FLAC3d基坑模拟复习进程

合集下载

顶管工作井围护开挖过程的FLAC3D模拟

顶管工作井围护开挖过程的FLAC3D模拟

第22卷第3期南华大学学报(自然科学版)V01.22N o.3兰塑!生竺旦!!旦翌型堕型尘∑!望迎竺!墅坚尘坠i些!墅堡坠堡!四里!塾旦塑!翌2曼望:三塑墨文章编号:1673—0062(2008)03—0015一06顶管工作井围护开挖过程的FLA C3D模拟贺桂成1”,丁德馨2+(1.中南大学资源与安全工程学院,湖南长沙411001;2.南华大学核资源与安全工程学院,湖南衡阳421001)摘要:针对典型的圆形顶管工作井,采用三维有限差分程序FL A C3D法,建立了数值模拟模型,研究了圆形顶管工作井分步开挖引起的土体水平位移及水平应力变化,以及围护结构所受水平应力的分布特征.研究表明:圆形工作井井壁从地面向下6m范围内的土体发生了圆弧滑移破坏,最大位移发生于工作井从地面向下8~12m的范围内,最终形成中间大,两端小的形状;井壁土体水平应力随开挖深度变化较小,围护结构所受水平应力较小,有效地发挥了其功效;三维有限差分法能较好地模拟顶管工作井的施工动态,模拟结果也为类似工程地质条件下圆形顶管工作井的施工提供了重要的参考.关键词:项管工作井;分步开挖;FL A C3D;数值模拟中图分类号:TU473.2文献标识码:AFL A C3D M odel i ng of t he E xcavat i on Pr ocess ofW or k W el l f or Pi pe—-Jacki ngH E G ui.chen91’_.D I N G D e-xi n2+(I.School of R es ources a nd Saf et y E ngi nee r i ng,Cent r a l Sout h U ni ver si t y,Changs ha,H unan411001,Chi na;2.S chool of N ucl ear R es ou r ces and Sa f et y Engi nee r i ng,U ni ver si t y of Sou t h C hi na,H eng yang,H u nan421001,C hi na)A bs t r act:T hi s paper used t he t hr e e di m ensi onal f i nit e di f f er e nc e pr o gr am,FLA C3D,t o es—t a bl i s h a m odel f or t he ci r c ul a r w or k w el l f or pi pe—j acki ng.It s t udi ed t he va r i a t i on of t hehor i zont a l di spl acem en t and s t r es s r e sul t e d f rom t he st e p by st ep e xc ava t i on of t he ci r cul a rw or k w el l f or pi pe—jacki ng,and t he ch ar ac t er i st i c s of t he hor i zont a l st r e ss on t he f r am eci r cul ar f ai l ur e occur red w i t hi n t he w a l l of t he bra ci ng st ruct ure.T he r esu l t s s how ed t hatw el l f r o m t he surf ac e t o t he dept h of6m,t he m axi m um hor i zont a l di s pl acem ent t ook pl a cew i t hi n8m t o12m f r o m surf ac e t o t he bot t om,t he hor i zont a l s t r es s sl i g ht l y vari e d w i t hdep t h and t he hori z ont a l s t r es s on tI l e f l am e braci ng st r uc t ur e w a s s m a l l-t he t hr ee di m en-收稿日期:2008—03—25基金项目:2006年高等学校博士学科点专项科研基金资助项目.作者简介:贺桂成(1977一),男,湖南衡阳人,南华大学资源与安全工程学院讲师,中南大学资源与安全工程学院博士研究生,主要研究向:岩土工程灾害预测与控制.+通讯作者.16南华大学学报(自然科学版)2008年9月si ona l f i ni t e di f f er e nc e pr ogr am,FL A C如,w as ef f ect i ve i n m odel i ng t he e xc ava t i on proce ssof t he w or k w e l l f or pi pe—jacking and t he m odel i ng r esu l t s c an be us ed as t he i m port a ntr ef er ence f or t he const r uct i on of w or k w el l f or pi pe—jacki ng under t he si m i l a r ge ol ogi ca lcondi t i ons.K ey w o r ds:w or k w el l f or pi pe—j acki ng;st ep by st e p e xc a va t i on;FLA C如;num e ri c al s i m—11l at i on0引言顶管施工作为非开挖技术,在城市地下管线的建设和改造中得到了广泛应用.由于市内建筑物密集,地下管线错综复杂,因此顶管工作井开挖过程中对周边环境的保护要求很高,如何保证它的稳定和安全成了顶管施工中主要的岩土工程问题之一【1。

FLAC3D教程

FLAC3D教程
FLAC3D教程
目录
• FLAC3D软件介绍 • FLAC3D基本操作 • 建模与网格划分 • 材料属性与边界条件设置 • 计算过程控制与结果输出 • FLAC3D在岩土工程中的应用实例
01 FLAC3D软件介 绍
软件背景及发展历程
FLAC3D的起源
FLAC3D是Fast Lagrangian Analysis of Continua in 3 Dimensions的简称, 起源于20世纪80年代,由Itasca Consulting Group, Inc.公司开发。
材料参数设置
针对所选材料类型,设置相应的 材料参数,如弹性模量、泊松比 、密度等。
材料本构模型
根据材料特性,选择合适的本构 模型,如摩尔-库伦模型、德鲁克 -普拉格模型等。
边界条件类型及设置方法
边界条件类型
FLAC3D支持多种边界条件类型,如位移边界、速度边界、应力 边界等。
边界条件设置方法
用户可以通过指定节点或面的位移、速度或应力值来设置边界条 件。
周期性边界条件
对于具有周期性的模型,可以设置周期性边界条件以模拟无限域 问题。
初始条件设置
初始应力场设置
根据地质资料或工程经验,设置模型的初始应力 场。
初始位移场设置
对于存在初始变形的模型,可以设置初始位移场 。
初始孔隙压力设置
对于涉及流体流动的模型,可以设置初始孔隙压 力。
05 计算过程控制与 结果输出
如果发现模型存在问题,需要及时进行修复。FLAC3D提供了多种修复 工具,如删除、修补、平滑等,可以帮助用户快速修复模型中的错误。
03
实例分析
通过具体案例展示模型检查和修复的过程和效果,帮助用户掌握相关技

PLAXIS 3D开挖基坑模拟基本操作 ppt课件

PLAXIS 3D开挖基坑模拟基本操作  ppt课件
输入题目 ( Input of text (e.g. entering a project name)
输入参数 (Input of values (e.g. entering the soil unit weight)
输入选择的模型 (Input of selections (e.g. choosing a soil model)
从“创建/打开程序工具箱”创建一个新文 件 从“普通设置工具箱”输入文件名,其他 省缺设置。
ppt课件
9
• 从“尺寸工具箱”保持标准单位(长度=m, 力= kN,时间=天),输入
Xmin=0.0
Xmax=80,
Zmin=0和Zmax=50.0
• 保持省却的网格设置(空间=1m,间隔数 =1)
• 单击OK键,出现几何图形。
地下水位设于pp-t课4件m
13
3) 土和界面特性
• 单击“材料选择窗”创建一个新的材料设 置。
• 单击“材料设置”,选择“土和界面 soil&interface”.
• 单击“new” • “identification”写“fill” • “materal model”选择“Hardening soil model”
ppt课件
28
• 对所有锚杆设置材料特性。 • 锚杆材料特性设置见图2.8:
当所有锚杆 颜色由浅色 变为深色时 说明锚杆 材料特性 已设置成功。
图2.8ppt课锚件 杆特性输入窗
29
加超载面积范围
• 变换活动窗在y=0.0层; • 从模型工具箱选择画几何线 • 图形范围:
7.0m*7.0m; 依次输入(34,19),(41,19)(41,12) (34,12),生成荷载范围。

02112_flac3d实用教程

02112_flac3d实用教程

2024/1/24
28
实例演示:复杂模型后处理过程展示
模型介绍
以一个具有复杂几何形状和多种材料属性的 FLAC3D模型为例,介绍后处理过程。
结果可视化
演示如何利用云图、剖面图和动画等多种手段对 复杂模型的后处理结果进行可视化展示。
ABCD
2024/1/24
数据提取与整理
展示如何从模型中提取关键数据,并进行格式化 和整理。
flac3d实用教程
2024/1/24
1
contents
目录
2024/1/24
• 软件介绍与安装 • 基础知识与操作 • 模型建立与网格划分 • 材料属性定义与赋值 • 数值模拟计算过程分析 • 后处理技巧与结果展示 • 工程案例应用举例
2
01
软件介绍与安装
2024/1/24
3
FLAC3D概述
26
数据提取和整理方法论述
数据提取
通过FLAC3D内置函数或外部 脚本语言(如Python)提取 模型中的关键数据,如节点
位移、应力、应变等。
数据整理
将提取的数据进行格式化处 理,以便于后续分析和可视 化。可以使用电子表格软件 (如Excel)或编程语言进行
数据处理。
2024/1/24
数据筛选
根据需要选择特定区域或特 定条件下的数据进行详细分 析,提高数据处理效率。
01
02
菜单栏
包含文件、编辑、视图、工具、窗口 和帮助等菜单,用于管理文件和执行 各种操作命令。
03
工具栏
提供常用命令的快捷按钮,方便用户 快速执行常用操作。
属性视图区
显示当前选中对象的属性信息,并允 许用户修改对象属性持多种 视图模式和渲染效果。

深基坑开挖模拟与支护设计基于FLAC3D本科毕业论文答辩.ppt

深基坑开挖模拟与支护设计基于FLAC3D本科毕业论文答辩.ppt

图1 设计流程图
第二章 工程概况与场地工程地质条件
第一节:工程概况
• 武汉市万达广场深基坑工程位于武汉市江汉区,地块范围东临 新华下路,西邻新华西路,南侧为规划道路、武汉新闻出版局, 北侧为马场公寓。
• 本场地基坑分为A、B基坑两块, A、B基坑呈“吕”字型分布, 总占地面积约57000m2。A基坑为大商业部分,其地下二层主楼的 承台底标高-12.6m(电梯井-15.0m),商业部分底标高-12.4m(电梯 井-13.5m);B基坑为住宅部分,其主楼承台底标高-11.25m,分布 于基坑四周。本次设计选取A基坑OPQRSA段进行支护结构设计 与FLAC3D数值模拟。
Interval = 2.5e+004
Job Title: 深基坑工程 View Title:
Itasca Consulting Group, Inc. Minneapolis, MN USA
图4-3 初始平衡计算孔隙水压力图
FLAC3D 3.00
Step 2349 12:10:12 Sat Jun 05 2010
分段号
开挖 深度
本段特点
选择围护方案
坑外为现场施工道路; A、上部放坡卸载;
分布较厚的淤泥质土; B、支护桩+混凝土内支撑; A-OPQRSA 10.8m
有较开阔的放坡空间; C、坑壁采用粉喷桩止水;
开挖深度较深;
D、坑底采用降水井降水;
图3-1 A-OPQRSA段支护体系布置剖面图
第五节 A-OPQRSA段基坑支护桩设计
表2-1 A-OPQRSA设计开挖深度表
段号
地面标高
A-OPQRSA
20.7m
坑底标高 9.9m
开挖深度 10.8m

FLAC3D对基坑开挖数值模拟分析

FLAC3D对基坑开挖数值模拟分析

平衡状态,此时得到的模拟计算结果见图 2 ~ 6,图 2 为
基坑 Z 方向应力云图,在模型中共分为 9 个区域,各区
域的应力值范围分别为: - 7. 3827e + 005 to - 7. 0000e
+ 005、- 7. 0000e + 005 to - 6. 0000e + 005、- 6. 0000e
536
资源环境与工程
以下取 30 m。因 此 模 型 X 方 向 长 50 m,Y 方 向 长 40 m,Z 方向长 38 m。在初始条件中,不考虑构造应 力,仅考 虑 自 重 应 力 产 生 的 初 始 应 力 场。模 型 共 有 10 500个单元,12 012 个节点( 图 1) 。
2013 年
移为 47. 35 cm,位移变形的影响范围沿基坑边缘向外约 6. 0 m。通过对位移变形矢量图及剪应变增量矢量
图分析,可知基坑边墙可能产生滑动破坏的现象。
关键词: FLAC3D; 基坑; 应力; 位移
中图分类号: TV551. 4 + 2
文献标识码: B
文章编号: 1671 - 1211( 2013) 04 - 0535 - 03
GPa,土体的体积模量 K 和剪切模量 G 与弹性模量 E 及泊松比 μ 之间的转换关系为[4]:
K
=
3(
1
E - 2μ)
( 1)
G
=
2(
E 1+
μ)
( 2)
由式( 1) 和式( 2) 计算得: 体积模量 K = 202. 90 MPa,
剪切模量 G = 110. 24 MPa。将求得的物理力学参数,
+ 005 to - 5. 0000e + 005、- 5. 0000e + 005 to -

基于FLAC3D的基坑开挖与支护三维数值分析 丁勇春 上海交通大学学报 2009 06

基于FLAC3D的基坑开挖与支护三维数值分析 丁勇春 上海交通大学学报 2009 06

第43卷第6期 2009年6月上海交通大学学报J OU RNAL OF SHAN GHA I J IAO TON G UNIV ERSIT YVol.43No.6 J un.2009 收稿日期:2008207213基金项目:国家自然科学基金资助项目(50679041);上海市科学技术委员会资助项目(08201200903);江西省教育厅科学技术研究资助项目(G JJ 09367)作者简介:丁勇春(19792),男,江苏大丰市人,博士生,从事基坑与地下工程数值仿真方面的研究.王建华(联系人),男,教授,博士生导师,电话(Tel.):021*********,E 2mail :wjh417@. 文章编号:100622467(2009)0620976205基于FL AC3D 的基坑开挖与支护三维数值分析丁勇春1, 王建华1, 徐 斌1,2(1.上海交通大学土木工程系,上海200030;2.南昌工程学院土木工程系,南昌330029)摘 要:采用三维快速拉格朗日方法(FL AC3D )建立了考虑基坑分步开挖与支护全过程的三维动态计算模型,土体采用修正剑桥模型模拟,考虑了支护结构与土体的接触滑移作用,分析了基坑施工中围护墙变形、地表沉降、坑底隆起、坑外深层土体变形的基本特性.计算得到的地表沉降曲线与已有文献的经验沉降曲线基本一致,验证了计算结果的适用性.分析结果可为类似基坑工程的设计和施工提供有益参考.关键词:基坑开挖;数值分析;三维快速拉格朗日方法;修正剑桥模型;土与结构相互作用中图分类号:TU 473.2 文献标识码:AThree 2Dimensional Numerical Analysis of Braced ExcavationBased on F LAC 3DD I N G Yong 2chun 1, W A N G J i an 2hua 1, X U B i n1,2(1.Depart ment of Civil Engineering ,Shanghai Jiaotong University ,Shanghai 200030,China ;2.Depart ment of Civil Engineering ,Nanchang Instit ute of Technology ,Nanchang 330029,China )Abstract :Fast Lagrangian Analysis of Continua in 3Dimensions (FL AC3D )was employed to investigate t he deformatio n characteristics of a staged excavated and supported foundation pit.Modified Cam 2clay model was adopted to model t he soil behavior and t he interaction between soils and retaining st ruct ures was also taken into account in t he numerical model.The deflection of retaining walls ,t he settlement of gro und surface ,t he heave of excavation bottom ,and t he movement of t he deep st rata out side t he excavation were analyzed.The ground surface settlement curves of t he numerical model are basically consistent wit h t he empirical ones f rom t he existing literat ures ,so it s feasibility is proved.The numerical result s p rovide a usef ul reference for t he design and const ruction of similar deep excavation project s.Key words :braced excavation ;numerical analysis ;fast Lagrangian analysis of continua in 3dimensio ns (FL AC3D );modified Cam 2clay model ;soil 2st ruct ure interaction 基坑工程除了要保证基坑的整体性和支护结构的稳定安全外,还必须确定支护结构变形和基坑内外地层的变形,这样才能合理评估基坑施工对周围环境可能造成的不利影响,采取相应的工程措施,确保基坑施工的顺利进行,从而实现基于变形控制的基坑设计[1].目前基坑工程中常用的分析方法可以分为两类:行业和地方基坑设计规程所广为采用的竖向弹性地基梁法[2,3];基于连续介质力学的数值分析方法,如有限元法、有限差分法等.竖向弹性地基梁法只能对围护结构的内力和变形进行分析,不能计算支撑体系的内力和变形,更无法分析坑外地表沉降和坑底隆起变形,因此无法对基坑开挖引的环境影响进行分析和评价.数值分析方法可以弥补常规弹性地基梁法的不足.本文采用三维快速拉格朗日方法(FL AC3D )建立考虑支护结构与土体相互作用的基坑三维计算模型,土体采用修正剑桥模型,并考虑支护结构(围护墙和立柱桩)与土体间的接触问题,实现基坑分步开挖及支护的三维全过程动态分析.1 数值计算原理1.1 修正剑桥模型目前在岩土工程数值计算中常用的土体本构模型有两大类:一类是以Duncan 2Chang 模型为代表的非线性弹性模型;另一类是弹塑性模型,如Mohr 2Coulomb 模型、Drucker 2Prager 模型及修正剑桥模型等.Mohr 2Coulomb 模型和Drucker 2Prager 模型由于对加载和卸载采用同一模量,在得到合理围护结构侧向变形的同时,往往导致不合理的坑底隆起变形.修正剑桥模型能够反映土体加载与卸载模量的差异,考虑土体材料静水压力屈服特性和压硬性,在软土地基开挖分析中应用非常广泛.修正剑桥模型的屈服函数可表示为q 2p ′2+M 21-p ′0p ′=0(1)式中:q 为偏应力;p ′为平均有效应力;p ′0为先期固结压力;M 为p ′-q 平面内临界状态线(CSL )的坡度.修正剑桥模型屈服轨迹如图1所示.(a )p ′-q 平面内(b )主应力空间内图1 修正剑桥模型屈服轨迹Fig.1 Y ield locus of modified Cam 2clay model 修正剑桥模型的初始状态参数确定方法如下:(1)确定土体单元的竖向有效应力σ′v ;(2)根据现场静止侧压力系数K 0,确定土体单元侧向有效应力σ′h ,σ′h =K 0σ′v (2) (3)对每个土体单元,计算平均有效应力p ′和偏应力q :p ′=13(σ′1+σ′2+σ′3)q =12(σ′1-σ′2)2+(σ′2-σ′3)2+(σ′3-σ′1)2(3) (4)根据式(1)和超固结比OCR 计算先期固结压力p ′0,p ′0=p ′1+qM p ′2OCR (4) (5)确定正常固结线上p ′=1kPa 作用下单元的初始比体积υe ,0=υCSL +(λ-κ)ln 2(5)式中:λ为υ-ln p 平面内压缩线坡度;κ为υ-ln p 平面内回弹线坡度;υCSL 为临界状态线在p ′=1kPa 下的比体积.如根据土工试验能确定土样的不排水抗剪强度c u 和比体积υ0,则可根据下式确定参数υCSL[4],c u =M 2expυCSL -υ0λ(6) 如果已知土体颗粒比重G s 、土体液限w L 和土体塑性指数I p ,也可按下列经验公式确定参数[4]:υCSL =1+G s (w L +0.3I p )(7)1.2 土体与支护结构的接触采用数值方法进行基坑开挖与支护分析时涉及到是否需要考虑支护结构与土体间的相互接触问题.文献[5]中的研究结果表明,不考虑接触作用将导致计算结果与实际情况不符.主要原因可归结为:①无法反映支护结构与土体间由于接触面或土体的破坏引起的相互滑移;②结构与土体间存在拉应力,不能模拟结构与土体的脱离效应.FLAC3D 中的接触面单元具有单面特性,不同于G oodman 接触面单元.在每一计算时间步Δt 内,接触面节点与目标面之间的绝对法向侵入位移u n及相对剪切位移增量Δu s 均被计算,将其代入接触面本构方程就可以确定下一时刻(t +Δt )接触面上的法向力F (t +Δt )n和切向力F (t +Δt )s,F (t+Δt )n =k n u n A +σn A F (t+Δt )s=F (t )s+k s Δu (t+Δt/2)sA +τs A(8)式中:k n 为法向刚度;k s 为切向刚度;τs 为附加剪应力;A 为接触面节点的代表面积.接触单元服从库仑779 第6期丁勇春,等:基于FL AC3D 的基坑开挖与支护三维数值分析 剪切破坏准则和拉伸破坏准则.1.3 支护结构模型FLAC3D 提供了6种支护结构单元:梁单元、索单元、桩单元、壳单元、土工格栅单元和衬砌单元.对基坑而言,板桩式围护结构可采用衬砌单元模拟,桩列式和重力式挡土结构可采用实体模拟,水平内支撑如结构层楼板和混凝土或钢支撑可分别采用壳单元和梁单元模拟,坑外土钉和锚杆可采用索单元模拟,坑内立柱与立柱桩可采用桩单元模拟.2 计算模型及参数确定2.1 计算模型及边界条件分析模型取一方形基坑为研究对象,基坑平面尺寸为56m ×56m ,考虑模型的对称性后取1/4模型进行计算.基坑最大开挖深度H max =20m ,分5步开挖,每步开挖4m.1/4计算模型的三维尺寸为128m ×128m ×100m ,如图2所示.土体采用8节点6面体模拟,土体区段总数为13520,网格点总数为15309.模型外边界采用侧向约束,中心对称面采用对称边界,模型底部全约束.(a )整体模型(b )支护结构图2 计算模型Fig.2 Numerical model 计算中不考虑土体的分层以及基坑降水的影响,采用总应力法计算,相应的土体计算参数采用总应力指标.土体本构模型采用修正剑桥模型,不考虑地下水作用.土体重度γ=17.15kN/m 3,孔隙比e =1.2,侧压力系数K 0=0.5,κ=0.01,λ=0.14,M =1.2,泊松比μ=0.35.模型参数相当于上海软土地区第3层土体[6]的参数,按正常固结考虑(OCR =1).2.2 支护结构及接触面参数水平梁板支撑按刚度等效原则简化为壳单元,围护墙采用衬砌单元模拟,立柱和立柱桩采用桩单元模拟.结构单元总数为5175,结构单元节点数为2658.支护结构强度按C30混凝土考虑,考虑80%强度折减[7]后混凝土的弹性模量E c =24GPa ,μc =0.2,ρc =2500kg/m 3.坑边x =28m 和y =28m 处为两道连续墙,连续墙深度40m.坑内共设9根桩,桩直径0.8m ,间距8m ,桩长60m.共设5道水平支撑,支撑板厚0.12m.不同结构单元间采用共用节点法实现内力的传递.接触计算为物理非线性问题,有限元法在计算中往往存在收敛困难问题.FL AC3D 由于基于显式的全过程动力计算,因此,对不稳定问题不存在计算上的障碍.FLAC3D 中的衬砌单元与土体间的切向相互作用也具有单面特性,因而不能同时考虑围护墙与内外两侧土体的相互接触算法.在计算模型中采用以下近似处理办法:衬砌单元建立在墙外土体区域的外表面上以模拟围护墙与墙外土体的相互接触作用,围护墙与坑内土体的相互接触采用在坑内外土体间建立接触面单元,墙底处衬砌单元节点与坑内外土体网格点自由度耦合,假定墙底处结构单元节点与网格点变形协调.桩单元可直接实现桩与土界面的接触算法,通过加入桩端屈服弹簧可考虑桩的端承效应.参考文献[5],接触界面摩擦系数取为0.25,最大剪应力取为20k Pa.3 计算结果分析3.1 围护墙变形不同开挖深度(H )和不同平面位置(y )围护墙的侧向变形(δh )如图3所示.开挖至坑底后围护墙整体上抬约15.0mm ,墙体最大侧移-45.3mm,基坑开挖期间围护墙变形主要为侧向变形.(a )不同开挖深度 (b )不同平面位置图3 围护墙变形Fig.3 Deflection of retaining walls 由于第1道支撑的设置先于第1次4m 深土体的开挖,故第1次挖土时围护墙顶受到第1道水平支撑强大刚度的约束,墙顶位移几乎为零.后续阶段,墙体最大侧移随着开挖深度的增加而增大,同时最大侧移点位置亦随着开挖深度的增加而逐渐下879上 海 交 通 大 学 学 报第43卷 移,开挖至坑底后,墙身最大侧移点位于坑底开挖面附近.围护墙的最大侧移随着基坑开挖深度的增加呈非线性增长,但增长的幅度却有下降的趋势.围护墙的侧向变形具有明显的三维空间效应,基坑中心处(y =0)对称面墙体侧移最大,而基坑拐角位置(y =28m )墙体侧移最小,且为向坑内整体刚性平移.3.2 地表沉降不同开挖深度(H )和不同平面位置(y )坑外地表沉降(δv )如图4所示.图中,d 为计算点至坑边的距离.可见,地表未出现隆起,这是由于考虑了围护墙与土体间的接触特性,墙体与土体之间出现了滑移,墙体的上抬未引起地表的隆起.第1次挖土(H =4m )最大地表沉降点距坑边较近;随着挖土深度的不断增加,最大沉降点位置逐渐远离基坑,基坑开挖深度达12m 后,最大地表沉降点位置几乎不再变化.图4 地表沉降Fig.4 Ground surface settlement 地表沉降也具有空间效应,靠近基坑侧边中点(y =0)的地表沉降较大,最大地表沉降值为-36.3mm ;而靠近基坑拐角(y =28m )的地表沉降较小,最小地表沉降值仅为-16.4mm.地表沉降与围护墙的变形是相关联的,两者在空间上的变化规律保持一致. 图4(c )所示为中心对称面上不同开挖阶段相对地表沉降(δv /δv ,max )和相对距离(d/H )关系曲线与文献[8,9]中提出的经验沉降包络曲线的对比.可见,数值模拟结果与文献[9]中的更为吻合;d/H >2时本文与文献[8]中的相差较大.原因如下:文献[8]中假定地表沉降影响范围仅为2倍基坑开挖深度,而根据本文数值模拟结果和上海软土地区相关基坑的现场实测[10],上海软土地区地表沉降的影响范围一般为3~4倍基坑开挖深度.因此文献[8]中关于地表沉降影响范围的假定对上海软土地区的基坑而言显然偏小.由于计算模型的外截断边界采用侧向约束,边界面竖向可自由变形,引起了d/H >1.5范围计算所得相对地表沉降稍大于文献[9]中的包络曲线,这部分差异是由于计算模型的边界条件简化引起的.3.3 坑底隆起图5所示为不同开挖深度中心对称面(y =0)上坑底土体的隆起变形(δvb ).坑底土体的隆起主要由竖向开挖卸载效应引起,另外,墙体向基坑内的侧向变形也会进一步挤推坑内土体,造成坑底土体的回弹[11].坑底土体的隆起值随着开挖深度的增加呈非线性增长,但回弹增量有减小的趋势.图5 坑底隆起Fig.5 Heave of excavation bottom 开挖至坑底后坑底土体的竖向整体隆起量约160mm ,而围护墙的整体回弹仅15mm 左右,表明坑底土体与围护墙间发生了较大的相对滑移.如不考虑接触滑移作用,坑底回弹将引起过大的围护墙上抬,这显然不合理.另外,地表与围护墙相交处由于也考虑了接触作用,墙体的上抬才未引起相应位置地表的隆起,从而得到了与经验曲线基本吻合的地表沉降曲线.因此,在数值计算模型中有必要考虑支护结构与土体间的相互接触作用.3.4 坑外深层土体变形图6所示为开挖至坑底(H =20m )后中心对称面(y =0)上坑外深层土体竖向和侧向的位移场分布.可见,坑外浅层土体产生沉降,但最大沉降点位于距坑边一定距离处;坑外深层土体产生隆起,最大979 第6期丁勇春,等:基于FL AC3D 的基坑开挖与支护三维数值分析 隆起点位置位于土体与围护墙的接触处.邻近基坑围护墙处土体的侧向变形与墙体的变形相似,均为深层凸出型,最大侧向变形点深度位于基坑最终开挖面附近;随着至坑边距离的增加,土体最大侧向变形点位置逐步向地表面过渡,当距离超过一定范围,土体的最大侧移点位于地表面.(a )竖向变形(b )侧向变形图6 坑外深层土体变形Fig.6 Movement of strata outside excavation 对比图6中坑外土体的竖向变形与侧向变形可见,当基坑首层支撑刚度较大且先于浅层土体开挖而架设时,坑外浅层土体的变形以沉降为主,侧向变形较小.因此,对基坑周围建(构)筑物上部结构、浅埋地下市政管线及城市道路等而言,地表沉降和差异沉降是引起其损坏的主要原因;对基坑最终开挖面深度的坑外土体而言,侧向变形占主导,竖向变形较小,且存在隆起与下沉两种不同的形态.因此对深埋地下结构如高层建筑桩基础、城市高架桥梁桩基础、地铁区间隧道等而言,坑外深层土体的侧向变形是引起其损坏的主要原因.4 结 论(1)计算得到的坑外地表沉降曲线与已有文献的经验沉降包络曲线基本一致,验证了FL AC3D 在基坑开挖分析中的适用性和有效性.(2)基坑围护结构变形、地表沉降、坑底土体位移、坑外深层土体位移是相互关联的有机整体,基坑变形表现出明显的空间特性.(3)只要合理确定土体模型参数及土体与支护结构间的接触关系,三维数值分析在基坑工程设计施工方案优化和环境影响评估的应用中具有明显优越性.本文计算模型进行了一定简化,未考虑土体的分层,也未考虑降水引起的渗流和固结对基坑变形的影响,有待今后进一步研究.参考文献:[1] 刘建航,侯学渊.基坑工程手册[M ].北京:中国建筑工业出版社,1997.[2] J G J 120299,建筑基坑支护技术规程[S].[3] DBJ 08261297,基坑工程设计规程[S].[4] Wood D M.Soil behaviour and critical state soil me 2chanics [M ].Cambridge :Cambridge UniversityPress ,1990.[5] 范 巍,王建华,陈锦剑.连续墙与土体接触特性对深基坑变形分析的影响[J ].上海交通大学学报,2006,40(12):211822121.FAN Wei ,WAN G Jian 2hua ,CH EN Jin 2jian.The evaluation of deformation induced by excavation con 2sidering the properties of diaphragm 2soil interface [J ].Journal of Shangh ai Jiaotong U niversity ,2006,40(12):211822121.[6] D G J 0823722002,岩土工程勘察规范[S].[7] 谢百钩.粘土层开挖引致地盘移动之预测[D ].中国台湾:国立台湾科技大学,1999.[8] Clough G W ,O ′Rourke T D.Construction inducedmovements of in situ walls [C]//Proceedings ,ASCE Conference on Design and Perform ance of E arth R etai 2ning Structures .New Y ork :ASCE ,1990:4392470.[9] Hsieh P G ,Ou C Y.Shape of ground surface settle 2ment profiles caused by excavation [J ].C anadian G eotechnical Journal ,1998,35(6):100421017.[10] 丁勇春,王建华,徐中华,等.上海软土地区某深基坑施工监测分析[J ].西安建筑科技大学学报(自然科学版),2007,39(3):3332338.DIN G Y ong 2chun ,WAN G Jian 2hua ,XU Zhong 2hua ,et al .Monitoring analysis of a deep excavation inShanghai soft soil deposits [J ].Journal of Xi ’an U ni 2versity of Architecture &T echnology (N atural Science Edition),2007,39(3):3332338.[11] 刘国彬,黄院雄,侯学渊.基坑回弹的实用计算法[J ].土木工程学报,2000,33(4):61267.L IU Guo 2bin ,HUAN G Yuan 2xiong ,HOU Xue 2yuan.A practical method for calculating a heave of excavated foundation [J ].China Civil E ngineering Journal ,2000,33(4):61267.89上 海 交 通 大 学 学 报第43卷 。

基于FLAC3D的深基坑土钉墙支护数值模拟

基于FLAC3D的深基坑土钉墙支护数值模拟

基于FLAC3D的深基坑土钉墙支护数值模拟作者:周浩文邱丁山邹先义来源:《河南科技》2019年第05期摘要:以某小学深基坑工程为例,通过FLAC3D建立了基坑开挖的三维模型,对基坑开挖过程及土钉墙支护进行模拟,分析了水平位移及土钉墙受力特点,水平位移随开挖过程不断增大,沿基坑深度呈“C”型分布,最大位移达18mm;土钉最大应力在靠近坡面位置,混凝土面层弯矩沿深度逐渐增大。

研究表明,土钉墙支护方案是可行,能够有效地抑制基坑变形,保证基坑的安全稳定。

关键词:深基坑;土钉墙;FLAC3D;数值模拟中图分类号:TU476 文献标识码:A 文章编号:1003-5168(2019)05-0132-03Abstract: Taking a deep foundation pit project in a primary school as an example, a three-dimensional model of foundation pit excavation was established by FLAC3D, and the process of foundation pit excavation and soil nailing wall support were simulated. The horizontal displacement and the stress characteristics of soil nailing wall were further analyzed. The horizontal displacement increased with the excavation process and distributed in a "C" shape along the depth of foundation pit, with the maximum displacement reaching 18mm. The maximum stress of soil nail was near the slope, and the bending moment of concrete surface layer increased gradually along the depth. The research shows that the soil nailing wall support scheme is feasible, which can effectively restrainthe deformation of foundation pit and ensure the safety and stability of foundation pit.Keywords: deep foundation pit;soil nailing wall; FLAC3D;numerical simulation随着城市建设规模不断扩大,深基坑工程越来越多。

基于FLAC3D的深基坑支护数值模拟应用

基于FLAC3D的深基坑支护数值模拟应用

基于FLAC3D的深基坑支护数值模拟应用基于FLAC3D的深基坑支护数值模拟应用摘要:本研究利用有限元数值模拟软件FLAC3D对深基坑支护进行了数值模拟。

通过对建筑施工现场实际参数的调查和相关文献的研究,我们建立了一个三维数值模型,并进行了不同支护方案的比对分析。

结果表明,采用加强钢支撑和地下连续墙的支护方案,能够有效地减少土壤变形、保证建筑物的安全性。

关键词:深基坑、支护、FLAC3D、数值模拟、加强钢支撑、地下连续墙1. 引言近年来,城市建设和基础设施建设快速发展,深基坑建设越来越普遍。

但是,深基坑工程施工过程中的安全问题一直备受关注。

其中,深基坑支护是工程中的一个重要环节。

为了确保施工期间的安全性,提高深基坑工程的质量和效率,数值模拟成为了深基坑支护研究的重要方法。

本文利用FLAC3D有限元软件,对深基坑支护进行了数值模拟,探究了不同支护方案对支护效果的影响。

2. 建立数值模型本文选取了某施工现场所需建设的深基坑作为研究对象,通过现场实际参数的调查和相关文献的研究,建立了一个三维数值模型,包括土体、加强钢支撑和地下连续墙等要素。

我们选用FLAC3D软件,采用三维非线性、非弹性有限元法建立了深基坑支护数值模型。

3. 数值模拟分析本文通过数值模拟的方法,分别对三种支护方案进行了分析和比较。

根据实际工程情境和可行性,将基坑侧壁加强钢支撑和地下连续墙结合起来,分别分析了它们分别对基坑支护的影响。

3.1 仅加强钢支撑采用钢支撑作为支护方案,计算结果表明,在基坑侧壁进行局部加强支撑的情况下,土体变形量和基坑下沉量都可控制在较小的范围内。

但是,当钢支撑的纵向间距较大时,局部土体变形较大。

3.2 仅连续墙支护采用地下连续墙作为支护方案,计算结果表明,连续墙的设置是很有必要的。

连续墙的加固作用可以有效地控制土体侧向位移和基坑下沉量。

但是,如果连续墙质量不好,可能会导致工程安全事故发生。

3.3 加强钢支撑和连续墙结合支护我们采用加强钢支撑和地下连续墙结合的支护方案,计算结果表明,在相同的施工条件下,结合支护方案的基坑下沉量更小,变形量也更小。

(完整word版)用flac3d模拟基坑开挖

(完整word版)用flac3d模拟基坑开挖

new;网格建立;;;;;;;;;;;;;;;;;;;;;;;;;gen zone brick p0 90 0 -30 p1 202 0 -30 p2 90 4 -30 p3 90 0 0 size 112 4 30 ratio 1 1 1gen zone brick p0 90 0 -30 p1 90 0 0 p2 90 4 -30 p3 0 0 -30 size 30 4 25 ratio 1 1 1.1gen zone brick p0 90 0 -30 p1 0 0 -30 p2 90 4 -30 p3 90 0 -75 size 25 4 18 ratio 1.1 1 1.1gen zone brick p0 90 0 -30 p1 90 0 -75 p2 90 4 -30 p3 202 0 -30 size 18 4 112 ratio 1.1 1 1 gen zone brick p0 202 0 -30 p1 292 0 -30 p2 202 4 -30 p3 202 0 0 size 25 4 30 ratio 1.1 1 1 gen zone brick p0 202 0 -30 p1 202 0 -75 p2 202 4 -30 p3 292 0 -30 size 18 4 25 ratio 1.1 1 1.1;分组;;;;;;;;;;;;;;;;;;;;;;;;;;group 1 range x 90 110 y 0 4 z -30 0group 1 range x 180 202 y 0 4 z -30 0group 2 range group 1 not;建立连续墙单元;;;;;;;;;;;;;;;;;;;;;;;;;;gen separate 1gen merge 1e-4 range x 90 110 y 0 4 z -30.1 -29.9gen merge 1e-4 range x 180 202 y 0 4 z -30.1 -29.9attach face range x 89.99 90.01 y 0.0 4.0 z -29.9 0attach face range x 109.99 110.01 y 0.0 4.0 z -29.9 0attach face range x 179.99 180.01 y 0.0 4.0 z -29.9 0attach face range x 201.99 202.01 y 0.0 4.0 z -29.9 0sel liner id 1 crossdiag group 2 range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1sel liner id 2 crossdiag group 2 range x 109.9 110.1 y -0.1 4.1 z -30.1 0.1sel liner id 3 crossdiag group 2 range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1sel liner id 4 crossdiag group 2 range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1sel liner id 1 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1sel liner id 2 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 109.9 110.1 y -0.1 4.1 z -30.1 0.1sel liner id 3 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1sel liner id 4 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1;定义支撑结构;;;;;;;;;;;;;;;;;;;;;;;def struct_install1loop i(1,3)structx_zz=-1.0*5.0*(i-1)structx_xx0=90.0structx_xx1=110.0structx_yy=2.0commandsel beam id=2 begin (structx_xx0,structx_yy,structx_zz) end (structx_xx1,structx_yy,structx_zz) nseg=10sel beam id=2 prop dens=0.000 emod=1.0e-6 nu=0.2 &xcarea=0.80 xcj=10.94e-2 xciy=6.67e-2 xciz=4.27e-2 ydirection=(0 0 -1) ;1000x800endcommandendloopendstruct_install1def struct_install2loop i(1,3)structx_zz=-1.0*5.0*(i-1)structx_xx0=180.0structx_xx1=202.0structx_yy=2.0commandsel beam id=3 begin (structx_xx0,structx_yy,structx_zz) end (structx_xx1,structx_yy,structx_zz) nseg=11sel beam id=3 prop dens=0.000 emod=1.0e-6 nu=0.2 &xcarea=0.80 xcj=10.94e-2 xciy=6.67e-2 xciz=4.27e-2 ydirection=(0 0 -1) ;1000x800endcommandendloopendstruct_install2;建立结构单元分组;;;;;;;;;;;;;;;;;;;;;;;;;;;sel group linerwall range sel linersel group struct1 range sel beam x (90.0 110.0) z (-0.1 0.1)sel group struct2 range sel beam x (90.0 110.0) z (-5.1 -4.9)sel group struct3 range sel beam x (90.0 110.0) z (-10.1 -9.9)sel group struct4 range sel beam x (180.0 202.0) z (-0.1 0.1)sel group struct5 range sel beam x (180.0 202.0) z (-5.1 -4.9)sel group struct6 range sel beam x (180.0 202.0) z (-10.1 -9.9);删除beam单元的linksel dele link range sel beam z (-30 0);建立liner间的节点间的刚性linkdef merge_link0node_num=0node_pnt0 = nd_headloop while node_pnt0 # null ;寻找总节点数,注:不能自己任生成node,程序缺省的方式为连续生成无不连续node_num = node_num+1node_pnt0 = nd_next(node_pnt0)endloopnode_num_minus1 = node_num-1link_id=30000loop ii (1,node_num_minus1)node_pnt1 = nd_find(ii)xxa = nd_pos(node_pnt1,2,1)yya = nd_pos(node_pnt1,2,2)zza = nd_pos(node_pnt1,2,3)ii_plus1 = ii+1loop jj (ii_plus1,node_num)node_pnt2 = nd_find(jj)xxb = nd_pos(node_pnt2,2,1)yyb = nd_pos(node_pnt2,2,2)zzb = nd_pos(node_pnt2,2,3)node_dist = sqrt((xxa-xxb)^2+(yya-yyb)^2+(zza-zzb)^2)dist_tol = 1e-1if node_dist <= dist_tol thenlink_pnt1 = nd_link(node_pnt1)link_pnt2 = nd_link(node_pnt2);if link_pnt1 # null then; temp1 = lk_delete(link_pnt1);endifif link_pnt2 # null thentemp2 = lk_delete(link_pnt2)endiflink_id = link_id+1command ;生成新link(6自由度全固结),大的node的id作为target node,小的node的id作为source node,需注意不同情况下的灵活调整sel set link node_tol=dist_tolsel link id=link_id jj target = node tgt_num =ii ;指定link的ID;sel link ii target = node tgt_num = jj ;不指定link的id,自动生成sel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=rigid yrdir=rigid zrdir=rigid range id=link_idendcommandendifendloopendloopendmerge_link0;设置土层材料参数;;;;;;;;;;;;;;;;;;;;;;;;;;;;def b_s_modb_mod =e_mod/(3.0*(1.0-2.0*p_ratio))s_mod =e_mod/(2.0*(1.0+p_ratio))endmodel elasticset e_mod 100e6set p_ratio 0.3b_s_modprop bu=b_mod sh=s_modini dens 1800 range z -75 0def ini_szzszz0=0szzgrad=1800*10commandini szz add szz0 grad 0 0 szzgrad range z -75 0endcommandendini_szzdef ini_sxx_syypnt=zone_headloop while pnt # nullval=k0*z_szz(pnt)z_sxx(pnt)=valz_syy(pnt)=valpnt=z_next(pnt)endloopendset k0=0.50ini_sxx_syy;定义边界处的结构边界条件;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cyc 0sel node local xdir=(0,1,0) ydir=(0,0,1) range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1 sel node local xdir=(0,1,0) ydir=(0,0,-1) range x 109.9 110.1 y -0.1 4.1 z -30.1 0.1 sel node local xdir=(0,1,0) ydir=(0,0,1) range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1 sel node local xdir=(0,1,0) ydir=(0,0,-1) range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1sel node fix lsys range x 89.9 90.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 89.9 90.1 y 3.9 4.1 z -30.1 0.1sel node fix lsys range x 109.9 110.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 109.9 110.1 y 3.9 4.1 z -30.1 0.1sel node fix lsys range x 179.9 180.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 179.9 180.1 y 3.9 4.1 z -30.1 0.1sel node fix lsys range x 201.9 202.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 201.9 202.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 89.9 90.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 89.9 90.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 109.9 110.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 109.9 110.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 179.9 180.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 179.9 180.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 201.9 202.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 201.9 202.1 y 3.9 4.1 z -30.1 0.1sel node fix y range x 89.9 90.1 y 0.0 4.0 z -0.1 0.1sel node fix y range x 109.9 110.1 y 0.0 4.0 z -0.1 0.1sel node fix y range x 179.9 180.1 y 0.0 4.0 z -0.1 0.1sel node fix y range x 201.9 202.1 y 0.0 4.0 z -0.1 0.1;set plot meta;plot set rot 20 0 30 ba wh color=on cent=(10 20 0) mag=3.81;set outp node_local_sys.wmf;plot add sel geom black red link=off node=off id=off shrink=0 scale=0.03 nodesys=on range group linerwall any group struct1 any;pl ha;固定边界条件;;;;;;;;;;;;;;;;;;;;;;;;;;fix x range x -0.1 0.1fix x range x 291.9 292.1fix y range y -0.1 0.1fix y range y 3.9 4.1fix x y z range z -75.1 -74.9set grav 0,0,-10solvesave elas.sav;删除侧面内外土体间的连接约束;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;attach delete range x 89.99 90.01 y 0.0 4.0 z -29.9 0attach delete range x 109.99 110.01 y 0.0 4.0 z -29.9 0attach delete range x 179.99 180.01 y 0.0 4.0 z -29.9 0attach delete range x 201.99 202.01 y 0.0 4.0 z -29.9 0;在墙内土体的外侧建立接触面;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;interface 1 face range group 1 x 89.99 90.01 y 0.0 4.0 z -29.9 0interface 2 face range group 1 x 109.99 110.01 y 0.0 4.0 z -29.9 0interface 3 face range group 1 x 179.99 180.01 y 0.0 4.0 z -29.9 0interface 4 face range group 1 x 201.99 202.01 y 0.0 4.0 z -29.9 0interface 1 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 2 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 3 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 4 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 1 maxedge=1interface 2 maxedge=1interface 3 maxedge=1interface 4 maxedge=1;interface 1 prop kn=4e8 ks=4e8 tens=1e10 sbratio=100;plot set ba wh;pl ske interface red blue attach cyan green;set outp interface_attachment.wmf;pl ha;重新定义连续墙参数;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;sel liner id 1 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1sel liner id 2 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 109.9 110.1 y-0.1 4.1 z -30.1 0.1sel liner id 3 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1sel liner id 4 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1;重新定义墙底约束条件;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;def redef_wall_end_link1node_pnt = nd_headlink_id=100000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-90.0)^2+(zz+30.0)^2)if dist_x <=dist_tol thenif link_pnt # null thentemp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link1def redef_wall_end_link2node_pnt = nd_headlink_id=150000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-110.0)^2+(zz+30.0)^2)dist_tol = 1e-1if dist_x <=dist_tol thenif link_pnt # null thenif yy < 85.0temp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link2def redef_wall_end_link3node_pnt = nd_headlink_id=200000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-180.0)^2+(zz+30.0)^2)dist_tol = 1e-1if dist_x <=dist_tol thenif link_pnt # null thentemp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link3def redef_wall_end_link4node_pnt = nd_headlink_id=250000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-202.0)^2+(zz+30.0)^2)dist_tol = 1e-1if dist_x <=dist_tol thenif link_pnt # null thentemp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link4;剑桥模型;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;model cam-clay;cam-clay模型则不需定义弹性模量(E、G、K)等参数,自动计算;cam-clay模型中需确定8个模型参数(①-⑧),手册property中的初始比体积cv(v0)和shear 无须给定def install_proppnt=zone_headloop while pnt # nullabs_sxx=abs(z_sxx(pnt)) ;|sxx|abs_syy=abs(z_syy(pnt)) ;|syy|abs_szz=abs(z_szz(pnt)) ;|szz|p0=(abs_sxx+abs_syy+abs_szz)/3.0;cam-clay模型中p、q均须为正值,p0由初应力场确定,故cam-clam定义模型参数前须先已知初应力p0_effective=p0-z_pp(pnt) ;p0';q0=sqrt(((abs_sxx-abs_syy)^2+(abs_syy-abs_szz)^2+(abs_szz-abs_sxx)^2)*0.5)q0=sqrt(((abs_sxx-abs_syy)^2+(abs_syy-abs_szz)^2+(abs_szz-abs_sxx)^2)*0.5+3.0*((z_sxy(pnt)) ^2+(z_sxz(pnt))^2+(z_syz(pnt))^2))z_prop(pnt,'mm')=6.0*sin(fai*degrad)/(3.0-sin(fai*degrad)) ;①注三角函数中需将角度转化为弧度temp1=q0/(z_prop(pnt,'mm')*p0_effective)pc0=p0_effective*(1.0+temp1^2)*OCR ;先期有效固结压力,用于确定屈服面v0=1.0+_e0z_prop(pnt,'cam_cp')=p0_effective ;★重要参数,否则不能正确计算有效应力,提示出错"Mean effective pressure is negative"z_prop(pnt,'mpc')=pc0 ;②z_prop(pnt,'poisson')=p_ratio ;③z_prop(pnt,'lambda')=_lambda ;④z_prop(pnt,'kappa')=_kappa ;⑤z_prop(pnt,'mp1')=_mp1 ;⑥z_prop(pnt,'mv_l')=v0+_lambda*ln(2.0*_cu/(z_prop(pnt,'mm')*_mp1))+(_lambda-_kappa)*l n(2.0) ;⑦z_prop(pnt,'bulk_bound')=100*40e6 ;⑧;z_prop(pnt,'bulk_bound')=100*(s_mod+4.0/3.0*s_mod) ;弹性体模上界Kmax;自动确定Kmax时会出现“property bad”错误提示;因为弹性上界对计算结果无影响,在不提示Kmax太小的性况下,取值越小计算收敛越快pnt=z_next(pnt)endloopendset p_ratio=0.25 fai=34.5 _lambda=0.14 _kappa=0.012 _mp1=1e3 _e0=1.2 _cu=10e3 OCR=1.0 ;模型所需参数install_propsolvesave model_cam.sav。

FLAC 3D基础知识

FLAC 3D基础知识

FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。

FLAC3 D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC3D指导书

FLAC3D指导书

《FLAC3D在采矿中的应用》实验指导书河南理工大学能源科学与工程学院采矿实验中心数值模拟实验室2015.06.25目录学生实验守则 (I)实验(一)FLAC3D在采矿中的应用 (1)1 实验目的 (1)2 软件及硬件要求 (1)3 实验步骤 (1)3.1 问题的提出 (1)3.2 建模 (2)3.3 岩体参数 (2)3.4 边界条件 (2)3.5 模型计算 (2)3.6 结果处理 (2)3.7 云图解读 (2)4 实验报告撰写 (3)5 实验报告要求 (3)6 思考题 (3)实验(二)相似模拟位移测量 (1)1 实验目的............................................................................................. 错误!未定义书签。

2 实验设备、仪器和材料..................................................................... 错误!未定义书签。

3 实验步骤............................................................................................. 错误!未定义书签。

3.1 全站仪测量.............................................................................. 错误!未定义书签。

3.2 近景测量.................................................................................. 错误!未定义书签。

4 实验数据计算及结果分析................................................................. 错误!未定义书签。

FLAC3D对基坑开挖数值模拟分析

FLAC3D对基坑开挖数值模拟分析

的手 段 , 在基 坑工 程 中得 到 广 泛 的 应 用 。本 文 以某 地 区基 坑 开挖 为背 景 , 运 用 有 限 差 分 法计 算 模 拟 基 坑 开 挖后 周 围土体 的变 形 和受力 情况 。为 基坑 边 墙 的稳 定 性 分析 及支 护方 式提 供依 据 … 。
② 粉质粘土 : 黄褐 色、 灰 黑 色, 可 塑 。摇 振 反 应 无, 稍有 光泽 , 干 强度 中等 , 韧 性 中等 。该 层分 布连 续 。 地层 的物 理力 学参 数见 表 1 。
A n a l y s i s o f C o n t i n u a i n 3 D i m e n s i o n s的简 写 , 是 三 维 岩 体 力学 有 限差分 计 算 机 程 序 。 由著 名 的 国 际学 者 P e —
t e r C u n d a l l 博 士 开 发 的 面 向 土木 建 筑 、 采 矿、 交通 、 水
( 2 )定义 本构 模 型 和 赋 予 材 料参 数 , 来 限 定 模 型 对 于外 界 扰动做 出的变化 规 律 ;
于基 坑 为轴对 称 图形 , 因此取基 坑 的 1 / 4建立 模 型 。
( 3 )定义边界条件 、 初始条件 , 来定义模型的初始
为了减少边界条件对计算结果的影响 , 在 x轴上 向基 坑外 取 3 0 m, 在 Y轴 上 向基 坑 外侧 取 3 1 m, 基 坑底 面
阶地 。地下水类型为第四系孔隙潜水。稳定水位埋深
为9 . 3~1 1 . 5 m。地 下水位 年变 化幅度 约为 2 . 0 m, 该
利、 地质 、 石 油及 环境 工程 的通 用软 件 系统 。可 以对 土 质、 岩 石或 其它 材料 进行 三维 岩土 工程 三 维数 值 分析 。 F L A C 3 D可 以解 决分 步 开挖 、 大 变 形 及 大应 变 、 非 线 性 和非 稳定 系统 等有 限元难 以实现 的诸 多 复杂 的 工程 问

FLAC_3D_在深基坑开挖与支护数值模拟中的应用

FLAC_3D_在深基坑开挖与支护数值模拟中的应用

第27卷第3期 岩 土 力 学 V ol.27 No.3 2006年3月 Rock and Soil Mechanics Mar. 2006收稿日期:2004-08-16 修改稿收到日期:2004-12-07作者简介:刘继国,男,1976年生,硕士,工程师,主要从事隧道与地下工程方面的设计和研究工作。

E-mail:liujiguogg@文章编号:1000-7598-(2006) 03-0505-04FLAC 3D 在深基坑开挖与支护数值模拟中的应用刘继国1,曾亚武2(1.中交第二公路勘察设计研究院,武汉 430052;2.武汉大学 土木建筑工程学院,武汉 430072)摘 要: 运用FLAC 3D 软件对武汉长江过江隧道江南明挖段深基坑进行了开挖与支护模拟。

计算中采用摩尔-库仑弹塑性模型,基坑围护结构与土体之间的接触面运用接触单元。

通过计算得出不同开挖阶段的地表沉降、基底隆起和墙后土体水平位移,为工程设计与施工提供参考。

关 键 词:FLAC 3D ;接触;基坑开挖与支护 中图分类号:TU 470 文献标识码:AApplication of FLAC 3D to simulation of foundation excavation and supportLIU Ji-guo 1, ZENG Ya-wu 2(1.Second Highway Survey Design and Research Institute, Ministry of Communications, Wuhan 430052, China;2. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China)Abstract: The simulation of excavation and support on the deep pit of the Yangtze River in south was carried out using the software FLAC 3D . During the simulation, the Mohr-Coulomb model was used and contact elements were applied on the interfaces between the structure and soil. This simulation offers the settlements of ground uplifts in the bottom of the pit and horizontal displacements of the soil behind the vertical wall in every step.Key words: FLAC 3D ; contact; foundation pit excavation and support1 引 言在高层建筑及其他工程深基坑施工过程中,支护结构与土相互作用,不断调整自身受力与变形,使基坑内外土体保持稳定或失稳状态,这是一个机理复杂的力学过程[1]。

基坑开挖与支护FLAC数值模拟计算及分析

基坑开挖与支护FLAC数值模拟计算及分析
基坑中由于土体的挖出、自重应力的释放,致使 基底土向上回弹,同时坑壁墙体的侧移、挤压墙前的 土体,也会造成基底的隆起。隆起量的大小是判断基
坑稳定性和将来建筑物沉降的重要因素之一。 在基坑工程中一般都会采取有效措施控制坑壁的
侧移,因而基底的隆起主要是土体的回弹而引起[6]。 在基坑底部隆起量记录中,基坑底部中心线处的隆起 量最大。在设计和施工过程中,不应忽视基坑隆起对 基坑的破坏。
根据工程勘查报告及相关资料,各土层物理力学 参数取如下表 1 所示。
表1 土的物理力学性质表
Table 1 Physical and mechanical properties of soil
分层
粘聚力c(kPa) 内摩擦角ϕ(û) 重度γ(kN/m3) 泊松比 µ
①杂填土 10
10
17
如图 9 所示,除桩身后一定距离内的土体以外, 基坑大部分土体水平位移量较小。支护桩后很大范围 内的土体沉降量有所改变。这主要因为基坑壁附近土 体发生了侧移,而造成了基坑壁后土体的地层损失而 导致沉降量增大。随着土体深度的增大,这种沉降量
第17卷 第1期
张 蕊,等:基坑开挖与支护FLAC数值模拟计算及分析
0 引言
基坑工程一直是岩土工程中的一个重要课题。土 体是各向异性非均质的松散体,精确反映土体性质的 参数难以取得。土中水的含量也直接影响着土体性 质,土体的应力会随着基坑开挖及结构物的加固,而 重新分布。在经典土力学理论基础上,对基坑整体应 力分布观测及结构物的受力分析方面具有一定的局限 性。尽管在土体参数准备方面往往不是很充分,数值 模拟可以随着开挖数据的不断积累不断反演计算。改 进计算模型和参数,同时也积累更多的模拟经验[1]。 本文利用数值模拟对基坑开挖后的变形、应力分布、 结构物受力进行分析。

(整理)FLAC3d基坑模拟

(整理)FLAC3d基坑模拟

计算说明1、计算方法1)内力计算采用弹性支点法;2)土的水平抗力系数按M法确定;3)主动土压力与被动土压力采用矩形分布模式;4)采用力法分析环形内支撑内力;5)采用"理正深基坑支护结构软件FSPW 5.2"计算,计算采用单元计算与协同计算相结合,并采用FLAC-3D进行验证;6)土层参数选取2、单元计算1)基坑分为4个区,安全等级为一级,基坑重要性系数为1.1;2)荷载:施工荷载:10kPa;地面超载:4区活动荷载为25kPa,1区、2区和3区超载按10kPa考虑;水压力;基坑外侧为常水位,内侧坑底以下0.5m。

3)基坑开挖深度:根据现场地形确定,按开挖12.50m确定;4)支撑水平刚度系数:2aTsEAKL sα=式中α取0.8,E取28000MPa,L取7.0m,sa取1.20m,s取7.0m,经计算,kT 大于800 MN/m,本计算中,取800MN/m。

5)计算过程详见附件1,其中1区选用钻孔ZK1,2区选用钻孔ZK4,3区选用钻孔ZK16,4区选用钻孔ZK5。

各区计算结果汇总如下:表2 计算结果汇总表3、协同计算1)计算方法简介协同计算采用考虑支护结构、内支撑结构及土空间整体协同作用有限元的计算方法。

有限元方程如下:([K n]+[Kz]+[Kt]){W)}={F}式中:[K n]-内支撑结构的刚度矩阵;[K z]-支护结构的刚度矩阵;[Kt]-开挖面以下桩侧土抗力的刚度矩阵;{W}-位移矩阵;{F}-荷载矩阵。

计算时采用如下简化计算方法:(1)将基坑周边分成几个计算区域,同一计算区域的支护信息相同,地质条件相同。

(2)将每一个桩或每单位长度的墙看成是一个超级的子结构,这一子结构包括桩墙,土,主动和被动土压力。

(3)将第三道锚索等效为弹性支承点,作为支承系统的一部份进行计算。

(4)单独求解(2)中的子结构,可采用单桩内力计算的一套方法,将刚度和荷载凝聚到与支锚的公共节点上,这是一个一维梁计算问题。

(完整word版)用flac3d模拟基坑开挖

(完整word版)用flac3d模拟基坑开挖

new;网格建立;;;;;;;;;;;;;;;;;;;;;;;;;gen zone brick p0 90 0 -30 p1 202 0 -30 p2 90 4 -30 p3 90 0 0 size 112 4 30 ratio 1 1 1gen zone brick p0 90 0 -30 p1 90 0 0 p2 90 4 -30 p3 0 0 -30 size 30 4 25 ratio 1 1 1.1gen zone brick p0 90 0 -30 p1 0 0 -30 p2 90 4 -30 p3 90 0 -75 size 25 4 18 ratio 1.1 1 1.1gen zone brick p0 90 0 -30 p1 90 0 -75 p2 90 4 -30 p3 202 0 -30 size 18 4 112 ratio 1.1 1 1 gen zone brick p0 202 0 -30 p1 292 0 -30 p2 202 4 -30 p3 202 0 0 size 25 4 30 ratio 1.1 1 1 gen zone brick p0 202 0 -30 p1 202 0 -75 p2 202 4 -30 p3 292 0 -30 size 18 4 25 ratio 1.1 1 1.1;分组;;;;;;;;;;;;;;;;;;;;;;;;;;group 1 range x 90 110 y 0 4 z -30 0group 1 range x 180 202 y 0 4 z -30 0group 2 range group 1 not;建立连续墙单元;;;;;;;;;;;;;;;;;;;;;;;;;;gen separate 1gen merge 1e-4 range x 90 110 y 0 4 z -30.1 -29.9gen merge 1e-4 range x 180 202 y 0 4 z -30.1 -29.9attach face range x 89.99 90.01 y 0.0 4.0 z -29.9 0attach face range x 109.99 110.01 y 0.0 4.0 z -29.9 0attach face range x 179.99 180.01 y 0.0 4.0 z -29.9 0attach face range x 201.99 202.01 y 0.0 4.0 z -29.9 0sel liner id 1 crossdiag group 2 range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1sel liner id 2 crossdiag group 2 range x 109.9 110.1 y -0.1 4.1 z -30.1 0.1sel liner id 3 crossdiag group 2 range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1sel liner id 4 crossdiag group 2 range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1sel liner id 1 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1sel liner id 2 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 109.9 110.1 y -0.1 4.1 z -30.1 0.1sel liner id 3 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1sel liner id 4 prop isotropic (2.0e10, 0.20) thickness 0.8 density 2.5e3 &cs_nk=4e9 cs_sk=4e9 &cs_ncut=4e7 cs_scoh=4e7 cs_scohres=0 cs_sfric=20.0 &range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1;定义支撑结构;;;;;;;;;;;;;;;;;;;;;;;def struct_install1loop i(1,3)structx_zz=-1.0*5.0*(i-1)structx_xx0=90.0structx_xx1=110.0structx_yy=2.0commandsel beam id=2 begin (structx_xx0,structx_yy,structx_zz) end (structx_xx1,structx_yy,structx_zz) nseg=10sel beam id=2 prop dens=0.000 emod=1.0e-6 nu=0.2 &xcarea=0.80 xcj=10.94e-2 xciy=6.67e-2 xciz=4.27e-2 ydirection=(0 0 -1) ;1000x800endcommandendloopendstruct_install1def struct_install2loop i(1,3)structx_zz=-1.0*5.0*(i-1)structx_xx0=180.0structx_xx1=202.0structx_yy=2.0commandsel beam id=3 begin (structx_xx0,structx_yy,structx_zz) end (structx_xx1,structx_yy,structx_zz) nseg=11sel beam id=3 prop dens=0.000 emod=1.0e-6 nu=0.2 &xcarea=0.80 xcj=10.94e-2 xciy=6.67e-2 xciz=4.27e-2 ydirection=(0 0 -1) ;1000x800endcommandendloopendstruct_install2;建立结构单元分组;;;;;;;;;;;;;;;;;;;;;;;;;;;sel group linerwall range sel linersel group struct1 range sel beam x (90.0 110.0) z (-0.1 0.1)sel group struct2 range sel beam x (90.0 110.0) z (-5.1 -4.9)sel group struct3 range sel beam x (90.0 110.0) z (-10.1 -9.9)sel group struct4 range sel beam x (180.0 202.0) z (-0.1 0.1)sel group struct5 range sel beam x (180.0 202.0) z (-5.1 -4.9)sel group struct6 range sel beam x (180.0 202.0) z (-10.1 -9.9);删除beam单元的linksel dele link range sel beam z (-30 0);建立liner间的节点间的刚性linkdef merge_link0node_num=0node_pnt0 = nd_headloop while node_pnt0 # null ;寻找总节点数,注:不能自己任生成node,程序缺省的方式为连续生成无不连续node_num = node_num+1node_pnt0 = nd_next(node_pnt0)endloopnode_num_minus1 = node_num-1link_id=30000loop ii (1,node_num_minus1)node_pnt1 = nd_find(ii)xxa = nd_pos(node_pnt1,2,1)yya = nd_pos(node_pnt1,2,2)zza = nd_pos(node_pnt1,2,3)ii_plus1 = ii+1loop jj (ii_plus1,node_num)node_pnt2 = nd_find(jj)xxb = nd_pos(node_pnt2,2,1)yyb = nd_pos(node_pnt2,2,2)zzb = nd_pos(node_pnt2,2,3)node_dist = sqrt((xxa-xxb)^2+(yya-yyb)^2+(zza-zzb)^2)dist_tol = 1e-1if node_dist <= dist_tol thenlink_pnt1 = nd_link(node_pnt1)link_pnt2 = nd_link(node_pnt2);if link_pnt1 # null then; temp1 = lk_delete(link_pnt1);endifif link_pnt2 # null thentemp2 = lk_delete(link_pnt2)endiflink_id = link_id+1command ;生成新link(6自由度全固结),大的node的id作为target node,小的node的id作为source node,需注意不同情况下的灵活调整sel set link node_tol=dist_tolsel link id=link_id jj target = node tgt_num =ii ;指定link的ID;sel link ii target = node tgt_num = jj ;不指定link的id,自动生成sel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=rigid yrdir=rigid zrdir=rigid range id=link_idendcommandendifendloopendloopendmerge_link0;设置土层材料参数;;;;;;;;;;;;;;;;;;;;;;;;;;;;def b_s_modb_mod =e_mod/(3.0*(1.0-2.0*p_ratio))s_mod =e_mod/(2.0*(1.0+p_ratio))endmodel elasticset e_mod 100e6set p_ratio 0.3b_s_modprop bu=b_mod sh=s_modini dens 1800 range z -75 0def ini_szzszz0=0szzgrad=1800*10commandini szz add szz0 grad 0 0 szzgrad range z -75 0endcommandendini_szzdef ini_sxx_syypnt=zone_headloop while pnt # nullval=k0*z_szz(pnt)z_sxx(pnt)=valz_syy(pnt)=valpnt=z_next(pnt)endloopendset k0=0.50ini_sxx_syy;定义边界处的结构边界条件;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;cyc 0sel node local xdir=(0,1,0) ydir=(0,0,1) range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1 sel node local xdir=(0,1,0) ydir=(0,0,-1) range x 109.9 110.1 y -0.1 4.1 z -30.1 0.1 sel node local xdir=(0,1,0) ydir=(0,0,1) range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1 sel node local xdir=(0,1,0) ydir=(0,0,-1) range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1sel node fix lsys range x 89.9 90.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 89.9 90.1 y 3.9 4.1 z -30.1 0.1sel node fix lsys range x 109.9 110.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 109.9 110.1 y 3.9 4.1 z -30.1 0.1sel node fix lsys range x 179.9 180.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 179.9 180.1 y 3.9 4.1 z -30.1 0.1sel node fix lsys range x 201.9 202.1 y -0.1 0.1 z -30.1 0.1sel node fix lsys range x 201.9 202.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 89.9 90.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 89.9 90.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 109.9 110.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 109.9 110.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 179.9 180.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 179.9 180.1 y 3.9 4.1 z -30.1 0.1sel node fix x yr zr range x 201.9 202.1 y -0.1 0.1 z -30.1 0.1sel node fix x yr zr range x 201.9 202.1 y 3.9 4.1 z -30.1 0.1sel node fix y range x 89.9 90.1 y 0.0 4.0 z -0.1 0.1sel node fix y range x 109.9 110.1 y 0.0 4.0 z -0.1 0.1sel node fix y range x 179.9 180.1 y 0.0 4.0 z -0.1 0.1sel node fix y range x 201.9 202.1 y 0.0 4.0 z -0.1 0.1;set plot meta;plot set rot 20 0 30 ba wh color=on cent=(10 20 0) mag=3.81;set outp node_local_sys.wmf;plot add sel geom black red link=off node=off id=off shrink=0 scale=0.03 nodesys=on range group linerwall any group struct1 any;pl ha;固定边界条件;;;;;;;;;;;;;;;;;;;;;;;;;;fix x range x -0.1 0.1fix x range x 291.9 292.1fix y range y -0.1 0.1fix y range y 3.9 4.1fix x y z range z -75.1 -74.9set grav 0,0,-10solvesave elas.sav;删除侧面内外土体间的连接约束;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;attach delete range x 89.99 90.01 y 0.0 4.0 z -29.9 0attach delete range x 109.99 110.01 y 0.0 4.0 z -29.9 0attach delete range x 179.99 180.01 y 0.0 4.0 z -29.9 0attach delete range x 201.99 202.01 y 0.0 4.0 z -29.9 0;在墙内土体的外侧建立接触面;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;interface 1 face range group 1 x 89.99 90.01 y 0.0 4.0 z -29.9 0interface 2 face range group 1 x 109.99 110.01 y 0.0 4.0 z -29.9 0interface 3 face range group 1 x 179.99 180.01 y 0.0 4.0 z -29.9 0interface 4 face range group 1 x 201.99 202.01 y 0.0 4.0 z -29.9 0interface 1 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 2 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 3 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 4 prop kn=4e8 ks=4e8 tens=5e3 coh=0.0 fric=20 ;接触面参数interface 1 maxedge=1interface 2 maxedge=1interface 3 maxedge=1interface 4 maxedge=1;interface 1 prop kn=4e8 ks=4e8 tens=1e10 sbratio=100;plot set ba wh;pl ske interface red blue attach cyan green;set outp interface_attachment.wmf;pl ha;重新定义连续墙参数;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;sel liner id 1 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 89.9 90.1 y -0.1 4.1 z -30.1 0.1sel liner id 2 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 109.9 110.1 y-0.1 4.1 z -30.1 0.1sel liner id 3 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 179.9 180.1 y -0.1 4.1 z -30.1 0.1sel liner id 4 prop isotropic (2.0e10, 0.20) &cs_nk=4e9 cs_sk=4e9 &cs_scoh=4e7 cs_scohres=0.0 cs_sfric=0.0 range x 201.9 202.1 y -0.1 4.1 z -30.1 0.1;重新定义墙底约束条件;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;def redef_wall_end_link1node_pnt = nd_headlink_id=100000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-90.0)^2+(zz+30.0)^2)if dist_x <=dist_tol thenif link_pnt # null thentemp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link1def redef_wall_end_link2node_pnt = nd_headlink_id=150000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-110.0)^2+(zz+30.0)^2)dist_tol = 1e-1if dist_x <=dist_tol thenif link_pnt # null thenif yy < 85.0temp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link2def redef_wall_end_link3node_pnt = nd_headlink_id=200000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-180.0)^2+(zz+30.0)^2)dist_tol = 1e-1if dist_x <=dist_tol thenif link_pnt # null thentemp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link3def redef_wall_end_link4node_pnt = nd_headlink_id=250000loop while node_pnt # nullnode_id = nd_id(node_pnt)xx = nd_pos(node_pnt,2,1)yy = nd_pos(node_pnt,2,2)zz = nd_pos(node_pnt,2,3)link_pnt = nd_link(node_pnt)dist_x = sqrt((xx-202.0)^2+(zz+30.0)^2)dist_tol = 1e-1if dist_x <=dist_tol thenif link_pnt # null thentemp1 = lk_delete(link_pnt)\link_id = link_id+1commandsel set link node_tol = dist_tolsel link id=link_id node_id target zonesel link attach xdir=rigid ydir=rigid zdir=rigid xrdir=free yrdir=free zrdir=free range id=link_idendcommandendifendifnode_pnt = nd_next(node_pnt)endloopendredef_wall_end_link4;剑桥模型;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;model cam-clay;cam-clay模型则不需定义弹性模量(E、G、K)等参数,自动计算;cam-clay模型中需确定8个模型参数(①-⑧),手册property中的初始比体积cv(v0)和shear 无须给定def install_proppnt=zone_headloop while pnt # nullabs_sxx=abs(z_sxx(pnt)) ;|sxx|abs_syy=abs(z_syy(pnt)) ;|syy|abs_szz=abs(z_szz(pnt)) ;|szz|p0=(abs_sxx+abs_syy+abs_szz)/3.0;cam-clay模型中p、q均须为正值,p0由初应力场确定,故cam-clam定义模型参数前须先已知初应力p0_effective=p0-z_pp(pnt) ;p0';q0=sqrt(((abs_sxx-abs_syy)^2+(abs_syy-abs_szz)^2+(abs_szz-abs_sxx)^2)*0.5)q0=sqrt(((abs_sxx-abs_syy)^2+(abs_syy-abs_szz)^2+(abs_szz-abs_sxx)^2)*0.5+3.0*((z_sxy(pnt)) ^2+(z_sxz(pnt))^2+(z_syz(pnt))^2))z_prop(pnt,'mm')=6.0*sin(fai*degrad)/(3.0-sin(fai*degrad)) ;①注三角函数中需将角度转化为弧度temp1=q0/(z_prop(pnt,'mm')*p0_effective)pc0=p0_effective*(1.0+temp1^2)*OCR ;先期有效固结压力,用于确定屈服面v0=1.0+_e0z_prop(pnt,'cam_cp')=p0_effective ;★重要参数,否则不能正确计算有效应力,提示出错"Mean effective pressure is negative"z_prop(pnt,'mpc')=pc0 ;②z_prop(pnt,'poisson')=p_ratio ;③z_prop(pnt,'lambda')=_lambda ;④z_prop(pnt,'kappa')=_kappa ;⑤z_prop(pnt,'mp1')=_mp1 ;⑥z_prop(pnt,'mv_l')=v0+_lambda*ln(2.0*_cu/(z_prop(pnt,'mm')*_mp1))+(_lambda-_kappa)*l n(2.0) ;⑦z_prop(pnt,'bulk_bound')=100*40e6 ;⑧;z_prop(pnt,'bulk_bound')=100*(s_mod+4.0/3.0*s_mod) ;弹性体模上界Kmax;自动确定Kmax时会出现“property bad”错误提示;因为弹性上界对计算结果无影响,在不提示Kmax太小的性况下,取值越小计算收敛越快pnt=z_next(pnt)endloopendset p_ratio=0.25 fai=34.5 _lambda=0.14 _kappa=0.012 _mp1=1e3 _e0=1.2 _cu=10e3 OCR=1.0 ;模型所需参数install_propsolvesave model_cam.sav。

FLAC3D命令流复习进程

FLAC3D命令流复习进程

1怎样查看模型?答:plot grid可以查看网格,plot grid num 可以查看节点号。

2、请问在圆柱体四周如何施加约束条件?答:可以用fix ... ran cylinder endl end2 radius r1 cylinder endl end2 radius r2 not,其中r2<r1,其实就是选择range的时候选两个圆柱的差,即得到边界。

命令流如下:fix x range endl 1 0 0 end2 1 4 0 rad 1 endl 1 0 0 end2 1 4 0 rad 13、怎么能把一个PLOT的图像数据导出来以便用其他软件绘图?答:用set log on命令,把数据导出来,转到excel里处理一下,然后用surfer 或者什么作图软件绘制就行了。

4、用命令建立模型后,如何显示点的坐标?答:使用plo blo gro gpnum on 命令5、关于gauss_deV寸性质进行高斯正态分布的问题?答:根据手册上的说明:下面的命令设定一个平均摩擦角为40度,标准方差是士5%。

则命令如下:prop friction 40 gauss_dev 2 问题:请问gauss_dev 2中的2是如何计算的?如果把士5%改为士10%,则命令应如何写?40 X 5% = 26、reflect 问题问:gen zone radbrick &p0 (0,0,0) p1 (10,0,0) p2 (0,10,0) p3 (0,0,10)& size 3,5,5,7 & ratio 1,1,1,1.5 & dim 1 4 2 fillplot surfgen zone reflect dip 0 dd 90 (对xy 面做镜像)gen zone reflect dip 90 dd 90 (对yz 面做镜像)(1)dd表示y轴正向顺时针到那条射线的夹角,dip表示对称参照面与xy平面的夹角,对称参照面与xy平面的夹角在xy平面的投影是一条射线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算说明1、计算方法1)内力计算采用弹性支点法;2)土的水平抗力系数按M法确定;3)主动土压力与被动土压力采用矩形分布模式;4)采用力法分析环形内支撑内力;5)采用"理正深基坑支护结构软件FSPW 5.2"计算,计算采用单元计算与协同计算相结合,并采用FLAC-3D进行验证;6)土层参数选取2、单元计算1)基坑分为4个区,安全等级为一级,基坑重要性系数为1.1;2)荷载:施工荷载:10kPa;地面超载:4区活动荷载为25kPa,1区、2区和3区超载按10kPa考虑;水压力;基坑外侧为常水位,内侧坑底以下0.5m。

3)基坑开挖深度:根据现场地形确定,按开挖12.50m确定;4)支撑水平刚度系数:2aTsEAKL sα=式中α取0.8,E取28000MPa,L取7.0m,sa取1.20m,s取7.0m,经计算,kT 大于800 MN/m,本计算中,取800MN/m。

5)计算过程详见附件1,其中1区选用钻孔ZK1,2区选用钻孔ZK4,3区选用钻孔ZK16,4区选用钻孔ZK5。

各区计算结果汇总如下:表2 计算结果汇总表3、协同计算1)计算方法简介协同计算采用考虑支护结构、内支撑结构及土空间整体协同作用有限元的计算方法。

有限元方程如下:([K n]+[Kz]+[Kt]){W)}={F}式中:[K n]-内支撑结构的刚度矩阵;[K z]-支护结构的刚度矩阵;[Kt]-开挖面以下桩侧土抗力的刚度矩阵;{W}-位移矩阵;{F}-荷载矩阵。

计算时采用如下简化计算方法:(1)将基坑周边分成几个计算区域,同一计算区域的支护信息相同,地质条件相同。

(2)将每一个桩或每单位长度的墙看成是一个超级的子结构,这一子结构包括桩墙,土,主动和被动土压力。

(3)将第三道锚索等效为弹性支承点,作为支承系统的一部份进行计算。

(4)单独求解(2)中的子结构,可采用单桩内力计算的一套方法,将刚度和荷载凝聚到与支锚的公共节点上,这是一个一维梁计算问题。

(5)单独求解内支撑系统,将(4)中所得子结构刚度,荷载迭加到内支撑系统,求解后即为最终结果,这是一个二维梁计算问题。

2)基坑模型建立:为能较好地模拟基坑开挖实际情况,在基坑建模时,严格按照基坑实际尺寸进行构建,其构件编号详见附件2图1~3。

3)由于协同计算时,软件无法考虑土体的被动土压力,因此如果按整个场地不同区段不同地层的参数进行计算,其结果会产生较大误差。

为消除这种误差,本协同计算时选用钻孔ZK5作为计算依据,将整个场地的土层视为等厚土层,计算时基坑开挖深度14.80m,地面荷载按25kPa考虑。

4)按以上的简化计算原则,本协同计算结果汇于下表,其计算过程详见附件2协同计算书。

表3 协同计算结果汇总表4、环梁内力力法分析1)模型的简化根据工程实际条件,环梁四周存在多个集中力的作用。

若依据集中力来求解环梁所受弯矩在理论上是成立的,但其工作量过于庞大。

加之,无现成的程序可以利用,以人工运算的方式难于完成。

既使通过人工运算得一结果,也难以保证结果的正确性。

因此,设计者将多个集中力的作用转换为一均布水压力作用。

这是计算过程中的第一步简化,即从图1所示力学模型转化为图2所示的力学模型。

二是将封闭圆环受集中力作用的力学模型转化为非封闭圆环受集中力作用的力学模型,并在圆环开口处施加固定端约束,即从图2所示的力学模型转化为图3所示的力学模型(无铰拱)。

图3所示的结构力学模型,其实是3次超静定结构。

求解该3次超静定结构的内力须采用力法,于是将图3所示的结构力学模型的基本体系如图4所示。

所以环梁内力的结构力学计算转变为一个三绞拱在均匀水压力作用下的3次超静定结构计算问题。

图1 斜撑轴力分布示意图 图2 环梁受均匀水压力作用模型图3 无铰拱受均匀水压力模型 图4 基本体系 2)三绞拱的压力线如果三铰拱中某截面D 左边(或右边)所有外力的合力RD F 已经确定(图5),则由此合力便可以确定该截面的弯矩、剪力、轴力(图6)如下:sin cos D RD D QD RD D NDRD D M F r F F F F αα⎫=⎪=⎬⎪=⎭(1)这里,D r 是由截面形心到合力RD F 的垂直距离,D α是合力RD F 与D 点拱轴切线间夹角。

由此看出,确定截面内力的问题可以归纳为确定截面一边所有外力的合力的问题,包括确定合力的大小、方向及作用线。

对于三铰拱中的任意一截面均存在一外力合力的作用,将这些作用点连接起来即为作用线。

对于拱来说,由于截面轴力一般都是均为压力,故该作用线又称为压力线。

图5 压力线示意图(一) 图6 压力线示意图(二) 3)三铰拱的合理轴线当拱的压力线与拱的轴线重合时,各截面形心到合力作用线的距离为零,则各截面弯矩为零,只受轴力作用,正应力沿截面均匀分布,拱处于无弯矩状态。

这时材料的使用最经济。

在固定荷载作用下使拱处于无弯矩状态的轴线称为合理拱轴线。

理论分析表明,三铰拱在承受均匀水压力时,其合理轴线是圆弧曲线。

如图7所示的曲杆内力的微分关系式为:图7 微分弧段受力分析q qqqqq1X 1X 2X 3X D αDD r RDF DDM NDF QDF d ϕ2d ϕQF MNF rrq s q sRM dM+Q QF dF +N NF dF +QN s Q N r QF dF q ds R dF F q ds R dM F ds ⎫=-⎪⎪⎪=--⎬⎪⎪=⎪⎭(2) 当R →∞时,曲杆即变为直杆,而曲杆的公式(2)即变为直杆的微分关系。

在本问题中,由于拱受均匀水压力q 作用,故切线荷载0s q =,法向荷载r q q =(常数)。

因此,曲杆内力的微分关系式(2)可写成:QN Q N r QF dF ds R dF F q ds R dM F ds ⎫=⎪⎪⎪=--⎬⎪⎪=⎪⎭(3) 设拱处于无弯矩状态,即M =0,将此式代入式(3)即得(Q N NF F C ⎫⎪=⎪⎪=⎬⎪⎪⎪⎭常数)F R=-q (4)由式(4)可知各截面轴力N F 是一个常数,且荷载q 也是常数,因此各截面的曲率半径R 也应是一个常数。

这就是说,拱的轴线应是圆弧曲线。

因此,三拱铰在均匀水压力作用下,如曲线为圆弧,则各截面的弯矩为零,剪力为零,轴力N F qR =-。

4)无铰拱的内力分析如前所述,均匀水压力作用下的无铰拱的内力分析实质上是一三铰拱在均匀水压力作用下的三次超静定问题,应采用力法进行求解。

在对于铰拱进行内力分析时,忽略拱的轴向变形。

我们取三铰拱作为基本体系(如图4)。

基本结构在均匀水压力作用下的受力状态非常简单:0q Qq Nq M F F qR ⎫=⎪=⎬⎪=-⎭(5)计算力法方程的自由项时,如果忽略轴力Nq F 对位移的影响,再考虑到q M 及Qq F 为零,可得123000q q q ⎫∆=⎪∆=⎬⎪∆=⎭(6)因而多余未知力1X 、2X 及3X 全部为零。

由此可知,在忽略轴向变形的假定条件下,无铰圆拱在均匀水压力的内力与三铰圆拱完全相同,即处于无弯矩状态。

耀华商住楼基坑内支撑采用了圆形结构,并且将斜撑对于环形支撑的作用转化为均匀水压力作用,因此环形结构各截面的弯矩应为零,各截面的轴力Nq F qR =-=max max ..22a a F n F nR R ππ-=-g (7) max a F 为斜支撑作用于环梁的最大轴力,n 为斜支撑与环梁支撑点个数。

据协同计算可知,斜支撑对环梁的最大轴力为3500kN ,所以Nq F 为20MN 。

图8 基坑工程支护效果图5、FLAC-3D数值分析FLAC-3D是目前国际上公认最有效地模拟岩土工程问题的数值分析手段。

耀华商住楼基坑工程采取了冲孔桩、锚索及内支撑等等多种支护形式(见图8),尤其采用了环形内支撑的形式。

此外,耀华商住楼基坑工程开挖深度较大且地层较为软弱。

因此,研究支护结构及其岩土体内力及变形分布情况,对于指导合理化设计及保证基坑支护工程的安全有着十分重要的意义。

为了研究支护结构及岩土体内力及变形特征,我院采用美国Itasca公司研制开发的FLAC-3D(三维快速拉格朗日有限差分法)软件进行数值模拟分析。

1)模型的建立数值分析模型见图9。

该模型共有30208个单元,32532个节点。

由于该模型有3层支护结构,因此在开挖过程中,要模拟4种工况:一是天然状态;二是开挖到第1层内支撑下方0.5m处,并施作第一道内支撑;三是开挖到第2层内支撑下方0.5m 处,并施作第二道内支撑;四是开挖到基坑底部。

冲孔桩及内支撑的布置图见图10。

图9 数值分析模型2)边界条件该模型在X面上约束X方向的变形,在Y面上约束Y方向的变形,要模型的底面约束X、Y、Z三个方向的变形。

模型的顶面建立为一水平面,但考虑到基坑本身西高东低,因此在模型的西侧(即X轴负方向侧)施加的荷载较东侧的为大。

在模型的顶面(即0z=面)所施加边界荷载详情如下:在9632x-≤≤-、3212x-≤≤-且9632y-≤≤-范围内竖直向下的边界荷载为0.04MPa;在1296x-≤≤、3212x-≤≤-且3296y-≤≤范围内竖直向下的边界荷载为0.02MPa。

图10 支撑结构布置图3)弹塑性物理力学参数各土层的弹塑性物理力学参数见设计说明部分。

冲孔桩、内支撑及锚杆的物理力学参数为:冲孔桩密度2500kg/m3;弹性模量30GPa;泊松比0.17;横截面积0.785 m2;极惯性矩0.049 m4;内聚力6MPa;内摩角45°;刚度90 GPa。

内支撑其密度、弹性模量及泊松比与冲孔桩的相同,由于各个部位的横截面尺寸有所不同,其极惯性矩亦有所不同,在此不一一列出。

4)数值模拟结果分析①工况一:天然状态天然状态下的位移等值线云图如图11。

该图表明,在现有的工程地质条件下,耀华商住楼基坑周围的岩土体在自身的重力条件下能产生的最大位移为2.9cm。

模型的西侧(即X轴负方向侧)较东侧(即X轴正方向侧)的位移为大。

这是因为西侧由于地势稍高而施加较大表面竖直向荷载的缘故。

地表位移值大多约为2.5cm。

图11 天然状态下的位移等值线云图图12 天然状态下的zσ等值线云图天然状态下的竖直向应力等值线分布云图见图12。

从图10可知,zσ等值线云图呈近水平层状分布,在模型西侧呈现一定程度的向上翘起的现象,在数值大小上表现为在同一平面上模型西侧的竖直向应力略大于模型东侧的。

这亦是由于西侧所施加的竖直向应力较大的缘故。

因为该模型的变形及应力由重力及其地表的荷载所引起,并不存在构造应力的影响,所以其余的应力分量分布特征符合一般规律。

②工况二:开挖到 1.5=-处,并施作第一道内支撑z m图13表明,第一步开挖后,基坑底部的回弹位移最大,最大值约为6mm。

基坑顶部的位移大小约为1.3mm(见图14)。

相关文档
最新文档