转速电流双闭环直流调速系统设计
双闭环直流调速系统的设计
双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接如下图所示。
L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。
2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。
如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。
2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。
(2)设计调节器的参数,以满足动态性能指标的要求。
一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。
根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。
双闭环直流调速系统ACR设计
双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。
其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。
ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。
ACR系统的设计首先需要确定控制器的参数。
其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。
这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。
在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。
积分时间决定了对速度误差的积分时间长度,即速度误差累计值。
在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。
积分时间决定了对电流误差的积分时间长度,即电流误差累计值。
ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。
速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。
这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。
在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。
然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。
这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。
ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。
通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。
转速电流双闭环直流调速系统
运 动 控 制 系 统期 中 作 业转速电流双闭环直流调速系统一、已知参数:电动机的参数:nom P =0.2kw ,nom U =48v ,nom I =3.7A ,nom n =200r/min ,Ω=5.6a R ,电势系数,允许过载倍数电枢回路总电阻28R =Ω=λrmin/.V 12.0Ce =电磁时间常数lT =0.015s ,机电时间常数s 001.0T o i ,2.0==电流反馈滤波时间常数s T m ,转速滤波时间常数.005.0s T on =设调节器输入输出电压V U U U cm im nm 10**===,调节器输电阻Ω=K R 400。
已计算出电力晶体管D202的开关频率为f=1KHZ ,PWM 环节的放大倍数8.4=s K 。
2、设计指标:稳态无静差,电流超调量%5≤i δ,空载起动到额定转速时的转速超调量%20≤n δ,过渡过程时间s t s 1.0≤。
二、电流环的设计: 1. 确定时间常数整流装置滞后时间常数:s fT s 0005.0121==电流滤波时间常数:s T oi 001.0= 电流环小时间常数按小时间常数近似处理 取s T T Toi s i0015.0001.00005.0=+=+=∑2. 选择电流调节器结构和参数根据设计要求,电流环设计为典I 系统,选择PI 调节器,其传递函数为:()ss K s W i i iττ1ACR+=电流反馈系数: 35.1210==nomI βV/AACR 超前时间常数:s T l i 015.0==τ,电流开环增益:要求量%5≤i δ,应取5.0=∑ii KT ,即s l T K iI /3.3330015.05.05.0==∑=ACR 的比例系数为:17.6=∙=si I i K R K K βτ3. 校验近似条件电流环截止频率=ci ωs l K I /3.333=1) 晶闸管装置传递函数近似条件:sciT 31≤ωci sT ω 7.6660005.03131=⨯=,满足近似条件。
转速电流双闭环直流调压调速系统综述
3 1 3
1
40.82
TmTl
0.18 0.03
(3)校验电流环小时间常数近似处理条件
1 1 1
1
180.8
3 TsToi 3 0.0017 0.002
ci
2.2.5 调节器电阻和电容的计算
2 系统参数------------------------------------------------------------------ 6 2.1 参数要求------------------------------------------------------------ 6 2.2 电流调节器的参数计算------------------------------------------------ 6 2.2.1 确定时间常数-------------------------------------------------- 6 2.2.2 电流调节器的结构选择 -----------------------------------------6 2.2.3 电流调节器的参数计算------------------------------------------ 7 2.2.4 校验近似条件 -------------------------------------------------7 2.2.5 调节器电阻和电容的计算---------------------------------------- 7 2.3 转速调节器的参数计算------------------------------------------------ 8 2.3.1 确定时间常数-------------------------------------------------- 8 2.3.2 转速调节器的结构---------------------------------------------- 8 2.3.3 转速调节器的参数计算------------------------------------------ 8 2.3.4 检验近似条件-------------------------------------------------- 9 2.3.5 调节器电阻和电容的计算---------------------------------------- 9 2.3.6 校核转速超调量------------------------------------------------ 9
转速﹑电流双闭环直流调速系统
引言目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。
我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。
首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。
在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。
直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
在现代化的工业生产中,几乎无处不使用电力拖动装置。
轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。
随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。
从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。
这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动系统至今仍广泛的应用着。
直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。
在一定时期以内,直流拖动仍将具有强大的生命力。
转速电流双闭环直流调速系统仿真与设计
运动控制系统课程设计题目:转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1. 设计题目转速电流双闭环直流调速系统仿真与设计2. 设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:1)直流电动机:160V、120A、1000r/min、C e=r,允许过载倍数λ=2)晶闸管装置放大系数:K s=303)电枢回路总电阻:R=Ω4)时间常数:T l=,T m=,转速滤波环节时间常数T on取5)电压调节器和电流调节器的给定电压均为10V试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果;系统要求:1)稳态指标:无静差2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10%3. 设计要求根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下:1)设计电流调节器的结构和参数,将电流环校正成典型I型系统;2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统;3)进行Simulink仿真,验证设计的有效性;4.设计内容1 设计思路:带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降;当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速;对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负反馈作限流保护,但这并不能控制电流的动态波形;按反馈的控制规律,采用某个物理量的负反馈就可以保持该基本量基本不变,采用电流负反馈就应该能够得到近似的恒流过程;另外,在单闭环调速系统中,用一个调节器综合多种信号,各参数间相互影响,难于进行调节器的参数调速;例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质;按照电机理想运行特性,应该在启动过程中只有电流负反馈,达到稳态转速后,又希望只有转速反馈,双闭环调速系统的静特性就在于当负载电流小于最大电流时,转速负反馈起主要作用,当电流达到最大值时,电流负反馈起主要作用,得到电流的自动保护;2双闭环调速系统的组成:a.系统电路原理图图2-1为转速、电流双闭环调速系统的原理图;图中两个调节器ASR和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置;电流环在内,称之为内环;转速环在外,称之为外环;两个调节器输出都带有限幅,ASR的输出限幅什U im决定了电流调节器ACR 的给定电压最大值U im,对就电机的最大电流;电流调节器ACR输出限幅电压U cm 限制了整流器输出最大电压值,限最小触发角α;图2-1 双闭环调速系统电路原理图b.系统动态结构图图2-2为双闭环调速系统的动态结构框图,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定;滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞;为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节;其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便;由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用T on表示;根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节;T oi—电流反馈滤波时间常数T on—转速反馈滤波时间常数图2-2双闭环调速系统的动态结构图3)按工程设计方法设计双闭环系统的ACR:设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展;在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器;a.确定时间常数整流滤波时间常数T s,三相桥式电路的平均失控时间T s=;电流滤波时间常数T oi,三相桥式电路每个波头的时间是,为了基本虑平波头,应有1~2Toi=,因此取Toi=2ms=;电流环小时间常数T∑i,按小时间常数近似处理,取T∑i=T s+T oi=;b.选择电流调节器结构由设计要求:σi%≤5%,并保证系统稳态电流无误差,因此可按典型I型系统设计,电流调节器选用PI 型,其传递函数为: W ACR s =isis Ki ττ1+ c.校验近似条件电流环截止频率11.135-==s KI ci ω; 晶闸管装置传递函数近似条件为:13ci sw T ≤=,满足近似条件; 忽略反电动势对电流环影响的条件为:ci w ≥满足近似条件; 小时间常数近似条件处理条件为:ci w ≤=, 满足近似条件;d.计算调节器电阻和电容电流调节器原理如图3-1所示,按所用运算放大器取R 0=40kΩ,各电阻和电容值计算如下:,取30k; ,取;-图3-1含给定滤波与反馈滤波的PI 型电流调节器按照上述参数,电流环可以达到的动态指标为:σi %=%<5%,满足设计4按工程设计方法设计双闭环系统的ASR :a.确定时间常数电流环等效时间常数为20.0074i T s ∑=;转速滤波时间常数Ton ,根据所用测速发电机波纹情况,取Ton=; 转速环小时间常数n T ∑ 按小时间常数近似处理,取n T ∑=20.0174i T Ton s ∑+=;b .选择转速调节器结构由于设计要求无静差,转速调节器必须含有积分环节;又根据动态要求,应按典型Ⅱ型系统设计速度环,故ASR 选用PI 调节器,其传递函数为:1()n ASR nn s W s K sττ+= c.计算速度调节器参数按跟随和抗干扰性能较好的原则,取h=5,则ASR 的超前时间常数为:50.01740.087n n hT s τ∑==⨯=,转速环开环增益: 2224.39621-∑=+=s T h h K nN 于是,ASR 的比例系数: =d.校验近似条件由转速截止频率:15.341-===s n KN KNcn τωω; 电流环传递函数简化条件: ,满足简化条件; 转速环小时间常数近似条件为: ,满足近似条件;e.计算调节器电阻和电容转速调节原理图如图3-2所示,取040R k =Ω,则,取550k; ,取;图3-2含给定滤波与反馈滤波的PI 型转速调节器-按照上述参数,电流环可以达到的动态指标为:当h=5时,查表得%,虽然不满足设计要求,而实际上,突加阶跃给定时,ASR 饱和,应按退饱和的情况重新计算超调量,实际%,满足设计要求;5内、外开环对数幅频特性的比较图4-1把电流环和转速环的开环对数幅频特性画在一张图上,其中各转折频率和截止频率依次为:13.2700037.011-==∑s i T ,151.570174.011-==∑s n T , 151.34-=s cn ω,15.11087.011-=s n τ; 以上频率一个比一个小,从计算过程可以看出,这是必然的规律;因此,这样设计的双闭环系统,外环一定比内环慢;一般来说,1150~100-=s ci ω,150~20-=s cn ω;从外环的响应速度受到限制,这是按上述方法设计多环控制系统时的缺点;然而,这样一来,每个环本身都是稳定的,对系统的组成和调试工作非常有利;总之,多环系统的设计思想是:以稳为主,稳中求快;L/dBO1/-s ωiT ∑1ciωnT ∑1cn ωnτ1InI-电流内环 n-转速外环图4-1又闭环系统内环和外环的开环对数幅频特性-20-40-20-406 晶闸管的电压、电流定额计算a.晶闸管额定电压U N晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um ,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取U N =2~3Um ,式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定;b.晶闸管额定电流I N为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值;即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值;可按下式计算:I N =~2K fb I MAX ;式中计算系数K fb =Kf/由整流电路型式而定,Kf 为波形系数,Kb 为共阴极或共阳极电路的支路数;当α=0时,三相全控桥电路K fb =,故计算的晶闸管额定电流为I N =~2K fb I MAX =~2 ××220×=~,取200A;7平波电抗器计算由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量;a.电枢电感量L M 按下式计算)(2103mH I Pn U K L NN N D M ⨯=P —电动机磁极对数,K D —计算系数,对一般无补偿电机:K D =8~12; b.整流变压器漏电感折算到次级绕组每相的漏电感L B 按下式计算)(100%2mH I U U K L dK BB •= U 2—变压器次级相电压有效值,I d —晶闸管装置直流侧的额定负载电流,K B —与整流主电路形式有关的系数;c.变流器在最小输出电流I dmin 时仍能维持电流连续时电抗器电感量L 按下式计算min2d I U K L •=, K 是与整流主电路形式有关的系数,三相全控桥K 取则L =mH.6)进行Simulink 仿真,验证设计的有效性a. 电流闭环的仿真如下图:为了研究系统的参数对动态性能的影响,分别取K I T ∑i =、、、,此时K I 的值也会随之变化,运行仿真,即可得不同K I 值的阶跃响应曲线:图6-1 KT=的阶跃响应曲线图6-2KT=的阶跃响应曲线图6-3 KT=的阶跃响应曲线图6-4 KT=的阶跃响应曲线由曲线可以看出如果要求动态响应快,可取KT=;如果要求系统超调小,则应把KT 的值取小些,可取KT<;无特殊要求,取折中值KT=,,称为最佳二阶系统;图6-1~图6-4反映了PI 调节器的参数对系统品质的影响趋势,在工程设计中,可以根据工艺的要求,直接修改PI 调节器的参数,找到一个在超调量和动态响应快慢上都较满意的电流环调节器;b. 转速环的仿真设计在增加转速环调节后,转速环开环传递函数如下: )1()1()(n 2n N n ++=∑s T s s K s W τ 校正后的调速系统动态结构框图如下所示:其中me n n N T C R K K βτα=;在matlab中搭建好系统的模型,如下图:转速环的仿真设计为满足系统在不同需求下的跟随性与抗扰行能要求,取h的之分别为:3、5、7、9. 用matlab仿真结果如下:图7-1h=3时的阶跃响应曲线图7-2h=5时的阶跃响应曲线图7-3h=7时的阶跃响应曲线图7-4h=9时的阶跃响应曲线由图可以看出:h值越小,动态降落也越小,恢复时间、调节时间也短,抗扰性能也越好,但是,从h<5以后,由于震荡剧烈h越小,恢复时间反而延长,综合起来看,h=5是最佳选择,也即最佳三阶系统;对电流环与转速环都是根据实际需要调节参数的,对比Ⅰ型、Ⅱ型系统可以发现:Ⅰ型系统可以在跟随性上做到超调小,但抗扰性能差;而Ⅱ型系统超调却相对较大,抗扰性能较好;5.设计心得a.通过该次设计,更加熟悉掌握了电流转速双闭环直流调速系统的结构组成以及它的工作原理,加深了对开环、闭环有静差、无静差调速的理解---闭环结构保证系统的稳定性与抗干扰能力;无静差调速则保证系统有较低的稳态误差;b.由此也初步掌握双闭环调节器的整个设计过程,其基本思想是先内环再外环;在结构框图的处理过程中有多处近似处理,简化了传递函数,从而使问题得到简化,因此称为被称为“工程设计方法”,这意味着在实际的应用中,在可以大大简化分析过程却很小影响分析结果的方法是很有价值的;从开环到闭环、从闭环无静差到有静差、从单环到双环着一些列的变化显示人们人知的渐进性;仿真是自己临时捡起matlab课本重新回顾才完成的,仿真的直观的证明了最佳二阶、三阶系统的参数,并再一次体现了matlab在控制中的重要作用,的确是一个很强大的仿真工具;整个仿真过程也加深了自己对电力拖动控制相关知识理解程度,相当于也许经过证明的才是最可靠的;d.由于水平有限,设计中肯定有许多错误和不足的地方,敬请老师指正;6.参考文献【1】陈伯时,电力拖动自动控制系统;机械工业出版社;【2】李荣生,电气传动控制设计指导;;。
转速电流双闭环直流调速系统的课程设计(MATLABSimulink)
电力拖动自动控制系统课程设计电气工程及其自动化专业任务书1.设计题目转速、电流双闭环直流调速系统的设计2.设计任务某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:U n=440V,I n=365A,n N=950r/min,R a=0.04,电枢电路总电阻R=0.0825,电枢电路总电感L=3.0mH,电流允许过载倍数=1.5,折算到电动机飞轮惯量GD2=20Nm2。
晶闸管整流装置放大倍数K s=40,滞后时间常数T s=0.0017s电流反馈系数=0.274V/A (10V/1.5IN)转速反馈系数=0.0158V min/r (10V/nN)滤波时间常数取T oi=0.002s,T on=0.01s===15V;调节器输入电阻R a=40k3.设计要求(1)稳态指标:无静差(2)动态指标:电流超调量5%;采用转速微分负反馈使转速超调量等于0。
目录任务书 (I)目录 (II)前言 (4)第一章双闭环直流调速系统的工作原理 (4)1.1 双闭环直流调速系统的介绍 (4)1.2 双闭环直流调速系统的组成 (5)1.3 双闭环直流调速系统的稳态结构图和静特性 (6)1.4 双闭环直流调速系统的数学模型 (7)1.4.1 双闭环直流调速系统的动态数学模型 (7)1.4.2 起动过程分析 (8)第二章调节器的工程设计 (10)2.1 调节器的设计原则 (10)2.2 Ⅰ型系统与Ⅱ型系统的性能比较 (10)2.3 电流调节器的设计 (11)2.3.1 结构框图的化简和结构的选择 (11)2.3.2 时间常数的计算 (13)2.3.3 选择电流调节器的结构 (13)2.3.4 计算电流调节器的参数 (13)2.3.5 校验近似条件 (14)2.3.6 计算调节器的电阻和电容 (15)2.4 转速调节器的设计 (15)2.4.1 转速环结构框图的化简 (15)2.4.2 确定时间常数 (16)2.4.3 选择转速调节器结构 (17)2.4.4 计算转速调节器参数 (17)2.4.5 检验近似条件 (17)2.4.6 计算调节器电阻和电容 (18)第三章Simulink仿真 (19)3.1 电流环的仿真设计 (19)3.2 转速环的仿真设计 (19)3.3 双闭环直流调速系统的仿真设计 (21)第四章设计心得 (23)参考文献 (23)前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。
实验二 转速电流双闭环直流调速系统
实验二转速电流双闭环直流调速系统实验二转速、电流双闭环直流调速系统实验二速度和电流双闭环直流调速系统一、实验目的1.了解速度和电流双闭环直流调速系统的组成。
2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。
3.测定双闭环直流调速系统的静态和动态性能及其指标。
4.了解调节器参数对系统动态性能的影响。
二、实验系统的组成及工作原理双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。
实际系统的组成如实验图2-1所示。
~Fbcfaswtarglidrmgsldzsssggun*asrui*uiacrgtucvtud0amsf220vunfbstg实验图2-1速度和电流双闭环直流调速系统主电路采用三相桥式全控整流电路供电。
系统工作时,首先给电动机加上额定励磁,改*变速和给定电压UN可以轻松调整电机的速度。
速度调节器ASR和电流调节器ACR均配备*限制电路。
ASR的输出UIM*用作ACR的设置,ASR的输出限制UIM用于限制启动电流用;acr的输出uc作为触发器tg的移相控制电压,利用acr的输出限幅ucm起限制α作用。
分钟**当突加给定电压un时,asr立即达到饱和输出uim,使电动机以限定的最大电流idm加*以高速启动,直到电机速度达到给定速度(即UN?UN)并出现超调,从而使ASR退出饱和并最终稳定定运行在给定转速(或略低于给定转速)上。
三、实验设备和仪器1主控制面板nmcl-322.直流电动机-负载直流发电机-测速发电机组3.nmcl-18挂箱、nmcl-333挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.调整触发单元并确定其初始相移控制角,检查并调整ASR和ACR,并设置其输出正负限幅。
2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。
3.研究电流回路和速度回路的动态特性,将系统调整到最佳状态,并绘制ID?F(T)和n?f(t)的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能)。
双闭环直流调速系统的设计与仿真实验报告
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
转速电流双闭环直流调速系统设计
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
按工程设计方法设计转速、电流双闭环直流调速系统
按工程设计方法设计转速、电流双闭环直流调速系统一.设计内容及相关参数:已知晶闸管-直流电动机双环调速系统(V-M)整流装置采用三相桥式线路,已知参数为:直流电动机:P N=10kW,U N=220V,I N=136A,n N=1500r/min,Ce=0.228V/r.minλ=1.2V-M系统主电路总电阻:R=0.863Ω电枢回路电磁时间常数:T l =0.028s系统运动部分飞轮矩相应的机电时间常数:T m=0.383s 系统测速反馈系数α=0.0041v·min/r系统电流反馈系数β=0.028V/A触发整流装置的放大系数:K s=30三相桥式平均失控时间:T s=0.00167s电流环滤波时间常数:T oi=0.005s转速环滤波时间常数:T on=0.005s二、设计要求:稳态指标无静差;动态指标电流超调量σi%=5%;空载起动到额定转速时的转速超调量σn%=10%。
第一章题目的意义及个人对题目的理解随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面,提出了更高的要求,这就要大量使用调速系统。
由于直流电动机的调速和转矩控制性能好,从20世纪30年代起就开始使用,其中最典型的是转速电流双闭环控制的直流调速系统。
转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。
其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。
在闭环控制的直流系统中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
在双闭环调速系统中,电动机、晶闸管整流装置、触发装置都可按负载的工艺要求来选择和设计。
根据生产机械和工艺的要求提出系统的稳态和动态性能指标,而系统的固有部分往往不能满足性能指标要求,所以需要设计合适的校正环节来达到。
转速电流双闭环直流调速系统和调节器工程设计方法
调节器结构的选择
选择调节器,将控制对象校正成为典型系统。
输入
调节器
输出
控制对象
系统校正
输入
典型系统
输出
典型I型系统
R(s)
K
C(s)
s(Ts 1)
T — 系统的惯性时间常数; K — 系统的开环增益。
选择参数,保证 稳定。
c
1 T
或
cT 1,使系统足够
典型Ⅱ型系统
R(s)
K (s 1) C(s)
K 值成反比; 在加速度输入下稳态误差为 。
因此,I型系统不能用于具有加速度输入 的随动系统。
(2)动态跟随性能指标
参数关系KT
阻尼比 超调量
上升时间 tr 峰值时间 tp
相角稳定裕度 截止频率c
0.25 0.39
0.5
0.69
1.0
0.8 0.707
0.6
0 % 1.5% 4.3 % 9.5 %
反馈系数计算
转速反馈系数
U
* nm
nm ax
电流反馈系数
U
* im
I dm
二、数学模型和动态性能分析
-IdL
U*n
+-
Un
U*i
WASR(s)
-
Ui
WACR(s) Uc
Ks Tss+1
-
Ud0
1/R Tl s+1
Id
+
R
n
Tms
1/Ce E
起动过程分析 n
n* I
II
III
按转速调节器ASR
不饱和、饱和、退
定义中频宽: h 2
T 1
第二章转速、电流双闭环直流调速系统
如采用自适应控制、鲁棒控制等策略,提 高系统对负载扰动的抵抗能力。
加入滤波器
优化系统结构
在系统中加入适当的滤波器,以滤除高频 噪声和干扰信号,提高系统稳定性。
通过改进系统结构或采用先进的控制算法 ,提高系统的稳定性和动态性能。
05
双闭环直流调速系统动态性能分 析
动态性能指标评价
跟随性
系统输出跟随输入指令变化的快速性和准确性,通常由上升时间、 超调量和调节时间等指标来评价。
工程整定法
基于经验公式或实验数据,通过 试凑法调整参数,使系统满足性 能指标要求。
解析法
02
03
仿真法
通过建立系统数学模型,利用控 制理论求解满足性能指标的参数 值。
利用计算机仿真技术,模拟系统 实际运行情况,通过调整参数优 化系统性能。
性能指标评价
稳态误差
反映系统稳态精度,要求稳态误差小 于允许值。
为企业带来了显著的经济效益和 市场竞争力提升。
THANKS
感谢观看
解析法
02
通过建立系统数学模型,利用优化算法求解最优参数。
智能优化算法
03
如遗传算法、粒子群算法等,可自动寻优得到最佳参数组合。
性能指标评价
稳态误差
反映系统稳态精度,越小越好。
调节时间
反映系统从扰动发生到重新达到稳态所需的 时间,应尽可能短。
超调量
反映系统动态过程中的最大偏离量,应尽可 能小。
鲁棒性
传统调速系统存在的问题
传统单闭环调速系统存在调速精度低、动态响应慢等问题, 无法满足现代工业生产的需要。
系统设计方案及实施过程
设计方案:采用转速 、电流双闭环控制策 略,其中转速环为外 环,电流环为内环, 通过PI调节器实现对 电机转速和电流的高 精度控制。
3.4.3双闭环调速系统的工程设计(3)——转速超调量的计算
0.5
0.6
时间(单位:秒)
线性系统与实际系统电枢电流的比较
(一)转速的线性超调与退饱和超调
(2)退饱和超调
n n*
I
II
III
O
t
Id
Idm
IdL
O
t1
t2 t3 t4
t
① 转速达到给定转速之前,ASR饱和, 电流被限制在IdIdm。
(一)转速的线性超调与退饱和超调
(2)退饱和超调
n n*
I
II
(二)退饱和超调计算 退饱和超调计算步骤
①查表获得动态偏差的相对值Cmax/Cb 。 ②计算输出偏差的基准值Cb 。
Cb 2FK2T R
K2 CeTm T Tn
F ( z)IdN
(二)退饱和超调计算
退饱和超调计算步骤
①查表获得动态偏差的相对值Cmax/Cb 。 ②计算输出偏差的基准值Cb 。
转速、电流双闭环直流调速系统 转速超调量的计算
主要内容
01 转速的线性超调与退饱和超调 02 转速的退饱和超调计算表达式
(一)转速的线性超调与退饱和超调
(1)线性超调
-IdL
U*n 1 Tons+1
+
1
ASR
-
Tois+1
Un
U*i
+ ACR
Ks
-
-
Tss+1 Ud0
Ui
Uc
1/R Id Tl s+1 +
结论:
按照线性系统计算的超调称之为线 性超调,典型II型系统的线性超调很大。
但是,目前系统不是线性系统,超调 为退饱和超调。
所以,双闭环调速系统中转速超调 量的考核不适合采用表中数据。
转速电流双闭环直流调速系统仿真设计
转速电流双闭环直流调速系统仿真摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB 软件的使用。
系统模型由晶闸管- 直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。
主电路采用三相可控晶闸管整流电路整流,用PI 调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。
控制电路设置两个PI 调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器形成转速电流UPE,双闭环直流调速系统。
在Simulink 中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。
通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。
关键词:双闭环直流调速系统,MATLAB/SIMULINK 仿真,ASR,ACR 。
课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。
随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
采用转速负反馈和PI 调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。
在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。
转速电流双闭环直流调速系统
转速电流双闭环直流调速系统直流调速系统是一种基于电动机转速等控制参数,控制电动机输出转矩和速度,从而实现对生产现场机械化设备的控制,保护和自动化控制的一种电气控制系统。
该系统的作用不仅在于简化操作流程,提高生产效率和产品质量,还能保护成本昂贵的机械设备,提高生产安全性和稳定性。
本文将对传统的直流调速系统进行改进,引入转速电流双闭环控制算法,以提高系统稳定性和性能精度。
一、直流调速系统的基本原理直流调速系统核心是由一组功率电子器件和控制回路组成的控制电路,它通过调节直流电动机电磁场中的旋转子、定子电磁能量转换比例,实现对电机转速和扭矩的调速和控制。
传统直流调速系统由电源、整流器、PWM变换器、逆变器和电机组成。
其中,电源常用交流电源,整流器将其转换为直流电源供给PWM变换器,PWM变换器通过调节开关时间,改变直流电压的大小和方向,输出可控的交流电源。
逆变器将输出的交流电源进一步变换转化为所需的方向、大小和频率的电源供给电机,并通过反馈调速回路实现对电机转速和扭矩的精确控制。
虽然传统直流调速系统具有结构简单、故障率低、性能稳定等优点,但同时也存在缺点,如控制精度低、抗干扰能力差、控制性能难以满足高精度或高动态性能的要求等问题。
因此,我们需要将目光放在对直流调速系统的提升上,寻找解决控制精度低和抗干扰能力差的解决方案。
转速电流双闭环控制系统是在传统直流调速系统的基础上,增加了电流控制环节,并通过转速电流双闭合控制算法,实现对控制性能的提升,具体包括两个闭合回路:(1)速度控制回路:电动机的转速是该传动系统动作的基础,对于常见的机械传动来说,转速的稳定性直接影响机械精度和运动平顺度。
如图1所示,速度控制回路根据电机的实际转速和给定的转速进行比较,求出误差值,然后进行电路调节,调整终端直流电压的大小和方向,从而控制电动机的输出扭矩和速度。
(2)电流控制回路:通过实现比例积分补偿算法,控制实际输出电流与设定电流的误差,从而实现电机负载扭矩的控制。
第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法
应饱和的,电力电子装置 UPE 的最大输出电压也须留有余地, 这些都是设计时必须注意的。
第 Ⅲ 阶段:转速调节阶段( t2 以后)
n
n* I II
III
O
Id Idm
t
IdL
O
t1
t2
t3
ቤተ መጻሕፍቲ ባይዱ
t4
t
第 Ⅲ 阶段:转速调节阶段( t2 以后)
• 当转速上升到给定值时,转速调节器ASR的输入偏差减少到零, 但其输出却由于积分作用还维持在限幅值U*im ,所以电机仍在 加速,使转速超调。 • 转速超调后,ASR输入偏差电压变负,使它开始退出饱和状态, U*i 和 Id 很快下降。但是,只要 Id 仍大于负载电流 IdL ,转速 就继续上升。 • 直到Id = IdL时,转矩Te= TL ,则dn/dt = 0,转速n才到达峰值(t = t3时)。 此后,电动机开始在负载的阻力下减速,与此相应,在一小段 时间内( t3 ~ t4 ), Id < IdL ,直到稳定,如果调节器参数整 定得不够好,也会有一些振荡过程。 在这最后的转速调节阶段内,ASR和ACR都不饱和,ASR起主导 的转速调节作用,而ACR则力图使 Id 尽快地跟随其给定值 U*i , 或者说,电流内环是一个电流随动子系统。
是抗负载扰动和抗电网电压扰动的性能。
1. 抗负载扰动
U*n
+
±∆IdL
Ks
Tss+1
U*i Un
ASR ACR
Ud0 -
1/R
Id
R
Tms
E
Ui
Tl s+1
1/Ce
n
负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗 负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。
转速﹑电流双闭环直流调速系统
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力拖动自控系统课程设计报告题目转速电流双闭环直流调速系统设计学院:电子与电气工程学院年级专业:2012级电气工程及其自动化(电力传动方向)姓名:学号:指导教师:成绩:电力拖动自动控制系统综合课程设计设计任务书某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:kW 5.7P N =,V 400U N =,A 8.21I N = ,min /r 3000N =n ,W 716.0R a =,电枢回路总电阻Ω=75.1R ,电枢电路总电感mH 60L =,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量22m N 64.2GD ⋅=。
励磁电流为1.77A 。
晶闸管整流装置放大倍数40K s =,滞后时间常数s 0017.0T s = 电流反馈系数)I 5.1/V 15(A /V 4587.0βN ≈= 电压反馈系数)/V 15(r m in/V 005.0αN n ≈⋅= 滤波时间常数s 002.0T oi =,s 01.0T on =V 15U U U cm *im *nm ===;调节器输入电阻Ω=K 40R o 。
设计要求:稳态指标:无静差;动态指标:电流超调量00i 5≤σ;采用转速微分负反馈使转速超调量等于0。
目 录1 概述 (1)1.1问题的提出 ............................................................................................................ 1 1.2解决的问题 ............................................................................................................ 1 1.3实现目标要求设计 . (1)2 主电路计算 (2)2.1整流变压器的计算 .............................................................................................. 2 2.2晶闸管及其元件保护选择 (2)3 直流双闭环调速系统设计 (8)3.1转速和电流双闭环调速系统的组成 .............................................................. 8 3.2系统静态结构图及性能分析 ............................................................................ 9 3.3系统动态结构图及性能分析 .. (10)3.4启动过程分析 (11)3.5采用ACR和ASR类型的根据 (12)3.6电流调节器结构的选择 (12)3.7转速调节器的选择 (12)3.8双闭环系统工程设计 (13)3.9电流环设计 (14)3.10转速环设计 (17)4基于MATLAB/SIMULINK的调速系统仿真 (20)4.1仿真软件介绍 (20)4.2仿真设计 (20)4.3仿真结果 (20)5 实训报告 (23)6 设计总结 (24)参考文献 (25)1 概述1.1问题的提出采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
1.2解决的问题为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值I dm的恒流过程。
按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈(ASR)和电流负反馈(ACR)。
1.3实现目标要求设计设计一个双闭环直流调速系统满足系统要求的性能指标。
2 主电路计算2.1整流变压器的计算1、二次侧相电压:V BA U )2.1~1.1(U d2ε= (2-1) 变压器采用D ,y11接线,表知,三相全控桥时 A=0d U /2U =2.34 ( 取ε=0.9为电网波动系数) 查表知 B=cos , 角考虑100裕量 故B=0.985 所以V 4.231~1.212985.09.034.2400)2.1~1.1(B A U )2.1~1.1(U d 2=⨯⨯=ε= (2-2) 取U 2=220V, 变比 K=U 1/U 2=380/220=1.73 2、一次、二次侧电流的计算 查表知 K I1=0.816 ,K I2=0.8162I =K I2I d =0.816×21.8=18A1I =K I1I d /K=1.05×0.816×21.8/1.73=11A 3、变压器容量的计算一次侧,二次侧绕组的相数 3m 1=,3m 2= 所以 kV A 5.12113803I U m S 1111=⨯⨯== kV A 9.11182203I U m S 2222=⨯⨯==()()kV A 2.122/9.115.122/S S S 21=+=+=2.2晶闸管及其元件保护选择1.管额定电压()()V 1617~107822063~2U 63~2U 2TN =⨯⨯== (2-3) 取V 1600U TN = 2.闸管的额定电流 查表知 K=0.367I T (VA )=(1.5~2)KI d =(1.5~2)×0.367×21.8=12~16A 取I T (VA )=20A 故选KP20-17型元件3.晶闸管保护环节的计算 1)交流侧过电压保护措施 (1)阻容保护①电容选值操作过电压,其实质是开关开端时产生的电磁能量震荡过程。
在回路中没有保护器存在时,总电容值很小,导致震荡频率f很高。
电容的引入,可以大大提高回路总电容值,降低震荡频率。
最佳的效果应是降低频率正好到工频(50Hz),基本计算公式如下:f=ω/2π(2-4)ω=(1/LC-(R/2L)2)1/2(2-5)由于每个电路的初始L和C都不同,最佳值是不可能得到的。
只能依据真空断路器大致的情况进行经验比较。
根据多年运行经验,取电容0.1μF时,一般可以将f限制在150Hz以下,因此0.1就成为一个比较通用的值。
理论上讲,若对具体电路可以做到精确测算,容量再大些对保护效果会更好(这就是有些地方用0.2或0.15的原因),但若没有精确测算,导致f太小将造成副作用。
②电阻选值R是一个阻尼元件,一方面对震荡频率有影响,一方面对电容器保护有利。
对震荡频率的影响可以参考上面的公式(2-5),R不应小于其临界值2(L/C)1/2,否则对降低频率不利。
所以存在电阻值不应小于100Ω的说法。
R值高同样有利于保护电容本身安全,防止电容过载烧毁。
故一般高安全性的阻容吸收装置,都适当的增大了R的值(一般最高做到400Ω)。
但是R值如果太大,将大大提高时间常数,导致暂态时间延长,不利于保护的高效性。
所以我们希望R能够是一个压敏元件,在低压下电阻尽可能大,以保护电容;在高压下达到百欧姆级,以利于工作。
自控式阻容吸收器的最主要改革就在于此。
而且这样改革后,额外的起到了限制正常电压下阻容吸收器接地电流的作用,不会造成以往出现的阻容吸收器,接地电流引发系统误判断的问题,简化了整体设计在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻容吸收电路。
我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。
它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低电压上升率。
若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无门极信号的情况下开通。
即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。
因为晶闸管可以看作是由三个PN结组成。
在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。
当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。
如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。
因此,对加到晶闸管上的阳极电压上升率应有一定的限制。
为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。
因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。
同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。
由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。
RC 阻容吸收网络就是常用的保护方法之一。
电容的选择2m 2126I (1/3)/=2.18C S U Fμ≥ 取F 18.2C 1μ=式中K 查表知,三相全控桥的K=0.367 取耐压≧1.5m U =1.5220=467V故选电容量F 2.2μ=C ,耐压500V 的标准电容器。
电阻的选择221 2.3 2.37013U R S ≥⨯==Ω取R=70Ω电容电流,亦即流过电阻R 1的电流6c 162102 3.1450 2.2220100.152c I f C U Aπ--=⨯⨯⨯=⨯⨯⨯⨯⨯=R 1的功率()()221P 3~4I R 3~40.15270 4.85~6.5W R c ≥=⨯⨯=取W 7P R =可选70Ω,7W 金属膜标准电阻。
(2)压敏电阻R V1的选择标准电压:imA U =(1.3~1.5)2U =1.3220=404.5~467V 取500V ,通流量取5kA ,故选MY-500/5的压敏电阻作交流侧流通过电压 保护。
4、直流侧过电压保护措施imA U ≧(1.8~2)DC U =(1.8~2)×400V=720~800V选普通压敏电阻,型号MY-800/3作直流侧过压保护。
标称电压800V,通流容量为kA 35、晶闸管及整流二极管两端的过电压保护晶闸管:C 2=0.2uF ,R 2=40Ω电容耐压≧1.5U m =1.5U 2=1.5×220=808V选C2JD-2型金属化介电容器,电容量0.22uF ,耐压800V电阻功率:W 532.010U C PR 6m 2=*⨯⨯=-f取Ω=40R 2,1W 金属膜电阻整流二极管两端的过电压保护是通过可调电阻来实现的。