华师大七年级下周末强化训练试题3
2021-2022学年度强化训练华东师大版七年级数学下册第9章多边形定向练习试卷(无超纲带解析)
七年级数学下册第9章多边形定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三根小木棒摆成一个三角形,其中两根木棒的长度分别是8cm 和5cm ,那么第三根小木棒的长度不可能是( )A .5cmB .8cmC .10cmD .13cm2、已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( )A .10B .8C .7D .43、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定4、下列图形中,不具有稳定性的是( )A .等腰三角形B .平行四边形C .锐角三角形D .等边三角形5、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )A .60°B .120°C .135°D .150°6、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △()A .12B .6C .3D .27、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A .7B .8C .9D .108、如图,CM 是ABC 的中线,4cm AM =,则BM 的长为( )A .3cmB .4cmC .5cmD .6cm9、在△ABC 中,∠A =50°,∠B 、∠C 的平分线交于O 点,则∠BOC 等于( )A .65°B .80°C .115°D .50°10、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的每个内角都为144︒,那么该正多边形的边数为________.2、将△ABC 纸片沿DE 按如图的方式折叠.若∠C =50°,∠1=85°,则∠2等于______.3、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)4、在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.5、在ABC 中,若50,A B C ∠=︒∠=∠,则B ∠=_______.三、解答题(5小题,每小题10分,共计50分)1、求下列图中的x 的值(1)(2)2、如图①.已知AM CN ∥,点B 为平面内一点,AB BC ⊥于点B ,过点B 作BD AM ⊥于点D ,设BCN α∠=.(1)若30α=︒,求ABD ∠的度数;(2)如图②,若点E 、F 在DM 上,连接BE 、BF 、CF ,使得BE 平分ABD ∠、BF 平分DBC ∠,求EBF ∠的度数;(3)如图③,在(2)问的条件下,若CF 平分BCH ∠,且3BFC BCN ∠=∠,求EBC ∠的度数.3、证明:n 边形的内角和为(n -2)·180°(n ≥3).4、(1)如图1,在△ABC 中,BE 平分∠ABC ,CE 平分∠ACD ,试说明:∠E 12=∠A ;【拓展应用】(2)如图2,在四边形ABDC 中,对角线AD 平分∠BAC .①若∠ACD =130°,∠BCD =50°,∠CBA =40°,求∠CDA 的度数;②若∠ABD +∠CBD =180°,∠ACB =82°,写出∠CBD 与∠CAD 之间的数量关系.5、已知,△ABC 中,∠C >∠B ,AE 平分∠BAC ,M 是AE 上一点,MN ⊥BC 于N .(1)如图①,当点M 与A 重合时,若∠B =40°,∠C =80°,求∠EMN 的度数;(2)如图②,当点M 在线段AE 上(不与A ,E 重合),用等式表示∠EMN 与∠B ,∠C 之间的数量关系,并证明你的结论;(3)如图③,当点M在线段AE的延长线上,连接MC,过点A做MC的垂线,交MC的延长线于点F,交BC的延长线上于点D.①依题意补全图形;②若∠B=α°,∠ACB=β°,∠D=γ°,则∠AMC=°.(用含α,β,γ的式子表示)-参考答案-一、单选题1、D【解析】【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.2、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则m-<<+,即08<<m4444又m为整数,则整数m的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.3、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=12∠BAD,∠ABE=12∠ABC,∠CDF=12∠ADC,∠DCF=12∠BCD,∴∠BAE+∠ABE=12(∠BAD+∠ABC)=90°,∠CDF+∠DCF=12(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.4、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.5、B【解析】【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=6218061()20-⨯︒÷=︒故选:B .【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.6、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S △ABD =12S △ABC =6,然后利用S △BDE =12S △ABD 求解.【详解】解:∵点D 为AC 的中点,∴S △ABD =12S △ABC =12×12=6,∵点E 为AB 的中点,∴S △BDE =12S △ABD =12×6=3.故选:C .【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.7、D【解析】【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.8、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.9、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB=130°,根据角平分线的定义得到∠CBD=12∠ABC,∠ECB=12∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=12∠ABC,∠ECB=12∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- 12(∠ABC+∠ACB)=180°- 12×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.10、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A 、2+3=5,不能组成三角形,不符合题意;B 、4+4=8,不能组成三角形,不符合题意;C 、3+4.8>7,能组成三角形,符合题意;D 、3+5<9,不能组成三角形,不符合题意.故选:C .【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.二、填空题1、10【解析】【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】 解:正多边形的一个内角是144︒,∴该正多边形的一个外角为36︒,多边形的外角之和为360︒,∴边数3601036︒==︒, ∴这个正多边形的边数是10.故答案为:10.【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.2、15︒【解析】【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【详解】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒,在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒,由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ ,四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°,215∴∠=︒,故答案为:15︒.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.3、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】∵BD平分∠GBE∠GBE∴∠EBD=∠GBD=12∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.4、1cm2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D是BC的中点,S△ABC=4cm2∴S△ABD=12S△ABC=12×4=2cm2∵E是AD的中点,∴S△ABE=12S△ABD=12×2=1cm2故答案为:1cm2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 5、65°##65度【解析】【分析】由三角形的内角和定理,得到180A B C ∠+∠+∠=︒,即可得到答案;【详解】解:在ABC 中,180A B C ∠+∠+∠=︒,∵50,A B C ∠=︒∠=∠,∴502180B ︒+∠=︒,∴65B ∠=︒;故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.三、解答题1、(1)65;(2)60.【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x 的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x 的值.【详解】解:(1)∵四边形内角和等于360°,∴x +x +140+90=360,解得:x =65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x +2x +150+120+90=540,解得:x =60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n 边形的内角和等于(n -2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n 边形的内角和等于(n -2)⨯180°”这一隐含的条件.2、(1)30°;(2)45°;(3)97.5°【解析】【分析】(1)延长DB ,交NC 于点H ,如图,先求解∠BHC =90°,再求解∠HBC =60°,然后根据平角的定义求解即可;(2)如解析图,仿(1)的思路易得∠ABD =α,则∠DBC =90°+α,然后根据角平分线的定义和角的和差解答即可;(3)根据邻补角的定义、角平分线的定义和平行线的性质可得1902BCF α∠=︒-=∠DFC ,进而可得7902DFB DFC BFC α∠=∠-∠=︒-,然后结合(2)的结论以及直角三角形的两个锐角互余可得关于α的方程,解方程即可求出α,进一步即可求出结果;【详解】解:(1)延长DB ,交NC 于点H ,如图,AM CN,BD AM//⊥,∴⊥.DH NC90BHC.∠==︒,30BCNαHBC BCN∴∠=︒-∠=︒.9060⊥,AB BC∴∠=︒.ABC90ABD ABC HBC∴∠=︒-∠-∠=︒;18030(2)延长DB,交NC于点H,如图,AM CN,BD AM//⊥,DH NC∴⊥.BHC.90∠=,BCNα∴∠=︒-.HBCα90AB BC ⊥,90ABC ∴∠=︒.180ABD ABC HBC α∴∠=︒-∠-∠=. BE 平分ABD ∠,12DBE ABE α∴∠=∠=. 90HBC α∠=︒-,18090DBC HBC α∴∠=︒-∠=︒+. BF 平分DBC ∠,114522DBF CBF DBC α∴∠=∠=∠=︒+. 11454522EBF DBF DBE αα∴∠=∠-∠=︒+-=︒; (3)BCN α∠=,180180HCB BCN α∴∠=︒-∠=︒-. CF 平分BCH ∠,119022BCF HCF HCB α∴∠=∠=∠=︒-. //AM CN ,1902DFC HCF α∴∠=∠=︒-. 3BFC BCN ∠=∠,3BFC α∴∠=.7902DFB DFC BFC α∴∠=∠-∠=︒-. 由(2)知:1452DBF α∠=︒+.BD AM ⊥,90D ∴∠=︒.90DBF DFB ∴∠+∠=︒. 1745909022αα∴︒++︒-=︒. 解得:15α=︒.4552.5FBC DBF α∴∠=∠=︒+=︒.52.54597.5EBC FBC EBF ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了平行线的性质、角平分线和邻补角的定义、直角三角形两个锐角互余的性质等知识,具有一定的综合性,熟练掌握基本知识、灵活应用数形结合思想和方程思想是解题的关键.3、见解析【解析】【分析】在n 边形内任取一点O ,连接O 与各顶点的线段把n 边形分成了n 个三角形,然后利用n 个三角形的面积减去以O 为公共顶点的n 个角的和,即可求证.【详解】已知: n 边形A 1A 2……An ,求证:()21123112180n n n A A A A A A A A A n -∠+∠++∠=-⋅︒ ,证明:如图,在n 边形内任取一点O ,连接O 与各顶点的线段把n 边形分成了n 个三角形,∵n 个三角形内角和为n ·180°,以O 为公共顶点的n 个角的和360°(即一个周角),∴n 边形内角和为()18036018021802180n n n ⋅︒-︒=⋅︒-⨯︒=-⋅︒ .【点睛】本题主要考查了多边形的内角和,做适当辅助线,得到n 边形的内角和等于n 个三角形的面积减去以O 为公共顶点的n 个角的和是解题的关键.4、(1)见解析;(2)①∠CDA =20°;②∠CAD +41°=∠CBD .【解析】【分析】(1)由三角形外角的性质可得∠ACD =∠A +∠ABC ,∠ECD =∠E +∠EBC ;由角平分线的性质可得1()2ECD A ABC =∠+∠∠,12EBC ABC ∠=∠,利用等量代换,即可求得∠A 与∠E 的关系; (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD =a ,根据已知条件得到∠ABC =180°-2a ,根据三角形的内角和定理和角平分线的定义即可解答.【详解】(1)证明:∵∠ACD 是△ABC 的外角∴∠ACD =∠A +∠ABC∵CE平分∠ACD∴1()2∠=∠+∠ECD A ABC又∵∠ECD=∠E+∠EBC∴1()2ECD EBC A ABC ∠+∠=∠+∠∵BE平分∠ABC∴12EBC ABC ∠=∠∴11() 22∠+∠=∠+∠ABC E A ABC∴12∠=∠E A;(2)①∵∠ACD=130°,∠BCD=50°∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°∵∠CBA=40°∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°∵AD平分∠BAC∴1302CAD CAB︒∠=∠=∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;②∠CAD+41°=∠CBD设∠CBD=α∵∠ABD+∠CBD=180°∴∠ABC=180°﹣2α∵∠ACB=82°∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°∵AD平分∠BAC∴∠CAD=12∠CAB=α﹣41°∴∠CAD+41°=∠CBD.【点睛】本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.5、(1)20EMN︒∠=;(2)1()2N BEM C∠=∠-∠,见解析;(3)①见解析;②1122AMCγβα=-+∠【解析】【分析】(1)根据三角形内角和求出∠BAC=180°-40°-80°=60°.根据AE平分∠BAC,∠CAE=12∠BAC=30°,利用三角形内角和∠C=80°,∠MNC=90°,得出∠CMN=10°即可;(2)∠EMN=12(∠C-∠B);证法1:如图,作AD⊥BC于D.根据AE平分∠BAC,可得∠EAC=12∠BAC=12(180°-∠B-∠C).根据AD BC⊥,Rt△DAC中,∠DAC=90°-∠C,得出∠EAD=∠EAC-∠DAC=12(∠C-∠B).根据AD⊥BC,MN⊥BC,可得AD//MN,得出∠EMN=∠EAD=12(∠C-∠B).证法2:根据 AE平分∠BAC,得出∠EAC=12∠BAC=12(180°-∠B-∠C),根据三角形内角和得出∠AEC=180°-∠EAC-∠C=90°-12(∠C-∠B)即可;(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D,如图;②∠AMC=1122γβα-+.过A作AG⊥BC于G,MN⊥BC于N,可得MN∥AG,得出∠NME=∠GAE=12(∠ACB-∠B),根据MC⊥AD,得出∠CFD=∠CNM=90°,可证∠NMC=∠D,根据两角差∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-12∠ACB+12∠B即可【详解】解:(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-40°-80°=60°.又∵AE平分∠BAC,∴∠CAE=12∠BAC=30°,∵∠C=80°,∠MNC=90°,∴∠CMN=10°,∴∠EMN=∠CAE-∠CM N=30°-10°=20°;(2)∠EMN=12(∠C-∠B).…证法1:如图,作AD⊥BC于D.∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C).∵AD BC,∴Rt△DAC中,∠DAC=90°-∠C,∴∠EAD=∠EAC-∠DAC=12(180°-∠B-∠C)-(90°-∠C)=12(∠C-∠B).∵AD⊥BC,MN⊥BC,∴AD//MN,∴∠EMN=∠EAD=12(∠C-∠B).证法2:∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C),∴∠AEC=180°-∠EAC-∠C=90°-12(∠C-∠B),∴∠EMN=90°-∠AEC=12(∠C-∠B).(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D.如图;②∠AMC=1122γβα-+.过A作AG⊥BC于G,MN⊥BC于N,∴MN∥AG,∴∠NME=∠GAE=12(∠ACB-∠B),∵MC⊥AD,∴∠CFD=∠CNM=90°,∵∠FCD=∠NCM,∴∠NMC=180°-∠CNM-∠NCM=180°-∠CFD-∠FCD=∠D,∴∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-12∠ACB+12∠B,∵∠B=α°,∠ACB=β°,∠D=γ°,∴∠AMC=γ°-12β°+12α°.【点睛】本题考查三角形内角和,角平分线定义,平行线性质,角的和差,补全图形,垂线定义,掌握三角形内角和,角平分线定义,平行线性质,角的和差,作图语句,垂线定义是解题关键.。
2022年最新强化训练华东师大版七年级数学下册第9章多边形综合测评试卷(精选)
七年级数学下册第9章多边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理2、以下列长度的各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.2cm,5cm,9cmC.7cm,8cm,10cm D.6cm,6cm,13cm3、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°4、一个多边形的每个内角均为150°,则这个多边形是()A.九边形B.十边形C.十一边形D.十二边形∠+∠+∠+∠+∠+∠=()度.5、如图,123456A.180 B.270 C.360 D.5406、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个B.2个C.3个D.4个7、下图中能体现∠1一定大于∠2的是()A.B.C.D.8、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于()A.180°B.210°C.360°D.270°9、下列说法正确的()A.连接两点的线段叫做两点之间的距离B .过七边形的一个顶点有5条对角线C .若AC =BC ,则C 是线段AB 的中点D .用一个平面去截三棱柱,截面可能是四边形10、若一个多边形的内角和为720°,则该多边形为( )边形A .四B .五C .六D .七第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将△ABC 沿着DE 翻折,使点A 落到点A '处,A 'D 、A 'E 分别与BC 交于M 、N 两点,且DE ∥BC .已知∠A 'NM =20°,则∠NEC =_____度.2、如图,42AOB ∠=︒,C 为OB 上的定点,P 、Q 分别为OA 、OB 上两个动点,当CP PQ +的值最小时,OCP ∠的度数为______.3、一个多边形的内角和为1080°,则它是______边形.4、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_____度.5、如图,在直线l 1∥l 2,把三角板的直角顶点放在直线l 2上,三角板中60°的角在直线l 1与l 2之间,如果∠1=35°,那么∠2=___度.三、解答题(5小题,每小题10分,共计50分)1、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=32∠CGB,求∠A的度数.2、如图,将一副直角三角板的直角顶点C叠放在一起.(1)如图(1),若∠DCE=33°,则∠BCD=,∠ACB=.(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为.3、证明:n边形的内角和为(n-2)·180°(n≥3).4、如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°;求∠AEC的度数.5、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.(1)如图1,求证:AB∥CD;(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=17∠CDB,求∠GMH的度数.-参考答案-一、单选题1、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.2、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴2cm,4cm,6cm不能组成三角形;B. ∵2+5<9,∴2cm,5cm,9cm不能组成三角形;C. ∵7+8>10,∴7cm,8cm,10cm能组成三角形;D. ∵6+6<13,∴6cm,6cm,13cm不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.3、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.4、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.5、C【解析】【分析】∠=∠+∠∠=∠+∠,再由四边形的内角和等于360°,即可求根据三角形外角的性质,可得946,1015解.【详解】解:如图,∠=∠+∠∠=∠+∠,根据题意得:946,1015∠+∠+∠+∠=︒,∵23910360∴123456360∠+∠+∠+∠+∠+∠=︒.故选:C【点睛】本题主要考查了三角形外角的性质,多边形的内角和,熟练掌握三角形外角的一个外角等于与它不相邻的两个内角的和,四边形的内角和等于360°是解题的关键.6、C【解析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.7、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;∠=∠B、如图,13,∠∠若两线平行,则∠3=∠2,则1=2,若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C 、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D 、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C .【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.8、B【解析】【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.9、D【解析】【分析】根据两点之间的距离、多边形的对角线、线段中点的定义以及截几何体进行判断即可.【详解】解:A 、连接两点的线段的长度叫做两点间的距离,故原说法错误,该选项不符合题意;B 、过七边形的一个顶点有4条对角线,故原说法错误,该选项不符合题意;C 、当点C 在线段AB 上时,若AC =BC ,则C 是线段AB 的中点,故原说法错误,该选项不符合题意;D 、用垂直于底面的平面去截三棱柱,可得到长方形的的截面,故原说法正确,该选项符合题意; 故选:D .【点睛】本题考查了两点之间的距离、多边形的对角线、截一个几何体以及线段中点的定义,掌握相关定义是正确判断的前提.10、C【解析】【分析】根据多边形的内角和,可得答案.【详解】解:设多边形为n边形,由题意,得n-︒=︒,(2)180720n=,解得6故选:C.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和.二、填空题1、140【解析】【分析】根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.【详解】解:∵∠A′NM=20°,∠CNE=∠A′NM,∴∠CNE=20°,∵DE∥BC,∴∠DEN=∠CNE=20°,由翻折性质得:∠AED=∠DEN=20°,∴∠AEN=40°,∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.故答案为:140【点睛】本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.2、6°【解析】【分析】作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,根据CP PQ C P PQ C Q ''+=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠,进而根据直角三角形的两锐角互余,以及角度的和差关系求得OCN ∠即可【详解】解:如图,作点C 关于直线OA 的对称点C ',连接CC ',交OA 于点D ,过点C '作C M OB '⊥,交OA 于点N ,∴='CP C P ,CP PQ C P PQ C Q '+∴'=+≥,且当C Q BO '⊥时最小,所以当CP PQ +的值最小时,当点P 与点N 重合,点Q 与点M 重合时,此时OCP ∠等于OCN ∠, CC OA '⊥又42AOB ∠=︒90,90DC N C ND AOC ONM ''∠+∠=︒∠+∠=︒,ONM C NA '∠=∠42CC M AOB '∴∠=∠=︒9048DCO AOC ∴∠=︒-∠=︒根据对称性可得42NC D DCD '∠=∠=︒48426NCO DCM DCM ∴∠=∠-∠=︒-︒=︒∴当CP PQ +的值最小时,OCP ∠的度数为6︒故答案为:6︒【点睛】本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.3、八【解析】【分析】根据多边形的内角和公式求解即可.n 边形的内角的和等于:()2180n -⨯︒ (n 大于等于3且n 为整数).【详解】解:设该多边形的边数为n ,根据题意,得()18021080n ︒-=︒,解得8n =,∴这个多边形为八边形,故答案为:八.【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.4、720【解析】【分析】根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案.【详解】解:由题意,得两个四边形有一条公共边,得+=,多边形是336由多边形内角和定理,得()-⨯︒=︒.62180720故答案为:720.【点睛】本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边.5、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.三、解答题1、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA交PQ于点H,∵∠ECM=∠ACD,∠DCE=∠ACE,∴∠MCA=∠ACE=∠ECD,∵MN∥PQ,∴∠MCA=∠AHB,∵∠CAB =∠AHB +∠PBA ,且由(2)知∠CAB =∠ECN ,∴∠ABP =∠NCD ,设∠MCA =∠ACE =∠ECD =x ,由(1)可知∠CFB =∠FCN +∠FBQ ,∴∠CFB =270-2x ,由(1)可知∠CGB =∠MCG +∠GBP ,∴∠CGB =135°−12x ,∴270°−2x =32 (135°−12x ) ,解得:x =54°,∴∠AHB =54°,∴∠ABP =∠NCD =180°-54°×3=18°,∴∠CAB =54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.2、(1)57°,147°;(2)∠ACB =180°-∠DCE ,理由见解析;(3)∠DAB+∠CAE =120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,∠=︒-︒=︒;BCD903357ACB∠=︒+︒=︒;9057147故答案为:57°,147°.(2)∠ACB=180°-∠DCE,理由如下:∵∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,∴∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE.(3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、见解析【解析】【分析】在n边形内任取一点O,连接O与各顶点的线段把n边形分成了n个三角形,然后利用n个三角形的面积减去以O 为公共顶点的n 个角的和,即可求证.【详解】已知: n 边形A 1A 2……An ,求证:()21123112180n n n A A A A A A A A A n -∠+∠++∠=-⋅︒ ,证明:如图,在n 边形内任取一点O ,连接O 与各顶点的线段把n 边形分成了n 个三角形,∵n 个三角形内角和为n ·180°,以O 为公共顶点的n 个角的和360°(即一个周角),∴n 边形内角和为()18036018021802180n n n ⋅︒-︒=⋅︒-⨯︒=-⋅︒ .【点睛】本题主要考查了多边形的内角和,做适当辅助线,得到n 边形的内角和等于n 个三角形的面积减去以O 为公共顶点的n 个角的和是解题的关键.4、∠AEC =115º.【解析】【分析】根据三角形内角和定理求出∠C 的度数,根据直角三角形两锐角互余求出∠DAC 的度数,然后根据角平分线的定义求出∠DAE 的度数,再根据三角形的外角的性质即可求出∠AEC 的度数.【详解】解:∵∠BAC =80º,∠B =60º,∴∠C =180º-∠BAC -∠B =180º-80º-60º=40º,∵AD ⊥BC ,∴∠DAC =90º-∠C =90º-40º=50º ,∵AE 平分∠DAC ,∴∠DAE =12∠DAC =12×50º=25º ,∴∠AEC =∠DAE +∠ADE =25º+90º=115º.【点睛】本题考查了三角形内角和定理,直角三角形的性质,角平分线的定义,三角形的外角的性质.熟练掌握各个知识点是解题的关键.5、(1)见详解;(2)∠MEB =40°,(3)∠GMH =80°【解析】【分析】(1)根据等角的补角性质得出∠ABD =∠CDV ,根据同位角相等两直线平行可得AB ∥CD ;(2)根据AB ∥CD ;利用内错角相等得出∠ABD =∠RDB ,根据BE ∥DF ,得出∠EBD =∠FDB ,利用等量减等量差相等得出∠ABE =∠FDR ,根据∠FDR =35°,可得∠ABE =∠FDR =35°即可;(3)设ME 交AB 于S ,根据MG ∥EN ,得出∠NES =∠GMS =∠GES ,设∠NES =y °,可得∠NEG =∠NES +∠GES=2∠NES =2y °,根据∠EBD =2∠NEG ,得出∠EBD =4∠NES =4y °,根据∠EDC =17∠CDB ,设∠EDC =x °,得出∠CDB =7x °,根据AB ∥CD ,得出∠GBE +∠EBD +∠CDB =180°,可得35+4y +7x =180根据三角形内角和∠BDE =∠BDC -∠EDC =7x -x =6x ,∠BED =180°-∠EBD -∠EDB =180°-4y °-6x °,利用EB 平分∠DEN ,得出y °+40°=180°-4y °-6x °,解方程组7414565140x y x y +=⎧⎨+=⎩,解得1510x y =⎧⎨=⎩,可证ME ∥UV ,根据MH ⊥UV ,可求∠SMH =90°,∠SMG =∠NES =10°即可. 【详解】(1)证明:∵∠ABU +∠ABD =180°,∠ABU +∠CDV =180°.∴∠ABU =180°-∠ABD ,∠CDV =180°-∠ABU ,∴∠ABD=∠CDV,∴AB∥CD;(2)解:∵AB∥CD;∴∠ABD=∠RDB,∴∠ABE+∠EBD=∠FDB+∠FDR,∵BE∥DF,∴∠EBD=∠FDB,∴∠ABE=∠FDR,∵∠FDR=35°,∴∠ABE=∠FDR=35°,∴∠MEB=∠ABE+5°=35°+5°=40°,(3)解:设ME交AB于S,∵MG∥EN,∴∠NES=∠GMS=∠GES,设∠NES=y°,∵∠EBD=2∠NEG∴∠NEG=∠NES+∠GES=2∠NES=2y°,∴∠EBD=4∠NES=4y°,∵∠EDC=17∠CDB,设∠EDC=x°∴∠CDB=7x°,∵AB∥CD,∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,∴35+4y+7x=180,∵∠BDE=∠BDC-∠EDC=7x-x=6x,∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,∵EB平分∠DEN,∴∠NEB=∠BED,∵∠NEB=∠NES+∠SEB=y°+40°,∴y°+40°=180°-4y°-6x°,∴74145 65140x yx y+=⎧⎨+=⎩,解得1510xy=⎧⎨=⎩,∴∠EBD=4y°=40°=∠MEB,∴ME∥UV,∵MH⊥UV,∴MH⊥ME,∴∠SMH=90°,,∵∠SMG=∠NES=10°,∴∠GMH=90°-∠SMG=90°-10°=80°.【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.。
2022年强化训练华东师大版七年级数学下册第9章多边形同步测评试卷(含答案详解)
七年级数学下册第9章多边形同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC 中,∠C =50°,∠BAC =60°,AD ⊥BC 于D ,AE 平分∠BAC ,∠DAE =( )A .10°B .15°C .20°D .25°2、下列各组线段中,能构成三角形的是( )A .2、4、7B .4、5、9C .5、8、10D .1、3、63、如图,AD BC ⊥于点D ,GC BC ⊥于点C ,CF AB ⊥于点F ,下列关于高的说法错误的是( )A .在ABC 中,AD 是BC 边上的高B .在GBC 中,CF 是BG 边上的高 C .在ABC 中,GC 是BC 边上的高D .在GBC 中,GC 是BC 边上的高4、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°5、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,106、如图所示,一副三角板叠放在一起,则图中α∠等于( )A .105°B .115°C .120°D .135°7、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A.35°B.20°C.15°D.10°8、下列各组数中,不能作为一个三角形三边长的是()A.4,4,4 B.2,7,9 C.3,4,5 D.5,7,99、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°10、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.2、边长为1的小正方形组成如图所示的6×6网格,点A ,B ,C ,D ,E ,F ,G ,H 都在格点上.其中到四边形ABCD 四个顶点距离之和最小的点是_________.3、已知a ,b ,c 是ABC 的三条边长,化简a b c a b c +-+--的结果为_______.4、如图,一把直尺的一边缘经过直角三角形ABC 的直角顶点C ,交斜AB 边于点D ;直尺的另一边缘分别交AB 、AC 于点E 、F ,若30B ∠=︒,50AEF ∠=︒,则DCB ∠=___________度.5、等腰三角形中,一条边长是2cm ,另一条边长是3cm ,这个等腰三角形的周长是________.三、解答题(5小题,每小题10分,共计50分)1、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.2、如图,在△ABC 中,AD ⊥BE ,∠DAC =10°,AE 是∠BAC 的外角∠MAC 的平分线,BF 平分∠ABC 交AE 于点F ,求∠AFB 的度数.3、如图,在△ABC 中,∠B =40°,∠C =80°,AD ⊥BC 于D ,且AE 平分∠BAC ,求∠EAD 的度数.4、若AE 是ABC 边BC 上的高,AD 是EAC ∠的平分线且交BC 于点D .若40ACB ∠=︒,65B ∠=︒,分别求BAD ∠和DAE ∠的度数.5、如图,已知点D 为△ABC 的边BC 延长线上一点,DF ⊥AB 于点F ,并交AC 于点E ,其中∠A =∠D =40°.求∠B 和∠ACD 的度数.-参考答案-一、单选题1、A【解析】【分析】先由∠BAC和∠C求出∠B,然后由AE平分∠BAC求∠BAE,再结合AD⊥BC求∠BAD,最后求得∠EAD.【详解】解答:解:∵∠C=50°,∠BAC=60°,∴∠B=180°﹣∠BAC﹣∠C=70°.∵AE平分∠BAC,∠BAC=60°,∴∠BAE=12∠BAC=160=302⨯︒︒,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠EAD=∠BAE﹣∠BAD=30°﹣20°=10°.故选:A.【点睛】本题考查了三角形的内角和、角平分线的定义和高线的定义,通过角平分线和高线的定义求得∠BAE 和∠BAD的度数是解题的关键.2、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.3、C【解析】【详解】解:A、在ABC中,AD是BC边上的高,该说法正确,故本选项不符合题意;B、在GBC中,CF是BG边上的高,该说法正确,故本选项不符合题意;C、在ABC中,GC不是BC边上的高,该说法错误,故本选项符合题意;D、在GBC中,GC是BC边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.4、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.5、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.6、A【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C =90°,∠DAE =45°,∠BAC =60°,∴∠CAO =∠BAC -∠DAE =60°-45°=15°,∴α∠=∠C +∠CAO =90°+15°=105°,故选:A .【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.7、C【解析】【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】解:∵45CDE ∠=︒,90C ∠=︒,∴45CED ∠=︒,∴∠CAF=∠CED=45°,∵∠BAC=60°,∴∠BAF=60°-45°=15°,故选:C【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.8、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.9、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.10、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A 不符合题意; 三角形的外角可以是锐角,不一定比锐角大,故B 不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90, 故C 不符合题意; 三角形中可以有三个内角都是锐角,这是个锐角三角形,故D 符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.二、填空题【解析】【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【详解】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒,在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒,由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ ,四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°,215∴∠=︒,故答案为:15︒.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.2、E【解析】【分析】到四边形ABCD 四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.如图所示,连接BD 、AC 、GA 、GB 、GC 、GD ,∵GD GB BD +>,GA GC AC +>,∴到四边形ABCD 四个顶点距离之和最小是AC BD +,该点为对角线的交点,根据图形可知,对角线交点为E ,故答案为:E .【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置. 3、2b【解析】【分析】由题意根据三角形三边关系得到a +b -c >0,b -a -c <0,再去绝对值,合并同类项即可求解.【详解】解:∵a ,b ,c 是ABC 的三条边长,∴a +b -c >0,a -b -c <0,∴|a +b -c |+|a -b -c |=a +b -c -a +b +c=2b .故答案为:2b .【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、20【解析】【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB 即可.【详解】解:∵EF ∥CD ,∴150AEF ∠=∠=︒,∵∠1是△DCB 的外角,∴DCB ∠=∠1-∠B =50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.5、8cm 或7cm ##7cm 或8cm【解析】【分析】因为已知长度为2cm和3cm两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【详解】解:①当2cm为底时,其它两边都为3cm,2cm、3cm、3cm可以构成三角形,周长为8cm;②当3cm为底时,其它两边都为2cm,2cm、2cm、3cm可以构成三角形,周长为7cm;故答案为:8cm或7cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.三、解答题1、这个多边形的边数是6【解析】【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n,由题意得:(n -2)×180°=2×360°,解得n =6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n -2)•180°,外角和为360°.2、∠AFB =40°.【解析】【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠,又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.3、20°【解析】【分析】根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求出∠BAE 的度数,然后根据直角三角形两锐角互余求出∠BAD ,最后根据∠EAD =∠BAD -∠BAE 代入数据进行计算即可得解.【详解】解:∵∠B =40°,∠C =80°,∴∠BAC =180°-∠B -∠C =180°-40°-80°=60°,∵AE 平分∠BAC 交BC 于E ,∴∠BAE =12∠BAC =12×60°=30°,∵∠B =40°,AD ⊥BC ,∴∠BAD =90°-∠B =90°-40°=50°,∴∠EAD =∠BAD -∠BAE =50°-30°=20°.【点睛】本题考查了三角形内角和定理,角平分线的定义,熟记定理并准确识图,观察出∠EAD =∠BAD -∠BAE 是解题的关键.4、25DAE ∠=︒;50BAD ∠=︒【解析】【分析】根据△AEC 的内角和定理可得:18050EAC AEC ACB ∠=︒-∠-∠=︒,根据角平分线的性质可得11502522DAE EAC ∠=∠=⨯︒=︒,根据△ABC 的内角和定理可得∠BAC ,又因为BAE BAC EAC ∠=∠-∠,BAD BAE DAE ∠∠∠=+,即可得解.解:∵AE 是ABC 边BC 上的高∴90AEC ∠=︒∴在EAC 中,有180EAC AEC ACB ∠+∠+∠=︒又∵40ACB ∠=︒∴180EAC AEC ACB ∠=︒-∠-∠1809040=︒-︒-︒50=︒∵AD 是EAC ∠的平分线 ∴11502522DAE EAC ∠=∠=⨯︒=︒∵在ABC 中,有180BAC B BAC ∠+∠+∠=︒ 已知40ACB ∠=︒,65B ∠=︒∴180BAC ACB B ∠=︒-∠-∠1804065=︒-︒-︒75=︒∴755025BAE BAC EAC ∠∠∠=-=︒-︒=︒∴525205BAD BAE DAE ∠∠∠=+=︒=+︒︒【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.5、∠B =50°;∠ACD =90°.【分析】由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得结论.【详解】解:∵DF⊥AB,∴∠BFD=90°,∴∠B+∠D=90°,∵∠D=40°,∴∠B=90°-∠D=90°-40°=50°;∴∠ACD=∠A+∠B=40°+50°=90°.【点睛】本题主要考查了三角形内角和定理及外角的性质,掌握三角形内角和为180°是解题的关键.。
2022年强化训练华东师大版七年级数学下册第9章多边形专题测评试题(含解析)
七年级数学下册第9章多边形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下长度的三条线段,能组成三角形的是()A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,92、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A .40°B .45°C .50°D .60°4、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°5、下列叙述正确的是( )A .三角形的外角大于它的内角B .三角形的外角都比锐角大C .三角形的内角没有小于60°的D .三角形中可以有三个内角都是锐角6、下列各组数中,不能作为一个三角形三边长的是( )A .4,4,4B .2,7,9C .3,4,5D .5,7,97、如图,CM 是ABC 的中线,4cm AM =,则BM 的长为( )A.3cm B.4cm C.5cm D.6cm8、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、69、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个10、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.2、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.3、一个多边形,每个外角都是60︒,则这个多边形是________边形.4、已知,在△ABC 中,∠B =48°,∠C =68°,AD 是BC 边上的高,AE 平分∠BAC ,则∠DAE 的度数为____.5、在ABC 中,已知∠A =60°,∠B =80°,则∠C 是_____°.三、解答题(5小题,每小题10分,共计50分)1、三角形中任意两边之差与第三边有怎样的关系?2、若AE 是ABC 边BC 上的高,AD 是EAC ∠的平分线且交BC 于点D .若40ACB ∠=︒,65B ∠=︒,分别求BAD ∠和DAE ∠的度数.3、如图,已知△ABC 的高AD 和角平分线AE ,∠B =26°,∠ACD =56°,求(1)∠CAD 的度数;(2)∠AED的度数.4、如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.5、如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?-参考答案-一、单选题1、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C 、3+4.8>7,能组成三角形,符合题意;D 、3+5<9,不能组成三角形,不符合题意.故选:C .【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.2、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B .【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.3、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.4、A【解析】【分析】由折叠得到∠B =∠BCD ,根据三角形的内角和得∠A +∠B +∠ACB =180°,代入度数计算即可.【详解】解:由折叠得∠B =∠BCD ,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.5、D【解析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.6、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.7、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.8、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.9、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.10、D【解析】【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°, ∴正多边形的边数=36036=10. 故选:D .【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.二、填空题1、15︒【解析】【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【详解】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒,在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒,由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ ,四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°,215∴∠=︒,故答案为:15︒.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.2、9【解析】【分析】设正多边形的外角为x 度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x 度,则内角为(5x −60)度由题意得:560180x x +-=解得:40x =则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.3、六【解析】【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是60°,∴n =360°÷60°=6,故答案为:六.【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键. 4、10°##10度【解析】【分析】由三角形内角和求出BAC ∠的度数,然后利用角平分线的定义求出BAE ∠的度数,再根据AD ⊥BC 求出BAD ∠的度数,利用DAE BAD BAE ∠=∠-∠即可求出DAE ∠的度数.【详解】解:如图,∵∠B =48°,∠C =68°180180486864BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒∵AE 平分∠BAC11643222BAE BAC ∴∠=∠=⨯︒=︒ ∵AD ⊥BC90BDA ∴∠=︒904842BAD BDA B ∴∠=∠-∠=︒-︒=︒423210DAE BAD BAE ∴∠=∠-∠=︒-︒=︒故答案为10︒【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.5、40【解析】【分析】根据三角形内角和定理计算即可.【详解】解:∵∠A =60°,∠B =80°,∴∠C =180°﹣60°﹣80°=40°,故答案为:40.【点睛】本题考查三角形内角和定理,三角形内角和是180°.三、解答题1、三角形任意两边的差小于第三边.【解析】【分析】由三角形的任意两边之和大于第三边可得,,a b c b c a c a b +>+>+>,再移项即可得到答案.【详解】解:如图,设,,a b c 为任意一个三角形的三条边,则:,,a b c b c a c a b +>+>+>移项可得:,,a c b b a c c b a >->->-即:三角形两边的差小于第三边.【点睛】本题考查的是三角形的三边关系,熟练的利用三角形的任意两边之和大于第三边得到任意两边之差小于第三边是解本题的关键.2、25DAE ∠=︒;50BAD ∠=︒【解析】【分析】根据△AEC 的内角和定理可得:18050EAC AEC ACB ∠=︒-∠-∠=︒,根据角平分线的性质可得11502522DAE EAC ∠=∠=⨯︒=︒,根据△ABC 的内角和定理可得∠BAC ,又因为BAE BAC EAC ∠=∠-∠,BAD BAE DAE ∠∠∠=+,即可得解.【详解】解:∵AE 是ABC 边BC 上的高∴90AEC ∠=︒∴在EAC 中,有180EAC AEC ACB ∠+∠+∠=︒又∵40ACB ∠=︒∴180EAC AEC ACB ∠=︒-∠-∠1809040=︒-︒-︒50=︒∵AD 是EAC ∠的平分线 ∴11502522DAE EAC ∠=∠=⨯︒=︒∵在ABC 中,有180BAC B BAC ∠+∠+∠=︒ 已知40ACB ∠=︒,65B ∠=︒∴180BAC ACB B ∠=︒-∠-∠1804065=︒-︒-︒75=︒∴755025BAE BAC EAC ∠∠∠=-=︒-︒=︒∴525205BAD BAE DAE ∠∠∠=+=︒=+︒︒【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.3、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得CAD ∠的度数;(2)先根据三角形外角性质计算出30BAC ∠=︒,再根据角平分线定义得到1122BAE BAC ∠∠==︒,接着再利用三角形外角性质得到AED ∠.(1)解:在Rt ACD △中,90D ∠=︒,56ACD ∠=︒,180905634CAD ∴∠=︒-︒-︒=︒; (2)解:在ABC ∆中,ACD B BAC ∠=∠+∠,562630BAC ∴∠=︒-︒=︒,AE ∵平分BAC ∠,1152BAE BAC ∴∠=∠=︒, 261541AED B BAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是180︒,合理使用三角形外角性质计算角度.4、20°【解析】【分析】根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求出∠BAE 的度数,然后根据直角三角形两锐角互余求出∠BAD ,最后根据∠EAD =∠BAD -∠BAE 代入数据进行计算即可得解.【详解】解:∵∠B =40°,∠C =80°,∴∠BAC =180°-∠B -∠C =180°-40°-80°=60°,∵AE 平分∠BAC 交BC 于E ,∴∠BAE =12∠BAC =12×60°=30°,∵∠B =40°,AD ⊥BC ,∴∠BAD =90°-∠B =90°-40°=50°,∴∠EAD =∠BAD -∠BAE =50°-30°=20°.【点睛】本题考查了三角形内角和定理,角平分线的定义,熟记定理并准确识图,观察出∠EAD =∠BAD -∠BAE 是解题的关键.5、360°【解析】【分析】分别记,,B C A ∠∠∠的外角为,,αβγ,用αβγ++即可得出答案.【详解】如图,当小汽车从P 出发行驶到B 市,由B 市向C 市行驶时转的角是α,由C 市向A 市行驶时转的角是β,由A 市向P 市行驶时转的角是γ.∴小汽车从P 市出发,经B 市、C 市、A 市,又回到P 市,共转360αβγ++=︒.【点睛】本题考查外角和定理的应用,掌握多边形的外角和为360︒是解题的关键.。
华师大七年级下周末强化训练试题
2010年春季华师大版七年级数学下周末强化训练试题(1)一、基本填空、选择题:1、方程 2x -3=1 的解是____。
2、当 x =____时,代数式 3x +2 与 6-5x 的值相等。
3、试写出一个解为 x =-1 的一元一次方程________。
4、若1=x 是方程72=-a x 的解,则=a ___________ 。
5、当m=_________ 时,单项式23212851y x y x m m +--与是同类项。
6、当m=_________ 时,单项式23212851y x y x m m +--与是同类项。
7、甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为________________________。
8、某次数学测验中有16道选择题,评分办法如下:答对一道得6分,答错一道扣2分,不答得0分。
某学生有一道题未答,那么这个同学至少要答对_____道题,成绩才能在60分以上。
9、.若方程3x+4=0与方程3x+4k=8的解相同,则k=10、若2-=x 是关于x 的方程m x x -=+2143的解,则m = . 11、解方程163221=--+x x 去分母正确的是( ) A 、 632)1(3=--+x x B 、 132)1(3=--+x xC 、 12)32()1(3=--+x xD 、6)32()1(3=--+x x 12、三个连续的偶数,若设中间的偶数为x,那么与它相邻的另两个偶数为( ).A 、x-1,x+1B 、x-2,x+2C 、x-1,x+2D 、x-4,x-213、已知方程5(x+2)=2(5x-1), 则方程的解是( )。
A 、32B 、-2C 、2D 、-32 14、已知当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值是 ( )。
A 、12B 、 6C 、-6D 、-1215、李明存入1000元,定期一年,该种储蓄的年利率为2.25%,到期后扣除20%的利息税后得到本息和为( )。
华师大版七年级数学下册强化训练三
一、选择题1.下面四个图形中,∠1=∠2一定成立的是( )A. B. C. D.2.已知有关于y x ,整式23)1()1(y b y x b a++-与322y x 的和为单项式,求b a +( ) A .1 B .0 C .1- D .2- 3.某商店把一商品按标价的九折出售(即优惠),仍可获利,若该商品的标价为每件元,则该商品的进价为( ) A.元 B.元 C.元 D.元4.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有( ) A.21个交点B.18个交点C.15个交点D.10个交点 5.如图,已知直线和相交于点,是直角,平分,,则的大小为( )A.B.C.D.二、填空题 6.当时,代数式23-+x x 的值为,则当时,代数式=-+1333x x _____.7.若关于y x ,单项式412y xa +-与1223+b y x 的和仍是单项式,则=+-ab b a 22_____.8、如过要在墙上钉牢一根木条,需要 颗钉子,这样做的原因是 9、如图,已知点是直线上一点,射线分别是的平分线,若则_________,__________.10、有一组分数:3579,,,251017…,则第8个数是 。
三、计算题11、[]2(2)18(3)22-+--⨯÷.12、先化简,再求值: 222233x x x x ⎛⎫++- ⎪⎝⎭,其中12x =-.13、已知0)3(22=-++b a ,求代数式)(3)(2)2(32222b ab b b a ab ab +-+--的值14、如图,已知.试问是否与平行?为什么?15、如图,于点,于点,.请问:平分吗?若平分,请说明理由.初中数学试卷金戈铁骑制作。
华师初中七年级数学周末强化训练试题(10)
第 1 页 共 2 页208254255.doc周末强化训练试题(10)(基础巩固题)一、填空题1.一个三角形有_____条角平分线,______条中线,_____条高.2.三角形两边分别为5cm 和6cm,则第三边c 的范围为_____.3.若等腰三角形两边长分别为3和4,则它的周长为______.4.在△ABC 中,∠A=∠B=∠C,则∠A=_____.5.在△ABC 中,∠A -∠C=25°,∠B -∠A=10°,则∠B=______.6.在△ABC 中,∠B=40°,∠C=60°,∠B 和∠C 的平分线交于点O,则∠BOC=___. 二、选择题7.如果三角形的三条高线的交点是三角形的顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形; C.钝角三角形 D.不能确定 8.如图,AC⊥BC,CD⊥AB,DE⊥BC,下列说法中,错误的是( ).A.△ABC 中,AC 是BC 边上的高;B.△BCD 中,DE 是BC 边上的高C.△ABE 中,DE 是BE 边上的高;D.△ACD 中,AD 是CD 边上的高9.图中共有三角形的个数是( ) A.4 B.5 C.6 D.710.如果以4cm 长的线段为底组成一个等腰三角形,腰长x 应在的范围是( ) A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm 11.在△ABC 中,∠A=2∠B=75°,则∠C 等于( ) A.30° B.67°30′ C.105° D.135°12.若三角形两边长分别为6cm 和2cm,第三边长为偶数,则第三边长为( ) A.2cm B.4cm C.6cm D.8cm 三、解答题13.如图,BM 是△ABC 的中线,已知AB=5cm,BC=3cm,求△ABM 和△BCM 的周长之差.14.已知a 、b 、c 是三角形的三边长,化简:│a -b+c│+│a -b-c│.15.如图,已知F 是△ABC 的边BC 延长线上的一点,DF⊥AB,且∠A=56°,∠F=31°,求∠ACF 的度数.15题A EFCBD(强化提高题)16.如图,在△ABC 中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE 的长.8题A E CB D 9题A EB DM 13题AC B第 2 页 共 2 页208254255.doc16题AEBD17.三角形三边长度是三个连续自然数,且三角形的周长小于18,求三边长.18.如图,已知BD 是△ABC 的角平分线,CD 为△ABC 的外角平分线,BD 、CD 交于D,试探索∠D 与∠A 之间的数量关系.18题AEC BD(课外延伸题)19.在△ABC 中,AB=AC,请你画出通过 顶点A 的△ABC 的角平分线、中线和高, 然后观察和度量,你能发现什么结论?21.如果α、β、γ是 △ABC 外角, 20.如图,∠A=∠C,CD⊥AB 于D,交AE 于F, 且∠α:∠β:∠γ=4:2:3, 试判别△AEB 的形状,并说明理由. 求△ABC 三个内角的度数.20题AE FCBD(中考模拟题)22.如图,在△ABC 中,AF 、CE 、BD 都是中线,且交于点H,在图中找出△ABH、△A HC、△BHC 的三边AB 、AC 、BC 边上的中线.23.两根木棒的长分别是7cm 和10cm,要选择第三根木棒,将它们钉成一个三角形,第三根木棒的长有什么限制?说明理由.25.如图,在△ABC 中,∠A:∠ABC:∠ACB=3:4:5,BD、CE 分别是边AC 、AB 上的高,并相交于H,求∠BHC 的度数. H22题AEFCBDH25题AECBD。
强化训练华东师大版七年级数学下册第9章多边形综合测评试卷
七年级数学下册第9章多边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线l 1、l 2分别与△ABC 的两边AB 、BC 相交,且l 1∥l 2,若∠B =35°,∠1=105°,则∠2的度数为( )A .45°B .50°C .40°D .60°2、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A .12B .6C .3D .23、下列长度的三条线段能组成三角形的是( )A .3,4,7B .3,4,8C .3,4,5D .3,3,74、如图,12345∠+∠+∠+∠+∠= ( )A .180°B .360°C .270°D .300°5、如图,∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,则∠BDC 的大小为( )A .3454a ︒+B .2603a ︒+ C .3454a ︒- D .2603a ︒-6、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是()A .30°B .40°C .50°D .60°7、如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=46°,则∠2等于( )A .56°B .34°C .44°D .46°8、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°9、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A .0根B .1根C .2根D .3根10、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为( )A .9条B .8条C .7条D .6条第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A B C D E F ∠+∠+∠+∠+∠+∠的度数为_______.2、如图,在△ABC 中,点D ,E ,F 分别是BC ,AD ,EC 的中点,若△ABC 的面积等于36,则△BEF 的面积为________.3、正五边形的一个内角与一个外角的比______.4、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.5、如图,在△ABC 中,点D 在CB 的延长线上,∠A =60°,∠ABD =110°,则∠C 等于___.三、解答题(5小题,每小题10分,共计50分)1、将一副三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起,其中∠A =60°,∠D =45°.(1)如图1,若∠BOD =65°,则∠AOC =______ ;∠AOC =120°,则∠BOD =____ ;(2)如图2,若∠AOC =150°,则∠BOD =_____ ;(3)猜想∠BOD 与∠AOC 的数量关系,并结合图1说明理由;(4)如图3三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针以1秒钟15°的速度旋转,当时间t(其中0<t≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t的值.2、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE =∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.3、如图,在ABC中,AD是角平分线,54∠=︒.C∠=︒,76B(1)求BAD ∠的度数;(2)若DE AC ⊥,求EDC ∠的度数.4、如图,在△ABC 中,AD ⊥BE ,∠DAC =10°,AE 是∠BAC 的外角∠MAC 的平分线,BF 平分∠ABC 交AE 于点F ,求∠AFB 的度数.5、如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=40︒,∵l1∥l2,∴∠2=∠3=40︒,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.2、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=12S△ABC=6,然后利用S△BDE=12S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=12S△ABC=12×12=6,∵点E为AB的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.3、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.4、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.5、A【解析】【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.6、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A =∠ACD −∠B =60°−20°=40°,故选:B .【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.7、C【解析】【分析】依据l 1∥l 2,即可得到∠3=∠1=46°,再根据l 3⊥l 4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l 1∥l 2,∠1=46°,∴∠3=∠1=46°,又∵l 3⊥l 4,∴∠2=90°﹣46°=44°,故选:C .【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.8、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.9、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.10、A【解析】【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.二、填空题1、360【解析】【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【详解】解:如图,∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360︒.【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键. 2、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点D ,E ,F 分别是BC ,AD ,EC 的中点,∴AE =DE =12AD ,EF =CF =12CE ,BD =DC =12BC ,∵△ABC 的面积等于36, ∴11361822ABD ACD ABC S S S ===⨯=, 192ABE BED ABD S S S ===,192AEC CDE ACD S S S ===, ∴9918BEC BDE CDE S S S =+=+=,∴1118922BEF BCF BEC S S S ===⨯=, 故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..3、32【解析】【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案.【详解】 解:正五边形的一个内角的度数为(52)1801085-⨯︒=︒,正五边形的一个外角的度数为360725︒=︒, ∴正五边形的一个内角与一个外角的比为1083722︒=︒, 故答案为:32. 【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键. 4、70°【解析】【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩,解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.5、50°【解析】【分析】首先根据平角的概念求出ABC ∠的度数,然后根据三角形内角和定理即可求出C ∠的度数.【详解】解:∵∠ABD =110°,∴18070ABC ABD ∠=︒-∠=︒,∴180180607050C A ABC ∠=︒-∠-∠=︒-︒-︒=︒故答案为:50°.【点睛】此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.三、解答题1、(1)115°,60°;(2)30°;(3)∠AOC +∠DOB =180°,理由见解析;(4)时间t 为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=65°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,若∠AOC=120°,则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;故答案为:115°;60°;(2)如图2,若∠AOC=150°,则∠BOD=360°-∠AOC-∠AOB-∠COD=360°-150°-90°-90°=30°;故答案为:30°;(3)∠AOC与∠BOD互补.理由如下:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补;(4)分四种情况讨论:当OD⊥AB时,∠AOD=90°-∠A=30°,t=30°÷15°=2(秒);当CD⊥OB时,∠AOD=∠D=45°,t=45°÷15°=3(秒);当CD⊥AB时,∠AOD=180°-60°-45°=75°,t=75°÷15°=5(秒);当OD⊥OA时,∠AOD=90°,t=90°÷15°=6(秒);综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【点睛】本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.2、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.【解析】【分析】(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;(3)设∠BAD=x,仿照(2)的解法计算.【详解】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=902x︒+,∴∠CDE=45°+x﹣902x︒+=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系3、 (1)25BAD∠=︒;(2)14EDC∠=︒.【解析】【分析】(1)根据三角形内角和定理可求出50BAC∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED∠=︒,然后根据三角形内角和定理即可得.(1)解:∵54B∠︒=,76C∠︒=,∴180180547650BAC B C∠=︒-∠-∠=︒-︒-︒=︒,∵AD是角平分线,∴1252BAD BAC∠=∠=︒,∴25BAD∠=︒;(2)∵DE AC⊥,∴90AED∠=︒,∴180180907614EDC AED C∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.4、∠AFB =40°.【解析】【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠,又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.5、85°【解析】【分析】由高的定义可得出∠ADB =∠ADC =90,在△ACD 中利用三角形内角和定理可求出∠ACB 的度数,结合CE 平分∠ACB 可求出∠ECB 的度数.由三角形外角的性质可求出∠AEC 的度数,【详解】解:∵AD是BC边上的高,∴∠ADB=∠ADC=90.在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.∵CE平分∠ACB,∠ACB=35°.∴∠ECB=12∵∠AEC是△BEC的外角,50∠=︒,B∴∠AEC=∠B+∠ECB=50°+35°=85°.答:∠AEC的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.。
华师大七年级下周末强化训练试题(3)
周末强化训练试题(3)填空、选择题1. 若方程ax -2y =4的一个解是 则a 的值是( )A 、-1B 、3C 、1D 、-3 2. 二元一次方程2x -3y =4的解是( )A 、任何一个有理数对B 、无穷多个数对,但不是任何一个有理数对C 、仅有一个有理数对D 、有限个有理数对3. 已知方程:①2x -y =3;②x +1=2;③x 3+3y =5;④x -xy =10;⑤x +y +z =6.其中是二元一次方程的有______________(填序号即可) 4. 试写出一个二元一次方程组,使它的解是 ,那个方程组能够是________.5. 已知x +y =4且x -y =10,则2xy =________.6. 已知 是方程组 的解,则a =_____,b =______.7. 关于x 、y ,规定一种新的运算:x*y =ax +by ,其中a 、b 为常数,等式右边是通常的加法和乘法运算,已知3*5=15,4*7=28,则a +b =_______.8. 在423=+y x 中,用含x 的代数式表示y ,可得__________________。
9. 若522312=+--a b a y x 是二元一次方程,则=+b a ___________ 。
10. 方程473-=-x 的正整数解是___________ 。
11. 不解方程,判别方程组⎩⎨⎧=+=+62432y x y x 解的情形是___________。
方程组⎩⎨⎧=+=+62422y x y x 解的情形是___________。
方程组⎩⎨⎧=-=+y x y x 352解的情形是___________。
12. 某商品进价为x 元,商店将价钱提高30%后作零售价销售,在销售旺季事后,商店又以8折的价钱开展促销活动。
这时一件商品的售价为___________ 。
13. 某校学生参加运土劳动,一部份学生抬土,另一部份学生挑土。
2022年最新强化训练华东师大版七年级数学下册第9章多边形同步训练试卷(精选含答案)
七年级数学下册第9章多边形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根2、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,73、下图中能体现∠1一定大于∠2的是()A.B.C.D.4、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°5、一个多边形的每个内角均为150°,则这个多边形是()A.九边形B.十边形C.十一边形D.十二边形6、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C.D.7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°8、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.59、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,710、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A .15°B .20°C .25°D .30°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.2、如图,已知点A 是射线BE 上一点,过A 作CA BE ⊥交射线BF 于点C ,AD BF ⊥交射线BF 于点D ,给出下列结论:①1∠是B 的余角;②图中互余的角共有3对;③1∠的补角只有ACF ∠;④与ADB ∠互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).3、已知一个多边形的每个外角都是30°,那么这个多边形的边数是__________.4、在Rt ABC 中,锐角50A ∠=︒,则另一个锐角B ∠=_______.5、若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A =45°,∠BDC =60°,求∠BED 的度数.2、如图,每个小正方形的边长均为1(1)图中阴影部分的面积是多少?边长是多少?(2)若(1)中边长的整数部分为a,小数部分为b,求a﹣b的值.3、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.4、【教材重现】如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.【问题思考】结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:【问题探究】n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有对角线(用含有n的代数式表示).【问题拓展】(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接条线段(用含有x 的代数式表示,不必化简).5、三角形中任意两边之差与第三边有怎样的关系?-参考答案-一、单选题1、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.2、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.3、C【解析】【分析】由对顶角的性质可判断A ,由平行线的性质可判断B ,由三角形的外角的性质可判断C ,由直角三角形中同角的余角相等可判断D ,从而可得答案.【详解】解:A 、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B 、如图,13,∠=∠若两线平行,则∠3=∠2,则1=2,∠∠若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C 、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D 、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C .【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.4、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.5、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n =360°÷30°=12,故选:D .【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.6、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A 、B 、C 均不是高线.故选:D .【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.7、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.8、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.9、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.10、A【解析】【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.二、填空题1、9【解析】【分析】设正多边形的外角为x 度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x 度,则内角为(5x −60)度由题意得:560180x x +-=解得:40x =则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.2、①④##④①【解析】【分析】根据垂直定义可得∠BAC =90°,∠ADC =∠ADB =∠CAE =90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.3、12【解析】【分析】利用任何多边形的外角和是360°除以外角度数即可求出答案.【详解】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.4、40︒【解析】【分析】根据直角三角形两锐角互余,即可求解.【详解】解:在Rt ABC 中,∵锐角50A ∠=︒,∴另一个锐角90905040B A ∠=︒-∠=︒-︒=︒ .故答案为:40︒【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形两锐角互余是解题的关键.5、8【解析】【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∵一个n 边形的每个内角都等于135°,∴则这个n 边形的每个外角等于18013545︒-︒=︒÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.三、解答题1、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.2、 (1)面积17(2)8【解析】【分析】(1)利用大正方形面积-4个小三角形面积可求阴影部分的面积是17,则其边长是面积的算术平方根(2)通过估算45,可求得a=4,b4,a﹣b=8.(1)解:大正方形面积为5×5=25,每个小三角形是直角三角形,两直角边长为1与4,每个小三角形面积为:11422⨯⨯=,四个小三角形面积为4×2=8,图中阴影部分的面积为25-8=17,(2)解:∵42<17<52,∴45,a=4,小数部分b﹣4,∴a﹣b=4﹣4),=4,=8【点睛】本题考查实数的有关计算,正方形面积,三角形面积,算术平方根,估值,掌握实数的有关计算,正方形面积,三角形面积,算术平方根,估值,代数式的值,会表示整数部分与小数部分是解题关键.3、见解析【解析】【分析】根据三角形外角的性质,可得∠B =∠ACB ,再由BC 平分∠ACD ,可得∠B =∠DCB ,即可求证.【详解】证明:∵∠CAE =∠ACB +∠B ,∠CAE =2∠B ,∴∠B =∠ACB ,又∵BC 平分∠ACD ,∴∠ACB =∠DCB ,∴∠B =∠DCB ,∴AB ∥CD (内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.4、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,3n -条;(3)2n n -条;(1)6;(2)105;(3)()12x x - 【解析】【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数3-=一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到n 边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;n边形的一个顶点出发,得到3n-条对角线.n边形的一个顶点可以得到3n-条对角线,故n个顶点共有(3)n n-,由于每条对角线重复连接了一次,故n边形共有(3)2n n-条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,∴对角线条数为2,四边形的边数为4,∴一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,∴对角线条数为90,四边形的边数为15,∴一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有x个点可以组成x边形,每个点可以得到3x-条对角线,四个点共(3)x x-条,每条对角线重复连接了一次,∴对角线条数为(3)2x x -, 四边形的边数为x ,∴一共可以连接()()3122x x x x x --+=条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.5、三角形任意两边的差小于第三边.【解析】【分析】由三角形的任意两边之和大于第三边可得,,a b c b c a c a b +>+>+>,再移项即可得到答案.【详解】解:如图,设,,a b c 为任意一个三角形的三条边,则:,,a b c b c a c a b +>+>+>移项可得:,,a c b b a c c b a >->->-即:三角形两边的差小于第三边.【点睛】本题考查的是三角形的三边关系,熟练的利用三角形的任意两边之和大于第三边得到任意两边之差小于第三边是解本题的关键.。
周末练习(华师大七年级下期末精选)
周末练习121.下列变形正确的是( )A. 若2x = 2y ,则x=y B. 若xa = ya ,则x=yC. 若x(x −2) = 5(2−x),则x = −5D. 若(m+n)x=(m+n)y ,则x = y2.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集是3≤x <5,则ba 的值是( )A .-2B .-12C .-4D .-143.若不等式组841x x x m +<-⎧⎨≥⎩的解是x>3,则m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <4. 如图AD 是△ABC 的中线,DE 是△ADC 的高线,AB =3,AC =5,DE =2,点D 到AB 的距离是( )5.如图,在△ABC 中,点D 为AC 上一点,点E 为AB 上一点,若AB=4, AD:DC=1:2,且S △DEC=12S △ABC,则EB 的长为()D. 2(4题) (5题)6、已知方程组⎩⎨⎧+-=+-=+12232k y x k y x 的解满足5≥-y x ,则K 可取的值为( )A 、—2B 、0C 、1D 、37. 为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人。
结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人。
如果设这1000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A.2210002.5%0.5%x y x y ⎧-=⎪⎨+=⎪⎩B. 1000222.5%0.5%x y x y⎧+=⎪⎨-=⎪⎩ C. 10002.5%0.5%22x y x y ⎧-=⎨⨯+⨯=⎩ D. 10002.5%0.5%22x y x y ⎧+=⎨⨯-⨯=⎩二. 填空题8.已知在△ABC 中,∠A =60°,∠B -∠C =40°,则∠B = .9. 如图所示,把一个三角形纸片ABC 的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )10. 如图,△ODC 是由△OAB 绕点O 顺时针旋转30后得到的图形,若点D 恰好落在AB 上,则∠BDC 的度数是( )(9题) (10题)11. x 与y 的平方和一定是非负数,用不等式表示为_______________________.12. 等腰三角形的两边长为3和6,则这个三角形的周长为 .13.一艘轮船由甲码头到乙码头,顺水而行,用了2 h ;由乙码头返回甲码头逆流而行,用了2.5 h ;已知船在静水中的速度为27 km /h ,则水流的速度为_____________14. 已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm,则AB 与AC 的差为________ 三.解答题15. 解方程组23032512247x y z x y z x y z -+=⎧⎪++=⎨⎪--=-⎩16.若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x-12-1≤x 的解,求m 的取值范围.17.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.18如图,∠AOB=90∘,点C. D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50∘(图1),试求∠F.(2)当C.D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.19. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元。
2022年强化训练华东师大版七年级数学下册第9章多边形章节测试试卷(含答案详解)
七年级数学下册第9章多边形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A .12B .6C .3D .22、三根小木棒摆成一个三角形,其中两根木棒的长度分别是8cm 和5cm ,那么第三根小木棒的长度不可能是( )A .5cmB .8cmC .10cmD .13cm3、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形4、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A.三角形B.四边形C.五边形D.六边形5、下列图形中,不具有稳定性的是()A.等腰三角形B.平行四边形C.锐角三角形D.等边三角形6、四边形的内角和与外角和的数量关系,正确的是()A.内角和比外角和大180°B.外角和比内角和大180°C.内角和比外角和大360°D.内角和与外角和相等7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米8、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C.D.9、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,710、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是_____.2、如图,∠MAN =100°,点B ,C 是射线AM ,AN 上的动点,∠ACB 的平分线和∠MBC 的平分线所在直线相交于点D ,则∠BDC 的大小为__________度.3、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)4、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)5、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,完成下面的证明:∵MG 平分∠BMN ,∴∠GMN =12∠BMN ( ),同理∠GNM =12∠DNM .∵AB ∥CD∴∠BMN +∠DNM =________( ).∴∠GMN +∠GNM =________.∵∠GMN +∠GNM +∠G =________,∴∠G =________.2、如图,AD 是ABC 的高,CE 是ADC 的角平分线.若BAD ECD ∠=∠,70B ∠=︒,求CAD ∠的度数.3、如图,已知直线EF GH ∥,AC BC ⊥,BC 平分DCH ∠.(1)求证:ACD DAC ∠=∠;(2)若ACG ∠比BCH ∠的2倍少3度,求DAC ∠的度数.4、如图:是一个大型模板,设计要求BA 与CD 相交成26︒角,DA 与CB 相交成37︒角,现小燕测得151,66,88,55A B C D ∠=︒∠=︒∠=︒∠=︒,她就断定这块模板是合格的,这是为什么?5、探究与发现:(1)如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD.①若70A∠=︒,则P∠=.②若Aα∠=,用含有α的式子表示P∠为.(2)如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由.(3)如图(3),在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.-参考答案-一、单选题1、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=12S△ABC=6,然后利用S△BDE=12S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=12S△ABC=12×12=6,∵点E为AB的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.2、D【解析】【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.3、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.4、A【解析】【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.5、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.6、D【解析】【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.7、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.9、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∠=∠+︒,∵3230∠=︒-︒=︒;∴21153085故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.二、填空题1、54︒或99︒【解析】【分析】根据新定义分三种情况:①当99°的内角是另一个角的两倍时,直接可得α的度数;②当一个内角α是99︒的两倍时,不符合三角形的内角和关系,舍去;③当三角形中另两个角是“倍角”关系时,列方程得到199=1802αα++︒︒,求解即可.【详解】解:分三种情况:①当99°的内角是另一个角的两倍时,倍角α的度数是99︒;②当一个内角α是99︒的两倍时,则=299=198α⨯︒︒,不符合三角形的内角和关系,故舍去;③当三角形中另两个角是“倍角”关系时,得到199=1802αα++︒︒,得α=54︒,故答案为:54︒或99︒.【点睛】此题考查了三角形的内角和定理,新定义计算,一元一次方程,正确理解新定义并列式计算是解题的关键.2、50【解析】【分析】根据角平分线的定义和三角形的外角性质解答即可.【详解】解:∵CD平分∠ACB,BE平分∠MBC,∴∠BCD=12∠ACB,∠EBC=12∠MBC,∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,∴∠BDC=∠EBC-∠BCD=12∠MBC-12∠ACB=12∠MAN=50°,故答案为:50.【点睛】本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.3、180°-α【解析】【分析】根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∠=,∴∠AEO=∠ADO=90°,又BACα∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.4、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】∵BD平分∠GBE∠GBE∴∠EBD=∠GBD=12∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC ∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.5、720°##720度【解析】【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为()()180218062720n ︒⨯-=︒⨯-=︒;故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.三、解答题1、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°【解析】【分析】根据角平分线的定义,可得∠GMN =12∠BMN ,∠GNM =12∠DNM . 再由AB ∥CD ,可得∠BMN +∠DNM =180°,从而得到∠GMN +∠GNM =90°.然后根据三角形的内角和定理,即可求解.【详解】证明:∵MG 平分∠BMN ,∴∠GMN =12∠BMN (角分线的定义),同理∠GNM =12∠DNM .∵AB ∥CD ,∴∠BMN +∠DNM =180°(两直线平行,同旁内角互补).∴∠GMN +∠GNM =90°.∵∠GMN +∠GNM +∠G =180°,∴∠G =90°.【点睛】本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.2、50︒【解析】【分析】 AD 是ABC 的高,有90ADB ADC ∠=∠=︒;由70B ∠=︒知20BAD ∠=︒;CE 是ADC 的角平分线可得12ECD ACD ∠=∠;20BAD ECD ∠=∠=︒,40ACD ∠=︒;在ACD △中,904050CAD ∠=︒-︒=︒. 【详解】解:∵AD 是ABC 的高∴90ADB ADC ∠=∠=︒∵70B ∠=︒∴20BAD ∠=︒∵CE 是ADC 的角平分线∴12ECD ACD ∠=∠∵20BAD ECD ∠=∠=︒∴40ACD ∠=︒∴在ACD △中,904050CAD ∠=︒-︒=︒.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.3、 (1)见解析(2)59︒【解析】【分析】(1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得12∠=∠,23∠∠=,25=9034=90∠+∠︒∠+∠︒,,进而即可得45∠=∠,即ACD DAC ∠=∠; (2)根据题意,由(1)的角度之间关系可得1590∠+∠=︒,结合已知条件建立二元一次方程组,解方程组即可求解.(1)如图,BC 平分DCH ∠12∠∠∴=EF GH ∥13∠∠∴=23∴∠=∠AC BC ⊥,25=9034=90∴∠+∠︒∠+∠︒,45∴∠=∠即ACD DAC ∠=∠(2)如图,EF GH ∥4ACG ∴∠=∠45,12∠=∠∠=∠5,1ACG BCH ∴∠=∠∠=∠由ACG ∠比BCH ∠的2倍少3度,即5213∠=∠-︒①5290∠+∠=︒,又12∠=∠即5190∠+∠=︒②213190∴∠-︒+∠=︒解得131∠=︒45213231359∠=∠=∠=∠-︒=⨯︒-︒=∴︒DAC∴∠=︒59DAC【点睛】本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.4、合格,理由见解析【解析】【分析】延长DA,CB相交于点F,延长BA,CD相交于点E,然后根据三角形内角和定理求解即可.【详解】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E,∵8855143C ADC∠+∠=︒+︒=︒,∴18037∠∠,F C ADC∠=︒--=︒∵8866154∠+∠=︒+︒=︒,C ABC∴18026∠=︒--=︒∠∠,E C ABC∴这块模板是合格的.【点睛】本题主要考查了三角形内角和定理,解题的关键在于能够熟练掌握三角形内角和定理.5、(1)①125°②∠P=90°+12α;(2)∠P=12(∠A+∠B)(3)∠P=12(∠A+∠B+∠E+∠F)−180°【解析】【分析】(1)①根据角平分线的定义可得:∠CDP=12∠ADC,∠DCP=12∠ACD,根据三角形内角和为180°可得∠P与∠A的数量关系;②同①的方法即可求解;(2)根据角平分线的定义可得:∠CDP=12∠ADC,∠DCP=12∠BCD,根据四边形内角和为360°,可得∠BCD+∠ADC=360°−(∠A+∠B),再根据三角形内角和为180°,可得∠P与∠A+∠B的数量关系;(3)根据角平分线的定义可得:∠CDP=12∠ADC,∠DCP=12∠BCD,根据六边形内角和为720°,可得∠BCD+∠EDC=720°−(∠A+∠B+∠E+∠F),再根据三角形内角和为180°,可得∠P与∠A +∠B的数量关系.【详解】解:(1)①∵DP、CP分别平分∠ADC和∠ACD,∴∠CDP=12∠ADC,∠DCP=12∠ACD∵∠A+∠ADC+∠ACD=180°∴∠ADC+∠ACD=180°−∠A∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠ACD)∴∠P=180°−12(180°−∠A)=90°+12∠A=90°+12×70°=125°故答案为:125°;②∵DP、CP分别平分∠ADC和∠ACD,∴∠CDP=12∠ADC,∠DCP=12∠ACD∵∠A+∠ADC+∠ACD=180°∴∠ADC+∠ACD=180°−∠A∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠ACD)∴∠P=180°−12(180°−∠A)=90°+12∠A=90°+12α故答案为:∠P=90°+12α;(2)∠P=12(∠A+∠B)理由如下:∵DP、CP分别平分∠ADC和∠BCD,∴∠CDP=12∠ADC,∠DCP=12∠BCD∵∠A+∠B+∠BCD+∠ADC=360°∴∠BCD+∠ADC=360°−(∠A+∠B)∵∠P+∠PDC+∠PCD=180°∴∠P=180°−(∠PDC+∠PCD)=180°−12(∠ADC+∠BCD)∴∠P=180°−12[360°−(∠A+∠B)]=12(∠A+∠B)(3)∵DP、CP分别平分∠EDC和∠BCD∴∠PDC=12∠EDC,∠PCD=12∠BCD∵∠A+∠B+∠E+∠F+∠BCD+∠EDC=720°∴∠BCD+∠EDC=720°−(∠A+∠B+∠E+∠F)∵∠P+∠PDC+∠PCD=180°(∠EDC+∠BCD)∴∠P=180°−(∠PDC+∠PCD)=180°−12[720°−(∠A+∠B+∠E+∠F)]∴∠P=180°−12(∠A+∠B+∠E+∠F)−180°∴∠P=12(∠A+∠B+∠E+∠F)−180°.故答案为:∠P=12【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键.。
2022年最新强化训练华东师大版七年级数学下册第10章轴对称、平移与旋转专项训练试卷(含答案详解)
七年级数学下册第10章轴对称、平移与旋转专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为()A.2个B.3个C.4个D.5个2、以下四大通讯运营商的企业图标中,是轴对称图形的是()A.B.C.D.3、下列图形中,对称轴最多的图形是()A.B.C.D.4、下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录.2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”.下列四个剪纸图案是轴对称图形的为()A.B.C.D.6、在如下图的汽车标志中,不是..轴对称图形的是()A.B.C.D.7、下列交通标志中,是轴对称图形的是()A.B.C.D.8、下列学习类APP的图表中,可看作是轴对称图形的是()A.B.C.D.9、下列四个图案中,不是轴对称图形的是()A.B.C.D.10、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形纸片中,6cm AB =,9cm AC =,10cm BC =.沿过点A 的直线折叠这个三角形,使点B 落在AC 边上的E 处,折痕为AD ,则DEC 周长为__________cm .2、现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,如:中、甲;请另写一个是轴对称图形的汉字__________.3、如图所示,要在竖直高AC 为3米,水平宽BC 为12米的楼梯表面铺地毯,地毯的长度至少需要______米.4、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C =90°,AC =BC =10,AB ,点C 关于折痕AD 的对应点E 恰好落在AB 边上,小明在折痕AD 上任取一点P ,则△PEB 周长的最小值是___________.5、在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是 ______(填序号).三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC 的三个顶点坐标分别为(2,4)A -,0()6,B -,(1,1)C -.将ABC 绕坐标原点O 逆时针旋转90度,请在图中画出旋转后的图形111A B C △,写出点1A 的坐标为______,点1C 关于坐标原点对称的点的坐标为______.2、如图,△ABC 是等边三角形,△ABD 顺时针方向旋转后能与△CBD ′重合.连接DD ′,证明:△BDD ′为等边三角形.3、如图,在锐角∠AOB 的内部有一点P ,试在∠AOB 的两边上各取一点M ,N ,使得△PMN 的周长最小.(保留作图痕迹)4、如图,44⨯正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B都在格点上,按下列要求作图,使得所画图形的顶点均在格点上.(1)在图1中画一个以线段AB 为边的轴对称ABC ,使其面积为2;(2)在图2中画一个以线段AB 为边的轴对称四边形ABDE ,使其面积为6.5、已知:如图,把ABC 平移得对应A B C ''',且()2,1A -的对应点为()0,4A '.(1)在网格中作出A B C ''',并写出B ′,C '的坐标;(2)点P 在y 轴上,且△BCP 与△ABC 的面积相等,写出点P 的坐标.-参考答案-一、单选题【解析】【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.2、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得.【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D.【点睛】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键.【解析】【分析】由对称轴的概念求出图形的对称轴条数即可.【详解】A图形有一条对称轴B图形有三条对称轴C图形有四条对称轴D图形有无数条对称轴故答案为:D.【点睛】本题考查了求对称轴条数,其关键是熟悉轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线就是它的对称轴.4、C【解析】【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转180 后能与自身重合.5、A【解析】【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可.【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A.【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键.6、C【解析】【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,对各图形分析后即可得解.【详解】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误,故选:C.【点睛】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图形折叠后可重合的是轴对称图形.7、C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.【详解】解:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误;故选C.【点睛】本题考查了轴对称图形的知识,属于基础题,掌握轴对称的定义是关键.8、C【解析】【分析】根据轴对称图形的定义逐一进行判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意,故选:C.【点睛】本题考查的是轴对称图形,如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:B.【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.10、C【解析】【分析】利用中心对称图形的定义:旋转180 能与自身重合的图形即为中心对称图形,即可判断出答案.解:A 、不是中心对称图形,故A 错误.B 、不是中心对称图形,故B 错误.C 、是中心对称图形,故C 正确.D 、不是中心对称图形,故D 错误.故选:C .【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.二、填空题1、13【解析】【分析】由对折可得:6,,ABAE BD DE 再求解3,CE 从而可得答案. 【详解】解:由对折可得:6,,ABAE BD DE9,AC 963,CEAC AE 10313,DECC CD DE CE BD DC CE BC CE 故答案为:13.【点睛】本题考查的是轴对称的性质,根据轴对称的性质得到6,ABAE BD DE 是解本题的关键.2、王【分析】直接利用轴对称图形的定义得出答案.【详解】解:“王”是轴对称图形,故答案为:王(答案为唯一) .【点睛】本题考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3、15【解析】【分析】根据平移的性质可得,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,计算即可得出答案.【详解】解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要 12+3=15(米).故答案为:15.【点睛】本题主要考查了平移现象,熟练应用平移的性质进行求解是解决本题的关键.4、【解析】连接CE,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】解:连接CE,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE=10,∠CAD=∠EAD,∴BE,AD垂直平分CE,即C和E关于AD对称,CD=DE,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∴△PEB的周长的最小值是BC+BE故答案为:【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,关键是求出P点的位置.5、②⑤⑥【解析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:①平行四边形是中心对称图形,不是轴对称图形,不符合题意;②正方形既是轴对称图形,也是中心对称图形,符合题意;③等边三角形既是轴对称图形,不是中心对称图形,不符合题意;④等腰梯形是轴对称图形,不是中心对称图形,不符合题意.⑤圆既是轴对称图形,也是中心对称图形,符合题意.⑥正八边形是轴对称图形,也是中心对称图形,符合题意.故答案为:② ⑤ ⑥.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.三、解答题1、图见解析,(4,2)--,(1,1)【解析】【分析】利用网格的特点和旋转的性质,找到1A ,1B ,1C 的坐标,描点即可得到111A B C △,然后写出1A ,1C 的坐标,利用关于原点对称的点的特征,求出点1C 关于坐标原点对称的点的坐标.【详解】解:111A B C △如图所示:∴1A 的坐标为(4,2)--,1C 的坐标为(1,1)--,根据关于原点对称的点的横纵坐标互为相反数可知:点1C 关于坐标原点对称的点的坐标为(1,1).【点睛】本题主要是考查了旋转作图以及关于原点对称的点的特征,利用旋转的性质,找到旋转之后的点的坐标,是正确画出旋转图形的关键.2、见解析.【解析】【分析】根据旋转的性质得到BD =BD ',∠ABC =∠DBD ',再由等边三角形的性质得到∠ABC =60°,据此解题.【详解】证明:∵△ABD 顺时针方向旋转后能与△C BD '重合,∴BD =BD ',∠ABC =∠DBD ',∵△ABC 是等边三角形,∴∠ABC =60°,∴∠DBD'=60°,∴△DBD'是等边三角形.【点睛】本题考查旋转的性质、等边三角形的判定与性质等知识,是重要考点,掌握相关知识是解题关键.3、见详解【解析】【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,N,△PMN即为所求求作三角形.【详解】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB 于N,连接PM,PN,△PMN即为所求作三角形.理由:由轴对称的性质得MP=ME,NP=NF,∴△PMN的周长=PM+MN+PN=EM+MN+NF=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.【点睛】本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.4、(1)作图见详解;(2)作图见详解.【解析】【分析】(1)根据轴对称图形的性质及面积作图即可;(2)根据题意,作出相应轴对称图形,验证面积即可得.【详解】解:(1)根据题意:ABC ∆为轴对称图形,面积为2, 由图可得:14122ABC S ∆=⨯⨯=,ABC ∆即为所求,(答案不唯一);(2)四边形ABDE 为轴对称图形,面积为:()124262S =⨯+⨯=,四边形ABDE 即为所求(答案不唯一).【点睛】题目主要考查轴对称图形的作法,理解题意,熟练运用轴对称的性质是解题关键.5、(1)见解析,()1,1B '-,()3,1C ';(2)见解析,()0,1或()0,5-【解析】【分析】(1)利用点A 和A '的坐标特征得到平移的方向与距离,然后利用此平移规律写出B '、C '的坐标,然后描点即可;(2)设P (0,m ),利用三角形面积公式得12×4×|m +2|=12×4×3,然后解方程求出m 即可得到P 点坐标.【详解】解:(1)A B C '''如下图所示;()1,1B'-,()3,1C'(2)设P(0,m),∵△BCP与△ABC的面积相等,∴12×4×|m+2|=12×4×3,解得m=1或-5,∴P(0,1)或(0,-5)【点睛】本题考查了作图-平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.。
2021-2022学年度强化训练华东师大版七年级数学下册第9章多边形同步训练试卷
七年级数学下册第9章多边形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多边形中,内角和与外角和相等的是( )A .B .C .D .2、在△ABC 中,∠A =∠B =14∠C ,则∠C =( ) A .70° B .80° C .100° D .120°3、已知长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的点B ′处,得折痕EM ,将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN ,则图中与∠B ′ME 互余的角有( )A .2个B .3个C .4个D .5个4、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A.155°B.125°C.135°D.145°5、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,136、以下长度的三条线段,能组成三角形的是()A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,97、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm8、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30°B.40°C.50°D.60°9、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 1110、已知,在直角△ABC中,∠C为直角,∠B是∠A的2倍,则∠A的度数是()A.30B.50︒C.70︒D.90︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.2、如图,在△ABC中,CD平分∠ACB.若∠A=70°,∠B=50°,则∠ADC=_____度.3、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.4、若正多边形的一个外角为40°,则这个正多边形是_____边形.5、已知一个多边形的每个外角都是30°,那么这个多边形的边数是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,CD为ABC的高,AE为ABC的角平分线,CD交AE于点G,50BCD∠=︒,∠=︒,求ACD∠的大小.BEA1102、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.3、如图,在ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.4、求下列图中的x的值(1)(2)5、平面上有三个点A,B,O.点A在点O的北偏东80方向上,4cmOA=,点B在点O的南偏东30°方向上,3cmOB=,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出AB OA OB <+的依据:(3)比较线段OC 与AC 的长短并说明理由:(4)直接写出∠AOB 的度数.-参考答案-一、单选题1、B【解析】【分析】根据多边形的内角和公式(n -2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n ,根据题意得:(n -2)•180°=360°,解得n =4.故选:B .【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.2、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.3、C【解析】【分析】先由翻折的性质得到∠AEN =∠A ′EN ,∠BEM =∠B ′EM ,从而可知∠NEM =12×180°=90°,然后根据余角的定义找出∠B ′ME 的余角即可.【详解】解:由翻折的性质可知:∠AEN =∠A ′EN ,∠BEM =∠B ′EM .∠NEM =∠A ′EN +∠B ′EM =12∠AEA ′+12∠B ′EB =12×180°=90°.由翻折的性质可知:∠MB ′E =∠B =90°.由直角三角形两锐角互余可知:∠B ′ME 的一个余角是∠B ′EM .∵∠BEM =∠B ′EM ,∴∠BEM 也是∠B ′ME 的一个余角.∵∠NBF +∠B ′EM =90°,∴∠NEF =∠B ′ME .∴∠ANE 、∠A ′NE 是∠B ′ME 的余角.综上所述,∠B ′ME 的余角有∠ANE 、∠A ′NE 、∠B ′EM 、∠BEM .故选:C .【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.4、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.5、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.6、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.7、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.8、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.9、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.10、A【解析】【分析】根据直角三角形的两个锐角互余即可得.【详解】解:设A x ∠=,则22B A x ∠=∠=,由题意得:90A B ∠+∠=︒,即290x x +=︒,解得30x =︒,即30A ∠=︒,故选:A .【点睛】本题考查了直角三角形的两个锐角互余,熟练掌握直角三角形的两个锐角互余是解题关键.二、填空题1、76︒##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是180 是解决本题的关键.2、80【解析】【分析】首先根据三角形的内角和定理求得∠BCA=180°-∠A-∠B=60°,再根据角平分线的概念,得∠ACD=12∠BCA=30°,最后根据三角形ADC的内角和来求∠ADC度数.【详解】解:∵在△ABC中,∠A=70°,∠B=50°,∴∠BCA=180°-∠B-∠C=60°;又∵CD平分∠BCA,∴∠DCA =12∠BCA =30°,∴∠ADC =180°-70°-30°=80°.故答案为:80.【点睛】本题主要考查了三角形的内角和定理以及角平分线的概念.解题的关键是找到已知角与所求角之间的数量关系.3、9【解析】【分析】设正多边形的外角为x 度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x 度,则内角为(5x −60)度由题意得:560180x x +-=解得:40x =则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.4、九【解析】【分析】利用任意凸多边形的外角和均为360︒,正多边形的每个外角相等即可求出答案.【详解】解:多边形的每个外角相等,且其和为360︒,据此可得36040n=,解得9n=.故答案为:九.【点睛】本题主要考查了正多边形外角和的知识,解题的关键是掌握正多边形的每个外角相等,且其和为360︒,比较简单.5、12【解析】【分析】利用任何多边形的外角和是360°除以外角度数即可求出答案.【详解】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.三、解答题1、30ACD︒∠=.【解析】【分析】先由直角三角形两锐角互余得到∠B =40°,在三角形△ABC 中,由内角和定理求得∠BAE =30°,由角平分线定义得出 ∠BAC =60°,即可求得∠ACD .【详解】解:CD 为ABC ∆的高,90BDC ADC ︒∴∠=∠=.90905040B BCD ︒︒∴∠=-∠=︒-︒=.在ABC ∆中,1801804011030BAE B BEA ︒︒︒︒︒∠=-∠-∠=--=.AE ∵为ABC ∆的角平分线,260BAC BAE ︒∴∠=∠=.9030ACD BAC ︒︒∴∠=-∠=.【点睛】此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.2、(1)30F ∠=︒;(2)证明见详解..【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75PAC ∠=︒,45ABC ACB ∠=∠=︒,由各角之间的关系及三角形内角和定理可得30PCD ∠=︒,60PDC ∠=︒,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得30CBE ∠=︒,得出DCB CBE ∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90BAC ∠=︒,15BAE ∠=︒,AB AC =,∴75PAC ∠=︒,45ABC ACB ∠=∠=︒,∵CD AE⊥,∴90ADC∠=︒,18015ACD ADC DAC∠=︒-∠-∠=︒,∴451530PCD PCA ACD∠=∠-∠=︒-︒=︒,∴180903060PDC∠=︒-︒-︒=︒,∵EF BC∥,∴60DPC PEF∠=∠=︒,30F DCP∠=∠=︒,∴30F∠=︒;(2)∵75ABE∠=︒,45ABC∠=︒,∴754530CBE∠=︒-︒=︒,由(1)可得30DCP∠=︒,∴DCB CBE∠=∠,∴BE CF∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.3、203 BE=.【解析】【分析】根据三角形面积公式计算即可.【详解】解:11=,=22ABC ABCS AC BE S BC AD⋅⋅AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.4、(1)65;(2)60.【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x 的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x 的值.【详解】解:(1)∵四边形内角和等于360°,∴x +x +140+90=360,解得:x =65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x +2x +150+120+90=540,解得:x =60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n 边形的内角和等于(n -2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n 边形的内角和等于(n -2)⨯180°”这一隐含的条件.5、(1)见解析;(2)三角形的两边之和大于第三边;(3)OA AC > ,理由见解析;(4)70°【解析】【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得:4cm, 2.9cm AB OC == ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB 中,因为三角形的两边之和大于第三边,所以AB OA OB <+;(3)OC AC > ,理由如下:利用刻度尺测量得:4cm, 2.9cm AB OC == ,AC =2cm ,∴OC AC >;(4)根据题意得:180803070AOB ∠=︒-︒-︒=︒ .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.。
华师大七年级下周末强化训练试题
周末强化训练试题(10)(基础巩固题)一、填空题1.一个三角形有_____条角平分线,______条中线,_____条高.2.三角形两边别离为5cm 和6cm,则第三边c 的范围为_____.3.若等腰三角形两边长别离为3和4,则它的周长为______.4.在△ABC 中,∠A=∠B=∠C,则∠A=_____.5.在△ABC 中,∠A -∠C=25°,∠B -∠A=10°,则∠B=______.6.在△ABC 中,∠B=40°,∠C=60°,∠B 和∠C 的平分线交于点O,则∠BOC=___. 二、选择题7.若是三角形的三条高线的交点是三角形的极点,那么那个三角形是( ) A.锐角三角形 B.直角三角形; C.钝角三角形 D.不能确信 8.如图,AC⊥BC,CD⊥AB,DE⊥BC,下列说法中,错误的是( ).A.△ABC 中,AC 是BC 边上的高;B.△BCD 中,DE 是BC 边上的高C.△ABE 中,DE 是BE 边上的高;D.△ACD 中,AD 是CD 边上的高8题A ECBD9题AEBDM13题ACB9.图中共有三角形的个数是( )10.若是以4cm 长的线段为底组成一个等腰三角形,腰长x 应在的范围是( ) >4cm >2cm ≥4cm ≥2cm11.在△ABC 中,∠A=2∠B=75°,则∠C 等于( ) ° °30′ ° °12.若三角形两边长别离为6cm 和2cm,第三边长为偶数,则第三边长为( ) 三、解答题13.如图,BM 是△ABC 的中线,已知AB=5cm,BC=3cm,求△ABM 和△BCM 的周长之差.14.已知a 、b 、c 是三角形的三边长,化简:│a -b+c│+│a -b-c│.15.如图,已知F 是△ABC 的边BC 延长线上的一点,DF⊥AB,且∠A=56°,∠F=31°,求∠ACF 的度数.15题A EFCBD(强化提高题)16.如图,在△ABC 中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE 的长.16题AECBD17.三角形三边长度是三个持续自然数,且三角形的周长小于18,求三边长.18.如图,已知BD 是△ABC 的角平分线,CD 为△ABC 的外角平分线,BD 、CD 交于D,试探讨∠D 与∠A 之间的数量关系.18题AEC BD(课外延伸题)19.在△ABC 中,AB=AC,请你画出通过 极点A 的△ABC 的角平分线、中线和高, 然后观看和气宇,你能发觉什么结论?21.若是α、β、γ是 △ABC 外角, 20.如图,∠A=∠C,CD⊥AB 于D,交AE 于F, 且∠α:∠β:∠γ=4:2:3, 试判别△AEB 的形状,并说明理由. 求△ABC 三个内角的度数.20题AE FCBD(中考模拟题)22.如图,在△ABC 中,AF 、CE 、BD 都是中线,且交于点H,在图中找出△ABH、△A HC、△BHC 的三边AB 、AC 、BC边上的中线.H22题AEF CBD23.两根木棒的长别离是7cm 和10cm,要选择第三根木棒,将它们钉成一个三角形,第三根木棒的长有什么限制?说明理由.24.一个零件的形状如图,按规定∠A 应等于90°,∠B 与∠C 应别离是32°和21°,查验工人量得∠BDC=148°,就判定那个零件不合格,试用三角形有关知识说明理由.24题ACBD25.如图,在△ABC 中,∠A:∠ABC:∠ACB=3:4:5,BD、CE 别离是边AC 、AB 上的高,并相交于H,求∠BHC 的度数.H25题AECBD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周末强化训练试题(3)
填空、选择题
1. 若方程ax -2y =4的一个解是 则a 的值是( )
A 、-1
B 、3
C 、1
D 、-3 2. 二元一次方程2x -3y =4的解是( )
A 、任何一个有理数对
B 、无穷多个数对,但不是任何一个有理数对
C 、仅有一个有理数对
D 、有限个有理数对
3. 已知方程:①2x -y =3;②x +1=2;③x
3+3y =5;④x -xy =10;⑤x +y +z =6.其中是二元一次方程的有______________(填序号即可) 4. 试写出一个二元一次方程组,使它的解是 ,这个方程组可以是________.
5. 已知x +y =4且x -y =10,则2xy =________.
6. 已知 是方程组 的解,则a =_____,b =______.
7. 对于x 、y ,规定一种新的运算:x*y =ax +by ,其中a 、b 为常数,等式右边是通常的加法和乘法
运算,已知3*5=15,4*7=28,则a +b =_______.
8. 在423=+y x 中,用含x 的代数式表示y ,可得__________________。
9. 若522312=+--a b a y x 是二元一次方程,则=+b a ___________ 。
10. 方程473-=-x 的正整数解是___________ 。
11. 不解方程,判别方程组⎩⎨⎧=+=+62432y x y x 解的情况是___________。
方程组⎩
⎨⎧=+=+62422y x y x 解的情况是___________。
方程组⎩⎨⎧=
-=+y x y x 352解的情况是___________。
12. 某商品进价为x 元,商店将价格提高30%后作零售价销售,在销售旺季过后,商店又以8折的价
格开展促销活动。
这时一件商品的售价为___________ 。
13. 某校学生参加运土劳动,一部分学生抬土,另一部分学生挑土。
已知全班共有土筐59个,扁担
36条,问抬土和挑土的学生各多少人?设抬土和挑土的学生分别为x 人和y 人,列方程组为________________________。
14. 某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有名工人生产螺栓,其它工人生产
螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是( )
x =2 y =1
x =-1
y =3 m =1 n =2 am +bn =2 am -bn =3
A 、⎩⎨⎧=⨯=+y x y x 2416256
B 、⎩⎨⎧=⨯=+y x y x 1624256
C 、⎩⎨⎧==+y x y x 241628
D 、⎩
⎨⎧==+y x y x 162456 15. 已知0)5(2=+-++y x y x 那么x 和y 的值分别是( )
A 、25-,25
B 、25,25-
C 、25,25
D 、25-, 2
5- 16. 满足方程组⎩
⎨⎧=++=+a y x a y x 32253解的x 与y 之和为2,则a 的值为( )。
A 、一4 B 、4 C 、0 D 、任意数
解答题
17. ① ⎩⎨⎧=-=+525y x y x ②⎩⎨⎧=++=8323y x y x ③⎩⎨⎧=+--+=+5)43(4)5(3)2(51y x y x ④⎪⎩⎪⎨⎧=-+=+1
323241y x x y
18. 已知代数式x 2+bx +c ,当x =-3时,它的值为9,当x =2时,它的值为14,当x =-8时,求
代数式的值。
19. 若∣m +n -5∣+(2m +3n -5)2=0,求(m +n )2的值
20. 甲、乙两个小马虎,在练习解方程组 时,由于粗心,甲看错了方程组中的a ,得到方程组的解为 ;乙看错了方程组中的b ,得到方程组的解为
ax +y =10
x +by =7 x =1
y =6 x =-1 y =12
问原方程组的解为多少?。