设关于x 的方程的两根分别为,则且,所以即11分解得,即实数a 的取值范围为.13分因为p 和q 中一个为真命题一个为假命题,所以p 真q 假,或p 假q 真,当p 真q 假时,所以,15分72(4)7002x y -∴⨯⨯-=7004(7)7y x x =+>-(7)(4)700x y --=47672xy x y =++7,4x y >> 47672672xy x y =++≥+t =26720t --≥t ≤-t ≥1008xy ∴≥47,47672,x y xy x y =⎧⎨=++⎩42,24x y ==42dm 24dm 21008dm 21,30x x ax a ∀≥---+≥1x =-2(1)(11)30a ---++≥a ∈R 1x >-10x +>231x a x +≤+{1}xx >-∣1x t +=1(0)x t t =->2223(1)34242221x t t t t x t t t +-++-===+-≥-=+4t t=2(1)t x ==2a ≤{2}aa ≤∣2260x ax a -+-=12,x x 11x >212121,2,6x x x a x x a >+==-()()()()21212(2)4(6)0,110,110,a a x x x x ⎧---≥⎪-+->⎨⎪-->⎩260,22,6210,a a a a a ⎧+-≥⎪>⎨⎪--+>⎩723a ≤<723a a ⎧⎫≤<⎨⎬⎩⎭2,72,,3a a a ≤⎧⎪⎨<≥⎪⎩或2a <当p 假q 真时,所以,所以实数a 的取值范围为. 17分2,72,3a a >⎧⎪⎨≤<⎪⎩723a <<72,23a a a ⎧⎫<<<⎨⎬⎩⎭∣或。

高一上学期第一次月考数学试卷(附带答案)

高一上学期第一次月考数学试卷(附带答案)

高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。

(本题共8小题,共40分,每小题只有一个正确选项。

)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。

高一上册数学第一次月考试卷及答案

高一上册数学第一次月考试卷及答案

高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。

1个B。

2个C。

3个D。

4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。

0B。

1C。

2D。

36.函数 f(x)=x^2-4x+3 的递减区间是()A。

(-∞,1]B。

[1,2]C。

[2,+∞)D。

[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。

A∩BB。

A∪BC。

A-BD。

B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。

2024-2025学年鲁教版(2019)高一数学上册月考试卷663

2024-2025学年鲁教版(2019)高一数学上册月考试卷663

2024-2025学年鲁教版(2019)高一数学上册月考试卷663考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、若某个样本的数据是连续的5个正整数;则该样本的方差是()A. 1B. 2C. 3D.2、函数的单调递减区间是()A. (-∞;1)B. (1;+∞)C. [-1;1]D. [1;3]3、【题文】已知函数,且,则下列结论中,必成立的是()A.B.C.4、【题文】已知集合,集合,则()A.B.C.D.5、【题文】设,则的大小关系为()A.B.C.D.6、在△ABC中,,则△ABC的面积为()A. 3B. 4C. 6D.评卷人得分二、填空题(共6题,共12分)7、比较大小:0.23 20.3.8、【题文】沿对角线AC将正方形ABCD折成直二面角后,则AC与BD所成的角等于_______9、【题文】已知圆与圆相交,则实数的取值范围为▲10、【题文】已知都是奇函数,的解集是的解集是,则的解11、设实数a,b满足a+ab+2b=30,且a>0,b>0,那么的最小值为 ______ .12、已知f(x)={f(x−1)−1(x>0)sinπx(x<0)则f(−116)+f(116)= ______ .评卷人得分三、解答题(共6题,共12分)13、已知(1)证明函数f(x)在区间[0;+∞)上是增函数。

(2)求函数f(x)在R上的最值.14、【题文】有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速和车长的关系满足:(为正的常数),假定车身长为,当车速为时;车距为2.66个车身长.写出车距关于车速的函数关系式;应规定怎样的车速,才能使大桥上每小时通过的车辆最多?15、【题文】已知射线和点,试在上求一点使得所在直线和,直线在第一象限围成的三角形面积达到最小值,并写出此时直线的方程。

陕西省西安市黄河中学2024-2025学年高一上学期第一次月考数学试题(含解析)

陕西省西安市黄河中学2024-2025学年高一上学期第一次月考数学试题(含解析)

高一数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4,本试卷主要考试内容:人教A 版必修第一册前两章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.命题“”的否定为( )A .B .C .D .2.下列关系式正确的是( )AB .C .D .3.已知集合,则用列举法表示( )A . B .C .D .4.已知,则“”是“a ,b ,c 可以构成三角形的三条边”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知集合,则C 的真子集的个数为( )A .0B .1C .2D .36.已知正数a ,b 满足,则的最小值为( )A .9B .6C .4D .37.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株多肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不低于1250元,则每株这种多肉植物的最低售价为( )A .25元B .20元C .10元D .5元8.学校统计某班30名学生参加音乐、科学、体育3个兴趣小组的情况,已知每人至少参加了1个兴趣小11,||1||1x y x y ∀><++11,||1||1x y x y ∀>≥++11,||1||1x y x y ∀≤≥++11,||1||1x y x y ∃>≥++11,||1||1x y x y ∃≤≥++Q 1-∈N ⊆Z N ⊆Q R31A x x ⎧⎫=∈∈⎨⎬-⎩⎭ZZ A ={2,0,2,4}-{2,0,1,2,4}-{0,2,4}{2,4}0,0,0a b c >>>a b c +>{}2(,)21,{(,)23},A x y y x x B x y y x C A B ==-+==-= ∣∣121a b+=2a b +组,其中参加音乐、科学、体育小组的人数分别为19,19,18,只同时参加了音乐和科学小组的人数为4,只同时参加了音乐和体育小组的人数为2,只同时参加了科学和体育小组的人数为4,则同时参加了3个小组的人数为( )A .5B .6C .7D .8二、选择题:本题共3小题,每小题6分,共18分。

高一上学期第一次月考数学试题(含答案解析)

高一上学期第一次月考数学试题(含答案解析)

高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世 界 上 最 恐 怖 的 事 情 莫 过 于 比 你 优 秀 的 人 比 你 更 努 力 !
班级:高一 班 姓名: 学号:
封 线
内 不 要 答 题
康乐一中2013——2014学年度第一学期
9月份高一数学考试题
一、选择题(本大题共12小题,每题5分,共60分). 1、已知集合U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则(A B)U C ⋃=( )
A.{6,8}
B.{5,7}
C.{4,6,7}
D.{1,3,5,6,8} 2、已知集合A={x |x >1},{x |1x 2}B =-<<,则A B ⋂=( ) A.{x |1x 2}-<< B B.{x |x 1}>- C.{x |1x 1}-<< D . D.{x |1x 2}<< 3、集合{x *|x 5}N ∈<用列举法表示为( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5} 4、已知集{|}A x x =是平行四边形,{|}B x x =是矩形,
{|}C x x =是正方形,{|}D x x =是菱形,则( )
A.A B ⊆
B.A D ⊆
C.D C ⊆
D.C B ⊆
5、设U 为全集,集合A 、B 是其子集,则图中阴影部分表示的集合为( )
A.C U A B ⋃()
B.C U A B ⋂()
C.()C U U C A B ⋂()
D.C U B
6、下列函数中,既是奇函数,又是增函数的是( )
A A.31y x =+ B.1y x = C.1
1y x =- D.3y x =
7、下列函数中,与函数(x 0)y x =≥
有相同图像的是
( )
A.2
y x = B.2
()y x = C.33
y x = D.2
x y x
=
8、下列表示函数2
1,[1,0](x)1,(0,1]x x f x x +∈-⎧=⎨+∈⎩
的图像正确的是( )
9、 A.8个 B.7个 C.6个 D.5个 10、下列表示①{0}=∅,②{2}{2,4,6}∈,③0{0}∈,
④2
{2}{|320}x x x ⊆-+=中,正确的有( )
A.0个
B.1个
C.2个 D
D.3个 11、已知函数f (x+1)的定义域为[-2,3]则f (x -2)的定义域为( ) A.[-2,3] B.[-1,4] C.[1,6] D.[-4,1] 12、设函数f (x )是定义在R 上的奇函数,当x ≤0时,2()2f x x x =-,则(1)f =( )
A.-3
B.-1
C.1
D.3
二、填空题(本大题共4小题,每题5分,共20分).
13、已知集合2{2,4,}A x x =-,若6A ∈,则x = .
14、已知集合{1,3,}A m =,{3,4}B =,{1,2,3,4}A B ⋃=,
则m = . 15、函数1
(x)12f x
=-的定义域是 . 16、设函数22
,1
(x)1,1x f x x x ⎧>⎪=⎨⎪+≤⎩
,则[(3)]f f = .
三、解答题(本大题共6小题,共70分).
17、(10分)已知集合{|37}A x x =≤<{|210}B x x =<<,求A B ⋃,A B ⋂,(A)B R C ⋂,A (B)R C ⋃.
18、(10分)已知f (x )是一次函数,且f [f (x )]=4x -1,求f (x ).
世 界 上 最 恐 怖 的 事 情 莫 过 于 比 你 优 秀 的 人 比 你 更 努 力 !
班级:高一 班 姓名: 学号:
封 线 内 不 要 答 题
19、(10分)设2{|8150}A x x x =-+=,{|10}B x ax =-=,若
B A ⊆,求实数a 的取值集合.
20、 (14分)已知函数1
(x)f x x
=
+。

(1)判断该函数的奇偶性并证明;
(2)证明该函数在(1,)+∞是增函数.
21、(14分)已知函数2223,30(x)33,0165,16x x x f x x x x x ⎧++-≤<⎪
=-+≤<⎨⎪-+-≤<⎩

(1)画出函数的图像;
(2)求函数的单调区间,并说明在每一个单调区间上函数的单调性;
(3)求函数的最大值和最小值.
22、(12分)某商场五一期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,超过800元的部分享受一定的折扣优惠,按下表折扣分别累计计算:
可以享受折扣优惠的金额 折扣率
不超过500元的部分
5% 超过500元的部分
10% 设某人在此商场购物总金额为x 元,可以获得的折扣为y 元。

(1)试写出y 关于x 的解析式;
(2)若y=30,求此人购物实际所付金额.。

相关文档
最新文档