中科大运筹学研究生考试样题

合集下载

运筹学试题1_研究生考试-专业课

运筹学试题1_研究生考试-专业课

管理运筹学复习题第一章一、单项选择题1.用运筹学分析与解决问题的过程是一个( B )A.预测过程B.科学决策过程C.计划过程D.控制过程2.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

可以说这个过程是一个( C )A.解决问题过程B.分析问题过程C.科学决策过程D.前期预策过程3从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C )A.数理统计 B.概率论 C.计算机 D.管理科学4运筹学研究功能之间关系是应用( A )A.系统观点 B.整体观点 C.联系观点 D.部分观点5运筹学的主要目的在于求得一个合理运用人力、物力和财力的( B )A.最优目标B.最佳方案C.最大收益D.最小成本6.运筹学的主要研究对象是各种有组织系统的( C )A.近期目标与具体投入B.生产计划及盈利C.管理问题及经营活动D.原始数据及相互关系7.运筹学研究和解决问题的优势是应用各学科交叉的方法,其具有的典型特性为( A )A.综合应用 B.独立研究 C.以计算为主 D.定性与定量8.数学模型中,“s·t”表示( B )A. 目标函数B. 约束C. 目标函数系数D. 约束条件系数9.用运筹学解决问题的核心是( B )A.建立数学模型并观察模型 B.建立数学模型并对模型求解C.建立数学模型并验证模型 D.建立数学模型并优化模型10.运筹学作为一门现代的新兴科学,起源于第二次世界大战的( B )A.工业活动B.军事活动C.政治活动D.商业活动11.运筹学是近代形成的一门( C )A.管理科学 B.自然科学 C.应用科学 D.社会科学12.用运筹学解决问题时,要对问题进行( B )A.分析与考察B.分析和定义C.分析和判断D.分析和实验13.运筹学中所使用的模型是( C )A.实物模型B.图表模型C.数学模型D.物理模型14.运筹学的研究对象是( B )A.计划问题 B.管理问题 C.组织问题 D.控制问题二、多项选择题1.运筹学的主要分支包括( ABDE )A.图论B.线性规划 C .非线性规划 D.整数规划 E.目标规划三、简答题1.运筹学的数学模型有哪些缺点?答:(1)数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。

中科大运筹学研究生考试样题

中科大运筹学研究生考试样题

中科大运筹学研究生考试样题运筹学一.某投资者有30000元可供为期四年的投资。

现有下列五项投资机会可供选择:A :四年内,投资者可在每年年初投资,每年每元投资可获到0.2元,每年获利后将本利重新投资。

B :在四年内,投资者应在第一年年初或第三年年初投资,每两年每元投资可获利润0.5元,两年后获利。

然后可将本利再重新投资。

C :在四年内,投资者应在第一年年初投资,三年后每元投资可获利0.8元。

获利后可将本利重新投资。

这项投资最多不超过20000元。

D :在四年内,投资者应在第二年年初投资,两年后每元投资可获利0.6元。

获利后可将本利重新投资。

这项投资最多不超过15000元。

E :在四年内,投资者应在第一年年初投资,四年后每元投资可获利1.7元。

这项投资最多不超过20000元。

投资者在四年内应如何投资,使他在四年后所获利润最大?写出这个问题的线性规划模型,不用求解。

二.证明:若线性规划问题有界,则该问题的目标函数一定可以在其可行域的顶点达到最优。

三.设有如下线性规划问题123123123123ax 2351771.251071007M Z x x x x x x s t x x x x x x =+-?++=-+≥??≥≥≥??,,中国科学院——中国科学技术大学招收攻读硕士学位研究生入学考试模拟试题一试求:(1)该问题的对偶问题;(2)该问题的最优解;(3)若目标函数中的1x 的系数由2变为2+θ,试讨论最优解的变化;(4)若增加一个新的约束条件:12314837x x x --≤,问题的最优解有无变化,为什么?四.分配甲、乙、丙、丁四个人去完成五项任务。

每人完成各项任务时间如表所示。

由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每五.用动态规划的方法求下列网络图从起点到终点的最短路线及长度。

运筹学硕士学位研究生入学考试试题

运筹学硕士学位研究生入学考试试题

北京科技大学2011年硕士学位研究生入学考试试题试题编号:810 试题名称:运筹学______________ (共4 页)适用专业:系统工程 ________________________________________________ 说明:所有答案必须写在答题纸上,做在试题或草稿纸上无效。

一、填空题(20分,每空2分)1若对偶问题为无界解,则原问题____________________________________ .2. __________________________________________________________ 0.618法在[2 , 6]区间上取的初始点是____________________________________________________ .3. 最速下降法的搜索方向____________________ 。

牛顿法的搜索方向为 ______________________________________ .拟牛顿法的搜索方向为 _____________________________________ .4. 若p(k)是f (X)在X(k)处的下降方向,则需满足 ____________________________ 。

5. 在一维搜索min f(X(k)• 'P(k))中,■ 一0当f(X)为非正定二次函数时,最优步长■ k满足________________________ ,当f (X)为正定二次函数时,最优步长■ k= ______________ 。

6. 两阶段法中,若第一阶段目标函数最优值不为0,则原问题__________________ 。

7. 在拟牛顿算法中要求H (k)对称正定是为了保证搜索方向p(k) = -H (k)g(k)_______________________ 。

二.(10分)试建立下面问题的线性规划数学模型(不需要求解)有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量见表1。

运筹学试题及答案11【精选文档】

运筹学试题及答案11【精选文档】

运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、无界解和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错?错4、如果某一整数规划:MaxZ=X1+X2X 1+9/14X2≤51/14—2X1+X2≤1/3X 1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X1进行分枝,应该分为 X1≤1 和 X1≥2 。

5、在用逆向解法求动态规划时,fk (sk)的含义是:从第k个阶段到第n个阶段的最优解 .6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D和B的关系为 D 包含 B7。

已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“≤"型不等式)(2)对偶问题的最优解: Y=(5,0,23,0,0)T8。

线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10。

若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi)是不超过b i 的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和 Xi≤INT(bi),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“≤"型不等式)其中问:(1)对偶问题的最优解: Y=(4,0,9,0,0,0)T (2)写出B-1=二、计算题(60分)1、已知线性规划(20分)MaxZ=3X1+4X2X 1+X2≤52X1+4X2≤123X1+2X2≤8X 1,X2≥02)若C2从4变成5,最优解是否会发生改变,为什么?3)若b2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C2从4变成5时,σ4=-9/8σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。

最新运筹学试题及答案(共两套)

最新运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

运筹学试题及答案(共两套)汇编

运筹学试题及答案(共两套)汇编

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。

每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。

考研运筹学真题及答案

考研运筹学真题及答案

考研运筹学真题及答案考研运筹学真题及答案考研运筹学是管理学专业的一门重要课程,也是考研中的一项难点。

为了帮助考生更好地备考运筹学,本文将介绍一些常见的考研运筹学真题及答案,供考生参考。

一、线性规划线性规划是运筹学中的重要概念,也是考研运筹学中的常见考点。

下面是一道典型的线性规划题目:题目:某公司生产两种产品A和B,每单位产品A的利润为3万元,每单位产品B的利润为4万元。

生产一个单位产品A需要1小时的人工时间和2小时的机器时间,生产一个单位产品B需要2小时的人工时间和1小时的机器时间。

公司每天可用的人工时间为8小时,机器时间为10小时。

问如何安排生产,使得利润最大化?解答:首先,设生产产品A的单位数为x,生产产品B的单位数为y。

根据题目中的条件,我们可以列出以下的约束条件:1x + 2y ≤ 8 (人工时间的约束条件)2x + 1y ≤ 10 (机器时间的约束条件)x ≥ 0 (产品A的非负约束条件)y ≥ 0 (产品B的非负约束条件)同时,我们需要定义一个目标函数,即利润的表达式。

根据题目中的条件,利润的表达式为:Max Z = 3x + 4y将约束条件和目标函数综合起来,我们可以得到线性规划问题的标准形式:Max Z = 3x + 4ys.t.1x + 2y ≤ 82x + 1y ≤ 10x ≥ 0y ≥ 0求解这个线性规划问题,可以使用单纯形法或者其他求解方法。

最终得到的解就是使得利润最大化的生产安排。

二、排队论排队论是运筹学中的另一个重要概念,也是考研运筹学中的考点之一。

下面是一道典型的排队论题目:题目:某银行有两个窗口,每个窗口的服务时间服从指数分布,服务率分别为μ1和μ2。

假设到达银行的客户服从泊松分布,到达率为λ。

求客户等待时间的期望。

解答:根据排队论的基本原理,客户等待时间的期望可以通过利用排队模型中的公式来计算。

在这个题目中,我们可以使用M/M/2模型来进行求解。

M/M/2模型是指到达过程和服务过程都服从泊松分布,且有两个服务通道。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考研真题及答案

运筹学考研真题及答案

运筹学考研真题及答案运筹学考研真题及答案一、选择题1. 在线性规划中,若最优化问题的对偶问题有最优解,则原始问题也有最优解。

(正确)解析:线性规划理论中对偶定理:“若原始问题的对偶问题有可行解,且存在最优解,则原始问题也有最优解。

”2. 若在线性规划的单纯形法中,某一回路上的所有非基变量(非基变量为0)均为0,则这一问题无有限最优解。

(错误)解析:所有非基变量为0时,相应的基变量可以任意非负,问题有无穷多最优解。

3. 在线性规划中,若某元组在原始问题和对偶问题下都是可行解,则该元组是原始问题和对偶问题的最优解。

(错误)解析:若某元组在原始问题和对偶问题下都是可行解,则该元组满足原始问题的可行性和对偶问题的可行性,但并不一定是最优解。

4. 线性规划的最优性条件是原始问题的可行解和对偶问题的可行解所对应的目标函数值相等。

(正确)解析:线性规划理论中最优性条件:“若原始问题的可行解与对偶问题的可行解所对应的目标函数值相等,则解是原始问题和对偶问题的最优解。

”5. 线性规划的可行性要求约束条件为不等式约束。

(错误)解析:线性规划的可行性要求是所有约束条件都满足,包括等式约束和不等式约束。

二、填空题1. 与线性规划的相对论证法相对应的是(单纯形法)。

解析:线性规划的相对论证法和单纯形法是互为相对的两种求解方法。

2. 在线性规划中,若最优差异为0,则最优解是(非唯一)。

解析:最优差异为0意味着最优解是非唯一的,有多个最优解。

3. 线性规划的最优性条件是(对偶定理)与最优条件相对应。

解析:线性规划的最优性条件是对偶定理,而最优条件是原始问题的可行解和对偶问题可行解所对应的目标函数值相等。

4. 在线性规划中,若一个可行解在原始问题和对偶问题下都是最优解,则称为(互补性)条件。

解析:若一个可行解在原始问题和对偶问题下都是最优解,则满足互补性条件。

三、应用题1.某公司生产两种产品A和B,每个产品的制造工序及所需时间如下表,在一天内,公司有8小时的工时可用,每个工序只能由一名员工负责完成。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。

完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。

请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。

具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。

2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。

货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。

请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。

答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。

答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。

答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。

答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。

答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。

它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。

2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。

其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。

数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

运筹学考研考试试题及答案

运筹学考研考试试题及答案

运筹学考研考试试题及答案# 运筹学考研考试试题及答案## 一、选择题(每题2分,共20分)1. 线性规划问题的标准型中,目标函数和约束条件的系数应满足以下哪个条件?A. 目标函数为线性,约束条件为非线性B. 目标函数和约束条件均为线性C. 目标函数为非线性,约束条件为线性D. 目标函数和约束条件均为非线性答案:B2. 在单纯形法中,如果某个非基变量的系数在目标函数中为负,这表示什么?A. 该变量可以增加目标函数值B. 该变量可以减少目标函数值C. 该变量不影响目标函数值D. 无法确定答案:A3. 以下哪个不是网络流问题的特点?A. 存在源点和汇点B. 每条边都有容量限制C. 每条边的流量可以为负D. 网络中的流量满足守恒定律答案:C4. 动态规划的基本思想是什么?A. 将问题分解为多个阶段B. 利用已知解求解未知问题C. 利用递归关系求解问题D. 所有上述选项答案:D5. 整数规划与线性规划的主要区别在于:A. 目标函数的线性性B. 约束条件的线性性C. 变量的取值范围D. 求解方法的复杂性答案:C## 二、简答题(每题10分,共30分)1. 简述线性规划的图解法解决线性规划问题的步骤。

- 首先,确定问题的可行域。

- 其次,将目标函数转化为直线方程。

- 然后,画出目标函数在可行域内的图形。

- 最后,找到可行域边界上使目标函数值最大化的点。

2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。

- 灵敏度分析是评估模型参数变化对模型结果的影响。

- 在运筹学中,灵敏度分析用于评估最优解对数据变化的敏感度,帮助决策者了解在不同情况下的决策效果。

3. 描述单纯形法的基本思想及其求解过程。

- 单纯形法是一种求解线性规划问题的算法,其基本思想是从一个初始可行解出发,通过迭代,逐步改善解,直到达到最优解。

- 求解过程包括:选择进入基的非基变量,计算离开基的基变量,更新基和解,重复上述步骤直到满足最优性条件。

## 三、计算题(每题25分,共50分)1. 给定以下线性规划问题:\[ \text{Maximize } z = 3x_1 + 4x_2 \]\[ \text{Subject to } \begin{cases} 2x_1 + x_2 \leq 6 \\ x_1 + 2x_2 \leq 4 \\ x_1, x_2 \geq 0 \end{cases} \] 求解该问题,并给出最优解和最大值。

中科大管科运筹学真题1

中科大管科运筹学真题1

中科⼤管科运筹学真题1运筹学2005—2011参考答案中国科学技术⼤学——管理科学与⼯程专业以下试题全部标明了考试的年份,⽅便考⽣查阅⼀、线性规划建模1、((1998年,2009年考了)某公司现有⼤⽶、⽟⽶、⾯粉1820吨,1760吨和1700吨,拟调⼊对上述粮⾷物资有需求的甲,⼄,丙,丁四个地区。

已知:甲,⼄,丙,丁四个地区对上述物资的总需求为1300吨,1280吨,1290吨和1350吨,各种物资调往各地区可以获得的利润如表1所⽰。

问该公司应如何安排调运计划,才能使得公司获得的利润最⼤?(运输问题)解:参考课本p90产1820+1760+1700=5280销1300+1280+1290+1350=52201112132143333312341111444123111max 250300320240...2751300,1280,1290,1350.. 1820,1760,17000j j j j j j j j i i i i i i ij x x x x x x x x x s t x x x x =======+++++?====≤≤≤≥??∑∑∑∑∑∑∑2表2设司乘⼈员分别在各时间区段⼀开始上班,并连续⼯作⼋⼩时,问该公交线路⾄少应配置多少司乘⼈员才能满⾜上述要求,建⽴这个问题的线性规划模型。

(1999,2007)p46 解:设x i 为第i 阶段开始⼯作的⼈。

123456161223344556123456min +++++70+80+70s.t. +60+20+30,,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x =+≥??≥??≥?≥??≥??≥?≥?3、清华⼤学修订版P42,例13。

(2006年)4、某公司拟在下⼀个年度的1-4的4个⽉内需租⽤仓库堆放物资,每个⽉份所需仓库的⾯积于表3.仓库租借费⽤随合同期⽽定,期限越长,折扣越⼤,具体数字参见表4.租借仓库的合同每⽉初都可办理。

研究生运筹学考试题及其考试答案

研究生运筹学考试题及其考试答案

一、 解: 121284x x x +=⎧⎨=⎩ ⇒ 1242x x =⎧⎨=⎩ *243214Z =⋅+⋅= 1212233x x x x +=⎧⎨+=⎩ ⇒ 123212x x ⎧=⎪⎪⎨⎪=⎪⎩ *33192224Z =+⋅=二、(10分)证明:若ˆX 、ˆY 分别是原问题和对偶问题的可行解。

那么ˆˆ0s s YX Y X ==,当且仅当ˆX、ˆY 为最优解。

证明:min ,0,0S S S S max z CX Yb AX X b YA Y C X X Y Y ω==+=-=≥≥设原问题和对偶问题的标准关系是原问题对偶问题将原问题目标函数中的系数向量C 用C=Y A-YS 代替后,得到 z =(YA − YS )X =YAX − YSX将对偶问题的目标函数中系数列向量b ,用b =AX +XS 代替后,得到 w =Y (AX +XS )=YAX +YXSˆˆˆˆˆˆˆˆ;,4,4ˆˆ2152160,0S SSSY X 0,YX 0Yb YAX CX X Y CX YAX YbYXY X ======--==若则由性质(),可知是最优解。

又若分别是原问题和对偶问题的最优解,根据性质(),则有由(),()式可知,必有三、1)(5分)写出下列线性规划问题的对偶问题123123123123123Min z x x 2x 2x 3x 5x 23x x 7x 3s.t x 4x 6x 5x ,x ,x 0=++++≥⎧⎪++≤⎪⎨++≤⎪⎪≥⎩解:123123123123123Max w 2y 3y 5y 2y 3y y 13y y 4y 1s.t 5y 7y 6y 2y 0,y ,y 0=++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥≤⎩ 2)(5分)试写出下述非线性规划的Kuhn-Tucker 条件并求解2()(4)15Minf x x x =-≤≤解:先将该非线性规划问题写成以下形式212min ()(4)()10()50f x x g x x g x x ⎧=-⎪=-≥⎨⎪=-≥⎩写出其目标函数和约束函数的梯度:12()2(4),()1, ()1f x xg x g x ∇=-∇=∇=-对第一个和第二个约束条件分别引入广义拉格朗日乘子,设K-T 点为X*,则可以得到该问题的K-T 条件。

运筹学考研试题及答案大全

运筹学考研试题及答案大全

运筹学考研试题及答案大全模拟试题:运筹学考研试题一、单项选择题(每题2分,共10分)1. 线性规划问题的标准形式是:A. 目标函数和约束条件都是线性的B. 目标函数和约束条件都是二次的C. 目标函数是线性的,约束条件可以是任意次的D. 目标函数是二次的,约束条件是线性的答案:A2. 在单纯形法中,如果某个非基变量的检验数大于等于0,则该单纯形表是:A. 可行解B. 无可行解C. 有无穷多最优解D. 只有一个最优解答案:D3. 动态规划方法通常用于求解:A. 线性规划问题B. 整数规划问题C. 组合优化问题D. 非线性规划问题答案:C4. 下列哪项不是网络分析的关键路径方法(CPM)的三个基本参数?A. 活动持续时间B. 最早开始时间C. 最迟开始时间D. 项目总成本答案:D5. 运输问题中,当供应量等于需求量时,该问题被称为:A. 平衡运输问题B. 不平衡运输问题C. 线性运输问题D. 动态运输问题答案:A二、简答题(每题5分,共20分)1. 简述线性规划的基本假设条件。

答案:线性规划的基本假设条件包括:- 目标函数和约束条件都是线性的。

- 所有变量都是非负的。

- 资源的消耗是确定的,没有不确定性。

- 问题具有可预测性,即未来的需求和资源供应是已知的。

2. 解释什么是敏感性分析。

答案:敏感性分析是一种用于评估线性规划问题中最优解对参数变化的敏感程度的方法。

它可以帮助决策者了解当某些参数(如资源消耗量、目标函数系数或约束条件的右端值)发生变化时,对最优解的影响,从而做出更稳健的决策。

3. 在网络流问题中,最大流最小割定理的内容是什么?答案:最大流最小割定理指出,在网络流问题中,从源点到汇点的最大流量等于最小割集的容量。

最小割集是指从源点到汇点的切割,这个切割中的所有边的容量之和就是这个割集的容量。

4. 什么是运输问题的表上作业法?答案:运输问题的表上作业法是一种求解运输问题的方法,它通过在运输表上进行一系列的操作来找到最优解。

运筹学考研真题与答案

运筹学考研真题与答案

运筹学考研真题与答案运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。

它在现代管理、工程、经济等领域中扮演着重要的角色。

对于想要深入研究运筹学的学生来说,考研是一个很好的机会。

在这篇文章中,我将介绍一些运筹学考研的真题和答案,希望能够对考生有所帮助。

首先,我们来看一道经典的线性规划问题。

题目如下:某公司有两种产品A和B,每种产品的生产时间分别为2小时和3小时。

产品A的利润为200元,产品B的利润为300元。

公司每天有16小时的生产时间可用,最多能生产产品A 4个单位,产品B 6个单位。

问如何安排生产,使得利润最大化?这是一个典型的线性规划问题,可以通过建立数学模型来解决。

我们可以设产品A的生产量为x,产品B的生产量为y。

根据题目中的限制条件,我们可以列出以下不等式:2x + 3y ≤ 16x ≤ 4y ≤ 6同时,我们还需要考虑到生产量不能为负数的限制条件:x ≥ 0y ≥ 0最终,我们的目标是最大化利润,即最大化200x + 300y。

综合以上条件,我们可以得到以下线性规划模型:Maximize 200x + 300ySubject to2x + 3y ≤ 16x ≤ 4y ≤ 6x ≥ 0y ≥ 0接下来,我们需要通过运筹学的方法来求解这个线性规划模型。

常见的方法有单纯形法、对偶理论、内点法等。

在考研中,单纯形法是最常用的方法。

通过单纯形法,我们可以得到最优解为x=4,y=4,利润最大化为200*4 + 300*4 = 2000元。

除了线性规划,运筹学考研中还会涉及到其他的优化问题,比如整数规划、非线性规划等。

这些问题的求解方法有时会更加复杂。

但是,通过建立适当的数学模型和运用适当的方法,我们仍然可以得到满意的解。

总结一下,运筹学考研真题与答案是帮助考生更好地了解运筹学的方法和应用的重要资源。

通过学习和掌握这些真题和答案,考生可以更好地应对考试,并在实际问题中灵活运用所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学
一.某投资者有30000元可供为期四年的投资。

现有下列五项投资机会可供选择:
A :四年内,投资者可在每年年初投资,每年每元投资可获到0.2元,每年获利后将本利重新投资。

B :在四年内,投资者应在第一年年初或第三年年初投资,每两年每元投资可获利润0.5元,两年后获利。

然后可将本利再重新投资。

C :在四年内,投资者应在第一年年初投资,三年后每元投资可获利0.8元。

获利后可将本利重新投资。

这项投资最多不超过20000元。

D :在四年内,投资者应在第二年年初投资,两年后每元投资可获利0.6元。

获利后可将本利重新投资。

这项投资最多不超过15000元。

E :在四年内,投资者应在第一年年初投资,四年后每元投资可获利1.7元。

这项投资最多不超过20000元。

投资者在四年内应如何投资,使他在四年后所获利润最大?写出这个问题的线性规划模型,不用求解。

二.证明:若线性规划问题有界,则该问题的目标函数一定可以在其可行域的顶点达到最优。

三.设有如下线性规划问题
123
123123123ax 2351771.251071007M Z x x x x x x s t x x x x x x =+-⎧++=⎪⎪⎪-+≥⎨⎪
⎪≥≥≥⎪⎩
,,
中国科学院——中国科学技术大学 招收攻读硕士学位研究生入学考试模拟试题一
试求:(1)该问题的对偶问题;
(2)该问题的最优解;
(3)若目标函数中的1x 的系数由2变为2+θ,试讨论最优解的变化;
(4)若增加一个新的约束条件:1231483
7x x x --≤,问题的最优解有无
变化,为什么?
四.分配甲、乙、丙、丁四个人去完成五项任务。

每人完成各项任务时间如表所示。

由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每
五.用动态规划的方法求下列网络图从起点到终点的最短路线及长度。

相关文档
最新文档