三角形单元测试卷(一)

合集下载

第十一章-三角形》单元测试卷含答案(共5套)

第十一章-三角形》单元测试卷含答案(共5套)

第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间:120分钟满分:120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。

2、3、6.B。

2、4、6C。

2、2、4.D。

6、6、62.如图,图中∠1的大小等于()A。

40°。

B。

50°。

C。

60°。

D。

70°3.一个多边形的每一个内角都等于140°,则它的边数是() A。

7.B。

8.C。

9.D。

104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠XXX于点D,那么∠XXX的度数是()A。

76°。

B。

81°。

C。

92°。

D。

104°5.用五根木棒钉成如下四个图形,具有稳定性的有()A。

1个。

B。

2个。

C。

3个。

D。

4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A。

180°。

B。

360°。

C。

540°。

D。

720°二、填空题7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为9.8.若n边形内角和为900°,则边数n为10.9.将一副三角板按如图所示的方式叠放,则∠α的度数为30°。

10.如图,在△ABC中,∠ACB=90°,∠A=20°。

若将XXX沿CD所在直线折叠,使点B落在AC边上的点E处,则∠XXX的度数是70°。

11.如图,在△ABC中,E、D、F分别是AD、BF、CE的中点。

若△DEF的面积是1cm²,则S△ABC=3cm²。

12.当三角形中一个内角β是另一个内角α的时,我们称此三角形为“希望三角形”,其中角α称为“希望角”。

如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为27°。

苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)

苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)

苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E 3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DF B.BE=CF C.∠B=∠F D.∠ACB=∠DEF 5.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B 6.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形7.下列条件中,不能判定两个直角三角形全等的是()A.两直角边对应相等B.斜边和一条直角边对应相等C.两锐角对应相等D.一个锐角和斜边对应相等8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.49.在一次小制作活动中,艳艳剪了一个燕尾图案(如图所示),她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等,小麦走过来说:“不用量了,肯定相等”,小麦的说法利用了判定三角形全等的方法是()A.ASA B.SAS C.AAS D.SSS10.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD二.填空题11.能够的两个图形叫做全等图形.12.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.15.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.16.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,.(只需填一个答案即可)17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.三.解答题21.如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.22.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.23.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.24.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.25.如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.27.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:全等图形是指两个图形的形状和大小都相等,故选:C.2.解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.3.解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.4.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∠B=∠DEF,∠ACB=∠F,∠A=∠D,∴BE=CF,故选:B.5.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.6.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.7.解:A、正确.根据SAS即可判断.B、正确.根据HL即可判断.C、错误.两锐角对应相等不能判断两个三角形全等.D.正确.根据AAS即可判断.8.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.9.解:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠B=∠C,故选:D.10.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.13.解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO(答案不唯一).14.解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.15.解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.16.解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.17.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.18.解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.20.解:∵AB∥CD,∴∠B=∠D,∵AE∥CF,∴∠AEB=∠CFD,在△ABE和△CFD中,,∴△ABE≌△CFD,∴BE=DF,∵BD=10,BF=3.5,∴DF=BD﹣BD=6.5,∴BE=6.5,∴EF=BE﹣BF=6.5﹣3.5=3.故答案为3三.解答题21.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=∠ACB﹣∠CAD=90°,∴∠DFG=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.22.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.24.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.25.证明:∵AC∥EF,∴∠CAB=∠FED,∵AE=BD,∴AE+EB=BD+EB,即AB=ED,又∵AC=EF,∴△ABC≌△EDF.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.27.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章三角形》单元测试卷(一)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知三条线段的长是:①2,3,4;②3,4,5;③3,3,5;④6,6,10.其中可构成等腰三角形的有( )A.1个 B.2个 C.3个 D.4个2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A.15 B.16 C.18 D.193.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD 的度数为( )A.40° B.45° C.50° D.55°第3题图, 第4题图4.如图,在△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于( ) A.80° B.120° C.100° D.150°5.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( ) A.40° B.60° C.80° D.90°6.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A=12∠B=13∠CC.∠A∶∠B∶∠C=1∶2∶3 D.∠A=2∠B=3∠C7.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为( )A.8 B.9 C.10 D.128.若一个多边形的每个外角都等于60°,则它的内角和等于( ) A.180° B.720° C.1080° D.540°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)第9题图) 第10题图10.如图是D,E,F,G四点在△ABC边上的位置图,根据图中的符号和数据,则x+y的值为( )A.110 B.120 C.160 D.165二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.12.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为________度,这个三角形是________三角形.,第11题图) ,第13题图)13.如图,在△ABC中,已知∠BAC=50°,∠C=60°,AD是高,BE是∠ABC 的平分线,AD,BE交于点F,则∠BEC=________.14.已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.15.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.第15题图 ,第16题图16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF =90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=________.17.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.18.上午9时,一艘船从A处出发以20海里/时的速度向正北航行,11时到达B处,若在A处测得灯塔C在北偏西34°,且∠ACB=32∠BAC,则灯塔C应在B处的________.三、解答题(共66分)19.(9分)如图,已知AD,AE分别是△ABC的高和中线,AB=6 cm,AC=8 cm,BC=10 cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.20.(9分)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.21.(10分)如图,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.22.(9分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.23.(9分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?24.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.25.(10分)如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?请说明理由.参考答案1.B 2.D 3.A 4.C 5.A 6.D 7.C 8.B 9.B 10.B 11.6 12.75;钝角13.85°14.3a-b-c 15.360°16.25°17.七18.北偏西85°19.(1)24 cm2(2)4.8 cm (3)2 cm20.由题中条件可知:|a-4|≥0,(b-9)2≥0,又|a-4|+(b-9)2=0,∴|a-4|=0,(b-9)2=0,即a=4,b=9.若a为腰长,则另一腰长为4,∵4+4<9,∴不符合三角形三边关系.若b为腰长,则这个等腰三角形的周长为9+9+4=22.综上所述,这个等腰三角形的周长为22 21.∵∠A+∠ACB=90°,∴∠ACB =90°-10°=80°,∴∠DCE=80°,又∵∠DCE=∠A+∠ADC=80°,∴∠ADC =80°-10°=70°,∴∠EDF=70°,∴∠DEA=∠EDF-∠A=70°-10°=60°,∴∠FEG=60°,∴∠F=∠FEG-∠A=60°-10°=50°22.(1)∵26 20÷180=14……100,∴误加的外角为100°(2)设这个多边形的边数为n.由①知n-2=14,∴n=16,∴这个多边形的边数为1623.在△AOB中,∠QBO=180°-∠A-∠O=180°-28°-100°=52°.即∠QBO应等于52°才能确保BQ与AP在同一条直线上24.BE∥DF.理由如下:在四边形ABCD中,∠A+∠C+∠ABC+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又∵∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∵∠4+∠5=90°,∴∠2=∠5,∴BE∥DF25.不变化.∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=12∠OAB,∠EBA=12∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=12∠YBA-12∠OAB=12(∠Y BA-∠OAB),∵∠YBA-∠OAB=90°,∴∠C=12×90°=45°《第十一章三角形》单元测试卷(二)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为(D )A.3 B.4 C.5 D.6,第3题图,第6题图2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形 B.锐角三角形 C.直角三角形 D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF 等于( A )=2,则S△ABCA.16 B.14 C.12 D.10,第7题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形 B.八边形 C.九边形 D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°第9题图 ,第10题图10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图)12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB =2∠B,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠ACD=2x°=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎨⎧2x +y =18,x -y =3,或⎩⎨⎧2x +y =18,y -x =3,解得⎩⎨⎧x =7,y =4,或⎩⎨⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O 为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m ),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10 cm ,BC =8 cm ,AC =6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC =12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB =__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°《第十一章三角形》单元测试卷(三)一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上) 10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________. 12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE =__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是_____ _____边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD 和BC 相交于点O ,AB∥CD,∠AOC=95°,∠B=50°,求∠A 和∠D.21.(本题满分12分)如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________;(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B 中较短两边之和大于第三边,能组成三角形.132.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A 与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)12πR2(2)πR2 (3)32πR2(4)n-22πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.《第十一章三角形》单元测试卷(四)答题时间:90 满分:100分班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.3.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.4.如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC =°.6.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可).8.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.9.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,请你写出∠A与∠D的关系:.10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为.11.在△ABC中,∠A=55°,高BE、CF交于点O,则∠BOC=______.12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A=50°,∠ACD=40°,∠ABE=28°,则∠CFE 的度数为______. 14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”).二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9三、解答题(共60分)19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD 中,∠A=∠D ,∠B=∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB=AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?CBACBA25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______. (2)小明绝对不会走③,因为③路程最长,即AC+BC >AD+DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A+∠B+∠C+∠D+∠E=180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.图1图2图3DCBA(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案: (B 卷) 一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 11.55或125 12.360 13.62 14.否二、选择题15.C 16.C 17.B 18.C 三、解答题 19.36011⎛⎫⎪⎝⎭20.AD BC∥21.56 22.三边长为16,16,22或20,20,14 23.略 24.六边形 25.只要量得∠B +∠C=150°,∠C +∠D=160°,则模板即为合格 26.(1)两点之间,线段最短;(2)略 27.结论都成立,理由略 28.(1)60°,90°,108°,120°,(2)180n n-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.《第十一章三角形》单元测试卷(五)时间:120分钟满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11C.3,4,8 D.4a,4a,8a(a>0)2.下列说法错误的是( )A.一个三角形中至少有一个角不小于60°B.三角形的角平分线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A.60° B.70° C.80° D.90°4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短5.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )A.9 B.14 C.16 D.不能确定6.在△ABC中,已知∠A=4∠B=104°,则∠C的度数是( )A.50° B.45° C.40° D.30°7.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=12∠C;④∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.4个9.一个正多边形的边长为2,每个外角为45°,则这个多边形的周长是( ) A.8 B.12 C.16 D.1810.长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有( )A.3个 B.4个 C.5个 D.6个11.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是( )A.1260° B.1080°C.900° D.720°12.一个三角形的三个外角之比为3∶4∶5,则这个三角形内角之比是( ) A.5∶4∶3 B.4∶3∶2C.3∶2∶1 D.5∶3∶113.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=( )A.12° B.18° C.24° D.30°14.若a,b,c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.60° B.65° C.55° D.50°16.如图①,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图②.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.将一副三角板按如图所示的方式叠放,则∠α的度数为 .18.如图,在△ABC中,已知点D,E分别为AC,BD的中点,且S△BDC=2cm2,则S= .阴影19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A 1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为°.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.21.(9分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.(9分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.(9分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E,∠A=60°,∠BDC=100°,求△BDE各内角的度数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(11分)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).26.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.A 2.D 3.C 4.B 5.A 6.A 7.B 8.C 9.C 10.A11.C 12.C 13.C 14.B15.A 解析:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD +∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选A.16.C 解析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB +BE>AC+CE,由三角形三边关系得AC+BC>AB,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.17.75°18.1cm219.76 6 解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知,∠A=90°-n·14°,当n=6时,∠A取得最小值,最小度数为6°.20.解:(1)AB(2分) (2)CD(4分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(6分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)21.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(9分)22.解:由三角形的外角性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(9分)23.解:∵∠BDC是△ABD的一个外角,∠A=60°,∠BDC=100°,∴∠ABD=∠BDC-∠A=40°.(4分)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵ED∥BC,∴∠BDE=∠CBD=∠ABD=40°,(7分)∴∠BED=180°-40°-40°=100°.(9分)24.解:设AB=x cm,BC=y cm,则AD=CD=12x cm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系.(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm , 符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分) 25.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠CAD =90°-∠C =90°-70°=20°,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(9分)(3)∵∠C -∠B =α,∴由(2)中可知∠DAE =12(∠C -∠B )=12α.(11分)26.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n ·(180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n .(12分)《第十一章 三角形》单元测试卷(六)(满分:100分 时间:60分钟)一、选择题(每小题3分,共30分)1、下列长度的各组线段中,能组成三角形的是( )A .1,1,2B .3,7,11C .6,8,9D .3,3,62、下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线3、下列命题中,假命题是( )A .如果|a|=a ,则a ≥0B .如果,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( )A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形5、三角形的一个外角大于相邻的一个内角,则它是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定6、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60°7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )A .3:2:1B .5:4:3C .3:4:5D .1:2:38、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( )A .-6<a<-3B .-5<a<-2C .-2<a<5D .a<-5或a>29、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2图9 图1010、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( )A .10°B .18°C .20°D .30°二、填空题(每小题4分,共20分)11、 已知三角形的周长为15cm ,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是 .12、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .13、如图13,∠A =70°,∠B =30°,∠C =20°,则∠BOC= . F EC图13 图14 图1514、如图14,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF= .15、如图15,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .三、解答题(第16题6分,第17题8分,第18-21题每题9分,共50分)16、写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果a+b=0,那么a=0,b=0.(2)等角的余角相等.(3)如果一个数的平方是9,那么这个数是3.17、完成以下证明,并在括号内填写理由:已知:如图所示,∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2(),所以AB∥___(). 所以∠A=∠4().又因为∠A=∠3(),所以∠3=_ _().所以AC∥DE().18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm 的两个部分,求三角形各边的长.。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

第一章三角形单元测试卷(含解析)

第一章三角形单元测试卷(含解析)

〖鲁教版五四制七年级上数学单元测试卷〗第一章《三角形》班级:姓名:得分:(时间90分钟满分100分)一、选择题:本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.如图三角形的个数为() A.4 B. 5 C. 6 D.72.(2016·湖北鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A. 50°B. 40°C. 45°D. 25°第1题第2题3. (2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4. (2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm5.若一个三角形三个内角的度数比为1:3:5,则这个三角形中最大内角的度数为()A. 60ºB. 90ºC. 100ºD.110º6.(2016·山东聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28°B.38°C.48°D.88°7. 根据下列条件,不能唯一画出△ABC 的是( )A. AB=12,BC=7,CA=8B. AB=20,BC=30,∠A=50ºC. AB=9, ∠A=60º ,AC=15D. ∠A=50º,∠B=40º,AB=238. (2015•绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A . 118°B . 119°C . 120°D . 121°9. 如图,A 点和B 点之间有一池塘,已知OB=OC ,AC=BD ,若能米尺测出CD=10米,就能知道AB 的距离,它根据( ) A. SAS B. SSS C. ASA D. AAS10. (2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,詹姆斯在探究筝形的性质时,得到如下结论: ①AC ⊥BD ;②AO=CO=21AC ;③△ABD ≌△CBD ,其中正确的结论有( )A . 0个B . 1个C . 2个D . 3个二、填空题(本大题共4小题,每小题4分,满分16分)11. (2015•江苏盐城)如图,在△ABC 与△ADC 中,已知AD=AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需再添加的一个条件可以是 .12. 小明家的椅子坏了, 小明在学校学习了鲁教版五四制七上数学第一章《三角形》的知识后,正在家里帮爸爸妈妈修理椅子,请你告诉大家聪明的小明应用的数学原理: 。

(典型题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

(典型题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20 2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11 3.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 4.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 5.已知三角形的一边长为8,则它的另两边长分别可以是( ) A .4,4B .17,29C .3,12D .2,9 6.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 7.如图,在等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,点B 在直线l 上,过A 作AD l ⊥于D ,过C 作CE l ⊥于E .下列给出四个结论:①BD CE =;②BAD ∠与BCE ∠互余;③AD CE DE +=.其中正确结论的序号是( )A .①②B .①③C .②③D .①②③ 8.如图,要测量河两岸相对的两点A 、B 的距离,先过点B 作BF AB ⊥,在BF 上找点D ,过D 作DE BF ⊥,再取BD 的中点C ,连接AC 并延长,与DE 交点为E ,此时测得DE 的长度就是AB 的长度.这里判定ABC 和EDC △全等的依据是( )A .ASAB .SASC .SSSD .AAS 9.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( )A .7B .8C .9D .10 10.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45° 11.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS 12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.在非直角三角形ABC 中,∠A =50°,高BD 和高CE 所在的直线相交于点H ,则∠BHC =___.14.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.15.如图,12∠=∠,要使ABE ACE △≌△,还需添加一个条件是:______.(填上你认为适当的一个条件即可)16.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)17.有两根小棒分别长2厘米和4厘米.要围成一个等腰三角形,第三根小棒的长度应该是____厘米.18.如图,在ABC ∆中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF AC =,BD=8,3CD =,则线段AF 的长度为______.19.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 .20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.如图1,已知AB =AC ,AB ⊥AC .直线m 经过点A ,过点B 作BD ⊥m 于D , CE ⊥m 于E .我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE =BD +CE ,现请你替悟空同学完成证明过程.(2)悟空同学进一步对类似图形进行探究,在图2中,若AB =AC ,∠BAC =∠BDA =∠AEC ,则结论DE =BD +CE ,还成立吗?如果成立,请证明之.22.如图,90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =.(1)试说明:ADE 是等腰直角三角形;(2)若2CDE BAE ∠=∠,求CDE ∠的度数.23.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)在图中,只要量出CD 的长,就能求出工件内槽的宽AB 的长,依据是____________.24.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.25.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.26.已知:如图,AB = AD .请添加一个条件使得△ABC ≌△ADC ,然后再加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF ,∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题. 2.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.4.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.5.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A 、∵4+4=8,∴构不成三角形;B 、29−17=12>8,∴构不成三角形;C 、∵12−3=9>8,∴构不成三角形;D 、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D .【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.6.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .7.D解析:D【分析】证△ADB ≌△BEC 即可.【详解】证明:∵AD l ⊥, CE l ⊥,∴∠ADB=∠BEC=90°,∴∠BAD+∠ABD=90°,∠BCE+∠CBE=90°,∵90ABC ∠=︒,∴∠ABD+∠CBE=90°,∴∠BAD=∠CBE ,∴∠BCE+∠BAD=90°,故②正确;∵∠BAD=∠CBE ,∠ADB=∠BEC=90°,,AB BC =∴△ADB ≌△BEC ,∴BD CE =,AD=BE ,故①正确;DE=DB+BE=CE+AD ,故③正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,解题关键是找到并证明全等三角形.8.A解析:A【分析】根据条件可得到BC=CD ,∠ABD=∠EDC ,∠ACB=∠DCE ,可得出所用的判定方法.【详解】解:∵C 为BD 中点,∴BC=CD ,∵AB ⊥BF ,DE ⊥BF ,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE ,∴在△ABC 和△EDC 中,满足ASA 的判定方法,故选:A .本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .9.A解析:A【分析】根据非负数的性质列方程求出a 、b 的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c 的取值范围,然后解答即可.【详解】解:∵|a ﹣5|+(b ﹣3)2=0,∴a ﹣5=0,b ﹣3=0,解得a =5,b =3,∵5﹣3=2,5+3=8,∴2<c <8,∴c 的值可以为7.故选:A .【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.10.A解析:A【分析】先根据全等三角形的性质可得105ACB E ∠=∠=︒,再根据三角形的外角性质可得AFC ∠的度数,然后根据对顶角相等可得DFG ∠的度数,最后根据三角形的内角和定理即可得.【详解】ABC ADE ≅,105E ∠=︒,105ACB E ∴∠=∠=︒,ACB DAC AFC ∠=∠+∠,16DAC ∠=︒,10516AFC ︒=︒+∴∠,解得89AFC ∠=︒,89DFG AFC ∴∠=∠=︒,在DFG 中,180GB F D D D G ∠∠=+∠+︒,25D ∠=︒,2518089DGB ∴∠+︒+=︒︒,解得66DGB ∠=︒,故选:A .【点睛】本题考查了全等三角形的性质、三角形的外角性质、三角形的内角和定理、对顶角相等,熟练掌握全等三角形的性质是解题关键.11.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.12.A解析:A【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:易得OC=O C',OD=O′D',CD=C′D',∴△OCD≌△O′C′D′,∴∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.50°或130°【分析】①△ABC是锐角三角形时先根据高线的定义求出∠ADB=90°∠BEC=90°然后根据直角三角形两锐角互余求出∠ABD再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行解析:50°或130°.【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形等角的余角相等求出∠BHC=∠A,从而得解.【详解】解:①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°.在△ABD中,∵∠A=50°,∴∠ABD=90°-50°=40°,∴∠BHC=∠ABD+∠BEC=40°+90°=130°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=50°.综上所述,∠BHC的度数是130°或50°.故答案为:50°或130°.【点睛】本题主要考查了直角三角形的性质,三角形的外角性质,等角的余角性质,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.14.102°【分析】首先根据∠DFC=3∠B=117°可以算出∠B=39°然后设∠C=∠D=x°根据外角与内角的关系可得39+x+x=117再解方程即可得到x=39再根据三角形内角和定理求出∠BED的度解析:102°首先根据∠DFC =3∠B =117°,可以算出∠B =39°,然后设∠C =∠D =x°,根据外角与内角的关系可得39+x +x =117,再解方程即可得到x =39,再根据三角形内角和定理求出∠BED 的度数.【详解】解:∵∠DFC =3∠B =117°,∴∠B =39°,设∠C =∠D =x°,39+x +x =117,解得:x =39,∴∠D =39°,∴∠BED =180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.或或【分析】由∠1=∠2可得∠AEB=∠AECAD 为公共边根据全等三角形的判定添加条件即可【详解】∵∠1=∠2∴∠AEB=∠AEC ∵AE 为公共边∴根据SAS 得到三角形全等可添加BE=CE ;根据AAS解析:BE CE =或B C ∠=∠或BAE CAE ∠=∠【分析】由∠1=∠2可得∠AEB=∠AEC ,AD 为公共边,根据全等三角形的判定添加条件即可.【详解】∵∠1=∠2,∴∠AEB=∠AEC ,∵AE 为公共边,∴根据“SAS”得到三角形全等,可添加BE=CE ;根据“AAS”可添加∠B=∠C ;根据“ASA”可添加∠BAE=∠CAE ;故答案为:BE=CE 或∠B=∠C 或∠BAE=∠CAE .【点睛】本题考查全等三角形的判定,全等三角形的常用的判定方法有SSS 、SAS 、AAS 、ASA 、HL ,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.熟练掌握全等三角形的判定定理是解题的关键.16.AF=CB 或EF=EB 或AE=CE 【分析】根据垂直关系可以判断△AEF 与△CEB 有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD ⊥BCCE ⊥AB 垂足分别为DE ∴∠BEC=∠AEC解析:AF=CB 或EF=EB 或AE=CE根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.17.4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边任意两边之差小于第三边即可得出结果【详解】解:∵要围成一个等腰三角形∴有两种可能:224和2442+2=4所以224舍掉∴第三根小棒的长度解析:4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边即可得出结果.【详解】解:∵要围成一个等腰三角形,∴有两种可能:2、2、4和2、4、4,2+2=4,所以2、2、4舍掉,∴第三根小棒的长度为4,故答案为:4【点睛】本题主要考查的三角形三边关系,掌握三角形的三边关系是解题的关键.18.5【分析】首先证明△ADC≌△BDF再根据全等三角形的性质可得FD=CDAD=BD根据BD=8即可算出AF的长【详解】解:∵AD是BC边上的高BE 是AC边上的高∴∠ADC=∠FDB=90°∠AEB=解析:5【分析】首先证明△ADC≌△BDF,再根据全等三角形的性质可得FD=CD,AD=BD,根据BD=8,CD ,即可算出AF的长.3解:∵AD 是BC 边上的高,BE 是AC 边上的高,∴∠ADC =∠FDB =90°,∠AEB=90°∴∠1+∠3=90°,∠2+∠4=90°,∵∠3=∠4,∴∠1=∠2,在△ADC 和△BDF 中1=2ADC FDB AC BF ∠∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BDF (AAS ),∴FD =CD ,AD =BD ,∵CD =3,BD =8,∴FD =3,AD =8,∴AF =AD-DF=8−3=5,故答案为:5.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握证明三角形全等的方法:AAS 、SSS 、ASA 、SAS .19.1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边任意两边之差小于第三边解:由题意有8﹣5<1+2x <8+5解得:1<x <6考点:三角形三边关系解析:1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x <8+5,解得:1<x <6.考点:三角形三边关系.20.3【分析】易证△ABE ≌△DCF 从而可得出△ABF ≌△DCE 进而可得出△BEF ≌△CFE 【详解】∵AB ∥DC ∴∠A=∠D ∵AB=CDAE=DF ∴△ABE ≌△DCF(SAS)∴AE=DFBE=CF ∴A 解析:3【分析】易证△ABE ≌△DCF,从而可得出△ABF ≌△DCE,进而可得出△BEF ≌△CFE .【详解】∵AB ∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE ≌△DCF(SAS)∴AE=DF ,BE=CF∴AF=ED∴△ABF ≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF ≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA 是不能证明全等的.三、解答题21.(1)见解析;(2)成立,见解析【分析】(1)先证∠ABD=∠EAC ,再证△ABD ≌ △CAE (AAS )即可;(2)先证出∠ABD = ∠EAC ,再证△ABD ≌ △CAE (AAS )即可.【详解】证明:(1)∵AB ⊥AC,BD ⊥DE,CE ⊥DE,∴∠BDA=∠AEC=∠BAC=90°,∴∠DAB+∠ABD=∠EAC+∠DAB=90°,∴∠ABD=∠EAC,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA ;(2)成立,理由如下:∵ ∠BAC + ∠BAD + ∠EAC = 180° ,∠ADB + ∠BAD + ∠ABD = 180°,∠BAC = ∠BDA ,∴∠ABD = ∠EAC ,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA = BD + CE .【点睛】本题考查三角形全等的判定与性质,掌握三角形全等的判定与性质是解题关键. 22.(1)见解析;(2)60°.【分析】(1)利用ASA 证明△BAE ≌△CED ,可证AE=DE ,后利用∠BAE+∠BEA=90°,证明∠BEA+∠CED=90°,问题得证;(2)利用直角三角形的两个锐角互余,求解即可.【详解】(1)∵90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =,∴△BAE ≌△CED ,∴AE=DE ,∵∠BAE+∠BEA=90°,∴∠BEA+∠CED=90°,∴∠AED=90°,∴△AED 是等腰直角三角形;(2)∵2CDE BAE ∠=∠,BAE CED ∠=∠,∴2CDE CED ∠=∠,∵∠CDE+∠CED=90°,∴∠CDE=60°.【点睛】本题考查了三角形的全等,等腰直角三角形的定义,直角三角形的锐角互余的性质,根据图形,结合条件选择对应判定方法,根据性质构造基本的计算等式是解题的关键. 23.全等三角形的对应边相等【分析】连接AB ,CD ,可以证△AOB ≌△COD (SAS ),依所据全等三角形对就边相等得CD AB =所以测量CD 的长也就等于测量了工件内槽AB 的长.【详解】解:连接AB ,CD ,如图,∵点O 分别是AC 、BD 的中点,∴OA =OC ,OB =OD .在△AOB 和△COD 中,OA =OC ,∠AOB =∠COD (对顶角相等),OB =OD ,∴△AOB ≌△COD (SAS ).∴CD =AB (全等三角形的对应边相等).故答案为:全等三角形的对应边相等.【点睛】本题考查全等三角形的应用,在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.24.见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明△ACF ≌△BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =;//AC BD , CAF DBE ∴∠=∠在ACF 与BDE 中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键. 25.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP=⎧⎨=⎩ ∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.26.BC=CD,证明见解析(答案不唯一).【分析】已知两组对应边相等,则找另一组边相等或找另一组对应角相等均可证明△ABC ≌△ADC .【详解】解:若添加条件为:BC=CD,证明如下:在△ABC 和△ADC 中AC AC BC CD AB AD =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS )(答案不唯一).【点睛】本题主要考查了全等三角形的判定,灵活运用全等三角形的判定方法是解答本题的关键.。

三角形单元测试卷(学生版)

三角形单元测试卷(学生版)

三角形单元测试卷一.选择题1.下列图形中具有稳定性的是A.梯形B.菱形C.三角形D.正方形2.三角形一边上的中线把原三角形分成两个A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形3.在下列条件中:①A B C,②A B C123,③A900B,④A B C中,能确定ABC是直角三角形的条件有A.1个B.2个C.3个D.4个4.若一个三角形的一个外角小于与它相邻的内角则这个三角形是A.直角三角形B.锐角三角形C.钝角三角形D.无法确定5.已知三角形的三个外角的度数比为234则它的最大内角的度数为A.90B.110C.100D.1206.下列说法中,正确的是A.正六边形和正三角形的外角和相等B.三角形的两边之差不一定小于第三边C.五边形只有两条对角线D.多边形的内角和公式为n2360n37.以下说法错误的是A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点.·1·在ABC中,A B2C B A20A如图所示,1234度.已知三角形的两边分别为a2cm b5cm,a b c取值范围为.等腰三角形周长为21cm一中线将周长分成的两部分差为3cm则这个三角形三边长为.长为,6,4的四根木条,选其中三根能组成三角形有法,分别是如下图,在ABC AE是中线,AD是角平分线,AF根据图形填空:⑴BAD 1 2⑵BE 12BC;⑶AFB AFC.DFA边形有一个外角是60,其它各外角都是0n·2·15.从n 边形一个顶点出发共可作5条对角线,则这个n 边形的内角和为16.n 边形的内角和与外角和相等,则n三.证明题:17.如图3,BD 为ABC 的角平分线,CD 为ABC 的外角ACE 的平分线,它们相交于点D ,试探索BDC 与A 之间的数量关系.18.如图4,D 是ABC 的BC 边上一点,且12,34,BAC63,求DAC 的度数.·3·,ABC 平分BAC BE AC 若EBC ,ADB 80求BAC 的度数.AD E6,ABC AD 、是角平分线,它们相交于点BAC 50,C 70求DAC 及BOA ACD E FOB。

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试卷(包含答案解析)(1)

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试卷(包含答案解析)(1)

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 3.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 4.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 5.如图,1∠等于( )A .40B .50C .60D .706.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .87.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒ 8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 9.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF 10.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 11.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒12.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠ B .12A B C ∠=∠=∠C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 二、填空题13.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________14.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.15.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.16.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.17.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.18.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.19.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.20.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .三、解答题21.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC 的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB 上找到格点D ,并连接CD ,使CD 将△ABC 面积两等分; (2)在图②中△ABC 的内部找到格点E ,并连接BE 、CE ,使△BCE 是△ABC 面积的14. (3)在图③中△外部画一条直线l ,使直线l 上任意一点与B 、C 构成的三角形的面积是△ABC 的18.22.如图,在ABC 中,D 是AB 上一点,且AD AC =,连结CD .请在下面空格中用“>”,“<”或“=”填空.(1)AB________AC BC +;(2)2AD________CD ;(3)BDC ∠________A ∠.23.如果一个n 边形的内角都相等,且它的每一个外角与内角的比为2:5,求这个多边形的边数n .24.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?25.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.(1)一个多边形的内角和等于1800度,求这个多边形的边数.(2)一个多边形的每一个内角都是108°,求这个多边形的边数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+2<4,不能构成三角形;B、5+6=11,不能构成三角形;C、3+3>3,能构成三角形;D、8+4=12,不能构成三角形.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.2.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.3.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.4.A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.5.D解析:D【分析】根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒故选D.【点睛】本题考查了三角形外角的性质,比较简单.6.A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.7.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.8.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.C解析:C【分析】根据三角形的高的定义,△ABC 中AC 边上的高是过B 点向AC 作的垂线段,即为BF .【详解】解:∵BF ⊥AC 于F ,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.10.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 11.B解析:B【分析】根据题意,结合三角形内角和定理、角平分线的性质,三角形外角的性质分别求解即可得出结论.【详解】解:由题意可得:在四边形BDCI 中,1180902IBD IBC CBD ∠=∠+∠=⨯︒=︒,90ICD ∠=︒, 可得180BDC BIC ∠+∠=︒,故A 选项不符合题意, 90ICE ∠=︒,故B 选项符合题意,48BAC ∠=︒,在三角形ICE 中, EIC ∠=18048662IBC ICB ︒-︒∠+∠==︒,90ICE ∠=︒, 906624E ∠=︒-︒=∴︒ ,故C 选项不符合题意,90DBE ∠=︒,故D 选项不符合题意,故选:B.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.12.C解析:C【分析】利用三角形的内角和,代入已知条件求出角的度数,逐一判断是否有直角即可.【详解】A :ABC ∠+∠=∠,代入+=180A B C ∠+∠∠︒得:2=180C ︒∠⇒=90C ∠︒,故此选项不符合题意;B :12A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:11++=2=18022C C C C ︒∠∠∠∠⇒=90C ∠︒,故此选项不符合题意; C :3A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:3+3+=180C C C ︒∠∠∠⇒26C ≈︒∠,故此选项符合题意;D :1123A B C ∠=∠=∠代入+=180A B C ∠+∠∠︒得:12++=18033C C C ︒∠∠∠⇒=90C ∠︒,故此选项符合题意; 故答案选:C【点睛】本题主要考查了三角形的内角和,熟悉掌握三角形的内角和运算方式是解题的关键.二、填空题13.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.14.【分析】根据求出mn 的长根据三角形三边关系求出k 的取值范围再根据k 为最长边进一步即可确定k 的取值【详解】解:由题意得n-9=0m-5=0解得m=5n=9∵mnk 为三角形的三边长∴∵k 为三角形的最长边解析:914k ≤<【分析】根据2|9|(5)0n m -+-=求出m 、n 的长,根据三角形三边关系求出k 的取值范围,再根据k 为最长边进一步即可确定k 的取值.【详解】解:由题意得n-9=0,m-5=0,解得 m=5,n=9,∵m ,n ,k ,为三角形的三边长,∴414k ≤<,∵k 为三角形的最长边,∴914k ≤<.故答案为:914k ≤<【点睛】本题考查了绝对值、偶次方的非负性,三角形的三边关系,根据题意求出m 、n 的长是解题关键,确定k 的取值范围时要注意k 为最长边这一条件. 15.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P 在目标A 的正上方飞行员测得目标B 的俯角为30°∴∠A=∠CPB=∵CP ∥AB ∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP ∥AB ,∴∠B=∠CPB=30,∴APB ∠=90︒-∠B=60︒,故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B 的俯角为30°得到∠B=30是解题的关键.16.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.17.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC 解析:32【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC ,∴S △ABD =S △ADC =12×6=3(cm 2), ∵AE=DE ,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.19.15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数,再由补角的定义得出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半别以BCAC为底写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据进行计算即可解答题目【详解】S△ABC=BC·AD=AC·解析:9 2【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半,别以BC、AC为底,写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据,进行计算即可解答题目.【详解】S△ABC=12BC·AD=12AC·BE,将AD=3cm,BC=6cm,AC=4cm代入,得:11364 22BE ⨯⨯=⨯92BE=cm故答案为:9 2【点睛】本题考查三角形等面积法求高,通过三角形面积建立等量关系是解题的关键.三、解答题21.(1)见解析图;(2)见解析图;(3)见解析图【分析】(1)根据三角形中线的性质可知,当CD为△ABC在AB边上的中线时,可将其面积平分,即找到AB的中点,连接AE即可;(2)可按照△BCE与△ABC都以BC为底边进行分析,当都以BC为底边时,△ABC 的高为4,从而使得△BCE的高为1即可;(3)延续(2)的解题思路,都以BC为底边,要使得构成的三角形的面积是△ABC的1 8,则让构成的三角形的高为12即可,则在BC下方12个单位处作平行于BC的直线即为所求.【详解】如图所示:(1)D在格点上,也为AB的中点,故CD即为所求;(2)当点E在直线m上,且三角形内部时,均满足题意,如图△BCE,此时答案不唯一,符合要求即可;(3)如图,直线l即为所求.【点睛】本题主要考查作图-应用与设计作图,充分理解三角形中线的性质,以及灵活运用底相等时,面积之比等于高之比进行图形构造是解题关键.22.(1)<;(2)>;(3)>【分析】(1)根据三角形的三边关系解答;(2)根据三角形的三边关系解答;(3)根据三角形的外角性质解答.【详解】(1)在△ABC中,AB<AC+BC,故答案为:<;(2)在△ACD中,AD+AC>CD,,∵AD AC∴2AD>CD,故答案为:>;(3)∵∠BDC是△ACD的外角,∴∠BDC>∠A,故答案为:>.【点睛】此题考查三角形的三边关系:两边之和大于第三边,三角形的外角性质三角形的外角大于每一个与它不相邻的内角.23.7【分析】先根据外角与内角的比为2:5,求出每个外角度数,再依据外角和360°求边数n.【详解】解:因为多边形的每一个外角与内角之和为180°,所以每个外角度数为180°2 7⨯=(3607)°.又n边形每个内角度数相等,则每个外角度数也相等,根据多边形外角和360°,可得n=3603607÷=7.答:这个多边形的边数n是7.【点睛】本题主要考查多边形的内角和外角关系以及多边形外角和,运用外角计算边数是这一类题的通用方法.24.2cm.【分析】先根据中线的定义得出MA=MC,再求出两三角形的周长差即可.【详解】解:∵BM是△ABC的中线,∴MA=MC,∴△ABM的周长﹣△BCM的周长=AB+BM+MA﹣BC﹣CM﹣BM=AB﹣BC=5﹣3=2(cm).答:△ABM与△BCM的周长是差是2cm.【点睛】本题考查的是三角形的中线,熟知三角形中线的定义是解答此题的关键.25.(1)证明见解析;(2)110°【分析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,在△PBC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.26.(1)十二边形;(2)五边形【分析】(1)n边形的内角和可以表示成(n−2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数;(2)根据多边形外角的性质进行计算即可.【详解】解:(1)设这个多边形是n边形,根据题意得:2180(10)80n⨯︒=︒﹣,解得:12n=.故这个多边形是十二边形;(2)18010872︒-︒=︒,多边形的边数是:360725÷=.则这个多边形是五边形.故这个多边形的边数为5.【点睛】此题考查了多边形的内角和定理和多边形外角和,注意多边形的内角和为:(n−2)×180°.。

单元测试卷 第1章 直角三角形(基础卷)

单元测试卷 第1章 直角三角形(基础卷)

单元测试卷第1章直角三角形(基础卷)总分数 100分时长:90分钟题型单选题填空题简答题题量10 8 5总分30 24 46一、选择题(共10题 ,总计30分)1.(3分)如图所示,∠C=90°,∠D=90°,B为CD上一点,且AB⊥BE,则图中相等的锐角有()A. 2对B. 3对C. 4对D. 1对2.(3分)如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论中错误的是()A. PC=PDB. OD=OCC. ∠DPO=∠CPOD. PC=OC3.(3分)如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M所表示的实数为()A. 2B.C.D.4.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为()A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km5.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 14C. 7D. 7或256.(3分)下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个7.(3分)如图,若BE⊥CD,BE=DE,BC=DA,则∠CFD()A. 大于90°B. 等于90°C. 小于90°D. 不确定8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D. 39.(3分)如图,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定10.(3分)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S2>S3B. S1+S2=S3C. S1+S2<S3D. 无法确定二、填空题(共8题 ,总计24分)11.(3分)如图所示,已知△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AB、AC于点E、D,若AC=12 cm,则AD=____1____cm.12.(3分)将一根长为15 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是____1____.13.(3分)在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=____1____.14.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____1____.15.(3分)如图,点M、A、N在一条直线上,△ABC为等腰三角形,AB=AC,BM⊥MN,CN⊥MN,垂足分别为M、N,且BM=AN,则MN与BM、CN之间的数量关系为____1____.16.(3分)如图,已知△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,CE和BD交于点O,AO的延长线交BC于点F,则图中全等三角形的对数是____1____.17.(3分)如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△ABO:S△BCO:S△CAO=____1____.18.(3分)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于____1____.三、解答题(共5题 ,总计46分)19.(8分)已知,如图,四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,且∠A=90°,求四边形ABCD的面积.20.(10分)如下图所示,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF,求证:AB=AC.21.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求CD的长;(2)求AB的长.22.(8分)“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m处的C点,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?23.(10分)如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F.(1)求证:OE垂直平分CD;(2)若∠AOB=60°,请你探究OE、EF之间的数量关系,并证明你的结论.单元测试卷第1章直角三角形(基础卷)参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)如图所示,∠C=90°,∠D=90°,B为CD上一点,且AB⊥BE,则图中相等的锐角有()A. 2对B. 3对C. 4对D. 1对【解析】略【答案】A2.(3分)如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论中错误的是()A. PC=PDB. OD=OCC. ∠DPO=∠CPOD. PC=OC【解析】略【答案】D3.(3分)如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M所表示的实数为()A. 2B.C.D.【解析】略【答案】C4.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为()A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km【解析】略【答案】D5.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 14C. 7D. 7或25【解析】略【答案】D6.(3分)下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【解析】略【答案】D7.(3分)如图,若BE⊥CD,BE=DE,BC=DA,则∠CFD()A. 大于90°B. 等于90°C. 小于90°D. 不确定【解析】略【答案】B8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D. 3【解析】略【答案】B9.(3分)如图,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定【解析】略【答案】A10.(3分)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S2>S3B. S1+S2=S3C. S1+S2<S3D. 无法确定【解析】略【答案】B二、填空题(共8题 ,总计24分)11.(3分)如图所示,已知△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AB、AC于点E、D,若AC=12 cm,则AD=____1____cm.【解析】略【答案】412.(3分)将一根长为15 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是____1____.【解析】【答案】2 cm≤h≤3 cm13.(3分)在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=____1____.【解析】【答案】414.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____1____.【解析】略【答案】215.(3分)如图,点M、A、N在一条直线上,△ABC为等腰三角形,AB=AC,BM⊥MN,CN⊥MN,垂足分别为M、N,且BM=AN,则MN与BM、CN之间的数量关系为____1____.【解析】略【答案】MN=BM+CN16.(3分)如图,已知△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,CE和BD交于点O,AO的延长线交BC于点F,则图中全等三角形的对数是____1____.【解析】【答案】7对17.(3分)如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△ABO:S△BCO:S△CAO=____1____.【解析】略【答案】6:5:318.(3分)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于____1____.【解析】略【答案】6三、解答题(共5题 ,总计46分)19.(8分)已知,如图,四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,且∠A=90°,求四边形ABCD的面积.【解析】36 cm2提示:连接BD.【答案】36 cm220.(10分)如下图所示,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF,求证:AB=AC.【解析】略【答案】证明:∵CE⊥AB,DF⊥BC,∴∠BEC=∠CFD=90°.又CD=BC,CE=DF,∴Rt△BEC≌Rt△CFD(HL),∴∠FCD=∠ABC,又∠FCD=∠ACB,∴∠ABC=∠ACB,∴AB=AC21.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求CD的长;(2)求AB的长.【解析】略【答案】(1)CD=12(2)AB=2522.(8分)“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m处的C点,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?【解析】解:由题意知AC=30 m,AB=50 m.∵AC⊥BC,∴BC2=AB2-AC2=502-302=402.∴BC=40 m.∴v=20(m/s)=72(km/h).∵72 km/h>70 km/h,∴这辆小汽车超速【答案】超速23.(10分)如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F.(1)求证:OE垂直平分CD;(2)若∠AOB=60°,请你探究OE、EF之间的数量关系,并证明你的结论.【解析】略【答案】(1)证明:∵E是∠AOB平分线上一点,EC⊥OB,ED⊥OA,∴EC=ED.在Rt△EDO和Rt△ECO中,∵DE=CE,OE为公共边,∴Rt△DEO≌Rt△CEO,∴OD=OC,∴△ODC是等腰三角形,又∵OF为∠DOC的平分线,∴OE垂直平分CD.(2)OE=4EF.证明:∵OE垂直平分CD,∴∠DFE=90°,∠AOE=30°∵ED⊥OA,∴∠ODE=∠DFO=90°,∴2DE=OE,∠DEO=60°,∴∠FDE=30°,∴2EF=DE.∴OE=4EF.。

第一章 解直角三角形单元测试卷(标准难度 含答案)

第一章 解直角三角形单元测试卷(标准难度 含答案)

浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

一、选择题1.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.13cm B.6cm C.5cm D.4cm2.已知图中的两个三角形全等,则∠α等于()A.50°B.60°C.70°D.80°3.已知如图,AB=AE,只需再加一个条件就能证明△ABC≌△AED,下列选项是所加条件,请判断哪一个不能判断△ABC≌△AED()A.∠B=∠E B.AC=AD C.∠ADE=∠ACB D.BC=DE4.如图△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为()A.45°B.40°C.35°D.25°5.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为()平方厘米A.8 B.12 C.16 D.18=,6.如图,点C,D分别在线段OA,OB上,AD与BC相交于点E,若OC OD∠=∠,则图中全等三角形的对数为()A BA .5对B .4对C .3对D .2对7.根据下列条件能唯一画出ABC 的是( )A .AB =5,BC =6,AC =11B .AB =5,BC =6,∠C =45° C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°8.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .49.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45° 10.已知三角形的三边长分别是3,8,x ,则x 的值可以是( )A .6B .5C .4D .3 11.如图,AOB ∠是一个任意角,在边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M ,N 重合,过顶点O 与角尺顶点C 的射线OC 便是AOB ∠的平分线.这样的作法所运用的原理是三角形全等的判定,该判定方法是( )A .SASB .SSSC .ASAD .AAS 12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.如图,∠A =∠B =90°,AB =100,E ,F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC 上取一点G ,使△AEG 与△BEF 全等,则AG 的长为_____.14.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.15.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.18.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是_______________________________.19.如图,已知AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC=______.20.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.三、解答题21.如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:D E ∠=∠.22.如图,在△ABC 中,∠ACB =70 °,∠B =65°,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E . (1)求证:AE =CE .(2)求证:△AEF ≌△CEB .23.如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE 的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.24.如图,在ABC 中,90ABC ∠=︒,过C 点作DC BC ⊥,垂足为C ,且AB DC =,连接BD ,交AC 于点E .(1)求证:ABC DCB △△≌;(2)若E 是AC 的中点,求证2AC BE =.25.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .26.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用三角形的三边关系即可求解.【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<,故选:B .【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.2.C解析:C【分析】利用全等三角形的性质及三角形内角和可求得答案.【详解】解:如图,∵两三角形全等,∴∠2=60°,∠1=52°,∴∠α=180°-50°-60°=70°,故选:C.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.3.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.4.A解析:A【解析】∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.5.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 6.B解析:B【分析】由条件可证△AOD ≌△BOC ,可得OA=OB ,则可证明△ACE ≌△BDE ,可得AE=BE ,则可证明△AOE ≌△BOE ,可得∠COE=∠DOE ,可证△COE ≌△DOE ,可求得答案.【详解】解:在△AOD 和△BOC 中OC=OD∠AOD=∠BOCA B ∠=∠∴△AOD ≌△BOC(SAS)∴OA=OB∵OC=OD ,OA=OB,∴AC=BD ,在△ACE 和△BDE 中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE ≌△BDE(AAS),∴AE=BE∴AE=BE ,在△AOE 和△BOE 中OA=OB∠A=∠BAE=BE∴△AOE ≌△BOE(SAS),∴∠COE=∠DOE ,在△COE 和△DOE 中OC=OD∠COE=∠DOEOE=OE∴△COE ≌△DOE(SAS),故全等的三角形有4对.故选:B .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AA 和HL .7.C解析:C【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【详解】解:A :AC 与 BC 两边之和不大于第三边,所以不能作出三角形;B :∠C 不是 AB ,BC 的夹角,故不能唯一画出△ABC ;C :AB=5,AC=4,∠C=90°,所以BC=3,故能唯一画出△ABC ;D :∠C 并不是 AB ,AC 的夹角,故可画出多个三角形;故选: C .【点睛】本题考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.9.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 10.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x ,∴8-3<x <8+3,即5<x <11,故选:A .【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 11.B解析:B【分析】根据作图过程可得OM=ON ,MC=NC ,再利用SSS 可判定△MCO ≌△NCO .【详解】解:∵在△MCO 和△NCO 中MO NO CO CO MC NC ⎧⎪⎨⎪⎩===,∴△MCO ≌△NCO (SSS ),故选:B .【点睛】此题主要考查了基本作图,以及全等三角形的判定,关键是掌握判定三角形全等的方法. 12.A解析:A【分析】利用SSS 可证得△OCD ≌△O′C′D′,那么∠A′O′B′=∠AOB .【详解】解:易得OC=O 'C',OD=O′D',CD=C′D',∴△OCD ≌△O′C′D′,∴∠A′O′B′=∠AOB ,所以利用的条件为SSS ,故选:A .【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.40或75【分析】设BE=2t 则BF=3t 使△AEG 与△BEF 全等由∠A =∠B =90°可知分两种情况:情况一:当BE=AGBF=AE 时列方程解得t 可得AG ;情况二:当BE=AEBF=AG 时列方程解得解析:40或75.【分析】设BE=2t,则BF=3t,,使△AEG 与△BEF 全等,由∠A =∠B =90°可知,分两种情况:情况一:当 BE = AG ,BF = AE 时,列方程解得t ,可得 AG;情况二:当 BE = AE ,BF = AG时,列方程解得 t ,可得AG.【详解】设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=100,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=100,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.14.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.15.55°【分析】由∠AFD=145°可求得∠CFD=35°证明Rt△BDE≌△Rt△CFD根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.1或7【分析】分两种情况进行讨论根据题意得出BP=2t=2或AP=16-2t=2即可求得结果【详解】因为AB=CD若∠ABP=∠DCE=90°BP=CE=2根据SAS 证得△ABP≌△DCE由题意得:解析:1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.18.③两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角得到原来三角形的边角根据三角形全等的判定方法即可求解【详解】第一块和第二块只保留了原三角形的一个角和部分边根据这两块中的任一解析:③ 两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为③;两个角及它们的夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,解题的关键是要认真观察图形,根据已知选择判定方法.19.60°【分析】由AD∥BC∠B=30°根据平行线的性质可得∠ADB=30°又由DB平分∠ADE可求得∠ADE的度数继而求得答案【详解】∵AD ∥BC ∠B=30°∴∠ADB=∠B=30°∵DB 平分∠AD解析:60°【分析】由AD ∥BC ,∠B=30°,根据平行线的性质,可得∠ADB=30°,又由DB 平分∠ADE ,可求得∠ADE 的度数,继而求得答案.【详解】∵AD ∥BC ,∠B=30°,∴∠ADB=∠B=30°,∵DB 平分∠ADE ,∴∠ADE=2∠ADB=60°,∵AD ∥BC ,∴∠DEC=∠ADE=60°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.20.180°【详解】解:∵AB ∥CD ∴∠1=∠EFD ∵∠2+∠EFC=∠3∠EFD=180°-∠EFC ∴∠1+∠3—∠2=180°故答案为:180°解析:180°【详解】解:∵AB ∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°三、解答题21.见解析【分析】直接利用SAS 证明ADC AEB △≌△,再根据全等三角形的性质即可求解;【详解】证明:∵BAD CAE ∠=∠∴BAD BAC CAE BAC ∠+∠=∠+∠即CAD BAE ∠=∠∴在ADC 与AEB △中AD AE CAD BAE AC AB =⎧⎪∠=∠⎨⎪=⎩∴()ADC AEB SAS ≌△△∴D E ∠=∠【点睛】本题考查了全等三角形的证明以及全等三角形的性质,正确掌握知识点是解题的关键; 22.(1)见解析;(2)见解析【分析】(1)根据已知条件得到∠EAC =45 °,再根据等腰三角形的性质和垂直即可得解; (2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,根据已知条件证明即可;【详解】(1)∠ACB =70 °,∠B =65°,得∠EAC =45 °,又CE ⊥AB ,得∠ECA =45 °,所以AE =CE ;(2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,在△AEF 和△CEB 中,AEC BEC AE ECBAD ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩, 所以△AEF ≌△CEB .【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质分析证明是解题的关键.23.(1)见详解;(2)BD=CE ,BD ⊥CE ;(3)902α︒-【分析】(1)根据三角形全等的证明方法SAS 证明两三角形全等即可;(2)由(1)△AEC ≌△ADB 可知CE=BD 且CE ⊥BD ;利用角度的等量代换证明即可; (3)过A 分别做AM ⊥CE ,AN ⊥BD ,易知AF 平分∠DFC ,进而可知∠CFA【详解】(1)∵∠CAB=∠EAD∴∠CAB+∠BAE=∠EAD+∠BAE ,∴ ∠CAE=∠BAD ,∵AB=AC ,AE=AD在△AEC 和△ADB 中AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠= ∴ △AEC ≌△ADB (SAS )(2)CE=BD 且CE ⊥BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC ≌△ADB ,∴ CE=BD , ∠ACE=∠ABD ,∵∠BOF=∠AOC ,∠α=90°,∴ ∠BFO=∠CAB=∠α=90°,∴ CE ⊥BD .(3)过A 分别做AM ⊥CE ,AN ⊥BD由(1)知△AEC ≌△ADB ,∴两个三角形面积相等故AM·CE=AN·BD ∴AM=AN∴AF 平分∠DFC由(2)可知∠BFC=∠BAC=α∴∠DFC=180°-α∴∠CFA=12∠DFC=902α︒-【点睛】本题考查了全等三角形的证明,以及全等三角形性质的应用,正确掌握全等三角形的性质是解题的关键;24.(1)证明见详解;(2)证明见详解.【分析】(1)由DC BC ⊥,可得DCB=90ABC ∠=∠︒,由AB DC =,BC=CB ,可证△ABC ≌△DCB (SAS );(2)由(1)知△ABC ≌△DCB ,可得AC=DB ,由DC BC ⊥,90ABC ∠=︒,可得CD ∥AB ,由平行线性质可得∠D=∠EBA ,由E 是AC 的中点,可得CE=AE ,可知△CED ≌△AEB (AAS ),DE=BE=11BD=AC 22即可. 【详解】证明:(1)∵DC BC ⊥,∴∠DCB=90°,∴DCB=90ABC ∠=∠︒,∵AB DC =,BC=CB ,∴△ABC ≌△DCB (SAS );(2)由(1)知△ABC ≌△DCB ,∴AC=DB ,∵DC BC ⊥,90ABC ∠=︒,∴CD ∥AB ,∴∠D=∠EBA ,∵E 是AC 的中点,∴CE=AE ,∵∠CED=∠AEB ,∴△CED ≌△AEB (AAS ), ∴DE=BE=11BD=AC 22, ∴2AC BE =.【点睛】 本题考查三角形全等的判定与性质,掌握全等的证明方法,关键是仔细分析图形找出三角形全等具备的条件.25.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a , 故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.26.(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>,∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.。

西师大版数学四年级下册第四单元《三角形》单元测试卷 (1)

西师大版数学四年级下册第四单元《三角形》单元测试卷 (1)

四年级下册数学试题-第四单元三角形测试卷-西师大版(含答案)一、选择题(共5题,共10分)1. 一个三角形两边分别是12厘米和6厘米,第三边可能是()厘米。

A. 3B. 7C. 192. 在一个钝角三角形中,有一个钝角和两个锐角,其中两个锐角的和比90°( )。

A. 大B. 小C. 相等3. 有一个角是钝角的三角形,一定是()。

A. 直角三角形B. 钝角三角形C. 锐角三角形4. 直角三角形也可以是().A. 等腰三角形B. 等边三角形C. 钝角三角形5. 3根小棒首尾相接不能围成一个三角形的一组是( ).A. 5cm,5cm,5cmB. 5cm,4cm,3cmC. 5cm,7cm,11cmD. 2cm,6cm,3cm二、判断题(共5题,共10分)6. 任意三条线段都可以围成三角形.()7. 由三条线段组成的图形叫作三角形。

()8. 在一个三角形中,已知两个内角分别是55°和33°,这个三角形一定是锐角三角形。

()9. 用三根分别长4cm、6cm和9cm的小棒能围成一个三角形。

()10. 等边三角形的每一个内角都是锐角。

()三、填空题(共5题,共10分)11. 学生用的三角板是()三角形,最大的一个角的度数是()。

12. 一个大三角形剪成两个小三角形,每个小三角形的内角和是()度。

13. 如图,∠B=______,已知∠A=55°,则∠C=______。

14. 一个房顶的形状是等腰三角形,已知一个底角30°,它的顶角度数是________度,它还是一个________三角形。

15. 某同学把一块三角形的玻璃打碎成三小块,现在他要到玻璃店去配一块形状、大小完全一样的玻璃,那么最省事的办法是带第()块去。

这是因为___________________________________ 。

四、计算题(共2题,共16分)16. 计算下面图形中角的度数。

∠1=________;∠2=________;∠3=________17. 计算下面图形中角的度数.∠1=________;∠2=________;∠3=________18. 求下面各图中∠1的度数。

三角形的初步认识单元测试卷(一)及答案

三角形的初步认识单元测试卷(一)及答案

CABD第6题21AFED CB第一章 三角形的初步认识能力提升测试卷(一)一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B=21∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 2.如图,∠BAC=90°,AD ⊥BC ,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 3.下列说法错误的是( )A. 三角形三条中线交于三角形内一点;B. 三角形三条角平分线交于三角形内一点C. 三角形三条高交于三角形内一点;D. 三角形的中线、角平分线、高都是线段 4.如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有( ) A. 1对 B. 2对 C. 3对 D. 4对5.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B ,∠B=2∠DAE ,那么∠ACB 为( )A. 80°B. 72°C. 48°D. 36°6.如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A. 一处B. 两处C. 三处D. 四处 7. 如图,∠1=∠2,∠C=∠B ,结论中不正确的是( )A. △DAB ≌△DACB. △DEA ≌△DFAC. CD=DED. ∠AED=∠AFD8. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( ) A. 180° B.360° C.540° D.720°第4题第5题 ADEABCDNM第7题9.直线L ⊥线段AB 于点O ,且OA=OB ,点C 为直线L 上一点,且有CA=8cm ,则CB 的长度为( )A 、4cmB 、8cmC 、16cmD 、无法求出10.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件, 不能说明ΔABD ≌ΔACE 的是( )A 、∠B=∠CB 、AD=AEC 、∠BDC=∠CEBD 、BD=CE 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11. △ABC 中,AB=9,BC=2,周长是偶数,则AC= 。

人教版数学八年级上学期《三角形》单元测试(含答案)

人教版数学八年级上学期《三角形》单元测试(含答案)
人教版八年级上册《三角形》单元测试卷
考试时间:90分钟满分:100分
一、选择题
1.已知△A B C中,A B=6,B C=4,那么边A C的长可能是下列哪个值()
A.11B.5C.2D.1
2.在同一平面内,线段A B=7,B C=3,则A C长为( )
A A C=10B.A C=10或4C. 4<A C<10D. 4≤A C≤10
[详解]解:∵∠A=70°,
∴∠A DE+∠AED=180°-70°=110°,
∵△A B C沿着DE折叠压平,A与A′重合,
∴∠A′DE=∠A DE,∠A′ED=∠AED,
∴∠1+∠2=180°-(∠A′ED+∠AED)+180°-(∠A′DE+∠A DE)=360°-2×110°=140°.
故选:B.
拓展研究:
(2)如图③,∠C BO= ∠D B C,∠B CO= ∠EC B,∠A=α,请猜想∠BOC=_____(用α表示),并说明理由.
类比研究:
(3)BO、CO分别是△A B C的外角∠D B C、∠EC B的n等分线,它们交于点O,∠C BO= ∠D B C,∠B CO= ∠EC B,∠A=α,请猜想∠BOC=______.
已知条件即可求出∠A的度数.
考点:三角形内角和定理.
11.已知三角形的两边长是2Cm,3Cm,则该三角形的周长l的取值范围是( )
A.1<l<5B.1<l<6
C.5<l<9D.6<l<10
[答案]D
[解析]
试题分析:已知三角形 两边长是2Cm,3Cm,则第三条边范围是1<x<5,所以三角形的周长的取值范围是6<C<10.故选D.
C.由三角形的内角和定理与对顶角相等,∠1+∠3+∠6﹦180°成立,故本选项错误;

2019-2020人教版八年级数学上册第12章全等三角形单元测试卷(1)解析版

2019-2020人教版八年级数学上册第12章全等三角形单元测试卷(1)解析版

人教新版初中数学八年级上学期《第12章全等三角形》2019年单元测试卷(1)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.(4分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个3.(4分)用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS4.(4分)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.(4分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个6.(4分)如图,一种测量工具,点O是两根钢条AC、BD中点,并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等,其中△OAB≌△OCD的依据是()A.SSS B.ASA C.SAS D.AAS7.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD⊥BC于D,BF平分∠ABC交AC于F,AD 于E,则线段AE的长为()A.3B.C.1.8D.48.(4分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下七个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥△PCQ是等边三角形;⑦点C在∠AOE的平分线上,其中正确的有()A.3个B.4个C.5个D.6个9.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,连CD,下列结论:①AB﹣AC=CE;②∠CDB=135°;③S△ACE=2S△CDB;④AB=3CD,其中正确的有()A.4个B.3个C.2个D.1个10.(4分)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,DE⊥AB交AC于点E,DE=CE=,则AB 的长为()A.3B.3C.6D.6二.填空题(共6小题,满分24分,每小题4分)11.(4分)如图所示,点A、B、C、D在同一条直线上,△ACF≌△DBE,AD=10cm,BC=6cm,则AB的长为cm.12.(4分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.13.(4分)如图,在△ABC中,射线AD交BC于点D,BE⊥AD于E,CF⊥AD于F,请补充一个条件,使△BED ≌△CFD,你补充的条件是(填出一个即可).14.(4分)如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D 到AB的距离为.15.(4分)如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.16.(4分)如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为.(填写序号)三.解答题(共8小题,满分76分)17.(8分)已知,如图,△ABC≌△DEF,求证:AC∥DF.18.(8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°(1)求证:BD⊥CD;(2)若BD=6,CD=2,求四边形ABCD的面积.19.(8分)如图,一条输电线路需跨越一个池塘,池塘两侧A,B处各立有一根电线杆,但利用现有皮尺无法直接测量出A,B的距离,请你根据所学三角形全等的知识,设计一个方案,测出A,B的距离(要求画出图形,写出测量方案和理由)20.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.(8分)如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.22.(10分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.23.(12分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.24.(14分)如图,已知AE平分∠BAC,ED垂直平分BC,EF⊥AC,EG⊥AB,垂足分别是点F、G.求证:(1)BG=CF;(2)AB=AF+CF.人教新版初中数学八年级上学期《第12章全等三角形》2019年单元测试卷(1)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.3.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.4.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.5.【解答】解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EP A.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.故选:C.6.【解答】解:∵O是AC、BD的中点,∴AO=CO,BO=DO,在△OAB和△OCD中,∴△OAB≌△OCD(SAS),故选:C.7.【解答】解:如图作EH⊥AB于H.在Rt△ABC中,∵AB=6,BC=10,∴AC==8,∵AD⊥BC,∴AD==,∴BD==,∵∠EBH=∠EBD,∠EHB=∠EDB,BE=BE,∴△EBH≌△EBD(AAS),∴BH=BD=,DE=HE,设AE=x,则DE=EH=﹣x,在Rt△AEH中,∵AE2=AH2+EH2,∴x2=()2+(﹣x)2,∴x=3,∴AE=3,故选:A.8.【解答】解:如图1如示:∵△ABC和△CDE是正三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,又∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∴结论①正确;∵△ACD≌△BCE,∴∠CAP=∠CBD,又∵∠ACB+∠BCD+∠DCE=180°,∴∠BCD=60°,在△ACP和△BCQ中,∴,∴△ACP≌△BCQ(ASA),∴AP=BQ,PC=QC,∴△PCQ是等边三角形,∴∠CPQ=∠CQP=60°,∴∠CPQ=∠ACB=60°,∴PQ∥AE,∴结论②、③、⑥正确;∵△ACD≌△BCE,∴∠ADC=∠BCE,又∵∠ADC+∠DQO+∠DOQ=180°,∠QCE+∠CQE+∠QEC=180°,∠DQO=∠CQE,∴∠DOQ=∠QCE=60°,又∵∠DOQ=∠AOB,∴∠AOB=60°,∴结论⑤正确;若DE=DP,∵DC=DE,∴DP=DC,∴∠PCD=∠DPC,又∵∠PCD=60°,∴∠DPC=60°与△PCQ是等边三形相矛盾,假设不成立,∴结论④错误;过点C分别作CM⊥AD,CN⊥BE于点M、N两点,如图2所示:∵CM⊥AD,CN⊥BE,∴∠AMC=∠BNC=90°,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴CM=CN,又∵OC在∠AOE的内部,∴点C在∠AOE的平分线上,∴结论⑦正确;综合所述共有6个结论正确.故选:D.9.【解答】解:①过点E作EH⊥AB于H,如图1,∵∠ABC=45°,∴△BHE是等腰直角三角形,∴EH=BH,∵AE平分∠CAB,∴EH=CE,∴CE=BH,在△ACE和△AHE中,∵,∴△ACE≌△AHE(AAS),∴AH=AC,∴AB﹣AC=AB﹣AH=BH=CE,故①正确;②解法一:作∠ACN=∠BCD,交AD于N,∴∠ACN+∠NCE=∠BCD+∠NCE=90°,∵∠ACE=∠EDB=90°,∠AEC=∠BED,∴∠CAN=∠DBC,在△ACN和△BCD中,∵,∴△ACN≌△BCD(ASA),∴CN=CD,∴∠ADC=45°,∴∠BDC=45°+90°=135°;解法二:∵∠ACB=90°,BD⊥AE于D,∴∠ACB=∠ADB=90°,∴点A,B,D,C在以AB为直径的圆上,∴∠ADC=∠ABC=45°,∴∠BDC=∠ADB+∠ADC=90°+45°=135°解法三:如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,∴∠DCB=∠DBC,∵∠GAD+∠G=∠DBC+∠G=90°,∴∠GAD=∠DBC=∠DCB=∠EAB,△CED和△AEB中,∵∠CED=∠AEB,∴∠ADC=∠ABC=45°,∴∠CDB=45°+90°=135°;故②正确;③如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,S△BCD=S△CDG,∴∠DBC=∠DCB=22.5°,∴∠CBG=∠CAE=22.5°,∵AC=BC,∠ACE=∠BCG,∴△ACE≌△BCG,∴S△ACE=S△BCG=2S△BDC,故③正确;④∵AB=AG=AC+CG,∵BG=2CD>AC,CD>CG,∴AB≠3CD,故④错误,故选:B.10.【解答】解:连接BE,∵D是AB的中点,∴BD=AD=AB∵∠C=∠BDE=90°,在Rt△BCE和Rt△BDE中,∵,∴△BCD≌△BDE,∴BC=BD=AB.∴∠A=30°.∴tan A=即=,∴AD=3,∴AB=2AD=6.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵△ACF≌△DBE,∴AC=BD,∴AB=CD,∵AD=10cm,BC=6cm,∴AB+BC+CD=10cm,∴2AB=4cm,∴AB=2cm,故答案为:212.【解答】解:由题意得:AB=DB,AC=ED,∠A=∠D=90°,∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠1=∠ACB,∵∠ACB+∠2=180°,∴∠1+∠2=180°,故答案为:180°.13.【解答】解:可以添加条件:BD=DC.理由:∵BD=CD;又∵BE⊥AD,CF⊥AD,∴∠E=∠CFD=90°;∴在△BED和△CFD中,,∴△BED≌△CFD(AAS).故答案是:答案不唯一,如BD=DC.14.【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.15.【解答】解:在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE=20米.故答案为:20.16.【解答】解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,∴∠PBC+∠PCB=(180°﹣∠BAC)=(180°﹣60°)=60°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,①正确;∵∠BPC=120°,∴∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,∵BE、CD分别是∠ABC与∠ACB的角平分线,∴AP是∠BAC的平分线,②正确;∴PF=PG=PH,∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD与△PGE中,,∴△PFD≌△PGE(ASA),∴PD=PE,④正确;在Rt△BHP与Rt△BFP中,,∴Rt△BHP≌Rt△BFP(HL),同理,Rt△CHP≌Rt△CGP,∴BH=BD+DF,CH=CE﹣GE,两式相加得,BH+CH=BD+DF+CE﹣GE,∵DF=EG,∴BC=BD+CE,⑤正确;没有条件得出AD=AE,③不正确;故答案为:①②④⑤.三.解答题(共8小题,满分76分)17.【解答】证明:∵△ABC≌△DEF,∴∠ACB=∠DFE,∴AC∥DF.18.【解答】解:(1)过A作AE⊥AD,交DB的延长线于E,∴∠EAD=90°,∵∠ADB=45°,∴∠AED=45°∴△ADE是等腰直角三角形,∴AE=AD,∵∠EAD=∠BAC=90°,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠DAC,在△AEB与△ADC中,∴△AEB≌△ADC(SAS),∴∠E=∠ADC=45°,∴∠BDC=∠BDA+∠ADC=45°+45°=90°,∴BD⊥CD.(2)由(1)可知,四边形ABCD的面积等于△AED的面积,S△AED=DE2=16.19.【解答】解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,在△PCQ和△BCA中,∴△PCQ≌△BCA(SAS),∴AB=PQ.20.【解答】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.【解答】解:如图所示:.22.【解答】证明:过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.23.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.24.【解答】证明:(1)连接CE、BE,∵ED垂直平分BC,∴EC=EB,∵AE平分∠CAB,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△CFE和Rt△BGE中,,∴Rt△CFE≌Rt△BGE,∴BG=CF;(2)∵AE平分∠BAC,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△AGE和Rt△AFE中,,∴Rt△AGE≌Rt△AFE,∴AG=AF,∵AB=AG+BG,∴AB=AF+CF.。

(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试卷(有答案解析)(1)

(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试卷(有答案解析)(1)

一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点E 、F 分别在BC 、AC 上,点C 沿EF 折叠后与点O 重合,则∠BEO 的度数是( )A .26°B .32°C .52°D .58°3.如图,在△ABC 中,AC 的垂直平分线交AB 于点D ,CD 平分∠ACB ,若∠A =50°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于点D .若∠A =30°,AE =10,则CE 的长为( )A .5B .4C .3D .25.下面说法中正确的是( )A .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线B .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线段C .三角形的角平分线不是射线D .等腰三角形的对称轴和底边上的高线、中线以及顶角的平分线,互相重合6.下列说法错误的是( )A .有两边相等的三角形是等腰三角形B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形7.等腰三角形的一个角为40︒,则其底角的度数为( ).A .40︒B .70︒C .40︒或70︒D .50︒或70︒ 8.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC 的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE 与CD 相交于点H ,连HB ,则下列结论:①AE CD =;②120AHC ∠=︒;③HB 平分AHC ∠;④CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个9.如图所示,O 为直线AB 上一点,OC 平分∠AOE ,∠DOE =90°,则①∠AOD 与∠BOE 互为余角;②OD 平分∠COA ;③若∠BOE =56°40',则∠COE =61°40';④∠BOE =2∠COD .结论正确的个数为( )A .4B .3C .2D .110.如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于G ,交BE 于H .下列结论:①BE BCE S S =△A △;②2BAG ACF ∠=∠;③AFG AGF ∠=∠;④BH CH =.其中所有正确结论的序号是( )A .①③B .①②③C .②③④D .①②③④11.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .1212.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .(3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .3x ⎛⎫ ⎪ ⎪⎝⎭二、填空题13.如图,在Rt ABC 中,90,60ACB ABC ∠=︒∠=︒,以,,AB BC CA 为边,在AB 的同侧作等边ABE △,BCF △,ACD △,AE ,DC 交于点G ,若GCE Sa =,则“皇冠形ADGECFB ”的面积为________.14.小华的作业中有一道题:“如图,,AC BD 在AB 的同侧,1,4,4AC BD AB ===,点E 为AB 的中点.若120CED ∠=︒,求CD 的最大值.”哥哥看见了,提示他将ACE 和BDE 分别沿CE 、DE 翻折得到A CE '△和B DE ',连接A B ''.最后小华求解正确,得到CD 的最大值是__________.15.如图,在ABC 中,AB AC =,AD 是BAC ∠的角平分线,交BC 于点N ,60EBC BED ∠=∠=︒,若6BE =,2DE =,则BC =__________.16.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.17.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.18.等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是_________.19.如图,ABC 中,,120AB AC A =∠=︒,若D 是BC 的中点,DE AB ⊥,垂足是E ,则:AE BE 的值等于________.20.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.三、解答题21.如图,在ABC 中,30BAC ∠=︒,45ACB ∠=︒,//BD AC ,BD AB =,且C ,D 两点位于AB 所在直线两侧,射线AD 上的点E 满足60ABE ∠=︒.(1)AEB ∠=_____°;(2)图中与AC 相等的线段是BE ,证明此结论只需证明_____≌_______.22.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度. 23.已知:如图1,等边ABC 的边长为cm 6,点P ,Q 分别从B ,C 两点同时出发,点P 沿BC 向终C 运动,速度为1cm/s ;点Q 沿CA ,AB 向终点B 运动,速度为2cm/s .设它们运动的时间为s x .(1)当x = 时,//PQ AB ;(2)若PQ AC ⊥,求x ;(3)如图2,当点Q 在AB 上运动时,若PQ 与ABC 的高AD 交于点O ,请你补全图形,猜想OQ 与OP 是否总是相等?并说明理由.24.如图1,在ABC 中,AF ,BE 分别是BAC ∠和ABC ∠的角平分线,AF 和BE 相交于D 点.(1)求证:CD 平分ACB ∠;(2)如图2,过F 作FP AC ⊥于点P ,连接PD ,若45ACB ∠=︒,67.5PDF ∠=︒,求证:PD CP =;(3)如图3,若23180BAF ABE ∠+∠=︒,求证:BE BF AB AE -=-.25.如图,网格中每个小正方形的边长均为1,点A ,B 都在格点上,点A 的坐标为(-1,4),点B 的坐标为(-3,2),请按要求回答下列问题:(1)请你在网格中建立合适的平面直角坐标系;(2)在y轴左侧找一格点C,使△ABC 是以AB为腰的等腰直角三角形,则点C的坐标为____,△ABC的周长是;(3)在x轴上是否存在点P,使△ABP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.26.在等腰直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,点E是平面内任意一点,连接DE.(1)如图1,当点E在边BC上时,过点D作DF⊥DE交AC于点F.i)求证:CE=AF;ii)试探究线段AF,DE,BE之间满足的数量关系.(2)如图2,当点E在△BDC内部时,连接AE,CE,若DB=5,DE=32,∠AED=45°,求线段CE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.B解析:B【分析】依据线段垂直平分线的性质,即可得到∠A=∠ACD,再根据角平分线的定义,即可得出∠ACB的度数,根据三角形内角和定理,即可得到∠B的度数.【详解】∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∠A=50°,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.【点睛】本题主要考查了线段垂直平分线的性质以及三角形内角和定理,线段垂直平分线上任意一点,到线段两端点的距离相等.4.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE=5,再根据角平分线的性质求出CE=DE=5即可.【详解】解:∵DE⊥AB,∴∠ADE=90°,在Rt△ADE中,∠A=30°,AE=10,∴DE=1AE=5,2∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴CE=DE=5,故选:A.【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.C解析:C【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.据此分析判断即可.【详解】中BC边上的高线,是过顶点A向对边所引的垂线段,原说法错误,故本选解:A.ABC项不符合题意;B.当∠B或∠C是钝角时,过A不存在到线段BC的垂线,故本选项说法错误,不符合题意;C.三角形的角平分线就是三角形的内角平分线与这个内角的对边的交点与这个内角的顶点之间的线段,故本选项正确,符合题意;D.对称轴是直线,不能与线段重合,本故选项说法错误,不符合题意;故选:C.【点睛】本题主要考查了三角形的角平分线、中线以及高线,三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.6.B解析:B【分析】利用等腰三角形和等边三角形的判定解答即可.【详解】A.有两边相等的三角形是等腰三角形,所以A 选项正确;B.等腰直角三角形就是等腰三角形,故B 选项错误;C.有两个角为60°的三角形是等边三角形,正确;D.有一个角为60°的等腰三角形是等边三角形,正确.故选B .【点睛】本题考查了等腰三角形和等边三角形的判定,解题的关键是熟练掌握有关性质. 7.C解析:C【分析】结合题意,根据等腰三角形、三角形内角和的性质计算,即可得到答案.【详解】当40︒角为等腰三角形顶角时,其底角的度数为18040702; 当40︒角为等腰三角形底角时,其底角的度数为40︒;故选:C .【点睛】本题考查了等腰三角形、三角形内角和的性质;解题的关键是熟练掌握等腰三角形的性质,从而完成求解. 8.A解析:A【分析】利用等边三角形,ABD BCE 的性质,证明 ,ABE DBC ≌ 从而可判断①,由,ABE DBC ≌可得,EAB CDB ∠=∠ 再利用三角形的内角和定理可判断②,如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N 利用全等三角形的对于高相等证明,BM BN = 从而可判断③,如图,在CH 上截取,HK HE = 连接,EK 证明EHK 为等边三角形,再证明,EHB EKC ≌ 可得,HB KC = 从而可判断④.【详解】解:,ABD BCE 为等边三角形, ,60,60BA BD ABD BC BE CE CBE ∴=∠=︒==∠=︒,,,ABD DBE CBE DBE ∴∠+∠=∠+∠ 即,ABE DBC ∠=∠(),ABE DBC SAS ∴≌,AE DC ∴= 故①符合题意;,ABE DBC ≌,EAB CDB ∴∠=∠,DGH AGB ∠=∠180,180,DHG CDB DGH ABD EAB AGB ∠=︒-∠-∠∠=︒-∠-∠60DHG ABD ∴∠=∠=︒,120AHC ∴∠=︒,故②符合题意; 如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N,ABE DBC ≌,AE DC 为对应边,,BM BN ∴=HB ∴平分,AHC ∠ 故③符合题意;如图,在CH 上截取,HK HE = 连接,EK60,EHK AHD ∠=∠=︒EHK ∴为等边三角形,,60,EK EH HEK ∴=∠=︒60,60,HEK HEB FEK BEC FEK KEC ∠=︒=∠+∠∠=︒=∠+∠,HEB KEC ∴∠=∠,BE CE =(),EHB EKC SAS ∴≌,HB KC ∴=.CH CK HK BH EH ∴=+=+ 故④符合题意;综上:①②③④都符合题意,故选:.A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等边三角形的判定与性质,角平分线的判定,掌握以上知识是解题的关键.9.B解析:B【分析】由平角的定义与90DOE ∠=︒,即可求得AOD ∠与∠BOE 互为余角;又由角平分线的定义,可得22AOE COE AOC ∠=∠=∠,即可求得2BOE COD ∠=∠,若5640BOE ∠=︒',则6140COE ∠=︒'.【详解】解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠,90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠,故②不正确,④正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒,11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故③正确;∴①③④正确.故答案为:B .【点睛】此题考查了平角的定义与角平分线的定义.题目中要注意各角之间的关系,解题时要仔细识图.10.B解析:B【分析】根据中线的性质即可判断①;根据三角形内角和定理求出∠BAD =∠ACB ,再用角平分线的定义推出②;根据三角形内角和定理求出∠ABC =∠DAC ,再用外角的性质可判断③;根据等腰三角形的判定判断④.【详解】解:∵BE 是中线,∴AE =CE ,∴△ABE 的面积=△BCE 的面积,故①正确;∵AD 为高,∴∠ADB =90°,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∠ABC +∠BAD =90°,∴∠ACB =∠BAD ,∵CF 是∠ACB 的平分线,∴∠ACB =2∠ACF ,∴∠BAD =2∠ACF ,即∠BAG =2∠ACF ,故②正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.11.B解析:B【分析】+的最小就是PA+PD,当A、由作法知EF是AC的垂直平分线,可得AP=CP,线段PC PDP、D三点共线时最短,由点D是底边BC的中点,可BD=CD=6,由AB=AC,可得⊥,在Rt△ABD中,由勾股定理得:8即可.AD BC【详解】解:连结PA,由作法知EF是AC的垂直平分线,∴AP=CP,∴PC+PD=PA+PD,+的最小就是PA+PD,线段PC PD当A、P、D三点共线时最短,∵点D是底边BC的中点,∴BD=CD=11⨯,BC=12=622∵AB=AC,⊥,∴AD BC在Rt△ABD中,由勾股定理得:8=,(PC+PD)最小=(PA+PD)最小=AD=8.故选择:B.【点睛】本题考查垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,掌握垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,关键是利用垂直平分线将PC转化为PA,找到P、A、D三点共线时最短.12.A解析:A【分析】由等边三角形的性质可得AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,可证△OBC≌△ABD,可得∠BAD=∠BOC=60°,可求∠EAO=60°,即可求OE3点E坐标.【详解】解:∵△AOB,△BCD是等边三角形,∴AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,∴∠OBC=∠ABD,且OB=AB,BC=BD,∴△OBC≌△ABD(SAS),∴∠BAD=∠BOC=60°,∴∠EAO=180°−∠OAB−∠BAD=60°,在Rt△AOE中,AO=1,∠EAO=60°,∠OEA=30°,∴AE=2 AO=2,∴22321∴点E坐标(03,故选A.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.二、填空题13.13a【分析】根据等边三角形的性质得到BC=CE从而得到EG=CE设EG=x表示出相应线段的长度从而可得S△ADGS△ABES△BCF的面积最后利用皇冠ADGECF 的面积=S △ADG+S △ABE+S解析:13a【分析】根据等边三角形的性质得到BC =CE ,从而得到EG =12CE ,设EG =x ,表示出相应线段的长度,从而可得S △ADG 、S △ABE 、S △BCF 的面积,最后利用皇冠ADGECF 的面积=S △ADG +S △ABE +S △BCF 得到结果.【详解】解:∵△ABE 、△ACD 、△BCF 都是等边三角形,AC ⊥BC ,∴BC =CE ,∠ACD =∠AEB =60°,∴∠ECG =90°-∠ACD =30°,∠CGE =90°,∴EG =12CE ,设EG =x ,则CE =BC =2x ,CG x ,AE =BE =4x ,∴AC ==,∵S △GCE =12EG ·CG =12x 2=a ,∴S△ABE =12BE ·AC =12BE ·2BE =4BE 2=2,S △BCF 22BC =, ∵AG ⊥CD ,∴DG =CG ,∴S△ADG =12S △ACD =()2221124242AC x ⨯=⨯=, ∴皇冠ADGECF 的面积=S △ADG +S △ABE +S △BCF=222x ++=22x =13a故答案为:13a .【点睛】本题考查了等边三角形的性质,等腰三角形的性质,30度的直角三角形的性质,解题的关键是理解题中图形面积之间的关系.14.7【分析】根据对称的性质得到∠A′EB′=60°结合点E 是AB 中点可证明△A′EB′是等边三角形从而有CD≤CA′+A′B′+B′D=CA+AE+BD即可求出CD的最大值【详解】解:∵∠CED=12解析:7【分析】根据对称的性质得到∠A′EB′=60°,结合点E是AB中点,可证明△A′EB′是等边三角形,从而有CD≤CA′+A′B′+B′D=CA+AE+BD,即可求出CD的最大值.【详解】解:∵∠CED=120°,∴∠AEC+∠DEB=60°,∴∠CEA′+∠DEB′=60°,∴∠A′EB′=60°,∵点E是AB中点,AE=A′E,BE=B′E,∴A′E=B′E,∴△A′EB′是等边三角形,∵CD≤CA′+A′B′+B′D=CA+AE+BD=1+2+4=7,∴CD的最大值为7,故答案为:7.【点睛】本题考查了翻折的性质,等边三角形的判定和性质,熟练掌握折叠的性质是解题的关键.15.8【分析】作出辅助线后根据等腰三角形的性质得出BE=6DE=2进而得出△BEM为等边三角形△EFD为等边三角形从而得出BN的长进而求出答案【详解】如图所示:延长ED交BC于M延长AD交BC于N∵AB解析:8【分析】作出辅助线后根据等腰三角形的性质得出BE=6, DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案【详解】如图所示:延长ED交BC于M,延长AD交BC于N ,∵ AB=AC,AF平分∠BAC,∴AN⊥BC,BN=CN;∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6,DE=2,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∠NDM=30°,∴NM=2,∴ BN=4,∴BC=2BN=8,故答案为:8.【点睛】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN 的长是解决问题的关键;16.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+, 整理得:2336CB =, ∴23CB =, 又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.17.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥ 116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.18.60°或30°【分析】由于此高不能确定是在三角形的内部还是在三角形的外部所以要分锐角三角形和钝角三角形两种情况求解【详解】解:分两种情况:①在左图中AB=ACBD ⊥AC ∠ABD=30°∴∠A=60°解析:60°或30°【分析】由于此高不能确定是在三角形的内部,还是在三角形的外部,所以要分锐角三角形和钝角三角形两种情况求解.【详解】解:分两种情况:①在左图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=180602A ︒-∠=︒; ②在右图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故答案为:30°或60°.【点睛】 本题考查了等腰三角形的定义、直角三角形两锐角互余.由于题中没有图,要根据已知画出图形并注意要分类讨论.19.【分析】已知AB=AC ∠BAC=120°根据等腰三角形性质及内角和定理可推出∠B=∠C=30°连接AD 可求得∠ADE=∠B=30°再由直角三角形性质即可求解【详解】解:如图连接AD ∵AB=AC ∠BA解析:1:3【分析】已知AB=AC ,∠BAC=120°,根据等腰三角形性质及内角和定理可推出∠B=∠C=30°,连接AD ,可求得∠ADE=∠B=30°,再由直角三角形性质即可求解.【详解】解:如图,连接AD ,∵AB=AC ,∠BAC=120°,D 是BC 的中点,∴∠B=∠C=30°,∠ADB=90°.∵DE ⊥AB ,∴∠BED=∠ADB =90°.∴∠B+∠BDE=∠ADE+∠BDE=90°.∴∠ADE=∠B=30°,设AE=x ,则AD=2x ,AB=2AD=4x ,∴EB=AB-AE=3x ,∴::31:3AE BE x x ==.故答案为:1:3.【点睛】本题考查了等腰三角形与直角三角形的性质,掌握等腰三角形与含30°角的直角三角形的性质并准确作出辅助线是解答本题的关键.20.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.三、解答题21.(1)45°;(2)ABC ,BDE .【分析】(1)由平行线和等腰三角形的性质得出∠BDA =∠BAD =75°,求出∠DBE =∠ABE -∠ABD =30°,由三角形的外角性质即可得出答案;(2)证出△ABC ≌△BDE (AAS ),得出AC =BE ,即可得出答案.【详解】解:(1)∵BD ∥AC ,∴∠ABD =∠BAC =30°,∵BD =AB ,∴∠BDA =∠BAD =12(180°-30°)=75°, ∵∠ABE =60°,∴∠DBE =∠ABE -∠ABD =30°,∴∠AEB =∠ADB -∠DBE =75°-30°=45°;故答案为:45°;(2)在△ABC 和△BDE 中, BAC DBE ACB BED AB BD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△BDE (AAS ),∴AC =BE ;故答案为:ABC ,BDE .【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形的外角性质等知识;熟练掌握全等三角形的判定和等腰三角形的性质是解题的关键. 22.(1)画图见解析;(2)△ABC 的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP=BP,从而得出AC+BC的值,再根据AB=8,即可求得△ABC的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ为所求;;(2)如图所示:∵AB的垂直平分线交AC于点P,∴PA=PB,∵△PBC的周长为13,∴PB+PC+BC=13,∴PA+PC+BC=13,即AC+BC=13,∴△ABC的周长=AB+AC+BC=8+13=21;(3)∵AC>BC,∴分两种情况,①AC=AB=8时,BC=21-AC-BC=21-8-8=5;②BC=AB=8时,AC=21-AB-BC=21-8-8=5,∵AC>BC,∴不合题意舍去;综上所述,若△ABC是等腰三角形,△ABC的三条边的长度为AB=8,AC=8,BC=5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.23.(1)2x =;(2)65x =;(3)相等,画图和理由见解析 【分析】(1)当PQ //AB 时,△PQC 为等边三角形,根据PC=CQ 列出方程即可解出x 的值; (2)当PQ ⊥AC 时,可得1=2QC PC ,列出方程解答即可; (3)作QH ⊥AD 于点H ,计算得出QH=DP ,从而证明△OQH ≌△OPD (AAS )即可.【详解】解:(1)∵当PQ //AB 时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC 为等边三角形∴PC=CQ ,∵PC=6-x ,CQ=2x ,由6-x=2x解得:2x =,∴当2x =时,PQ //AB ;(2)若PQ ⊥AC ,∵∠C=60°,∴∠QPC=30°, ∴1=2QC PC , 即12(6)2x x =-, 解得:65x = ∴当65x =时,PQ AC ⊥; (3)补全图形如图理由如下:作QH AD ⊥于H , ABC 等边三角形,AD BC ⊥.30QAH ∴∠=,132BD BC ==, 12QH AQ ∴=1(26)32x x =-=-, 3DP BP BD x =-=-,QH DP ∴=,在OQH △和OPD △中,QOH POD QHO PDO QH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩()OQH OPD AAS ∴△≌△,OQ OP ∴=.【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定. 24.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)过D 点分别作三边的垂线,垂足分别为G 、H 、K ,根据角平分线的定义可证得DG=DH=DK ,从而根据角平分线的判定定理可证得结论;(2)作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠,通过证明SQD TFD △≌△和QDP FDP △≌△得到22.5PDC PCD ∠=∠=︒,从而根据等角对等边判断即可;(3)延长AB 至M ,使BM BF =,连接FM ,通过证明AFC AFM △≌△得到AC AM =,再结合CE EB =即可得出结论.【详解】(1)证明:如图所示,过D 点分别作三边的垂线,垂足分别为G 、H 、K ,∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线,∴DG DH DK ==,∴CD 平分ACB ∠;(2)证明:如图,作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠. ∵CD 平分ACB ∠,∴DS DT =,∵67.5QDP FDP ∠=∠=︒,45ACB ∠=︒,∴13545180QDF ACB ∠+∠=︒+︒=︒,在四边形QDFC 中,180CQD DFC ∠+∠=︒,又∵180DFT DFC ∠+∠=︒,∴CQD DFT ∠=∠,在SQD 和TFD △中,90CQD DFT DS DTDSQ DTF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴SQD TFD △≌△,∴QD FD =,在QDP △和FDP 中QD FD QDP FDP DP DP =⎧⎪∠=∠⎨⎪=⎩∴QDP FDP △≌△,∴45QPD FPD ∠=∠=︒又∵QPD PCD PDC ∠=∠+∠,22.5PCD ∠=︒,∴22.5PDC PCD ∠=∠=︒,∴CP PD =;(3)证明:延长AB 至M ,使BM BF =,连接FM .∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线,∴22180BAF ABE C ∠+∠+∠=︒,又∵23180BAF ABE ∠+∠=︒,∴C ABE CBE ∠=∠=∠,∴CE EB =,∵BM BF =,∴BFM BMF ABE CBE C ∠=∠=∠=∠=∠,在AFC △和AFM △中,C BMF CAF BAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AFC AFM △≌△,∴AC AM =,∴AE CE AB BM +=+,∴AE BE AB BF +=+,∴BE BF AB AE -=-.【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.25.(1)图见解析;(2)(-1,0),442+;(3)P 7(,0)3-. 【分析】(1)根据AB 坐标可知,A 点向右1个单位,向下4个单位即是原点(0,0),由此即可建立平面直角坐标系;(2)由网格的特点易得点,再根据勾股定理可求AB 边长为2,进而即可得出答案, (3)作点B 关于x 轴的对称点B ′,连接AB ′,交x 轴于点P ,则点P 即所求,再利用一次函数与直线交点求法求出交点P .【详解】解:(1)平面直角坐标系如图所示;(2)如图,当在y 轴左侧点C (-1,0)时,△ABC 为等腰直角三角形,此时222222AB BC ==+=故△ABC 的周长为42222442BC AB BC ++=+=+故填:(-1,0),442+;(3)如图,作点(3,2)B -关于x 轴的对称点(3,2)B '--,连接AB ′,交x 轴于点P ,则点P 即所求,设直线AB ′的解析式为y =kx +b ,将A (−1,4),B ′(−3,−2)代入得423k b k b=-+⎧⎨-=-+⎩, 解得37k b =⎧⎨=⎩, ∴直线AB ′的解析式为y =3x +7. 将y =0代入得,73x =-, ∴0()7,3P -.【点睛】本题考查了一次函数应用,勾股定理,轴对称与线段最小值等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.(1)i )证明见解析;ii )2222DE AF BE =+,证明见解析;(2) 1.CE =【分析】(1)i )由等腰直角三角形ABC ,∠ACB =90°,,CD AB ⊥ 证明,45,CD AD DCE A =∠=∠=︒ 由,,CD AB DF DE ⊥⊥ 证明,ADF CDE ∠=∠ 可得,CDE ADF ≌ 从而可得结论;ii )如图,连接,EF 由,CDE ADF ≌,DE DF = 证明,CF BE = 222,EF DE = 结合222,EF CF CE =+ 从而可得答案;(2)过点D 作DH AE ⊥于点H ,过点D 作DG DE ⊥交AE 于点G ,根据SAS 证明CDE ADG ≅△△,进而利用全等三角形的性质和勾股定理即可得出答案.【详解】证明:(1)i ) 等腰直角三角形ABC ,∠ACB =90°,,CD AB ⊥,45,,AC BC ACD BCD A B AD BD ∴=∠=∠=︒=∠=∠=,CD AD BD ∴==,,CD AB DF DE ⊥⊥90,ADF CDF CDF CDE ∴∠+∠=︒=∠+∠,ADF CDE ∴∠=∠在DAF △与DCE 中,45CDE ADF CD ADDCE A ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩(),CDE ADF ASA ∴≌.CE AF ∴=ii )2222.DE AF BE =+理由如下:如图,连接,EF,CDE ADF ≌,DE DF ∴=,,AC BC AF CE ==,CF BE ∴=,DE DF ⊥22222,EF DE DF DE ∴=+=22222,EF CF CE BE AF =+=+2222.DE AF BE ∴=+(2)如图,过点D 作DH AE ⊥于点H ,过点D 作DG DE ⊥交AE 于点G ,90ACB AC BC CD AB ∠=︒=⊥,,,45ACD BCD A ∴∠=∠=∠=︒,∴CD=AD ,,45DG DE AED ⊥∠=︒,45DGE AED ∴∠=︒=∠,∴DG=DE ,在CDE △和ADG 中AD CD ADG CDE DG DE =⎧⎪∠=∠⎨⎪=⎩CDE ADG ∴≅△△(SAS )∴CE=AG在Rt DEG △中,DE DG ==6EG ∴=DH AE ⊥3DH GH EH ∴===在Rt ADH 中,AD=54AH ∴===1CE AG AH GH ∴==-=.【点睛】本题考查的是三角形全等的判定与性质,等腰直角三角形的性质,勾股定理的应用,利用平方根解方程,方程组思想,掌握以上知识是解的关键.。

浙教新版八年级(上)数学 第1章 三角形的初步认识 单元测试卷 (解析版)

浙教新版八年级(上)数学 第1章 三角形的初步认识 单元测试卷 (解析版)

第1章三角形的初步认识单元测试卷一、选择题(共10小题).1.(3分)三角形中,三个内角的比为1:3:6,它的三个外角的比为()A.1:3:6B.6:3:1C.9:7:4D.4:7:92.(3分)已知线段a=2cm,b=4cm,则下列长度的线段中,能与a,b组成三角形的是()A.2cm B.4cm C.6cm D.8cm3.(3分)如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等4.(3分)图中△ABC的外角是()A.∠1B.∠2C.∠3D.∠45.(3分)“有一个角是60°的三角形是等边三角形”是()A.真命题B.假命题C.公理D.定理6.(3分)在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DF B.AC=EF,BC=DFC.AB=DE,BC=EF D.∠C=∠F,BC=EF7.(3分)如图,BD=DE=EF=FC,那么()是△ABE的中线.A.AD B.AE C.AF D.以上都是8.(3分)三角形的内角和等于()A.90°B.180°C.300°D.360°9.(3分)如图所示,△ABC中,AC=5,AB=6,BC=9,AB的垂直平分线交BC于点D,则△ACD的周长是()A.11B.14C.15D.2010.(3分)三角形三条高所在直线的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部D.三角形的内部、外部或顶点二、填空题(本大题共6小题,共18分)11.(3分)已知等腰三角形的两边长分别为2、5,则三角形的周长为.12.(3分)如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=cm2.13.(3分)如图,一次数学活动课上,小明将一副三角板按图中方式叠放,则α的度数为.14.(3分)如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则∠BFC=.15.(3分)如图,△ABC中,∠A=50°,∠ABC和∠ACB的外角平分线相交于点D,则∠BDC=.16.(3分)如图是用直尺和圆规作一个角等于已知角的示意图,则判定△C1O1D1≌△COD 的依据是.三、计算题(本大题共1小题,共6分)17.(6分)如图,在△ABC中∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠DCE的度数.四、解答题(本大题共6小题,共66分)18.如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=.19.尺规作图(保留作图痕迹,不写作法):已知∠α、∠β,求作一个角,使它等于∠α﹣∠β.20.如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.21.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.22.如图,AB=AD,∠BAD=∠CAE,AC=AE,求证:BC=DE.23.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.参考答案一、选择题(本大题共10小题,共30分)1.(3分)三角形中,三个内角的比为1:3:6,它的三个外角的比为()A.1:3:6B.6:3:1C.9:7:4D.4:7:9【分析】由三角形中,三个内角的比为1:3:6,根据三角形的外角的性质,即可求得它的三个外角的比.解:∵三角形中,三个内角的比为1:3:6,∴它的三个外角的比为:(3+6):(1+6):(1+3)=9:7:4.故选:C.2.(3分)已知线段a=2cm,b=4cm,则下列长度的线段中,能与a,b组成三角形的是()A.2cm B.4cm C.6cm D.8cm【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.解:∵a=2cm,b=4cm,∴2cm<第三边<6cm∴能与a,b能组成三角形的是4cm,故选:B.3.(3分)如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等【分析】根据全等三角形的对应边、对应角相等进行判断.做题时要根据已知条件结合判定方法逐个验证.解:A两个全等三角形的最小角是对应角,所以相等;B全等三角形的对应角相等,所以它们的对应外角相等;C两个三角形全等,这两个三角形不一定是直角三角形;D两个全等三角形的最长边是对应边,所以相等.故选:C.4.(3分)图中△ABC的外角是()A.∠1B.∠2C.∠3D.∠4【分析】三角形的一边与另一边的延长线组成的角,叫做三角形的外角.解:△ABC的外角是∠3,故选:C.5.(3分)“有一个角是60°的三角形是等边三角形”是()A.真命题B.假命题C.公理D.定理【分析】根据等边三角形的判定定理判断即可.解:∵有一个角是60°的等腰三角形是等边三角形,∴“有一个角是60°的三角形是等边三角形”是假命题;故选:B.6.(3分)在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DF B.AC=EF,BC=DFC.AB=DE,BC=EF D.∠C=∠F,BC=EF【分析】针对选项提供的已知条件,结合直角三角形全等的判定方法对选项逐一验证,其中B虽是两边相等,但不是对应边对应相等,也不能判定三角形全等.解:A、由SAS能判定△ABC和△DEF全等;B、当∠A=∠D=90°时,AC与EF不是对应边,不能判定△ABC和△DEF全等;C、由HL能判定△ABC和△DEF全等;D、由AAS能判定△ABC和△DEF全等.故选:B.7.(3分)如图,BD=DE=EF=FC,那么()是△ABE的中线.A.AD B.AE C.AF D.以上都是【分析】根据三角形中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得答案.解:∵BD=DE,∴AD是△ABE的中线,故选:A.8.(3分)三角形的内角和等于()A.90°B.180°C.300°D.360°【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题解:因为三角形的内角和为180度.所以B正确.故选:B.9.(3分)如图所示,△ABC中,AC=5,AB=6,BC=9,AB的垂直平分线交BC于点D,则△ACD的周长是()A.11B.14C.15D.20【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.解:∵MN是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AD+CD+AC=BD+CD+AC=BC+AC=14,故选:B.10.(3分)三角形三条高所在直线的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部D.三角形的内部、外部或顶点【分析】根据高的概念知:不同形状的三角形的高所在直线的交点位置不同.锐角三角形的三条高都在内部,交点在其内部;直角三角形的三条高中,两条就是直角边,第三条在内部,交点是直角顶点;钝角三角形有两条在外部,一条在内部,所在直线的交点在外部.解:A、直角三角形的三条高的交点是直角顶点,不在三角形的内部,错误;B、直角三角形的三条高的交点是直角顶点,不在三角形的外部,错误;C、直角三角形的三条高的交点是直角顶点,既不在三角形的内部,又不在三角形的外部,错误;D、锐角三角形的三条高的交点在其内部;直角三角形的三条高的交点是直角顶点;钝角三角形的三条高所在直线的交点在其外部,正确.故选:D.二、填空题(本大题共6小题,共18分)11.(3分)已知等腰三角形的两边长分别为2、5,则三角形的周长为12.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故答案为:12.12.(3分)如图,AE是△ABC的中线,BF是△ABE的中线,若△ABC的面积是20cm2,则S△ABF=5cm2.【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.解:∵AE是△ABC的中线,BF是△ABE的中线,∴S△ABF=S△ABC=×20=5cm2.故答案为:513.(3分)如图,一次数学活动课上,小明将一副三角板按图中方式叠放,则α的度数为75°.【分析】根据三角形的外角的性质以及三角形内角和定理解决问题即可.解:如图,∵ABC=90°,∠CBD=60°,∴∠ABD=90°﹣60°=30°,∵∠A=45°,∴α=∠A+∠ABD=75°,故答案为75°.14.(3分)如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则∠BFC=120°.【分析】根据角平分线的定义可得出∠CBF=∠ABC、∠BCF=∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.解:∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=∠ABC,∠BCF=∠ACB,∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣(∠ABC+∠ACB)=120°.故答案为:120°.15.(3分)如图,△ABC中,∠A=50°,∠ABC和∠ACB的外角平分线相交于点D,则∠BDC=65°.【分析】根据三角形外角性质和三角形内角和定理求出∠EBC+∠FCB,根据角平分线性质求出∠DBC+∠DCB,根据三角形外角性质求出即可.解:∵∠EBC=∠A+∠ACB,∠FCB=∠A+∠ABC,∠A+∠ABC+∠ACB=180°,∠A=50°,∴∠EBC+∠FCB=∠A+∠ACB+∠A+∠ABC=180°+∠A=180°+50°=230°,∵∠ABC和∠ACB的外角平分线相交于点D,∴∠DBC=∠EBC,∠DCB=∠FCB,∴∠DBC+∠DCB==115°,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣115°=65°,故答案为:65°.16.(3分)如图是用直尺和圆规作一个角等于已知角的示意图,则判定△C1O1D1≌△COD 的依据是SSS.【分析】通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O1,作射线O1A1,以O1为圆心,OC长为半径画弧,交O1A1于点C1;③以C1为圆心,CD长为半径画弧,交前弧于点D1;④过点D1作射线O1B1.所以∠A1O1B1就是与∠AOB相等的角;在△OCD与△O1O1D1,,∴△OCD≌△C1O1D1(SSS),故答案为:SSS.三、计算题(本大题共1小题,共6分)17.(6分)如图,在△ABC中∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠DCE的度数.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD ⊥AB,DF⊥CE就可求解.解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°,∴∠CDF=90°﹣74°=16°.四、解答题(本大题共6小题,共66分)18.如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=2:3.【分析】(1)根据题意可知,作∠BDC的平分线交BC于点P即可.(2)得出△DBC是含30°的直角三角形,利用其性质解答即可.解:(1)如图所示:(2)∵PD=PC,∴∠PDC=∠C,∵DP平分∠BDC,∴∠BDP=∠PDC,∵∠BDP+∠PDC+∠C=90°,可得∠C=30°,∴∠BDP=30°,设BP=1,可得DP=2,即PC=2,所以PC:BC=2:(1+2)=2:3;故答案为:2:319.尺规作图(保留作图痕迹,不写作法):已知∠α、∠β,求作一个角,使它等于∠α﹣∠β.【分析】先作∠AOC=α,再作∠BOC=β,则△AOB为所作.解:如图,∠AOB为所作.20.如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.21.已知:如图,AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.【分析】根据SSS推出△ABD≌△CDB,根据全等三角形性质推出即可.【解答】证明:在△ABD和△CDB中,∴△ABD≌△CDB(SSS),∴∠A=∠C.22.如图,AB=AD,∠BAD=∠CAE,AC=AE,求证:BC=DE.【分析】由条件可得到∠BAC=∠DAE,从而可证明△ABC≌△ADE,可得出BD=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE(SAS),∴BC=DE.23.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.【分析】根据BE=CF,求出BC=EF,根据AAS推出△ABC≌△DEF,根据全等三角形的性质推出即可.【解答】证明:∵BE=CF(已知),∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF(全等三角形对应边相等).。

八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)

八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)

八年级上册数学单元测试卷-第1章三角形的初步知识-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.3对B.4对C.2对D.5对3、下列说法正确的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等边三角形都全等4、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.65、如图,△ABC≌△ADE,∠C=40°,则∠E的度数为()A.80°B.75°C.40°D.70°6、如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD 为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个7、如图,平分交于点,平分交于点,若,,则的度数为()A. B. C. D.8、已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90° C.△ABC的面积为60 D.△ABC是直角三角形,且∠A=60°9、如图所示图案是我国汉代数学家赵爽在注解《周懈算经》时给出的,人们称它为“赵爽弦图”.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为:()A. B. C. D.10、如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是( )A.8B.24C.12D.1611、如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形12、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里13、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④14、如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°15、如图,己知直线y= x-3与x轴、y轴分别交于A,B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB,则△PAB面积的最大值是( )A.8B.12C.D.二、填空题(共10题,共计30分)16、人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________ .17、己知,在△ABC中,AD是BC边上的高线,且,,则________.18、如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=________.19、如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将沿EF对折后,点B落在点P处,则点P到点D的最短距为________.20、如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y= (k>0)的图象经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE的面积为________.21、如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=________.22、在中,若对角线AC=6,BD=8,AB=a,则a的取值范围是________.23、一副三角板如图放置,若∠1=90°,则∠2的度数为________.24、“等角对等边”的逆命题是________25、如图,等腰中,,的垂直平分线交边于点,且,则的度数是________.三、解答题(共5题,共计25分)26、如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=30°,∠E=20°,求∠ACE和∠BAC的度数.27、如图四边形ABCD和四边形OEFG都是正方形,点O是正方形ABCD两对角线的交点,已知AB=2,EF=3,正方形OEFG绕点O转动,OE交BC上一点N,OG交CD上一点M.求四边形OMCN的面积.28、如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠BAC的度数.29、如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?30、如图,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:△BCD≌△EAB.参考答案一、单选题(共15题,共计45分)1、B2、A3、4、A5、C6、C7、A8、D10、C11、A12、C13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形单元测试题(一)
1.一定在△ABC 内部的线段是( )
A .锐角三角形的三条高、三条角平分线、三条中线
B .钝角三角形的三条高、三条中线、一条角平分线
C .任意三角形的一条中线、二条角平分线、三条高
D .直角三角形的三条高、三条角平分线、三条中线
2.下列说法中,正确的是( )
A .一个钝角三角形一定不是等腰三角形,也不是等边三角形
B .一个等腰三角形一定是锐角三角形,或直角三角形
C .一个直角三角形一定不是等腰三角形,也不是等边三角形
D .一个等边三角形一定不是钝角三角形,也不是直角三角形
3.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有( ) A .4对
B .5对
C .6对
D .7对
(注意考虑完全,不要漏掉某些情况)
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A .锐角三角形
B .钝角三角形
C .直角三角形
D .无法确定
5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )
A .18
B .15
C .18或15
D .无法确定
6.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种
A .3
B .4
C .5
D .6
A .180° B.360° C.720° D.540°
7.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;
(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,X|k |B| 1 . c|O |m
∠________=∠________=2
1∠________,AH 叫________; (3)若AF =FC ,则△ABC 的中线是________;
(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.
8.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.
9.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I .
(1)若∠ABC =70°,∠ACB =50°,则∠BIC =________;
(2)若∠ABC +∠ACB =120°,则∠BIC =________;
(3)若∠A =60°,则∠BIC =________;
(4)若∠A =100°,则∠BIC =________;
(5)若∠A =n°,则∠BIC =________.
10.如图,在△ABC 中,∠BAC 是钝角.画出:
(1)∠ABC 的平分线;
(2)边AC 上的中线;
(3)边AC 上的高.
11.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.
12.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?
13.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.
14.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .
15.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,
(1)完成下面的证明:
∵ MG 平分∠BMN ( ),
∴ ∠GMN =
2
1∠BMN ( ), 同理∠GNM =21∠DNM . ∵ AB ∥CD ( ),
∴ ∠BMN +∠DNM =________( ).
∴ ∠GMN +∠GNM =________.
∵ ∠GMN +∠GNM +∠G =________( ),
∴ ∠G = ________.
∴ MG与NG的位置关系是________.
(2)把上面的题设和结论,用文字语言概括为一个命题:新课标第一网
_______________________________________________________________.
16.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,
∠A=46°,∠D=50°.求∠ACB的度数.
17.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,
求∠BOC的度数.
18.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.
三角形单元测试题(一)
参考答案:
1.A ; 2.D ; 3.A ; 4.C ; 5.C ; 6.B ;7. X k B 1 . c o m
(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线;
(3)BF ; (4)△ABH ,△AGF ;
8.22cm 或26cm ;
9.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+
︒n ; 10.略; 11.212cm =∆ABC S ,∴ 2
1AB·BC=12,AB =4,∴ BC =6, ∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .
12.后一种意见正确.
13.不作垂线,一个直角三角形,即:1=2×0+1,
作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,
图中共有2×k+1,即2k +1个直角三角形.
14.设三边长a =2k ,b =3k ,c =4k ,
∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4,
∴ a =8cm ,b =12cm ,c =16cm .
15.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.
(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.
16.94° 17.120° 18.10°;。

相关文档
最新文档