C语言链表(能看得懂的)

合集下载

c语言数据结构名词解释

c语言数据结构名词解释

C语言数据结构名词解释摘要本文档旨在解释和介绍C语言中常用的数据结构相关的名词,包括数组、链表、栈、队列和树等。

通过对这些名词的解释,读者可以更好地理解这些数据结构在C语言中的应用和原理。

目录1.[数组](#1-数组)2.[链表](#2-链表)3.[栈](#3-栈)4.[队列](#4-队列)5.[树](#5-树)1.数组数组是一种线性数据结构,用来存储一组相同类型的元素。

在C语言中,数组的大小是固定的,即在定义时需要指定数组的长度。

数组可以通过索引来访问和修改其中的元素,索引从0开始。

2.链表链表是一种动态数据结构,由一系列节点组成,节点包含数据和指向下一个节点的指针。

与数组不同,链表的大小可以动态增长或缩小。

链表分为单向链表和双向链表两种形式,其中双向链表的节点还包含指向前一个节点的指针。

3.栈栈是一种后进先出(L I FO)的数据结构,类似于现实生活中的弹夹。

栈有两个基本操作:入栈(p us h)和出栈(po p)。

入栈将数据添加到栈的顶部,而出栈则将栈顶的数据移除。

4.队列队列是一种先进先出(FI FO)的数据结构,类似于现实生活中的排队。

队列有两个基本操作:入队(en qu eu e)和出队(de qu eu e)。

入队将数据添加到队列的末尾,而出队则将队列开头的数据移除。

5.树树是一种分层的数据结构,由节点和边组成。

每个节点可以有零个或多个子节点,其中一个节点被称为根节点,没有父节点的节点称为叶子节点。

树在实际应用中常用于表示分层结构,如文件系统和组织结构等。

结论本文档对C语言中常用的数据结构名词进行了解释和介绍,包括数组、链表、栈、队列和树等。

通过阅读本文档,读者可以更好地理解这些数据结构在C语言中的应用和原理。

在实际编程中,选择适合的数据结构对于提高程序的效率和减少资源占用非常重要。

c链表库函数

c链表库函数

c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。

在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。

为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。

本文将介绍一些常见的C链表库函数及其用法。

一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。

数据域用于存放数据,指针域用于指向下一个节点。

链表的最后一个节点指针域为空(NULL),表示链表的末尾。

常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。

下面我们来看看C语言中常用的链表库函数。

二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。

```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。

常见的插入方式包括头部插入和尾部插入。

```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。

在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。

[转载整理]C语言链表实例

[转载整理]C语言链表实例

[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。

单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。

双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。

循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。

此外还有双向循环链表,它同时具有双向链表和循环链表的功能。

单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。

※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。

这是在C中唯⼀规定可以先使⽤后定义的数据结构。

链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。

哈希链表的c语言实现

哈希链表的c语言实现

哈希链表的c语言实现哈希链表的C语言实现哈希链表是一种常用的数据结构,用于存储和操作大量的数据。

它结合了哈希表和链表的特点,具有快速查找和高效插入删除的优势。

本文将介绍如何使用C语言实现哈希链表,并详细讲解其原理和操作。

一、哈希链表的原理哈希链表是通过哈希函数将数据的键映射到一个唯一的索引位置,然后使用链表来解决哈希冲突。

哈希函数可以是简单的取模运算,也可以是复杂的算法,关键在于保证映射的唯一性和均匀性。

二、哈希链表的结构在C语言中,我们可以使用结构体来定义哈希链表的节点和链表本身。

节点包含一个键值对,即存储的数据和对应的键,以及一个指向下一个节点的指针。

链表则包含一个指向第一个节点的指针。

```c// 定义哈希链表节点typedef struct Node {int key;int value;struct Node* next;} Node;// 定义哈希链表typedef struct HashTable {int size;Node** table;} HashT able;```三、哈希链表的操作1. 初始化哈希链表在初始化哈希链表时,需要指定链表的大小,并分配相应大小的内存空间。

同时,需要将每个节点的指针初始化为空。

2. 插入节点插入节点时,首先通过哈希函数计算出节点的索引位置,然后将节点插入到对应索引位置的链表中。

如果该位置已经存在节点,则将新节点插入到链表的头部。

3. 查找节点查找节点时,也需要通过哈希函数计算出节点的索引位置,然后遍历链表,找到对应的节点。

如果找到了节点,则返回节点的值;否则,返回空。

删除节点时,首先通过哈希函数计算出节点的索引位置,然后遍历链表,找到对应的节点并删除。

需要注意的是,删除节点时需要维护链表的连续性。

四、示例代码下面是一个简单的示例代码,演示了如何使用C语言实现哈希链表的初始化、插入、查找和删除操作。

```c#include <stdio.h>#include <stdlib.h>// 初始化哈希链表HashTable* initHashTable(int size) {HashTable* ht = (HashTable*)malloc(sizeof(HashTable));ht->size = size;ht->table = (Node**)malloc(sizeof(Node*) * size);for (int i = 0; i < size; i++) {ht->table[i] = NULL;}return ht;}void insertNode(HashTable* ht, int key, int value) { int index = key % ht->size;Node* newNode = (Node*)malloc(sizeof(Node)); newNode->key = key;newNode->value = value;newNode->next = ht->table[index];ht->table[index] = newNode;}// 查找节点int findNode(HashTable* ht, int key) {int index = key % ht->size;Node* cur = ht->table[index];while (cur) {if (cur->key == key) {return cur->value;}cur = cur->next;}return -1;}void deleteNode(HashTable* ht, int key) { int index = key % ht->size;Node* cur = ht->table[index];Node* pre = NULL;while (cur) {if (cur->key == key) {if (pre) {pre->next = cur->next;} else {ht->table[index] = cur->next; }free(cur);return;}pre = cur;cur = cur->next;}}int main() {HashTable* ht = initHashTable(10);insertNode(ht, 1, 10);insertNode(ht, 2, 20);insertNode(ht, 11, 30);printf("%d\n", findNode(ht, 1));printf("%d\n", findNode(ht, 2));printf("%d\n", findNode(ht, 11));deleteNode(ht, 2);printf("%d\n", findNode(ht, 2));free(ht->table);free(ht);return 0;}```五、总结本文介绍了哈希链表的C语言实现,并详细讲解了其原理和操作。

c语言链表结点数据之和

c语言链表结点数据之和

c语言链表结点数据之和(原创实用版)目录1.链表结点的概念和结构2.链表结点数据的计算方法3.C 语言中链表结点数据的和的计算方法正文链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个指向下一个节点的指针。

链表结点是链表中的基本单元,它包含一个数据元素和一个指向下一个结点的指针。

链表结点数据的计算方法是比较简单的。

对于一个单链表,我们可以使用遍历法来计算链表结点数据的和。

具体来说,我们从链表的头结点开始,依次遍历链表中的每个结点,将当前结点的数据元素累加到一个变量中。

当遍历完链表后,该变量中存储的就是链表结点数据的和。

在 C 语言中,我们可以使用循环和指针来实现链表结点数据的和的计算方法。

假设我们有一个链表,其头结点为 head,我们需要计算链表结点数据的和,可以使用以下代码实现:```cint sum = 0; // 定义一个变量用于存储链表结点数据的和ode *p = head; // 定义一个指针 p 指向链表的头结点// 使用循环遍历链表,计算链表结点数据的和while (p!= NULL) {sum += p->data; // 将当前结点的数据元素累加到变量 sum 中 p = p->next; // 将指针 p 指向下一个结点}// 输出链表结点数据的和printf("链表结点数据的和为:%d", sum);```上述代码中,我们定义了一个指针变量 p,使其指向链表的头结点。

然后使用 while 循环遍历链表,每次循环将当前结点的数据元素累加到变量 sum 中,并将指针 p 指向下一个结点。

当指针 p 指向 NULL 时,说明遍历完整个链表,此时变量 sum 中存储的就是链表结点数据的和。

最后,我们使用 printf 语句输出链表结点数据的和。

C语言__链表相关知识

C语言__链表相关知识
数据1head数据2数据nnull?2结点结构体类型的定义在c语言中定义链表结点结构的一般形式如下struct结构体名数据成员表struct结构体名指针变量名二简单链表例117简单链表静态链表实际作用不大三内存动态分配在c语言中可以利用malloc函数向系统申请分配链表结点的存储空间其形式为malloc存储区字节数该函数返回存储区的首地址
八、链表举例 1、插入结点例题: 插入结点例题: typedef struct student * PST; struct student { int num; char name[40]; float score; PST next;}; 由该类节点已经组成一个有序链表, 标识, 由该类节点已经组成一个有序链表,以head标识,编写向该链表 标识 中插入节点的函数,要插入的节点由st给出 函数原型如下: 给出, 中插入节点的函数,要插入的节点由 给出,函数原型如下: PST insert(PST head, PST st)
我们建立一个职工工资链表, 现定义结点类型如下:
struct staff {char name[20]; [ ]; int salary; ; struct staff *next; ; }; ;
在形成链表的过程中,首先要定义头指针,并且还需要两个 工作指针p1、 p2 ,其定义如下: struct staff *head , *p1, *p2;
节点
指 数据1 ◎ 针
指 数据2 ◎ 针
指 数据3 ◎ 针

从上图知,可以定义一个结构, 从上图知,可以定义一个结构,其中一部分存 放数据,另一部分存放指向下一数据的指针。 放数据,另一部分存放指向下一数据的指针。这就 构成了单链表。 构成了单链表。 每组数据和指针称为链表的一个节点。 每组数据和指针称为链表的一个节点。

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。

创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。

接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。

第一步,定义单链表结构体并定义节点类型。

在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。

对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。

接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。

第二步,初始化单链表。

在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。

具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。

第三步,向单链表中添加元素。

在单链表中添加元素需要借助于指针的指向关系。

具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。

具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。

C语言——基础链表详解

C语言——基础链表详解

C语⾔——基础链表详解敢于向⿊暗宣战的⼈,⼼⾥必须充满光明。

⼀、链表的构成1.构成链表是由⼀连串的结构(称为结点)组成的。

(1)结点的构成:数据(要储存的数据)+指针(指向下⼀个结点的指针)(2)关于⼏个定义头结点:链表⾸结点前的⼀个结点(不是必须的,但是如果有就可以在解决某些问题时候⽅便⼀些,通常可以⽤来储存链表的长度等信息)⾸结点:链表的第⼀个数据元素头指针:必须要有的(⽽头结点可以没有,注意两者⼀个是指针⼀个是结点,⼀个必须有⼀个可以没有),指向头结点/⾸节点的指针(永远指向链表的第⼀个结点)2.结点类型声明、创建结点struct node{int value;struct node *next;//创建了⼀个指向⼀个node类型的指针,⽤于指向下⼀个结点};//⾄此声明了⼀个结点类型//头指针:struct node *first = NULL;//结点创建:struct node *new_node;new_node = (struct node *)malloc(sizeof(struct node));//给结点分配内存单元。

注意:malloc返回的是void类型的指针,所以可以强制类型转换⼀下new_node -> value = 10;//把数据存储到结点中⼆、在链表开始处插⼊结点struct node * first = NULL;struct node *new_node;new_node =(struct node *)malloc(sizeof(struct node));new_node ->value = 10;//将new_node结点插⼊链表开始处new_node->next = first;//new_node指向的node类型的next值为NULL,NULL可作为链表结尾(空指针)first = new_node;//让first 指向 new_node指向的结点(其实就是刚才malloc出来的结点)//ok⾄此,现在就已经有了⼀个链表,它有⼀个结点,结点中储存的值是10new_node = (struct node*)malloc(sizeof(struct node));new_node ->value = 2;new_node->next = first;//⼜新创建了个结点并让next指向第⼀次创建的结点(因为first是指向第⼀次创建的结点的)first = new_node;//可以理解为把头指针重置到头部我们把它封装成函数对于这样的函数我们传⼊⼀个链表list,和⼀个希望存⼊链表的数值nstruct node* add_to_list(struct node *list,int n){sturct noed *new_node;new_node = (struct node*)malloc(sizeof(struct node));if(new_node == NULL){printf("malloc error\n");exit(0);}new_node->value = n;new_node->next = list;//把新结点接到链表中return new_node;}first = add_to_list(first,10);first = add_to_list(first,20);//需要注意的是add_to_list函数是没有办法修改指针的(因为这个相当于复制了⼀个指针传进去,能修改它指向的东西,但是没有办法对他本⾝进赋值存储)//所以我们返回⼀个指向新结点的指针,让他作为返回值赋值储存给first需要注意的是add_to_list函数是没有办法修改指针的(因为这个相当于复制了⼀个指针传进去,能修改它指向的东西,但是没有办法对他本⾝进赋值存储),所以我们返回⼀个指向新结点的指针,让他作为返回值赋值储存给first三、搜索链表while循环可以⽤,但是我们都知道for循环是很灵活的。

《C语言链表》课件

《C语言链表》课件
了解如何删除链表中的指定节点
详细描述
删除链表中的节点需要找到要删除的节点,修改其前一个节点的指针,使其指向要删除节点的下一个 节点,然后将要删除节点的指针置为NULL。如果要删除的是头节点或尾节点,还需要对头指针或尾 指针进行相应的修改。
遍历链表
总结词
了解如何遍历链表中的所有节点
VS
详细描述
遍历链表需要从头节点开始,依次访问每 个节点,直到达到链表的尾部。在遍历过 程中,可以使用一个指针变量来指向当前 节点,每次循环将指针向后移动一个节点 ,即修改指针的next指针。
链表和循环链表的主要区别在于它们的最后一个节点指向的方向。在链表中,最后一个节点指向NULL; 而在循环链表中,最后一个节点指向第一个节点。循环链表具有更好的性能,但实现起来相对复杂一些 。
05
总结与展望
总结链表的重要性和应用场景
总结1
链表作为C语言中一种基本的数据结构,在计算机科学中 有着广泛的应用。通过学习链表,可以更好地理解数据 结构的基本概念,提高编程能力和解决实际问题的能力 。
详细描述
合并两个有序链表可以通过比较两个链表的 节点值来实现。从头节点开始比较,将较小 的节点添加到结果链表中,并将指针向后移 动。重复此过程直到其中一个链表为空。如 果还有剩余的节点,将其添加到结果链表的 末尾。这种方法的时间复杂度为O(n),其中
n为两个链表中节点的总数。
04
常见错误与注意事项
内存泄漏问题
内存泄漏定义
在C语言中,内存泄漏是指在使用动 态内存分配函数(如malloc、calloc 、realloc等)分配内存后,未能正确 释放这些内存,导致程序运行过程中 不断占用越来越多的内存,最终可能 导致程序崩溃或性能下降。

c语言链表的实用场景

c语言链表的实用场景

c语言链表的实用场景链表是一种常用的数据结构,适用于许多实际场景。

在C语言中,链表通常通过指针来实现。

下面我将介绍一些常见的使用场景,以展示链表的实际应用。

1.数据库数据库中通常需要存储大量的数据,并进行高效的增删改查操作。

链表可以用于实现数据库中的表,每个节点表示一行数据,通过指针连接各行数据。

这样的设计可以简化数据的插入和删除操作,同时支持动态内存分配。

2.文件系统文件系统是操作系统中重要的组成部分,负责管理文件和目录的存储和组织。

链表可以被用来维护文件和目录的层次结构。

每个节点表示一个文件或目录,在节点中存储文件名和其他属性,并通过指针连接父节点和子节点,实现树状的文件系统结构。

3.缓存管理缓存是提高数据读写性能的一种机制,通常使用链表来实现。

链表的头节点表示最近访问的数据,越往后的节点表示越早被访问的数据。

当需要插入新数据时,链表头部的节点会被替换为新的数据,实现了最近访问数据的缓存功能。

4.链表排序链表排序是常见的问题,主要通过链表节点之间的指针修改来实现。

排序算法可以按照节点的值进行比较和交换,从而实现链表的排序功能。

链表排序应用于许多场景,如订单排序、学生成绩排序等。

5.模拟表达式求值在编译器和计算器中,链表可以用于构建和求解表达式。

每个节点表示表达式的一个操作数或操作符,通过指针连接节点,形成表达式树。

然后可以使用树来求解表达式的值,或者进行优化和转换。

6.链表图结构链表可以用于构建图结构,每个节点表示图的一个顶点,通过指针连接顶点之间的边。

链表图结构可以用于实现路由算法、网络拓扑结构、社交网络等。

7.线性代数运算链表可以用来实现向量和矩阵等线性代数结构。

每个节点表示矩阵的一个元素,通过指针连接不同元素之间的关系。

链表可以用于矩阵乘法、矩阵求逆等运算。

8.垃圾回收在编程中,动态内存分配往往需要手动管理内存的释放。

链表可以用来管理动态分配的内存块,通过指针连接各个内存块,并进行有效的垃圾回收。

数据结构c语言版上机报告单链表

数据结构c语言版上机报告单链表

数据结构C语言版上机报告:单链表序在数据结构课程中,单链表是一个重要的概念,也是C语言中常用的数据结构之一。

本次报告将深入探讨单链表的基本概念、操作方法以及应用场景,帮助读者更深入地理解和掌握这一数据结构。

一、概述1.1 单链表的定义单链表是一种线性表,它由一系列节点组成,每个节点包含两部分:数据域和指针域。

数据域用于存储数据元素,指针域用于指向下一个节点,通过指针将这些节点串联在一起,形成一个链表结构。

1.2 单链表的特点单链表具有以下特点:(1)动态性:单链表的长度可以动态地增加或减少,不需要预先分配固定大小的空间。

(2)插入和删除操作高效:在单链表中进行插入和删除操作时,只需要修改指针的指向,时间复杂度为O(1)。

(3)随机访问效率低:由于单链表采用链式存储结构,无法通过下标直接访问元素,需要从头节点开始依次遍历,时间复杂度为O(n)。

1.3 单链表的基本操作单链表的基本操作包括:创建、插入、删除、查找等。

这些操作是使用单链表时常常会涉及到的,下面将逐一介绍这些操作的具体实现方法和应用场景。

二、创建2.1 头插法和尾插法在C语言中,可以通过头插法和尾插法来创建单链表。

头插法是将新节点插入到链表的头部,尾插法是将新节点插入到链表的尾部,这两种方法各有优缺点,可以根据具体应用场景来选择。

2.2 应用场景头插法适合于链表的逆序建立,尾插法适合于链表的顺序建立。

三、插入3.1 在指定位置插入节点在单链表中,插入节点需要考虑两种情况:在链表头部插入和在链表中间插入。

通过对指针的操作,可以实现在指定位置插入节点的功能。

3.2 应用场景在实际应用中,经常会有需要在指定位置插入节点的情况,比如排序操作、合并两个有序链表等。

四、删除4.1 删除指定节点在单链表中,删除节点同样需要考虑两种情况:删除头节点和删除中间节点。

通过对指针的操作,可以实现删除指定节点的功能。

4.2 应用场景在实际应用中,经常会有需要删除指定节点的情况,比如删除链表中特定数值的节点等。

c语言链表定义

c语言链表定义

c语言链表定义链表是一种非常基础的数据结构,它的定义可以用多种编程语言来实现,其中最为常见的就是C语言。

本文将着重介绍C语言的链表定义。

第一步:首先,我们需要定义一个链表节点的结构体,用来存储链表中每个节点的数据信息以及指向下一个节点的指针。

具体代码如下所示:```struct ListNode {int val;struct ListNode *next;};```在这个结构体中,我们定义了两个成员变量,一个是表示节点值的val,一个是表示指向下一个节点的指针next。

其中,节点值可以是任意类型的数据,而指针next则是一个指向结构体类型的指针。

第二步:我们需要定义链表的头节点,通常会将头节点的指针定义为一个全局变量,方便在程序的不同部分中都能够访问。

这个头节点的作用是指向链表的第一个节点,同时也充当了哨兵节点的作用,使得链表的操作更加方便。

具体代码如下所示:```struct ListNode *list_head = NULL;```在这个全局变量中,我们定义了一个指向链表头节点的指针list_head,并将它初始化为NULL,表示目前链表为空。

第三步:链表的基本操作主要包括创建、插入、删除和遍历等。

我们将逐一介绍它们的定义方法。

1. 创建链表创建链表时,我们需要动态地分配内存,以保证每个节点的空间都是连续的而不会被覆盖。

具体代码如下所示:```struct ListNode *create_list(int arr[], int n) {struct ListNode *head = NULL, *tail = NULL;for (int i = 0; i < n; i++) {struct ListNode *node = (struct ListNode*)malloc(sizeof(struct ListNode));node->val = arr[i];node->next = NULL;if (head == NULL) {head = node;tail = node;} else {tail->next = node;tail = node;}}return head;}```在这个代码中,我们首先定义了链表的头节点head和尾节点tail,并将它们初始化为空。

c语言单链表头插法

c语言单链表头插法

c语言单链表头插法单链表是一种常见的数据结构,是一种线性表,是由一系列节点组成的,每个节点都包含一个数据和一个指向下一个节点的指针。

在C语言中,我们可以使用结构体来定义一个节点,例如:```cstruct Node {int data;struct Node* next;};```上述代码定义了一个名为Node的结构体,它包含两个成员,一个是整型的数据data,另一个是指向下一个节点的指针next。

在使用单链表头插法创建链表时,我们首先需要定义一个头节点,它不存储任何数据,仅用作链表的标记。

然后,我们可以通过以下步骤来插入新的节点:1. 创建一个新节点,并为其分配内存空间。

```cstruct Node* newNode = (struct Node*)malloc(sizeof(struct Node));```上述代码使用malloc函数为新节点分配内存空间。

2. 将新节点的数据赋值。

```cnewNode->data = value;```上述代码将新节点的data成员设置为value。

3. 将新节点的next指针指向头节点的next指针所指向的节点。

```cnewNode->next = head->next;```上述代码将新节点的next指针指向头节点的next指针指向的节点,即将新节点插入到头节点之后。

4. 将头节点的next指针指向新节点。

```chead->next = newNode;```上述代码将头节点的next指针指向新节点,即将新节点设置为链表的第一个节点。

完整的头插法创建链表的函数如下:```cstruct Node* createList(int values[], int n) {struct Node* head = (struct Node*)malloc(sizeof(struct Node));head->next = NULL;for (int i = 0; i < n; i++) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = values[i];newNode->next = head->next;}return head;}```上述代码中的createList函数接受一个整型数组values和一个整数n作为参数,返回一个头指针。

C语言-链表

C语言-链表

NWPU—CC—ZhangYanChun
13

void main( )
{┇
for(i=1; i<=N; i++)
/*建立链表*/
{┇
}
for(i=1; i<=N; i++)
/*输出链表*/
{ if(i==1) p1=head;
/*p1指向首节点*/
else p1=p1->next; /*p1指向下一节点*/
第第9十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
10
3) 重复第2步,建立并链接多个节点直至所需长
度,将末尾节点的next成员赋值0。
head
1048 p1 1370 p1
2101
2304
1012
2918
89.5
90
85
操作:
1370
1012
NULL
pp22
p2
p1=(struct student *)malloc(len);
成功,返回存储块起始指针,该指针类型为
void *;否则返回空指针(NULL)。
内存释放函数原形:void free(void *p); 功能:释放p所指向的内存块。
包含文件:malloc.h、stdlib.h中均有其原型声明。
C 程序设计
第第4十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
第第5十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
6
6) 链表的类型
单链表:每个节点只有一个指向后继节点的指针 双向链表:每个节点有两个用于指向其它节点的指针;

c语言链表头插法

c语言链表头插法

c语言链表头插法链表是一种重要的数据结构,在c语言中可以通过指针来实现链表。

其中一个常用的插入方法就是链表的头插法。

链表的头插法就是在链表的头部插入一个新节点,使其成为链表的第一个节点。

这个操作可以通过以下步骤来实现:1. 定义一个新节点,申请空间,设置节点的数据域和指针域;2. 将新节点的指针域指向当前链表的头节点;3. 将新节点设置为当前链表的头节点。

C语言链表头插法的示例代码如下:```#include <stdio.h>#include <stdlib.h>typedef struct Node {int data;struct Node *next;} Node;Node *createNode(int data) {Node *newNode = (Node *) malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;return newNode;}void insertHead(Node **head, int data) { Node *newNode = createNode(data);if (*head == NULL) {*head = newNode;} else {newNode->next = *head;*head = newNode;}}void printList(Node *head) {while (head != NULL) {printf('%d ', head->data);head = head->next;}printf('');}int main() {Node *head = NULL;insertHead(&head, 3);insertHead(&head, 2);insertHead(&head, 1);printList(head);return 0;}```在这个示例代码中,我们定义了一个名为Node的结构体,它有两个成员:int类型的数据域和指向下一个节点的指针域。

C语言结构体变量与链表知识总结

C语言结构体变量与链表知识总结

结构体与链表11.1 结构体类型的定义结构体是由C语言中的基本数据类型构成的、并用一个标识符来命名的各种变量的组合,其中可以使用不同的数据类型。

1.结构体类型的定义Struct结构体名{ 类型标识符1 成员名1;类型标识符2 成员名2;……类型标识符n 成员名n;};Struct结构体名——结构体类型名2.关于结构体类型的说明:(1)“struct 结构体名”是一个类型名,它和int、float等作用一样可以用来定义变量。

(2)结构体名是结构体的标识符不是变量名,也不是类型名。

(3)构成结构体的每一个类型变量称为结构体成员,它像数组的元素一样,单数组中元素以下标来访问,而结构体是按结构体变量名来访问成员的。

(4)结构体中的各成员既可以属于不同的类型,也可以属于相同的类型。

(5)成员也可以是一个结构体类型,如:Struct date{Int month;Int day;Int year;};Struct person{Float num;Char name[20];Char sex;Int age;Struct date birthday;Char address[10];};11.2 结构体类型变量11.2.1 结构体类型变量的定义1.先定义结构体类型,再定义结构体变量形式:Struct 结构体名{类型标识符1 成员名1;类型标识符2 成员名2;……类型标识符n 成员名n;};Struct 结构体名变量名表;例如:Struct student{char name[20];Char sex;Int age;Float score;};Struct student stu1,stu2;2.在定义结构体类型的同时定义变量形式:Struct 结构体名{类型标识符1 成员名1;类型标识符2 成员名2;……类型标识符n 成员名n;}变量名表;例如:Struct student{Char name[20];Char sex;Int age;Float score;}stu1,stu2;3.用匿名形式直接定义结构体类型变量形式:Struct{类型标识符1 成员名1;类型标识符2 成员名2;……类型标识符n 成员名n;}变量名表;例如:StructChar naem[20];Char sex;Int age;Float score;}stu1,stu2;11.2.2 结构体变量的使用结构体是一种新的数据类型,因此结构体变量也可以像其它类型的变量一样赋值、运算,不同的是结构体变量以成员作为基本变量。

链表的初始化c语言

链表的初始化c语言

链表的初始化c语言链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

C语言中,链表的初始化可以通过创建一个指向链表头节点的指针,并将其初始化为空,然后再向链表中插入节点来完成。

链表的初始化主要包括以下几个步骤:1. 创建一个指向链表头节点的指针,并将其初始化为空。

```struct ListNode {int val;struct ListNode *next;};struct ListNode* initList() {return NULL;}```2. 向链表中插入节点。

在C语言中,可以通过定义一个新的节点,然后将其指针域指向链表中的下一个节点,同时将当前链表节点的指针域指向新节点来实现。

```struct ListNode* insertList(struct ListNode* head, int val) {struct ListNode* newNode = (structListNode*)malloc(sizeof(struct ListNode));newNode->val = val;newNode->next = head;return newNode;}```3. 遍历链表。

链表的遍历是指从链表头节点开始,依次访问链表中每个节点的数据并输出。

在C语言中,可以使用while循环来遍历链表,并使用指针变量来指向当前节点。

```void traverseList(struct ListNode* head) {struct ListNode* p = head;while (p != NULL) {printf("%d ", p->val);p = p->next;}}```完整的链表初始化代码如下:```#include <stdio.h>#include <stdlib.h>struct ListNode {int val;struct ListNode *next;};struct ListNode* initList() {return NULL;}struct ListNode* insertList(struct ListNode* head, int val) { struct ListNode* newNode = (structListNode*)malloc(sizeof(struct ListNode));newNode->val = val;newNode->next = head;return newNode;}void traverseList(struct ListNode* head) { struct ListNode* p = head;while (p != NULL) {printf("%d ", p->val);p = p->next;}}int main() {struct ListNode* head = initList();head = insertList(head, 1);head = insertList(head, 2);head = insertList(head, 3);traverseList(head);return 0;}```这段代码中,我们先创建了一个空链表,然后向链表中插入了三个节点,并使用遍历函数输出了链表中每个节点的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x6,y6)
(x7,y7)
为了表示这种既有数据又有指针的情况, 引入结构这种数据类型。
精选课件
3
11.7 用指针处理链表
链表是程序设计中一种重要的动态数据结构, 它是动态地进行存储分配的一种结构。
动态性体现为:
链表中的元素个数可以根据需要增加和减少,不 像数组,在声明之后就固定不变;
元素的位置可以变化,即可以从某个位置删除, 然后再插入到一个新的地方;
精选课件
7
(4)删除操作是指,删除结点ki,使线性表的长度 减1,且ki-1、ki和ki+1之间的逻辑关系发生如下变 化:
删除前,ki是ki+1的前驱、ki-1的后继;删除后,ki-1 成为ki+1的前驱,ki+1成为ki-1的后继.
(5)打印输出
精选课件
8
一个指针类型的成员既可指向其它类型的结构体 数据,也可以指向自己所在的结构体类型的数据
10
11.7.3 处理动态链表所需的函数
C 语言使用系统函数动态开辟和释放存储单元
1.malloc 函数
函数原形:void *malloc(unsigned int size); 作用:在内存的动态存储区中分配 一个 长度为size 的连续空间。 返回值:是一个指向分配域起始地址的指针(基本 类型void)。 执行失败:返回NULL
精选课件
4
结点里的指针是存放下一个结点的地址
Head
1249
1249
A 1356
1356
B 1475
1475
C 1021
1021
D Null
1、链表中的元素称为“结点”,每个结点包括两 个域:数据域和指针域;
2、单向链表通常由一个头指针(head),用于指向 链表头;
3、单向链表有一个尾结点,该结点的指针部分指
第二步:该结点被头结点、尾结点同时指向。 P1=p2=(struct student*)m使a用llmoacl(lLocE(NL)E;N头) 指针部分为 空,head=NULL;
第三步:重复申请待插入结点空间,对该结点的数据部 分赋值(或输入值),将该结点插入在最前面,或者最 后面(书上在尾部插入).
{ long num; float score;

struct student *next; };

main()

{ struct student a, b, c, *head, *p;

ab..nnuumm==9999110013;;ab.s.sccoorree==8990.5;;各 始结终点占在有程内序容中不定放义,,这不种是链临表时称开为辟“的静,出 一
精选课件
11
2. calloc 函数
函数原形:void *calloc(unsigned n,unsigned size); 作用:在内存动态区中分配 n个 长度为size的
连续空间。 函数返回值:指向分配域起始地址的指针 执行失败:返回null 主要用途:为一维数组开辟动态存储空间。n 为
数组元素个数,每个元素长度为size
(2)检索操作是指,按给定的结点索引号或检索 条件,查找某个结点。如果找到指定的结点, 则称为检索成功;否则,称为检索失败。
(新3)的插结入点操k作’,是使指线,性在表结的点长k度i-1增与1k,i之且间k插i-1入与一ki个的 逻辑关系发生如下变化:
插新入插前入,的ki-结1是点kki的’成前为驱ki,-1的ki后是继ki-、1的ki后的继前;驱插. 入后,
13
结点的动态分配
ANSI C 的三个函数(头文件 malloc.h) void *malloc(unsigned int size)
void *calloc(unsigned n, unsigned size)
void free(void *p) C++ 的两个函数
new 类型(初值) delete [ ] 指针变量
第十一章 链表
精选课件
1
结构的概念与应用
例:跳马。依下图将每一步跳马之后的位置(x,y)放 到一个“结点”里,再用“链子穿起来”,形成 一条链,相邻两结点间用一个指针将两者连到一 起。
3 4
5 7
3
2
4
2
6
1
结 点 1 0 1 2 3 精选课4件 5
678
2
依上图有7个结点
(x1,y1) (x2,y2)
精选课件
12
3. free 函数
函数原形: void free(void *p);
作用:释放由 p 指向的内存区。
P:是最近一次调用 calloc 或 malloc 函数 时返回的值。
free 函数无返回值
动态分配的存储单元在用完后一定要释放, 否则内存会因申请空间过多引起资源不足 而出现故障。
精选课件
c.num=99107 ; c.score=85; 态链表”

head=&a; a.next=&b; b.next=&c; c.next=NULL; 简
p=head; do
单 链 表
{ printf("%ld %5.1f\n",p->num,p->score);
p=p->next; }while(p!=NULL); 精}选课件
/*[ ] 表示释放数组,可有可无)*/ 使用 new 的优点:
可以通过对象的大小直接分配,而不管对象 的具体长度是多少(p340 例14.10)
精选课件
14
11.7.4 建立动态链表
基本方法:
三个结点(头结点head、尾结点 NULL 和待插入结点 P)
第一步:定义头结点hea*dh、ea尾d,结*p1点,*pp22 和待插入结点p1, 待插入的结点数据部分初始化;
num Score next
99101 89.5
99103 90
99107 85
next是struct student类型中的一个成员, 它又指向struct student类型的数据。
换名话说:next存放下一个结点的地址
精选课件
9
11.7.2 简单链表
例11.7
#define NULL 0
struct student
向一个空结点(NULL) 。 精选课件
5
链表中结点的定义
链表是由结点构义打破了先定义再使用的限制, 即可以用自己定义自己;
递归函数的定义也违反了先定义再使用;
这是C语言程序设计上的两大特例
精选课件
6
链表的基本操作
对链表的基本操作有:
(1)创建链表是指,从无到有地建立起一个链表, 即往空链表中依次插入若干结点,并保持结点 之间的前驱和后继关系。
相关文档
最新文档