cadence仿真工具介绍
cadenceic基础仿真经典实用
• 选择分析模式:
•cadence ic 基础仿真
• 电路中有两个电压源,一个用作VDD,另一个用作信号输入 Vin
V in
•cadence ic 基础仿真
• 输出的选择
•cadence ic 基础仿真
• 分析一阶共源放大器获得的波形图 • 波形图显示了当Vin 从0->2V 时输出的变化
•cadence ic 基础仿真
• 下图为以温度为变量进行直流分析时候的波形图
•cadence ic 基础仿真
带隙基准的温度参考
•cadence ic 基础仿真
•cadence ic 基础仿真
•cadence ic 基础仿真
•cadence ic 基础仿真
实例5 一阶放大器
共源的一阶放大器
• 下图显示了为仿真产生的输出日志文件 •
•cadence ic 基础仿真
• 产生的波形如下所示:
•cadence ic 基础仿真
• 可以通过设定坐标轴来获得电流—电压曲线 • 按以下方式进行: Axis-> X Axis
•cadence ic 基础仿真
• 按下图所示,将X轴设定为二极管上的电压 降
•cadence ic 基础仿真
• 在改变了X轴之后,波形应如下图所示:
•cadence ic 基础仿真
• 由于我们只对二极管的伏安特性曲线感兴趣,因此我们可以只选择流 经二极管的电流与其两端压降。新的曲线如下图所示:
•cadence ic 基础仿真
实例2 双极型晶体管的伏安特性曲线
• 首先为双极型晶体管电路新建一个cell view • 利用原理图编辑所需要的仿真电路
然后单击ESC。 • 可以得到如下图所示的一族伏安特性曲线
(完整word版)cadence软件介绍
1.Allegro PCB Design CISAllegro PCB Design CISAllegro Designer Entry CIS集成强大的原理图设计功能,其特点主要是具有快捷的元件信息管理系统(CIS),并具有通用PCB设计入口。
扩展的CIS功能可以方便地访问本地元件优选数据库和元件信息。
通过减少重新搜索元件信息或重复建库,手动输入元件信息,维护元件数据的时间,从而可以提高生产率。
无论是设计全新的模拟,数字,或混合信号电路,还是修改现有电路板的电路原理图,或进行层次结构电路图设计,Allegro Designer Entry CIS提供电路设计从构思到生产所需的一切。
Allegro Designer Entry CIS是全球应用最多且经过生产验证的原理图输入工具和强大的元件信息管理系统。
优点1、提供快捷,直观的,具备完备功能的原理图编辑工具2、通过层次式和变体(基于同一原理图,不同机型导出)设计提高复杂原理图的设计效率3、具备强大功能的CIS,帮助加速设计进程,降低项目成本4、原理图提供的自动缩放/搜索/导航功能,结合Allegro PCB Editor之间的交互探测和交互摆放,和集成的AMS—Simulatuor帮助提供设计的可生产性5、减少重复搜寻元件信息的时间,接收来自MRP,ERP和PLM的数据和支持关系型数据库使智能选择元件成为可能6、通过直接访问ActiveParts和ActiveParts门户网站,提供给选择原理图设计所需要的元件和直接获取器件供应商元件数据更大的便利,ActiveParts提供了超过200万份的元器件数据7、通过FPGA输出/输入双向数据流程自动整合可编程门阵列(FPGA)和可编程逻辑器件(PLD),从而缩短设计时间功能特色全功能原理图编辑器Allegro Designer Entry CIS,带有拼接式和层次式的原理图页面编辑器,它具有快捷、直观的原理图编辑的特点。
cadence工具介绍
标签:cadence工具介绍cadence工具介绍主要是cadence的常用工具:(一)System & Logic Design & Verification 1、SPW:系统仿真工具,与matlab相似,但是比其专业,用于系统建模,常用于通信系统2、Incisive:就是大家最常用的nc_verilog, nc_sim, nc_lauch,以及ABV,TBV的集合,仿真和验证功能很强大(二)Synthesis & Place & Route 1、BuildGates:与DC同期推出的综合工具,但是在国内基本上没有什么市场,偶尔有几家公司用2、RTL Complil er:继BuildGates之后的一个综合工具,号称时序,面积和功耗都优于DC,但是仍然无法取代人们耳熟能详的DC 3、Silicon Ensemble & PKS: 硅谷早期做物理设计的工程师,几乎都用它。
是第一个布局布线工具4、First Encount er & SoC Encounter: 继SE以后的很好的P&R工具,但是盗版太少,所以也只有大公司能用且都用,但是目前astro在国内有赶超之意5、Cetlic :噪声分析工具,权威6、Fire&Ice: 分布参数提取工具,国内很多人用synopsys的StarRC 7、VoltageStrom:静态功耗和动态功耗分析的很不错的工具,与s 的Power Complier相同。
8、SingnalStrom:时序分析工具,唯一一个能建库的工具9、nanoroute : 很强大的布线器喔,但是不是一般人能用的到的。
我也是在cadence实习的时候爽过的,比astro快十倍不止。
(三)custom IC Design 1、Virtoso:版图编辑工具,没有人不知道吧,太常用了,现在还有一个公司的laker 2、diva, dracula, assura: 物理验证工具,用的比较普遍,但是calibre是标准,很多公司都是用其中的一个和calibre同时验证,我好可怜,现在只能用herculus (四)数模混合信号设计这部分太多了,但是一个ADE的环境基本上都能包括,不细说了,打字都打累了(五)PCB A llego最为典型了,很多大公司都用的。
cadence ac仿真原理
一、概述在电子设计领域中,cadence ac仿真是一个非常重要的工具,它能够帮助工程师们验证电路的性能,优化设计方案,提高产品的可靠性和稳定性。
本文将介绍cadence ac仿真的原理及其应用。
二、cadence ac仿真概述cadence ac仿真是一种基于交流电源(AC)信号的电路仿真技术。
它能够模拟电路在不同频率下的响应特性,包括电压、电流、相位等参数。
通过cadence ac仿真,工程师可以分析电路的稳定性、频率响应、相位裕度等重要指标,从而优化电路设计。
三、cadence ac仿真原理cadence ac仿真的原理主要基于两个方面:信号源和电路模型。
1. 信号源在cadence ac仿真中,信号源通常是一个交流电源,它能够产生不同频率和幅值的正弦波信号。
通过改变信号源的频率和幅值,工程师可以模拟不同工作条件下电路的响应特性。
2. 电路模型电路模型是cadence ac仿真的核心部分,它对电路中的元件进行建模,包括电阻、电容、电感等。
在仿真过程中,cadence会根据电路模型和信号源的输入,计算出电路在不同频率下的响应,包括电压、电流、相位等参数。
四、cadence ac仿真应用1. 频率响应分析通过cadence ac仿真,工程师可以分析电路在不同频率下的响应特性,包括增益、相位、带宽等参数。
这些参数对于电路的稳定性和性能至关重要,通过仿真分析,工程师可以优化电路设计,提高产品的性能。
2. 稳定性分析cadence ac仿真还可以帮助工程师分析电路的稳定性。
在回路不稳定的情况下,电路可能会产生不稳定的波形和振荡,严重影响产品的可靠性和稳定性。
通过仿真分析,工程师可以及早发现并解决稳定性问题,保证产品的可靠性。
3. 相位裕度分析相位裕度是评价电路稳定性的重要指标,它描述了电路在闭环条件下的相位裕度和裕度裕度。
通过cadence ac仿真,工程师可以分析电路的相位裕度,及时发现并解决相位裕度不足的问题,确保电路的稳定性和可靠性。
CADENCE仿真步骤
CADENCE仿真步骤
Cadence是一款电路仿真软件,它可以帮助设计师创建、分析和仿真
电子电路。
本文将介绍Cadence仿真的步骤。
1.准备仿真结构:第一步是准备仿真结构。
我们需要编写表示电路的Verilog或VHDL代码,然后将它们编译到Cadence Integrated Circuit (IC) Design软件中。
这会生成许多文件,包括netlist和verilog等文件,这些文件将用于仿真。
2.定义仿真输入输出信号:接下来,我们需要定义仿真的输入信号和
输出信号。
输入信号可以是电压、电流、时间和其他可测量的变量。
我们
需要定义输入信号的模拟和数字值,以及输出信号的模拟和数字值。
3.定义参数:参数是仿真中用于定义仿真设计的变量,这些变量可以
是仿真中电路的物理参数,如电阻、电容、时延、输入电压等,也可以是
算法参数,如积分步长等。
4.运行仿真:在所有参数和信号都设置完成后,我们可以运行仿真。
在运行仿真之前,可以使用自动参数检查来检查参数是否正确。
然后,使
用“开始仿真”命令即可启动仿真进程。
5.结果分析:在仿真结束后,我们可以使用结果分析器来查看输出信
号的模拟和数字值,以及仿真中电路的其他特性,如暂态分析、稳态分析、功率分析等。
以上就是Cadence仿真步骤。
Cadence工具简介
Cadence工具简介1,逻辑设计与验证工具* 逻辑仿真工具: Cadence NC-Verilog, Verilog-XL, NCSim,Simvision Waveform Viewer* 综合工具: Cadence BuildGates* 形式验证工具: VerplexLEC2.综合布局布线工具SoC Encounter—可应用于如90nm及其以下的SOC设计;△ SE-PKS—可应用于如复杂时序收敛的IC设计;△ Fire & Ice QX and SignalStorm—可应用于3维电阻电容参数提取及延时计算;△ VoltageStorm—可应用于功耗分析;△ CeltIC—可应用于信号完整性分析。
3 system level design工具综合(Hardware Design System 2000)算法验证(SPW)△ 结构设计工具(SystemC-based simulators, CoWare, etc)△ 硬件/软件混合设计工具(Verification Platform, Seamless, etc)△ 模拟/混合信号工具(AMS, Agilent ADS, etc)4,CIC(layout & custom layout) 全定制集成电路布局设计工具△ Virtuoso Layout Editor△ Assura (Layout verification)5,AMS (analog mixed signal, RF analysis and design)模拟集成电路设计工具。
AnalogDesignEnvironment。
MixedSignal Design Environment。
Analog Modeling with Verilog-A。
Spectre Circuit Simulator6,HS-PSD(high speed PCB system design) 高速系统和板极设计工具o Concept HDL Front-to-Back Design Flow –原理图输入工具o PCB Librarian –器件建库工具o Allegro PCB Layout System – PCB板布局布线工具o Specctra AutoRoute Basics –基本自动布线器o Advanced Specctra Autorouting Techniques –高级自动布线器o SpecctraQuest Foundations –信号完整性仿真工具o Advanced SpecctraQuest Techniques –高级信号仿真工具*VerilogHDL 仿真工具 Verilog-XL*电路设计工具 Composer电路模拟工具 Analog Artist*版图设计工具 Virtuoso Layout Editor版图验证工具 Dracula 和 Diva*自动布局布线工具 Preview 和 Silicon Ensembleform:Mr Bond coms-chip expert设计任务 EDA工具功能仿真和测试 a. Cadence, NC_simb. Mentor ModelSim (调试性能比较突出)c. Synopsys VCS/VSSd. Novas Debussy (仅用于调试)逻辑综合 a. Synopsys, DCb. Cadence, BuildGatesc. Mentor, LeonardoDFT a. Mentor, DFTAdvisorb. Mentor, Fastscanc. Mentor, TestKompressd. Mentor, DFTInsighte. Mentor, MBISTArchitectf. Mentor, LBISTArchitectg. Mentor, BSDArchitecth. Mentor, Flextesti. Synopsys, DFT Complierj. Synopsys, Tetra MAXk. Synopsys, BSD Complier布局,时钟树综合和自动布线a. Cadence, Design Plannerb. Cadence, CT-Genc. Cadence, PKSd. Cadence, Silicon Ensemblee. Synopsys, Chip Architectf. Synopsys, Floorplan Managerg. Synopsys, Physical Complier & Apolloh. Synopsys, FlexRoute网表提取及RC参数提取物理验证a. Mentor, xCalibreb. Cadence, Assure RCXc. Synopsys, Star-RCXTd. Mentor, Calibree. Synopsys, Herculef. Cadence, Assure延时计算与静态时序分析a. Synopsys, Prime Timeb. Cadence, Pearlc. Mentor, SST Velocity形式验证 a. Mentor, FormalProb. Synopsys, Formalityc. Cadence, FormalCheck功能优化与分析 a. Synopsys, Power Compilerb. Synopsys, PowerMill-ACEHDLQA a. TransEDA, Verification Navigatorb. Synopsys, LEDAFPGA开发 a. Mentor, FPGAdvantageb. XILINX, ISEc. Altera, QuartusIISoC开发 a. Mentor, Seamless CVEb. Cadence, SPWc. Synopsys, Co-Centric版图设计工具 a. Cadence, Virtuosob. Mentor, IC-Stationc. 思源科技, Laker电路级仿真 a. Mentor, ELDOb. Mentor, ADMSc. Cadence, Spectre, Spectre RFd. Cadence, AMSe. Synopsys, Star-Hspice以下只是个人和本公司的评价,不一定十分全面,仅供参考。
cadence原理图仿真
cadence原理图仿真首先,我们来了解一下cadence原理图仿真的基本原理。
在进行原理图仿真时,我们需要将电路设计转换为一个数学模型,然后利用计算机软件对这个模型进行求解,得到电路的各种参数和性能指标。
这个数学模型通常是由电路的基本元件和它们之间的连接关系构成的,通过建立节点方程和元件特性方程,可以得到一个包含了电路各种参数的数学方程组。
然后利用数值计算方法对这个方程组进行求解,就可以得到电路的各种性能指标,比如电压、电流、功率等。
在cadence原理图仿真中,我们通常会使用一些常见的仿真工具,比如SPICE仿真器。
SPICE是一种通用的电路仿真工具,它可以对各种类型的电路进行仿真,包括模拟电路、混合信号电路和射频电路等。
通过建立电路的原理图,并在仿真器中设置各种参数和仿真条件,就可以对电路进行仿真分析,得到电路的各种性能指标。
在进行cadence原理图仿真时,我们需要注意一些关键的仿真参数和设置。
首先是仿真的时间步长和仿真的时间范围,这两个参数会直接影响到仿真的精度和速度。
通常情况下,我们需要根据电路的特性和仿真的要求来合理地设置这两个参数,以保证仿真结果的准确性。
另外,还需要注意仿真的激励信号和仿真的分析类型,比如直流分析、交流分析、脉冲分析等,这些参数会直接影响到仿真的结果和分析的内容。
除了基本的仿真参数设置,我们还需要注意一些特殊情况下的仿真技巧。
比如在进行混合信号电路的仿真时,需要考虑模拟部分和数字部分之间的接口和耦合关系,以保证整个系统的稳定性和正确性。
另外,在进行射频电路的仿真时,需要考虑传输线的特性和电磁场的影响,以保证仿真结果的准确性和可靠性。
总的来说,cadence原理图仿真是电子设计中非常重要的一环,它可以帮助工程师们验证电路设计的正确性和稳定性,提前发现潜在的问题,从而节省时间和成本。
通过合理地设置仿真参数和注意一些特殊情况下的仿真技巧,可以得到准确可靠的仿真结果,为电路设计和调试提供有力的支持。
cadence相关软件介绍.
公司概述Cadence是全球电子设计自动化(EDA领先企业,从事软件与硬件设计工具、芯片知识产权与设计服务,目前正致力于EDA产业的转型。
Cadence把此次转型构想命名为EDA360,因为它将包含设计过程中的所有方面,并关注最终产品的可盈利性。
这种应用驱动型方法,能在创建、集成与优化电子设计方面帮助我们的客户以更低的成本和更高的质量完成硅芯片、片上系统设备、以及完整的系统实现。
Cadence Design System, Inc.公司成立于1988年,总部位于美国加州圣荷塞,其设计中心、研发中心和销售部门分布于世界各地。
CADENCE中国1992年Cadence 公司进入中国大陆市场,迄今已拥有大量的集成电路 (IC 及系统设计客户群体。
在过去的二十年里,Cadence公司在中国不断发展壮大,建立了北京、上海、深圳分公司以及北京研发中心、上海研发中心,并于2008年将亚太总部设立在上海,Cadence中国现拥有员工400余人。
北京研发中心和上海研发中心主要承担美国公司总部EDA软件研发任务,力争提供给用户更加完美的设计工具和全流程服务。
Cadence在中国拥有强大的技术支持团队,提供从系统软硬件仿真验证、数字前端和后端及低功耗设计、数模混合RF 前端仿真与DFM以及后端物理验证、SiP封装以及PCB设计等技术支持。
我们的销售方案中还包括提供专业设计服务,VCAD团队为用户提供高质量、有效的设计和外包服务。
把世界顶尖的产品技术和服务融入中国,成为中国电子行业最亲密合作伙伴,和中国电子高科技产业共同腾飞是Cadence 在中国的坚定信念。
市场与趋势Cadence服务于产值达2万亿美元的全球电子市场,其中包括产值超过3000亿美元的半导体市场。
我们的主要垂直市场领域包括:有线与无线通讯;工业、医疗与汽车电子;计算机与消费电子,比如多媒体和个人娱乐设备。
这些领域占全球电子设备营收和半导体营收的90%以上。
Cadence仿真简介
时序计算和Cadence仿真结果的运用中兴通讯康讯研究所EDA设计部余昌盛刘忠亮摘要:本文通过对源同步时序公式的推导,结合对SPECCTRAQuest时序仿真方法的分析,推导出了使用SPECCTRAQuest进行时序仿真时的计算公式,并对公式的使用进行了说明。
关键词:时序仿真源同步时序电路时序公式一.前言通常我们在时序仿真中,首先通过时序计算公式得到数据信号与时钟信号的理论关系,在Cadence仿真中,我们也获得了一系列的仿真结果,怎样把仿真结果正确的运用到公式中,仿真结果的具体含义是什么,是我们正确使用Cadence仿真工具的关键。
下面对时序计算公式和仿真结果进行详细分析。
二.时序关系的计算电路设计中的时序计算,就是根据信号驱动器件的输出信号与时钟的关系(Tco——时钟到数据输出有效时间)和信号与时钟在PCB上的传输时间(Tflytime)同时考虑信号驱动的负载效应、时钟的抖动(Tjitter)、共同时钟的相位偏移(Tskew)等,从而在接收端满足接收器件的建立时间(Tsetup)和保持时间(Thold)要求。
通过这些参数,我们可以推导出满足建立时间和保持时间的计算公式。
时序电路根据时钟的同步方式的不同,通常分为源同步时序电路(Source-synchronous timing)和共同时钟同步电路(common-clock timing)。
这两者在时序分析方法上是类似的,下面以源同步电路来说明。
源同步时序电路也就是同步时钟由发送数据或接收数据的芯片提供。
图1中,时钟信号是由CPU驱动到SDRAM方向的单向时钟,数据线Data是双向的。
图1图2是信号由CPU 向SDRAM 驱动时的时序图,也就是数据与时钟的传输方向相同时的情况。
Tsetup ’Thold ’ CPU CLK OUTSDRAM CLK INCPU Signals OUT SDRAM Signals INTco_minTco_max T ft_clkT ft_dataT cycleSDRAM ’S inputs Setup time SDRAM ’S inputs Hold time图2图中参数解释如下:■ Tft_clk :时钟信号在PCB 板上的传输时间;■ Tft_data :数据信号在PCB 板上的传输时间;■ Tcycle :时钟周期■ Tsetup’:数据到达接收缓冲器端口时实际的建立时间;■ Thold’:数据到达接收缓冲器端口时实际的保持时间;■ Tco_max/Tco_min :时钟到数据的输出有效时间。
Cadence基础仿真分析与电路控制描述
Cadence基础仿真分析与电路控制描述Cadence是一款主要用于集成电路设计和仿真分析的软件工具。
本文档将介绍Cadence的基础仿真分析功能以及电路控制描述的方法。
Cadence基础仿真分析Cadence提供了多种仿真分析工具,包括电路级仿真、时钟级仿真和系统级仿真等。
这些工具可用于验证电路设计的正确性,并进行性能评估。
在进行仿真分析之前,需要进行以下步骤:1. 设计:使用Cadence的设计工具创建电路图和原理图,定义电路的结构和功能。
2. 参数设置:对电路器件进行参数设置,包括电阻、电容、电感等元件的数值设定。
3. 仿真配置:选择适当的仿真工具和仿真设置,如仿真类型、仿真时间和仿真模型等。
接下来,执行仿真分析:1. 电路级仿真:通过电路级仿真工具,如Spectre,对电路进行验证和性能评估。
参数设置和仿真配置完成后,运行仿真并分析仿真结果。
2. 时钟级仿真:通过时钟级仿真工具,如Virtuoso AMS Designer,对电路中时序相关的功能进行验证。
设置时钟源和时钟周期等参数,并运行仿真以验证电路的时序性能。
3. 系统级仿真:通过系统级仿真工具,如Virtuoso System Design Platform,对整个电路系统进行仿真。
设置系统级的参数和信号源,并进行仿真分析。
电路控制描述在Cadence中,可以使用Verilog-A或Verilog-AMS等硬件描述语言来描述电路的行为和控制。
1. Verilog-A:主要用于模拟连续时间的电路。
可以使用Verilog-A描述电路的行为和相互之间的连接关系。
通过编写Verilog-A代码,可以实现电路的仿真和性能分析。
2. Verilog-AMS:结合了连续时间和离散时间的特性,可用于描述混合信号电路。
除了模拟电路行为之外,还可以描述数字电路部分。
通过编写Verilog-AMS代码,可以实现电路的混合仿真和性能分析。
使用这些硬件描述语言时,需要了解其语法和规范,并根据实际需求编写相应的代码。
cadence仿真工具介绍
6.改名(rename):>mv A B (文件或目录改名) 7.删除: >rm fileA (删除文件,可以有多个文件名) >rm –r dirA (删除目录,可以有多个目录名) 8.编辑文件:>vi fileA (文件不存在时,自动创建新文件) 编辑命令:I(插入), o(下插入行), O(上插入行), Esc键(退出), x(删除字符), dd(删除行), h l k j或方向键(左右上下移动) 非编辑状态时,按Shift+:,文件尾出现“:”,此时可以 保存文件(w )和退出vi状态(q)。
打开工作窗口(terminal): 按mouse右键,点击open terminal
COPYRIGHT FOR ZHOUQN
关机:
在terminal中敲命令halt, 回车
重开机:
在terminal中敲命令reboot, 回车
COPYRIGHT FOR ZHOUQN
• LINUX操作系统常用命令简介
• 仿真环境设置
COPYRIGHT FOR ZHOUQN
• 仿真环境设置
COБайду номын сангаасYRIGHT FOR ZHOUQN
COPYRIGHT FOR ZHOUQN
COPYRIGHT FOR ZHOUQN
• Linux操作系统:在pc机上,安装 (1) 虚拟机 (2) linux 操作系统 (3) 在linux操作系统中安装IC设计软件
COPYRIGHT FOR ZHOUQN
启动与登陆: (1) 虚拟机登陆
COPYRIGHT FOR ZHOUQN
• (2) 启动linux----点击start this virtual machine
Cadence Allegro Sigrity介绍
Cadence Allegro Sigrity介绍高科技企业开发复杂的芯片,封装和单板努力克服由于飞速增长的IC速度和数据传输速率联合引起的供电电压的降低,更高密度,越来越小型化的结构引起的电源完整性和信号完整性问题。
同时,更高的I/O数目,多堆叠的芯片和封装以及更高的电气性能约束都使得IC 封装物理设计更加复杂。
Cadence具有突破型进展的解决方案,基于Sigrity专利技术,解决这些设计挑战。
该解决方案致力于完整的电源供电系统分析跨越了芯片,封装和单板;系统级的信号完整性(SI)分析,包含高速信号传输同步反转噪声和单个和多个芯片封装,最先进的3D封装以及系统级封装(SiPs)的高级物理设计。
Power Integrity电源完整性Cadence 电源完整性(PI)解决方案,基于Sigrity技术,提供signoff 级别精度的PCB和IC封装的AC和DC电源分析。
每个工具都能与Cadence Allegro® PCB 和IC封装物理设计解决方案无缝集成。
Sigrity PowerSIIC封装和PCB设计快速准确的全波电磁场分析作为专业的频域分析工具,为当前高速电路设计中面临的各种信号完整性(SI)、电源完整性(PI)和电磁兼容(EMI/EMC)分析提供快速准确的全波电磁场分析,并提供宽带S参数提取以及频域仿真。
Sigrity™ PowerSI®可以为IC封装和PCB设计提供快速准确的全波电磁场分析,从而解决高速电路设计中日益突出的各种PI和SI问题:如同步切换噪声(SSN)问题,电磁耦合问题,信号回流路径不连续问题,电源谐振问题,去耦电容放置不当问题以及电压超标等问题,从而帮助用户发现或改善潜在的设计风险。
PowerSI可以方便的提取封装和PCB的各种网络参数(S/Y/Z),并对复杂的空间电磁谐振问题产生可视化的输出。
PowerSI能与当前主流的物理设计数据库如PCB, IC封装和系统级封装(SiP)进行无缝连接。
cadence几种模式的用法
cadence几种模式的用法
摘要:
1.介绍Cadence
2.Cadence 的几种模式
3.各种模式的用法详解
4.总结
正文:
Cadence 是一种常用的电路设计软件,它能够帮助工程师进行电路原理图设计、PCB 布局以及电路仿真等工作。
在Cadence 中,有几种不同的模式,工程师可以根据不同的需求选择合适的模式进行操作。
下面我们就来详细介绍一下Cadence 的几种模式以及它们的用法。
首先,我们要介绍的是Cadence 的基本模式,也就是我们平常最常用到的模式。
在这个模式下,我们可以进行原理图的设计、编辑、修改以及查看等操作。
通过这个模式,我们可以轻松地绘制出复杂的电路图,并且可以进行实时的仿真和测试。
其次,Cadence 还提供了一种叫做“布局”的模式。
在这个模式下,我们可以进行PCB 的布局设计。
这个模式下,我们可以选择不同的布局方式,例如自动布局、手动布局等,以满足不同的设计需求。
除此之外,Cadence 还有一种叫做“原理图仿真”的模式。
在这个模式下,我们可以对原理图进行仿真,以测试电路的性能。
这个模式下,我们可以选择不同的仿真工具,例如模拟仿真、数字仿真等,以满足不同的仿真需求。
最后,Cadence 还有一种叫做“库”的模式。
在这个模式下,我们可以
管理和维护电路元件库。
这个模式下,我们可以添加、删除、修改元件的属性,以满足不同的设计需求。
总的来说,Cadence 的不同模式各有各的用途,工程师需要根据实际的设计需求选择合适的模式进行操作。
cadence运放仿真
可编程方波发 生源
正弦波发生源
2019/8/28
pnp gnd vdc idc vpulse vpwl
vsin
元器件symbol视图
2019/8/28
2019/8/28
电 路 仿 真
Models
2019/8/28
Analyses
Variables
Outputs Return
tran(瞬态分析)
2019/8/28
dc(直流分析)
dc(直流分析)可以在直流条 件下对temperature,Design
Variable,Component Parameter,Model Parameter
进行扫描仿真
举例:对温度的扫描(测量温 度系数)
电路随电源电压变化的变化 曲线等
2019/8/28
举个例子:标识3db的点,我们用到的表达式如下: bandwidth(VF(“/Out),3,“low”)。
需要注意的是:表达式一般都是通过计算器(caculator)输入的。 Cadance自带的计算器功能强大,除了输入一些普通表达式以外,还自带 有一些特殊表达式,如bandwidth、average等等。
cdsSpice hspiceS spectre等
设置模拟 时的温度
设置库文件 的路径和仿
真方式
设置仿真的 环境
(后仿真时 需设置)
2019/8/28
Analyses菜单
选择模拟类型。Spectre 的分析有很多种,如右图, 最基本的有
tran(瞬态分析) dc(直流分析) ac(交流分析)。
2019/8/28
ac(交流分析)
ac(交流分析) 是分析电路性能随 着运行频率变化而 变化的仿真。
cadence中emir仿真的作用
cadence中emir仿真的作用
在Cadence中,EMIR仿真是一种模拟实验,旨在帮助科学家和工程师更
好地理解复杂系统的运作机制。
EMIR仿真基于物理和数学模型来模拟系统
的行为和变化,使用数学公式和计算机程序来模拟系统的行为,以及它们如何在不同条件下发生变化。
EMIR仿真可以用于模拟各种物理系统,如气体流动、热传导和电磁场。
它
也可以用于模拟复杂的工业过程,如催化反应、液体混合和材料加工。
此外,EMIR仿真还可以用于模拟生物系统,如神经元网络、生物反应器和基因网络。
通过EMIR仿真,研究人员可以更好地理解系统的运行机制,并预测系统的行为。
这有助于更好地设计和控制这些系统。
此外,EMIR仿真技术可以在
不同的条件下进行模拟,这有助于更好地理解系统的运行机制。
以上信息仅供参考,如有需要,建议您咨询专业人士。
Cadence板级仿真
Cadence板级仿真Cadence的SQ仿真用于单板网络的拓扑提取或者信号质量仿真非常方便,即板级的仿真。
但随着系统的复杂,板间的信号仿真越来越多,这就涉及到两块电路板的系统级仿真。
两块PCB之间必然是通过connector连接在一起的,如果近似地处理,可以把connector当作是一根短的传输线,连接connector的两个对应网络分布在两块PCB中,我们可以分开处理,对两个网络进行分别提取,然后利用SigXplorer的Append功能进行Top整合,中间connector采用传输线近似。
这是最简单的方法。
当然还有另一种比较正式一点的方法,SQ本身就支持两块电路板的同步仿真,其原理与Xnet 的网络拓扑结构提取相当。
比如,如果我们不指定Xnet时,进行网络提取只能提取单根网络,当指定了Xnet之后,Probe提取出的网络就是Xnet,这里Xnet的指定就是给对应的无源元件,比如电阻、电容、电感等,分配Espice模型。
当然这里这里也包括连接器,只不过这比他们要稍微复杂一些。
下面就以一个例子来说明板级仿真的网络提取。
准备工作:仿真文件:cpu.brdmainboard.brd仿真模型:8347_tbga_rev203.dmlpca9548a_3_3v.dml仿真原理图:cpu.dsnmainboard.dsn拓扑结构简易视图如下:CPU端:Mainboard端:Analyze----SI/EMI Sim----Library...在Brower界面Add existing library,把需要的IC model放进去进行IC模型分配,Analyze----SI/EMI Sim----Model...在弹出的Signal Model Assignment里进行模型分配,默认的分配环境是Devices在这里进行模型分配,选中状态时,pcb界面的对应元件会临时高亮选中需要分配模型的Devices后,点击下面的Find Model,在Model Type Filter中选择IbisDevice,Model Name Pattern中输入“*”,选择正确的Model Name后模型就自动分配给对应的IC了分配好model后的devices这里不仅要给IC分配好模型,还需要给拓扑结构中的无源元件建立模型,比如这里的上拉电阻。
Candence使用手册_仿真分册
Candence使用手册_仿真分册前言PCB仿真Cadence软件是我们公司统一使用的原理图设计、PCB设计、高速仿真的EDA工具。
进行仿真工作需要有很多方面的知识,须对高速设计的理论有较全面的认识,并对具体的单板原理有一定的了解,还需具备仿真库的相关知识等。
在这个分册中仅对仿真软件的使用进行较详细的阐述,还介绍高速设计的一些相关理论,仿真过程是基于Allegro SPB 15.7的PCB SI模块进行的。
其他知识,如仿真库的知识、约束管理器等请参阅专门的使用手册。
在此非常感谢网络南研 EDA和本部 EDA对此手册的支持。
第一章高速设计与PCB仿真流程本章介绍高速PCB仿真设计的基础知识和重要意义,并介绍基于Cadence 的Allegro SPB15.7的PCB仿真流程。
1.1高速信号与高速设计随着通信系统中逻辑及系统时钟频率的迅速提高和信号边沿不断变陡,PCB的走线和板层特性对系统电气性能的影响也越发显著。
对于低频设计,走线和板层的影响要求不高甚至可以完全忽略不计。
当频率超过 50MHz时,PCB走线则必须以传输线考虑,而在评定系统性能时也必须考虑 PCB 板材的电参数影响。
当系统时钟频率达到120MHz及更高时,就只能使用高速电路设计方法,否则基于传统方法设计的PCB将无法工作。
因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段,只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。
通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路占整个电子系统的一定份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。
因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应,见图1-1所示。
cadence仿真工具有什么区别
问:Cadence的这些仿真工具有什么区别呢?在哪种情况下哪种工具更加适合呢?答:行,hspice是Synopsys公司的线路仿真工具;Spectre是Cadence公司的线路仿真工具。
他们之间显然有很多区别——显然我是倾向于用Spectre的;-)每种仿真器都有两个接口。
它们就是hspiceD和hspiceS(hspice Direct,和hspice Socket),以及spectre和spectreS(Spectre Direct,和spectre Socket)。
这个"Socket"接口是仿真器的一个比较老的接口。
过去,很多仿真器没有一个强大的参数化语言,所以Cadence工具所做的就是使用cdsSpice (这个工具有强大的宏语语言,但实际上是一个比较脆弱的仿真器)来从头到尾充当仿真器。
所有的网表都用cdsSpice的宏语言生成,然后再翻译成目标仿真器的语言——不保留任何参数化的东西。
这种方法是可行的,但是它意味着你没有办法使用主流仿真器的所有特征。
几年以前(以IC443为例,大约1999年),引入了"direct"接口的概念,我们就去掉了中间手段而直接用相应的语言生成网表。
这样更快,更有效,并且给出了更强大的读取主流仿真器的接口。
所以hspiceD和spectre接口的(仿真器)是优选。
选哪种仿真器取决于你的需要。
以下是原文:Q:What is the difference between all these simulator in Cadence? in wich case is it suitable to use one rather than another?A:Well, hspice is a circuit simulator from Synopsys; spectre is a circuit simulator from Cadence. There are obviously lots of differences - and clearly I would be biased towards spectre ;-)For each simulator, there are two interfaces. There is hspiceD and hspiceS (hspice Direct, and hspice Socket), andspectre and spectreS (spectre direct, and spectre Socket).The "Socket" interfaces are the obsolete interfaces to the simulators. In the past, many simulators did not have a strong parameterisable language, and so what the Cadence tools did was use cdsSpice (which had a strong macro language, but was a fairly weak simulator) to act as a front end to the end simulator. All netlists were created in cdsSpice's macro language, and then translated into the destination simulator's language - without any parameterisation remaining.Such an approach worked, but it tended to mean that you couldn't access all the features of the underlying simulator.A few years ago (back in IC443, around 1999), the "direct" interfaces were introduced, and we're now cutting out the middle man and directly netlisting the right language. This is faster, more efficient, and gives greater access to the underlying simulator.So the hspiceD and spectre interfaces are the ones to go for. Which simulator you pick depends on your needs.。
Cadence仿真工具的介绍.ppt
• Max Final Settle Delays:Rise/Fall:该两项值 填写一样,为表格中Tfight_time_max值。
• Add:为添加规则。 • Modify:为修改规则。 • Delete:为删除规则。
• Find Model… 模型分配。例如给电阻R706分配模型:首先选中电 阻R706,然后执行Find Model…命令,出现Model Browser界面。在 Model Type Filter中选中Espice Device,在Model Name pattern中输 入通配符*,列出库中的所有Espice Device模型,选中合适的模型。
摘要
• 1,调用并运行设置向导 :PCB叠层信息、 DC 电压设置 、器件类属性 、仿真模型分 配 、正确的PINUSE属性 ;
• 2,提取和建立拓朴进行仿真 ; • 3,设置约束及赋予PCB ;
调用并运行设置向导
1,通过菜单Tools\Setup Advisor命令打开Database Setup Advisor 窗口,如 下图所示:
设置约束及赋予PCB
• Mapping Mode:指拓扑结构与PCB中的网络结构之间 的匹配方式。通常设为Pinuse and Refdes。
• Schedule:拓扑结构类型,可根据具体的要求进行设定 ,如果没有特殊要求可使用Template。
• Verify Schedule:选择Yes。 • Stub Length:Stub长度。Stub线俗称“线头”,比如
• Edit Model… 编辑模型参数 • Auto Setup 自动分配模型。当模型名与器件的device名相同时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.改名(rename):>mv A B (文件或目录改名) 7.删除: >rm fileA (删除文件,可以有多个文件名) >rm –r dirA (删除目录,可以有多个目录名) 8.编辑文件:>vi fileA (文件不存在时,自动创建新文件) 编辑命令:I(插入), o(下插入行), O(上插入行), Esc键(退出), x(删除字符), dd(删除行), h l k j或方向键(左右上下移动) 非编辑状态时,按Shift+:,文件尾出现“:”,此时可以 保存文件(w )和退出vi状态(q)。
1.创建目录: >mkdir dirname 2.改变工作目录:>cd dirname (到下级目录) > cd .. (到上级目录) 3.列出当前工作目录:>pwd 4.列文件清单:>ls dirA (可以有多个目录名,没有目录名时为当前目录。可以 加命令选项 -l or -a or -la) 5.复制(copy):>cp fileA fileB (文件复制) >cp fileA fileB dirA (复制文件到目录) >cp -r dirA dirB (复制目录)
打开工作窗口(terminal): 按mouse右键,点击open terminal
COPYRIGHT FOR ZHOUQN
关机:
在terminal中敲命令halt, 回车
重开机:
在terminal中敲命令reboot, 回车
COPYRIGHT FOR ZHOUQN
• LINUX操作系统常用命令简介
COPYRIGHT FOR ZHOUQN
• Cadence icfb EDA工具介绍
library、cell 和 view 1. Cadence icfb工具启动
登陆 创建工作目录:>mkdir work 进入工作目录:>cd work 启动icfb工具: >icfb&
出现CIW窗口
COPYRIGHT FOR ZHOUQN
COPYRIGHT FOR ZHOUQN
(11)Chech and Save
(12)Save
(5)放大、缩小 (6)Stretch拉动(保持连接) (7)copy (8)删除
从分类菜单中可以看 到命令的快捷键和许 多其它命令
(9)undo (10)属性、参数修改
COPYRIGHT FOR ZHOUQN
Cadence 仿真工具使用介绍
COPYRIGHT FOR ZHOUQN
• 物理版图设计
W
1.4 模拟集 成电路设计 步骤
W/L ratios
M3
设计构思 确定设计
电路设计
与设计指标比较 设计 模拟 与设计指标比较
– 根据工艺版图 L 设计规则设计 • 电路测试 电路或系 模拟集成 器件、器件之 统说明 电路设计 – 电路制备后 间的互联 – 对电路功能 电源和时钟线 的分布 和性能参数 – 的测试验证 与外部的连接
COPYRIGHT FOR ZHOUQN
• Linux操作系统:在pc机上,安装 (1) 虚拟机 (2) linux 操作系统 (3) 在linux操作系统中安装IC设计软件
COPYRIGHT FOR ZHOUQN
启动与登陆: (1) 虚拟机登陆
COPYRIGHT FOR ZHOUQN
• (2) 启动linux----点击start this virtual machine
COPYRIGHT FOR ZHOUQN
Pin names 总线命名方式 总线名放置方式 Pin 的旋转和镜像
(2)Add Pin 调用端口Pin
COPYRIGHT FOR ZHOUQN
连线名称
连线名称的相 关属性
(3)Add Wire连线 (narrow or wide)
连线规则 连线粗细
(4) Wire Name 连线命名
+ Vin
版图设计
M4
`
M6 Vout
M1
物理版图设计 C1 M2
`
版图验证
Cout Vb M4 M7
寄生参数提取 芯片制造 测试和验证
DC Currents
芯片实现
Topology
测试与产品开发
产品
COPYRIGHT FOR ZHOUQN
工具使用基本介绍
• 集成电路设计基本工作环境
EDA软件:Cadence 、Synopsys、Mentor等 • 资源库:生产商工艺相关文件、单元库等 • 用户数据:电路、版图、仿真文件等 • 硬件:工作站、 PC机 以下介绍在linux操作系统环境下的有关过程
• 2. Library 的创建
CIW窗口ToolsNewLibrary
COPYRIGHT FOR ZHOUQN
CIW窗口ToolsNewLibrary
COPYRIGHT FOR ZHOUQw
• 原理图 (schematic)-ComposerSchematic • 版图 (layout)--Virtouso
COPYRIGHT FOR ZHOUQN
原理图编辑 1.原理图编辑窗口结构
分类编辑 命令菜单
常用快捷命 令菜单
COPYRIGHT FOR ZHOUQN
浏览器 Library Name(option)
Cell View
阵列(行数、列数) 旋转、X镜像、Y镜像 Variable(如果有)
(1)Instance 调用库单元(Cellview)
COPYRIGHT FOR ZHOUQN
(3) 用户登录 注意:linux与windows切换用Ctrl + Alt键
COPYRIGHT FOR ZHOUQN
(3) 用户登录----输入用户名
COPYRIGHT FOR ZHOUQN
(3) 用户登录----输入用户名密码
COPYRIGHT FOR ZHOUQN
• 仿真环境设置
COPYRIGHT FOR ZHOUQN
• 仿真环境设置
COPYRIGHT FOR ZHOUQN
COPYRIGHT FOR ZHOUQN