平面向量的加法 (1)ppt课件

合集下载

平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示课件(共25张PPT)

平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示课件(共25张PPT)
∴ = (1,5), = (4, −1), = (−5, −4),
∴ + = (1,5) + (4, −1) = (5,4),
− = (−5, −4) − (1,5) = (−6, −9).
(3)设向量,的坐标分别是(−1,2),(3, −5),则 + , − 的坐标分
(1)相等向量的坐标相同,且与向量的起点、终点无关.( √ )
(2)当向量的起点在坐标原点时,纵坐标为0,与轴平行的向量的横坐标为0.
(√ )
知识点二 平面向量加、减运算的坐标表示
设向量 = (1 , 1 ), = (2 , 2 ),则有下表:
A.(−2,4)

)
B.(4,6)
C.(−6, −2)
D.(−1,9)
[解析] 在平行四边形中,因为(1,2),(3,5),所以
= (2,3),又 = (−1,2),所以 = + = (1,5),
= − = (−3, −1),所以 + = (−2,4).故选A.
6.3 平面向量基本定理及坐标表示
6.3.2 平面向量的正交分解及坐标表示
6.3.3 平面向量加、减运算的坐标表示
【学习目标】
1.借助平面直角坐标系,理解平面向量坐标的概念,掌握平面向量
的正交分解及坐标表示.
2.掌握平面向量的坐标运算,会用坐标表示平面向量的加、减运算.
知识点一 平面向量的正交分解及坐标表示
互相垂直
1.正交分解:把一个向量分解为两个__________的向量,叫作把向量
作正交分解.
2.平面向量的坐标表示如图,在平面直角坐标系中,
设与轴、轴方向相同的两个单位向量分别为,,

人教版中职数学拓展模块一:3.2.1向量的加法课件(共21张PPT)

人教版中职数学拓展模块一:3.2.1向量的加法课件(共21张PPT)
活动 2
调动思维,探究新知
想一想
如果向量, 共线时,如何作出 +?
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
注:
对于零向量与任意向量 ,都有
+0 = 0+ = .
活动 3
巩固练习,提升素养
解 (1)在平面内任取一点 A,作向量 = ,

在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
我们把这种求两个向量和的作图法则称为向量加法
的平行四边形法则.
特别提示
向量加法的平行四边形法则特点是两个向量首首相连.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学
拓展模块(一)
第三单元 平面向量
3.2.1向量的加法
人民教育出版社
第三单元 平面向量
3.2.1向量的加法
学习目标
知识目标
理解向量加法的概念,理解向量加法的三角形法则与平行四边形法则;
学生运用自主探讨、合作学习,理解向量运算与数的运算的区别和联系,理
能力目标
解向量加法的几何意义,掌握运用向量加法的三角形法则与平行四边形法求
活动 3
巩固练习,提升素养
例3 某人先向东走 3 km,接着向北走 3 km.求这
ห้องสมุดไป่ตู้
个人的位移.
课堂小结
3.2.1
/作业布置/
P75,练习1./2./3./4.
闻过而终礼,知耻而后勇。
感谢观看

【课件】向量的加法运算 向量的减法运算课件高一下学期数学人教A版(2019)必修第二册

【课件】向量的加法运算 向量的减法运算课件高一下学期数学人教A版(2019)必修第二册
第六章 平面向量及其应用
6.2.1 向量的加法运算 6.2.2 向量的减法运算
教学目标
借助实例和平面向量的几何意义,掌握平面向量
1
的加法、减法运算及其运算规律.
2 理解平面向量的加法、减法运算的几何意义.
(1)向量的加法:求两个向量和的运算, 叫做向量的加法.
对于零向量与任意向量a ,规定a+0 0 a a .
本节课学习了平面向量的加法、减 法运算.
解析:由题意和图形可知 BAC 90 ,因为| AB | 300 ,| BC | 300 2 ,
所以| AC | 300 ,因为 ABC 45 ,A 地在 B 地南偏东 30°的方向处. 所以 C 地在 B 地南偏东 75°的方向处. 故飞机从 B 地向 C 地飞行的方向为南偏东 75°.
9.化简下列各式: (1) ( AB MB) (OB MO) . (2) AB AD DC .
B a-b
b Oa A
例 1 长江两岸之间没有大桥的地方,常常通过轮渡进行运 输.如图,一艘船从长江南岸 A 地出发,垂直于对岸航行, 航行速度的大小为 15 km/h,同时江水的速度为向东 6 km/h. (1)用向量表示江水速度、船速以及船实际航行的速度; (2)求船实际航行的速度的大小(结果保留小数点后一位)与方向(用与江水速度 间的夹角表示,精确到 1°).
(2)向量加法的三角形法则:已知非零向量a,b ,在平面内
任取一点 A ,作 AB a , BC b ,则向量 AC 叫做a 与b 的和,
记作 a b ,即 a b AB BC AC .如图.
C
b a+b
Aa
B
(3)向量加法的平行四边形法则:已知两个不共线向量a,b , 作 AB a , AD b ,以 AB , AD 为邻边作 ABCD ,则对角线 上的向量 AC a b .如图.

平面向量的加法运算

平面向量的加法运算
第五章
向量加法在物理中的应用
力合成:将多个力合成为一个力便于分析和计算 速度合成:将多个速度合成为一个速度便于分析和计算 加速度合成:将多个加速度合成为一个加速度便于分析和计算 力矩合成:将多个力矩合成为一个力矩便于分析和计算
向量加法在解析几何中的应用
向量加法在直线方程中的应用
向量加法在空间直线方程中的应用
向量加法的三角形不等式性质是指对于任意两个向量和b有|+b|≤||+|b|
这个性质是向量加法的一个重要性质它反映了向量加法的线性性和可加性
这个性质在向量的运算和几何中的应用非常广泛例如在向量的合成、分解、投影等问题中都有 应用
这个性质还可以推广到更一般的线性空间中成为线性空间的一个基本性质
向量加法的应用
三角形法则
向量加法的三角形法则:将两个向量首尾相接从起点到终点的向量就是两个向量的和向量。
向量加法的三角形法则的证明:通过向量的平行四边形法则和向量的加法法则可以证明三角 形法则的正确性。
向量加法的三角形法则的应用:在解决实际问题时三角形法则可以简化计算过程提高计算效 率。
向量加法的三角形法则的局限性:三角形法则只适用于两个向量首尾相接的情况对于其他情 况需要采用其他方法。
向量加法的共线性质
向量加法满足交换律:+b=b+ 向量加法满足结合律:(+b)+c=+b+c) 向量加法满足分配律:*(b+c)=*b+*c 向量加法满足零向量性质:+0=
向量加法的平行四边形性质
向量加法满足平 行四边形法则
向量加法满足交 换律
向量加法满足结 合律
向量加法满足分 配律
向量加法的三角形不等式性质

第6章 6.2 6.2.1 向量的加法运算-【新教材】人教A版(2019)高中数学必修第二册课件

第6章 6.2 6.2.1 向量的加法运算-【新教材】人教A版(2019)高中数学必修第二册课件


返 首 页
·
17
·







2.设 A1,A2,A3,…,An(n∈N,且 n≥3)是平面内的点,则一 结
·


新 知
般情况下,A→1A2+A→2A3+A→3A4+…+An-1An 的运算结果是什么?
素 养

作 探 究

[提示]
将三角形法则进行推广可知A→1A2+A→2A3+A→3A4+…+An
层 作



返 首 页
·
13
·


境 导 学
3.如图,在平行四边形 ABCD 中,D→A+D→C=________.
堂 小 结
·




知Leabharlann 养合作课


究 释
D→B [由平行四边形法则可知D→A+D→C=D→B.]
分 层 作



返 首 页
·
14
·









4.小船以 10 3 km/h 的速度按垂直于对岸的方向行驶,同时河 提


境 导
重力用C→G表示,则C→E+C→F=C→G.
堂 小


·

易得∠ECG=180°-150°=30°,




∠FCG=180°-120°=60°.


作 探 究
∴|C→E|=|C→G|·cos 30°=10× 23=5 3,

6-3-3平面向量加、减、数乘运算的坐标表示 课件20张-人教A版(2019)高中数学必修第二册

6-3-3平面向量加、减、数乘运算的坐标表示 课件20张-人教A版(2019)高中数学必修第二册
人教A版(2019)高中数学必修第二册
6.3.3 平面向量加、减、数乘运算的坐标
表示
复习引入
平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于
这一平面内的任一向量a,有且只有一对实数λ1,λ2,使
a=λ1e1+λ2e2.
e1
e1
a
O
e2
e2
a
探究新知
思考:向量的坐标与点的坐标有何联系与区别?
(-2, 1),(-1, 3),(3, 4),求顶点D的坐标.
解法2:如图,由向量加法的平行四边形
法则可知 BD = BA +BC =(-2-(-1),1-3)
+(3-(-1),4-3)=(3,-1),
而 OD = OB + BD =(-1,3)+(3,-1)
=(2,2),
所以顶点D的坐标为(2,2).
∴a+b=(2,1) +(-3,4)=(-1,5),a-b=(2,1) -(-3,4)=(5,-3),
3a+4b=3(2,1) +4(-3,4)=(6,3) +(-12,16)=(-6,19)。
典例分析
例3 如图,已知□ABCD的三个顶点A, B, C的坐标分别是
(-2, 1),(-1, 3),(3, 4),求顶点D的坐标.
目标检测
2.在下列各小题中,已知A、B两点的坐标,分别求 AB , BA
的坐标:
(1)A(3,5),B(6,9);
(2)A(-3,4),B(6,3) ;
(3)A (0,3), B(0,5);
(4)A (3,0), B(8,0).
的位置的坐标.
2.求一个向量的坐标时,可以首先求出这个向量的始点
坐标和终点坐标,再运用终点坐标减去始点坐标得到该

平面向量的加法减法与数乘运算课件

平面向量的加法减法与数乘运算课件

数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向

平面向量的运算(课时1 向量的加法运算)(同步课件)高一数学(人教A版2019必修第二册)

平面向量的运算(课时1 向量的加法运算)(同步课件)高一数学(人教A版2019必修第二册)

巩固训练
二、向量加法的实际应用
例2 河水自西向东流动的速度为 ,小船自南岸沿正北方向航行,小船在静水中的速度为 ,求小船的实际航行速度.
[解析] 设 , 分别表示水流的速度和小船在静水中的速度,过平面内一点 作 , ,以 , 为邻边作矩形 ,连接 ,则 ,并且 即为小船的实际航行速度.
D
[解析] 由 知, ,所以 , , , 四点构成的四边形一定是平行四边形.
4.已知向量 表示“向东航行 ”, 表示“向南航行 ”,则 表示__________________.
向东南航行
情境设置
合作探究·提素养
问题2:两个向量相加就是两个向量的模相加吗?
[答案] 不是,向量的相加满足三角形法则,而模相加是数量的加法.
新知生成
1.向量加法的定义求两个向量和的运算,叫作向量的加法.
2.向量求和的法则
向量求和的法则
三角形法则
已知非零向量 , ,在平面内取任意一点 ,作 , ,则向量 叫作 与 的和,记作 ,即 .这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任意向量 ,规定
应用三角形法则和平行四边形法则应注意的问题
(1)三角形法则可以推广到 个向量求和,作图时要求“首尾相连”,即 个首尾相连的向量的和对应的向量是第一个向量的起点指向第 个向量的终点的向量;
(2)平行四边形法则只适用于不共线的向量求和,作图时要求两个向量的起点重合;
续表
新知运用
一、求作向量的和
例1 (1)如图①,利用向量加法的三角形法则作出 ;
(2)如图②,利用向量加法的平行四边形法则作出 .
[解析] (1)如图③,设 ,因为 与 有公共点 ,所以过 点作 ,连接 ,即为 .

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的加法运算)

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的加法运算)

必修第二册·人教数学A版
返回导航 上页 下页
探究三 向量加法的实际应用
[例 3] 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图,一艘船从长
江南岸 A 地出发,垂直于对岸航行,航行速度的大小为 15 km/h,同时江水的速度为
向东 6 km/h.
(1)用向量表示江水速度、船速以及船实际航行的速度;
解析:设A→B,B→C分别表示飞机从 A 地按北偏东 35°的方向飞行 800 km,从 B 地按 南偏东 55°的方向飞行 800 km, 则飞机飞行的路程指的是|A→B|+|B→C|; 两次飞行的位移的和指的是A→B+B→C=A→C. 依题意,有|A→B|+|B→C|=800+800=1 600 (km), 又 α=35°,β=55°,∠ABC=35°+55°=90°,
→ 因为 tan ∠CAB=|B→C|=52,所以利用计算工具可得∠CAB≈68°.
|AB| 因此,船实际航行速度的大小约为 16.2 km/h,方向与江水速度间的夹角约ห้องสมุดไป่ตู้ 68°.
必修第二册·人教数学A版
返回导航 上页 下页
向量加法应用的关键及技巧 (1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的 相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量. (2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题 转化为向量的加法运算,进而利用向量加法的几何意义进行求解.
必修第二册·人教数学A版
1.如图,已知 a、b,求作 a+b. 解析: ①A→C=a+b ②A→C=a+b
返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
探究二 向量加法的运算律 [例 2] (1)化简下列各式: ①A→B+B→C+C→D+D→A; ②(A→B+M→B)+B→O+O→M. (2)如图,四边形 ABDC 为等腰梯形,AB∥CD,AC=BD, CD=2AB,E 为 CD 的中点.试求: ①A→B+A→E;②A→B+A→C+E→C; ③C→D+A→C+D→B+E→C.

平面向量的加法运算课件

平面向量的加法运算课件
平面向量的加法运算件

• 平面向量的加法定义 • 平面向量的加法运算性质 • 平面向量的加法运算律 • 平面向量的加法运算应用 • 平面向量加法运算的练习和巩固
contents
01
平面向量的加法定
定义及意义
平面向量的加法定 义
对于两个向量$\mathbf{a}$和$\mathbf{b}$,其和向量$\mathbf{c}$定义为 $\mathbf{c} = \mathbf{a} + \mathbf{b}$,其中$\mathbf{c}$的方向是 $\mathbf{a}$和$\mathbf{b}$的平行四边形的对角线方向。
向量$\mathbf{c}$等于零向量,即$\mathbf{c} = \mathbf{0}$。
向量加法的几何意 义
• 向量加法的几何意义:向量加法可以理解为将两个向量首尾相 连,得到一个新的向量,这个向量的长度等于两个向量的长度 之和,方向与两个向量的平行四边形的对角线方向一致。
02
平面向量的加法运算性
向量加法的多边形法则
总结词
向量加法满足多边形法则
详细描述
多边形法则是指将一个多边形的起点与另一 个多边形的终点相连,得到的向量等于两个 多边形的向量之和。这个法则可以用于求解 多个向量的和以及判断多边形的方向。
04
平面向量的加法运算用
解向量方程
求解与向量相关的方 程,例如平行向量、 垂直向量、共线向量 等。
03
平面向量的加法运算律
向量加法的平行四边形法则
总结词
向量加法满足平行四边形法则
详细描述
根据平行四边形的性质,向量加法满足平行四边形法则,即以两个向量为邻边的平行四边形的对角线 向量等于两个向量的和。

平面向量的加法PPT课件

平面向量的加法PPT课件
04Biblioteka 向量加法的应用解决物理问题
力的合成与分解
通过向量加法,可以计算多个力的合 力或分力,从而解决与力相关的物理 问题。
速度和加速度的合成
在运动学中,向量加法用于计算物体 在多个方向上的速度和加速度,以解 决运动问题。
解决数学问题
向量模的计算
向量加法可以用于计算向量的模,即向量的 长度或大小。
02 向量加法的坐标表示
坐标表示的定义
总结词
坐标表示是平面向量加法中的一种重要方法,通过坐标系将向量表示为坐标形式 ,进而进行向量的加法运算。
详细描述
在平面直角坐标系中,任意一个向量$overrightarrow{AB}$可以表示为从原点$O$ 到点$B$的有向线段,记作$(x_2-x_1, y_2-y_1)$,其中$(x_1, y_1)$和$(x_2, y_2)$ 分别是点$A$和点$B$的坐标。
结合律
总结词
向量加法的结合律是指向量的加法满足 结合性,即改变向量的加法括号,结果 不变。
VS
详细描述
结合律也是向量加法的基本性质之一,表 示向量加法不依赖于括号的组合方式。设 $vec{A}$、$vec{B}$和$vec{C}$为任意 三个向量,则有$(vec{A} + vec{B}) + vec{C} = vec{A} + (vec{B} + vec{C})$。
坐标表示的几何意义
总结词
坐标表示不仅将向量数量化,还揭示了向量的方向和大小。
详细描述
在坐标系中,向量的坐标表示形式不仅包含了向量的长度信 息(即模长),还包含了向量的方向信息。例如,向量$(3, 4)$和$(-3, -4)$的模长相等,但方向相反。
坐标表示的性质

新人教A版高中数学必修二课件:6.2平面向量的运算—加法 减法——课件

新人教A版高中数学必修二课件:6.2平面向量的运算—加法 减法——课件

人民教育出版社A版必修 一
二.向量的减法运算
2.向量的减法:求两个向量差的运算. a b 叫做 a, b 的差.

a b a b
a b 表示为由向量
33.向量减法的几何意义:
.已知a, b,根据减法的定义,如何
作出a b呢? b 的终点指向向量a 的终点的向量
B
a
b
ab
→ →
BC,BD.
解:
CD AE c
BC AC AB b a
BD BC CD b a c
步骤:
1)找到未知向量所在的平行四边形或三角形;
2)按照平行四边形法则或三角形法则进行分解;
3)用已知表示未知.
人民教育出版社A版必修 一
例3 一艘船以12 km/h的速度航行,方向垂直于河岸,已知水流速度为5 km/h,

二、思想方法
类比、数形结合 、分类讨论
b
a
b
口诀:首同尾连,指向被减
C
O
A
a b
D
人民教育出版社A版必修 一
例 1.化简下列各式:
→ → →
(1) AB-AD-DC;
DB DC CB
→ →


(2)(AB+MB)+(-OB-MO).
或 AB ( AD DC ) AB AC CB




AB MB OB MO AB MB MO OB AB OB OB AB
人民教育出版社A版必修 一
应用向量解决实际问题的基本步骤
(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
练习1.如图,已知
a b 用向量加法的三角形b
a
(3)
a
b
(4)
b a
a b
解答:
(1)
ab
b
(3)
a
ab
a
b
(2)
b
a
ab
(4)
ab
a b
8
练习2.如图,已知 (1)
a b 用向量加法的平行四边形法则作出
ab
(2)
ba
b a
解答:
(1)
a
ab
b
ba
(2)
a b ab b
若| f1 | 〉 | f2 | ,则合力F与f1同向且| F = | f1 | - | f2 | ; 若| f1 | 〈 | f2 | ,则合力F与同向且| F | = | f2 | - | f1 |
3
一、向量的加法 1、定义:求两个向量的和向量的运算叫向量的加法。
2、平行四边形法则
D
b
C
a a a a a a a a aa
11
例1、化简: →
(1)AB CD BC = AD
→ = MN
(2) MA BN AC CB → =0
(3)AB BD CA DC
首尾相接,首尾连
12
例2.一艘船以 2 3的k速m度/和h垂直于对岸的方向行驶,同
时,河水的流速为
2,k求m船实/h际航行速度的大小与方向
a+b
bb
A
b
b
b
a B
4
3、三角形法则
A B
a aaaaaaaaa
b
b
b b bO
b a+b
b b
首尾相接,首尾连
b
同方向共线
a
ab b
a a a+b b
A
B
C
a
异方向共线
a bba aa++bb b
C
A
a B
注:a0 0a a
5
探究:向量和的特点: (1)两个向量的和仍是一个向量.
(2)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起 点,可以推广到n个向量连加(“首尾相接,首尾连”)
复习引入: 1、什么叫向量?一般用什么表示?
既有大小又有方向的量叫向量,一般用有向线段表示。 2、向量的模、零向量、单位向量
向量的大小(长度)称为向量的模 、 长度为0的向量叫零向量,方向是任意的. 长度为1个单位长度的向量,叫单位向量.
3、平行向量(共线向量)
方向相同或相反的非零向量叫平行向量, 4、什么叫相等向量?
→ 与任0 意向量平行。
长度相等且方向相同的向量叫相等向量。
2
情境:兄弟俩同拉一箱子 (1)两人齐心协力,方向相同
合力
向量的和
f1
F
f2 (2)两人意见分歧,方向不同
f1
F
f2
(3)两人背道而驰,方向相反
f1
F
f2
合力F与f1、f2同向 且|F | = | f1 | + | f2 |
合力F与f1、f2不同向 且| F | 〈 | f1 | + | f2 |
已知:四边形ABCD,对角线AC与BD交于O,AO=OC,DO=OB。
求证 :四边形ABCD是平行四边形
证: 如图,由向量加法法则,有
D
C
AB AO OB
DC DO OC 又已知AO OC ,DO OB A
O B
AB DC 即AB与DC平行且相等
ABCD为平行四边形
再见!
16
(用与流速间的夹角表示).
解:如图,设 A表D示船速, 表示A水B的流速,
D
以AB,AD为邻边作 ABCD,
则 AC是船的
实际航行速度.
在 RtA中B,C AB 2 BC2 3
A C A 2 B B 2 C 2 2 2 3 2 4 A
ta nCAB 23 3 CA 6B 0 2
a
二、性质 1、交换律: 2、结合律:
→a
→a + →b = →b + →a
→ b
→a + →b
→b
→a
( →a + →b ) + →c = →a + ( →b + →c )
→a + →b + →c
→c
→a + →b
→a
→b
→a + →b + →c
→c
→b + →c
→a
→b
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行
答:船实际航行速度为
,4方km向与/h流速间的夹角为 .
C
B
60
13
五、小结
1 向量加法法则:
→a + →b
→b
→a
三角形法则
→a
→b
→a + →b
→b
→a
平行四边形法则
2 运算性质:
ab b a (a b) c a (b c) a0 0a a
14
思考 : 试用向量方法证明: 对角线互相平分的四边形是平行四边形。
相关文档
最新文档