求定积分的四种方法

合集下载

求定积分的四种方法

求定积分的四种方法

定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.一、定义法 例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222nnni i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.(4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦L =224(21)lim n n n n →∞++==4.∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193.评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法 例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x xdx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x xx +是奇函数,所以在对称区间的积分值均为零.所以⑴44tan xdx ππ-⎰=0;⑵22sin 1x xdx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()aaf x dx -⎰=20()af x dx ⎰;②当f (x )为奇函数时,()aaf x dx -⎰=0. 小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0;⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结
一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)=g(x),则= ()dx
2) 利用被积函数所满足的不等式比较之a)
b) 当0 x 兀/2时,2/兀 1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a) = =M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法。

求解定积分的技巧与方法

求解定积分的技巧与方法

求解定积分的技巧与方法求解定积分是高中数学和大学数学中不可避免的一个内容。

对于许多学生和学者来说,求解定积分是一个比较棘手的问题,需要灵活的思维和丰富的数学知识。

本文将为大家介绍一些求解定积分的技巧和方法,帮助大家更好地理解和掌握这一内容。

1. 分段函数法分段函数法是解决经典定积分求解的常用技巧之一。

当我们面对一个比较复杂的积分时,可以尝试将其分解成多个简单的分段函数,进而分别求解。

例如,对于一个形如$y=|x|$ 的函数图像,我们可以将其分区间来讨论,即:当$x\leq0$ 时,$y=-x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{-1}^{0}-x\,\mathrm{d}x+\int_{0}^{1}x\,\mathrm{d}x$当$x>0$ 时,$y=x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{0}^{1}x\,\mathrm{d}x-\int_{-1}^{0}x\,\mathrm{d}x$这样的分段讨论可以使我们更加清晰地理解函数的特性,并且更加方便地求解原函数。

2. 换元法换元法是求解复杂定积分的常用方法之一。

通常我们会利用简单的变量替换,将原积分转化为易于处理的形式。

例如,对于$\int_{-\pi}^{\pi} \frac{1}{1+\sin x}\,\mathrm{d}x$这样的积分,我们可以利用以下替换:设$t=\tan\frac{x}{2}$,则有:$\sin x=\frac{2t}{1+t^{2}},\cos x=\frac{1-t^{2}}{1+t^{2}},\mathrm{d}x=\frac{2\mathrm{d}t}{1+t^{2}}$将上述变量替换代入原式中,则有:$\int_{-1}^{1}\frac{2}{1+(2t/(1+t^{2}))}\frac{2\mathrm{d}t}{1+t^{2}}=4\in t_{-1}^{1}\frac{\mathrm{d}t}{1+t^{2}}=4\pi$所以原式的解为$4\pi$。

高二数学 求定积分的四种方法知识点分析 大纲人教版

高二数学 求定积分的四种方法知识点分析 大纲人教版

1 / 1求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法 例1 用定义法求23x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n.(2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222nnni i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.(4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法 例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解. 解:函数y =221x x ++的一个原函数是y =323xx x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193.评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法例4 求下列定积分:⑴44tan xdx ππ-⎰;⑵22sin 1x xdx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x xx +是奇函数,所以在对称区间的积分值均为零.所以⑴44tan xdx ππ-⎰=0;⑵22sin 1x xdx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()aaf x dx -⎰=20()af x dx ⎰;②当f (x )为奇函数时,()aaf x dx -⎰=0.。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结定积分是微积分中的重要概念,用于计算曲线下方的面积、变量间的平均值、曲线的长度等问题。

在计算定积分时,有几种常见的方法可以使用。

一、基本定积分计算方法1.函数不可导情况下的计算方法:当函数在闭区间上不可导时,可以将该区间划分成多个子区间,然后在各子区间上分别求积,最后求和。

2. 函数可导情况下的计算方法:对于可导函数,可以使用Newton-Leibniz公式求解定积分。

若函数F(x)是f(x)的一个原函数,即F'(x) = f(x),则有∫[a,b] f(x) dx = F(b) - F(a)。

二、几何意义的计算方法1.面积计算:当被积函数为非负函数时,定积分表示积分区间上的曲线与x轴之间的面积。

使用定积分计算面积时,要先找到积分区间,并选择一个适当的被积函数。

2.长度计算:当被积函数为非负函数时,定积分可以表示曲线的弧长。

通过将曲线分成小线段,并用小线段长度之和逼近曲线的弧长,然后取极限即可得到曲线的弧长。

三、换元法换元法是一种常用的定积分计算方法,通过代换变量的方式来简化被积函数。

具体步骤如下:1.将被积分函数中的变量替换为一个新的变量,使得替换后的函数能够更容易积分。

2. 计算新变量的微分形式dx,然后求解出新的积分上下限。

3.将原函数转化为新变量的函数,并根据新的上下限计算定积分。

4.最后要将新变量换回原变量的形式。

四、分部积分法分部积分法是通过Leibniz公式的一个特殊情况来进行定积分计算的方法。

具体步骤如下:1. 选择u和dv,其中u是整个被积函数的一个部分,dv是剩余的部分。

2. 求解du和v分别对x的积分。

3. 将原函数表示为uv积分减去∫vdu,其中v需要对x进行积分。

4.根据上述公式计算定积分。

五、极坐标下的计算方法当被积函数围成的区域具有对称性或者特殊的形状时,可以使用极坐标进行计算。

1.将被积函数与曲线转化为极坐标形式,即用r和θ表示。

2. 根据极坐标的面积元素dA=rdrdθ,计算出面积元素dA。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结
定积分计算方法总结
导语:学习需要总结,只有总结,才能真正学有所成。

以下是定积分计算方法总结,供各位阅读和参考。

一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则 >= ()dx
2) 利用被积函数所满足的不等式比较之 a)
b) 当0<x<兀/2时,2/兀<<1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a)<= <=M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法。

计算定积分的方法

计算定积分的方法

计算定积分的方法定积分是微积分中的一个重要概念,用来描述曲线下方的面积。

计算定积分的方法通常包括几何法、零散法、换元法和分部积分法等。

一、几何法几何法是通过几何图形的性质计算定积分。

常用的几何法计算定积分的方法有:1. 面积法:将曲线下方的区域分割成许多个简单几何形状,如矩形、三角形等,然后计算每个几何形状的面积,并将所有面积相加得到总面积。

2. 折线法:将曲线下方的区域近似地用折线连接起来,然后计算每段折线的长度,并将所有长度相加得到总长度。

二、零散法零散法是将曲线下方的面积进行分割求和的方法。

常用的零散法计算定积分的方法有:1. 矩形法:将曲线下方的区域分割成若干个矩形,然后计算每个矩形的面积,并将所有面积相加得到总面积。

2. 梯形法:将曲线下方的区域分割成若干个梯形,然后计算每个梯形的面积,并将所有面积相加得到总面积。

3. 辛普森法则:将曲线下方的区域分割成若干个小区间,在每个小区间上使用二次多项式逼近曲线,然后使用辛普森公式进行近似计算。

三、换元法换元法是通过变量替换的方式将复杂的积分转化成简单的积分,从而简化计算。

常用的换元法计算定积分的方法有:1. 对换元法:将被积函数中的自变量替换成新的自变量,通过求出新的积分变量和原积分变量的关系,将原来的积分变量带入进行计算。

2. 三角换元法:将被积函数中的自变量表示成三角函数形式,通过选择合适的三角变换,将原函数转化成更简单的形式进行计算。

四、分部积分法分部积分法是微积分中的一个重要定理,可以将一个积分问题转化为另一个积分问题,从而简化计算。

常用的分部积分法计算定积分的方法有:1. 正比换元法:将被积函数中的一项作为导数,另一项作为原函数,通过求出原函数和导数的关系,将积分变换为另一个积分。

2. 对数换元法:将被积函数中的一项取导数,另一项取倒数,通过求出导数和倒数的关系,将积分变换为另一个积分。

以上是计算定积分的常用方法,通过几何法、零散法、换元法和分部积分法可以解决各种类型的定积分计算问题。

几种定积分的数值计算方法

几种定积分的数值计算方法

几种定积分的数值计算方法一、梯形法则(Trapezoidal Rule):梯形法则是一种常见的确定积分的数值计算方法。

它的基本思想是通过将函数曲线上的曲线段看作是一系列梯形,然后计算这些梯形的面积之和来近似表示定积分的值。

具体来说,我们将定积分区间[a,b]均匀地划分为n个小区间,每个小区间的宽度为h=(b-a)/n,然后计算每个小区间内的梯形面积,再将这些面积相加即可得到定积分的近似值。

梯形法则的公式如下:∫(a to b) f(x) dx ≈ h/2 * (f(a) + 2f(a+h) + 2f(a+2h) + ... + 2f(a+(n-1)h) + f(b))梯形法则的优点是简单易懂,容易实现,并且对于一般的函数都能达到较好的近似效果。

然而,它的缺点是精度较低,需要较大的划分数n才能得到较准确的结果。

二、辛普森法则(Simpson's Rule):辛普森法则是一种比梯形法则更高级的确定积分方法,它通过将函数曲线上的曲线段看作是由一系列抛物线组成的,然后计算这些抛物线的面积之和来近似表示定积分的值。

与梯形法则类似,我们将定积分区间[a,b]均匀地划分为n个小区间,每个小区间的宽度为h=(b-a)/n,然后计算每两个相邻小区间内的抛物线面积,再将这些面积相加即可得到定积分的近似值。

辛普森法则的公式如下:∫(a to b) f(x) dx ≈ h/3 * (f(a) + 4f(a+h) + 2f(a+2h) +4f(a+3h) + ... + 2f(a+(n-2)h) + 4f(a+(n-1)h) + f(b))辛普森法则相较于梯形法则具有更高的精度,尤其对于二次或更低次的多项式函数来说,可以得到非常准确的结果。

但是,辛普森法则在处理高次多项式或非多项式函数时可能会出现误差较大的情况。

三、高斯求积法(Gaussian Quadrature):高斯求积法是一种基于插值多项式的数值积分方法。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法定积分是微积分中的重要概念之一,可以用不同的方法来求解。

下面将介绍四种常用的方法:基本函数法、换元法、分部积分法和定积分的性质。

第一种方法是基本函数法。

基本函数法是指利用基本函数的积分表达式求解定积分。

在基本函数法中,通过查表或记忆基本函数的积分公式,将被积函数转化为基本函数的积分形式,从而求解定积分。

例如,要求解$\int (x^2+2x+1)dx$,可以将被积函数分解为$(x^2+2x+1)=x^2+2x+1=\frac{1}{3}x^3+x^2+x$,由基本函数的积分表达式,可知$\int x^3dx=\frac{1}{4}x^4+C_1$,$\intx^2dx=\frac{1}{3}x^3+C_2$,$\int xdx=\frac{1}{2}x^2+C_3$。

因此,$\int (x^2+2x+1)dx=\frac{1}{3}x^3+x^2+x+C$,其中C为常数。

第二种方法是换元法。

换元法是指通过变量代换,将原来的积分转化为更简单的形式。

在换元法中,通过选择合适的变量代换来使被积函数的形式简化,然后求解新变量下的积分,最后再将变量代换回原来的变量。

例如,要求解$\int \frac{1}{(x+1)^2}dx$,可以令$u=x+1$,则有$du=dx$。

将变量代换后的积分形式$\int \frac{1}{u^2}du$,由基本函数的积分表达式可得$\int \frac{1}{u^2}du=-\frac{1}{u}+C=-\frac{1}{x+1}+C$,其中C为常数。

最后将变量代换回原来的变量,得到$\int \frac{1}{(x+1)^2}dx=-\frac{1}{x+1}+C$。

第三种方法是分部积分法。

分部积分法是指利用函数的乘积积分的性质,将原来的积分转化为两个函数的乘积积分的形式。

在分部积分法中,通过选择乘法中的两个函数,并将被积函数分解为这两个函数的乘积形式,然后利用乘积积分公式求解。

(总结)定积分计算方法总结

(总结)定积分计算方法总结

(总结)定积分计算⽅法总结(本⽂档仅供参考⽤途,所载资料皆来⾃整理,欢迎⼤家分享交流)定积分计算⽅法总结、定积分的计算⽅法
1.利⽤函数奇偶性
2.利⽤函数周期性
3.参考不定积分计算⽅法
⼆、定积分与极限
1.积和式极限
2.利⽤积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价⽆穷⼩
三、定积分的估值及其不等式的应⽤
1.不计算积分,⽐较积分值的⼤⼩
1)⽐较定理:若在同⼀区间[a,b]上,总有
f(x)>=g(x),则>=()dx
2)利⽤被积函数所满⾜的不等式⽐较之a)
b)当0
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最⼤值为M,最⼩值为m则1。

求定积分的四种方法

求定积分的四种方法

定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0; ⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

定积分计算法

定积分计算法

、定积分计算基本方法1牛顿一莱布尼兹公式:护0)=a,®(P )二b ,f [®(t)]在[S P ]上连续,b pf f (x)dx = f f [®(t)]®'(t)dt 。

注:条件3书上用较强的条件f(x) 在 [a,b ]上连续且当"[sP ]时,护(t)的 值域不超出[a,b ]来代替。

实际上代换W (t)的值域可以超出[a,b ],如上图。

bbbaudv =[uv]a - [vdu注意事项:1、被积函数含绝对值记号。

1 -<x <1 时,In xcO,|l nx|=-l nx ;当 1<x c e 时,In x>O,|l n x |= Inx 。

e1e2(l nxdx=f 1(T n x)dx +[l nxdx=2-- (分界点 x=1 处 ln x = 0) ; ;eba f (x)dx =F(x)a=F(b)-F(a) (t)2、定积分的换元法:设10④(t)&'(t)在[gP ]上连续, aa a 1 01 P例1:M ln x |dxe例2:|x-3|dx解: 4订 X —dx = 例3: 「J sin 3 x -!4 sin5 xdx 34[(3 - x)dx + ((X —3)dx= 5 20 30 3、定积分的分部积分法:解:当兀3 兀3 4 02 sin 2 xcosxdx + (sin 2x( -cosx)dx =-2、广义积分有推广的牛顿-莱布尼兹公式(1)如果f(x)在[a,b)上连续,f(b-O) = K ,原函数F(x)在[a,b ]上连续,贝U 仍有(2)如果f(x)在[a,址)上连续,f(x)的原函数F(x)适合lim F(x)存在记为F (畑)则-be d X例解: 0兀 J si n 3x-si n 5xdx = 3兀 9f sin 2X I cos b[f(x)dx =F(x) a4 = F(b-O)-F(a)仍有[f (x)dx = F (x) 产=F (址)-F(a)。

定积分的计算方法与技巧

定积分的计算方法与技巧

定积分的计算方法与技巧定积分是微积分中的一个重要概念,用于计算曲线下方的面积、质量、体积等问题。

在实际应用中,掌握定积分的计算方法和技巧是非常重要的。

本文将介绍几种常见的定积分计算方法和一些实用的技巧。

一、基本定积分的计算基本定积分是指像多项式函数、指数函数、对数函数等这类基本函数的积分。

对于这种类型的函数,我们可以直接利用积分的基本性质进行计算。

1. 多项式函数的定积分对于多项式函数,我们可以利用幂重要性质进行积分计算。

具体来说,我们只需要按照原来多项式的基本形式,将每一项的次数加1,并且除以新的次数,即可得到原多项式函数的不定积分。

例如,要计算函数f(x)=3x^2+4x+1 的定积分∫f(x)dx,我们只需要按照下列步骤进行计算:i) 将每一项次数加1并除以新的次数:f(x)=3x^3/3+4x^2/2+xii) 化简简化后的函数:f(x)=x^3+2x^2+xiii) 最后对得到的简化函数积分:∫f(x)dx=(1/4)x^4+(2/3)x^3+1/2x^2+C2. 指数函数的定积分对于指数函数,我们可以运用特定的计算规则来求解。

例如,e^x 的不定积分为自身,e^x 的定积分同样为自身:∫e^xdx = e^x + C3. 对数函数的定积分对于对数函数,我们可以利用换元积分法来求解。

例如,lnx 的不定积分为xlnx-x,lnx 的定积分可以通过换元积分法计算得到:∫lnxdx = xlnx - x + C二、常用计算技巧除了基本定积分的计算方法,还有一些常用的计算技巧可以帮助我们更快地求解定积分。

1. 利用对称性对称性是一个有用的技巧,它可以帮助我们简化积分的计算。

当函数在某个区间上是对称的时候,我们可以利用对称性将积分区间缩小一半。

这样一来,我们只需要计算一半的积分,然后乘以2即可得到整个区间上的定积分。

2. 利用换元积分法换元积分法是另一个常用的技巧,它可以帮助我们将一个复杂的积分转化成一个简单的积分。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法在微积分中,确定定积分的值是一个重要的问题。

定积分是一个实函数在给定区间上的积分,表示该函数在该区间上的总体积。

在本文中,我将介绍四种常见的方法来确定定积分的值。

这些方法分别是:几何解释法、Riemann和法、换元积分法和分部积分法。

一、几何解释法例如,如果要计算函数f(x)=x^2在区间[0,1]上的定积分,我们可以将该区间分成无限个小矩形,并计算每个小矩形的面积。

然后将所有小矩形的面积相加,即可得到定积分的值。

对于该例子,我们可以将区间[0,1]分成无限个宽度为dx的小矩形,其高度为f(x)=x^2、因此,定积分的值为∫[0,1]x^2dx=1/3二、Riemann和法Riemann和法是一种将定积分转化为求和的方法。

它使用一个区间分割,把整个区间分成无限个小区间。

然后,通过对每个小区间让其长度趋近于零,计算每个小区间的函数值和相加,从而求得定积分的近似值。

当小区间的数量无限增加时,所得的近似值将趋近于定积分的真正值。

例如,如果要计算函数f(x)=x^2在区间[0,1]上的定积分,我们可以将该区间分成n个小区间,每个区间的宽度为Δx=(1-0)/n,其中n为正整数。

然后,我们可以计算每个小区间的函数值并相加,即可得到定积分的近似值。

当使用Riemann和法时,分割区间的选择对于确定近似值的精确性非常重要。

如果区间分割得足够细,近似值将趋近于定积分的真正值。

三、换元积分法换元积分法是一种通过进行变量替换来简化定积分的方法。

它利用函数的链式法则,将原函数中的自变量替换为新的变量,然后计算新函数的微分。

通过进行适当的变量替换,我们可以将原本复杂的定积分转化为更简单的形式,从而易于计算。

例如,如果要计算函数f(x)=x^2在区间[0,1]上的定积分,我们可以进行变量替换,令u=x^2,则du=2xdx。

通过将原函数中的自变量替换为新变量,我们可以将原本的定积分转化为∫[0,1]u(1/2√u)du。

定积分的几种特殊计算方法

定积分的几种特殊计算方法

定积分的几种特殊计算方法定积分在数学中广泛应用,它描述了曲线下面的面积或者一个区域内部的体积。

虽然定积分的定义是相对简单的,但是实际进行计算可能会比较困难。

本文将介绍一些定积分的特殊计算方法,希望能够帮助读者更好地理解和运用定积分。

一、换元法换元法是一种常用的计算定积分的方法。

这种方法的核心思想是将被积函数中的变量用一个新的变量替代,然后再进行积分。

通常使用的换元法需要满足两个条件:第一,被积函数中的变量只有一个;第二,新的变量应至少是可导的。

例如,考虑计算$ \int_{0}^{1} e^{x^{2}}xdx $。

我们可以通过令$u=x^2$,然后进行变量替换,得到$ \int_{0}^{1}\frac{1}{2}e^{u}du$。

这样,我们就将问题转化为了计算指数函数的积分,可以使用基本的积分求解。

二、分部积分法分部积分法是一种计算定积分的另一种重要方法。

与换元法不同的是,分部积分法的核心思想是将被积函数分解成两个乘积,并且其中一个因子可以被积分导出。

然后,我们就可以利用分部积分公式进行求解。

例如,考虑计算$ \int_{0}^{1} x^{2}\sin xdx $。

我们可以将被积函数分解为$x^{2}$和$\sin x$的乘积。

根据分部积分公式,我们有:$ \int_{0}^{1} x^{2}\sin xdx = -x^{2}\cos x\Big|_{0}^{1} + 2\int_{0}^{1} x\cos xdx$这里,我们使用了分部积分公式的第一项,也就是$\int u dv = uv - \int v du$。

然后,我们将同样的方法应用于右侧的积分项,得到:$ \int_{0}^{1} x^{2}\sin xdx = -x^{2}\cos x\Big|_{0}^{1} + 2(-x\sin x + \cos x)\Big|_{0}^{1}$最终,我们得到了该定积分的值为$ \frac{4}{e}-1 $三、极坐标法在某些函数的图形具有旋转对称性质时,我们可以使用极坐标法来计算定积分。

定积分的计算方法与应用

定积分的计算方法与应用

定积分的计算方法与应用定积分是微积分中的一个重要概念,具有广泛的应用领域。

本文将介绍定积分的计算方法以及它在实际问题中的应用。

一、定积分的计算方法定积分是求解曲线下面的面积或者曲线上某一区间的长度的数学工具。

在计算定积分时,我们可以使用以下方法:1. 几何解法:当曲线形状较简单且易于几何分析时,可以采用几何解法。

例如,计算一个常数函数在给定区间上的定积分,可以直接计算该区间内的矩形面积。

2. 分割求和法:定积分可以通过将曲线分割为若干个小区间,在每个小区间内取样点,并计算每个小区间的面积或长度,再将这些结果求和得到近似解。

随着小区间的数量增加,这种方法的近似解将逐渐接近准确值。

3. 定积分的定义:根据数学定义,定积分可以通过极限求和的方式得到准确解。

该方法需要将曲线分割为无穷多个微小的小区间,并进行求和。

具体的计算步骤可以参照定积分的定义公式。

二、定积分在实际问题中的应用定积分作为一种数学工具,在许多实际问题的求解中起到了重要作用。

以下是一些常见的应用场景:1. 几何应用:定积分可以用于计算曲线下的面积,例如求解两条曲线之间的面积或计算曲线所围成的区域的面积。

这在建筑设计、地理测量等领域中有广泛应用。

2. 物理学应用:定积分可以用于计算物体的质量、质心、转动惯量等物理量。

例如,在力学中,通过计算质点沿某一曲线的运动轨迹所做的功,可以使用定积分求得。

3. 统计学应用:定积分可以应用于计算概率密度函数下的概率。

在统计学中,通过计算概率密度曲线下的面积,可以得到某一区间内事件发生的概率。

4. 经济学应用:定积分可以用于计算经济学中的消费总额、产出总额等指标。

例如,计算某一产品的总销售额可以通过对销售函数进行定积分得到。

5. 工程学应用:定积分可以应用于计算工程中的功耗、能量损失等问题。

例如,计算电路中的功耗可以通过对电流和电压的乘积进行定积分来求解。

在实际问题中,我们可以根据具体情况将问题转化为曲线的面积或长度的计算,然后应用定积分的方法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的四种求法
定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.
一、定义法
例1 用定义法求2
30x dx ⎰的值.
分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.
解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n
. (2)近似代替:△3
2()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭
(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣
⎦ =443332244221lim 12lim[(1)]4
n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n
→∞++==4. ∴2
30x dx ⎰=4..
评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.
二、微积分基本定理法
例2 求定积分2
21(21)x x dx ++⎰的值.
分析:可先求出原函数,再利用微积分基本定理求解.
解:函数y =2
21x x ++的一个原函数是y =3
23x x x ++. 所以.2
2
1(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.
三、几何意义法
例3 求定积分1
211)x dx --⎰的值.
分析:利用定积分的意义是指曲边梯形的
面积,只要作出图形就可求出.
解:1
211x dx --⎰表示圆x 2+y 2=1在第一、
二象限的上半圆的面积. 因为2S π=
半圆,又在x 轴上方. 所以1
211x dx --⎰=2
π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.
四、性质法
例4 求下列定积分:
⑴44tan xdx π
π-⎰;⑵22sin 1
x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.
解:由被积函数tan x 及22sin 1
x x x +是奇函数,所以在对称区间的积分值均为零.
x y o 1-11
所以⑴ 4
4
tan xdx ππ-⎰=0; ⑵22sin 1
x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a
a f x dx -⎰=0.
小结
通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

参考文献:
[1]《数学分析》上册(第二版)复旦大学数学系编.高等教育出版社,1983.07
[2]《数学分析》下册(第二版)复旦大学数学系编.高等教育出版社,1983.11。

相关文档
最新文档