液压 基本回路分析

合集下载

第六讲 液压基本回路

第六讲 液压基本回路

液压基本回路—增压回路
四、增压回路
使系统某一支路获得 较系统调定压力高的工作
压力
其特征是由增压缸供 油,从而使执行元件2有
较大的出力。
液压基本回路--平衡回路
五、平衡回路

平衡回路的功用在于使执行元件 的回油路上保持一定的背压值,以平 衡重力负载,使之不会因重力而自行 下降。 1.采用单向顺序阀的平衡回路 调整顺序阀的开启压力,使其和 液压缸下腔承压面积的乘积略大于垂 直运动部件的重力,则在重力的作用 下液压缸活塞不能自行下降,这时的 单向顺序阀称为平衡阀。适用于工作 负载固定且活塞闭锁要求不高的场合。
液压基本回路锁紧回路
2.采用液控单向阀的锁紧 回路 当系统停止工作时, 液控单向阀将执行元件的
进出油口关闭,执行元件
被锁紧。
液压基本回路多执行元件控制回路
第四节 多执行元件 控制回路 通过压力、流 量、行程控制来实 现多执行元件的预 定动作要求。 一、顺序动作回路 1.压力控制的顺序动 作回路 1)由顺序阀控制的顺 序动作回路

单 向 顺 序 阀
液压基本回路--平衡回路
2.采用液控制单向阀的平衡回路 不工作时液控制单向阀关 闭,油缸下腔的油液无法排出, 油缸无法下降。当油液上腔通 压力油时,控制油液进入液控 单向阀,使其打开,油缸下腔 的油液排出,油缸下降。
在回路中用液控单向阀闭 锁油液,泄漏少,闭锁性好。 单向节流阀可保证活塞下行运 动的平稳性。
变量泵油缸容积调速回路
速度控制回路--快速和速度换接回路
二、快速动作回路和速度换接回路
(一)快速运动回路

功能:使执行元件获得尽可能大的
工作速度,以提高生产效率,并使
功率得到合理的利用。 1.液压缸差动连接快速运动回路 差动连接和非差动连接的速度之比:

液压系统基本回路(识图)

液压系统基本回路(识图)

3.2减压回路
、二级减压回路
二级减压回路
说明:在减压阀2的遥控口通过电磁阀4接入小规格调压阀3,便可获得两种 稳定的低压,减压阀2的出口压力由其本身来调定。当电磁阀4通电时,减 压阀2的出口压力就由调压阀3进行设定。
3.2减压回路
、多路减压回路
多路减压回路
说明:在同一液压源供油的系统里可以设置多个不同工作压力的减压回 路。如图所示:两个支路分别以15Mpa和8Mpa压力工作时可分别用各自的 减压阀进行控制。
卸荷阀卸荷回路
3.6平衡回路
、用液控单向阀的平衡回路
说明:液压缸停止运动时,依靠 液控单向阀的反向密封性,能锁 紧运动部件,防止自行下滑。回 路通常都串入单向节流阀2,起 到控制活塞下行速度的作用。以 防止液压缸下行时产生的冲击及 振荡。
用液控单向阀的平衡回路
3.6平衡回路
、用远控平衡阀的平衡回路
用单向节流阀的平衡回路
四、速度控制回路
在液压系统中,一般液压源是共用的,要解决各执行元件的 不同速度要求,只能用速度控制回路来调节。
4.1节流调速回路
节流调速装置都是通过改变节流口的大小来控制流量,故调速范围 大,但由节流引起的能量损失大、效率低、容易引起油液发热;
以节流元件安装在油路上的位置不同,可分为进口节流调速、出口节 流调速、旁路节流调速及双向节流调速。
旁路节流调速回路
4.2增速回路
差动连接增速回路
说明:当手动换向阀处于左 位时,液压缸为差动连接,活 塞快速向右运行。液压泵供 给液压缸的流量为qv,液压缸 无杆腔和有杆腔的有效作用 面积分别为A1和A2,则液压缸 活塞运动速度为V=qv/(A1-A2)
差动连接增速回路
4.2增速回路

液压基本回路

液压基本回路

3. 自动补油的保压回路
应用:保压时间长,压力稳 定性要求高的场合
7-2 速度控制回路
调速回路 快速运动回路 速度换接回路
一、 调速回路
概述
q 液压缸: v = A q 马达: n = V
A = C , q b, v b . qb , V b , nb
调速方法
{
有级变速 无级变速
{
1. 节流调速 2. 容积调速 3. 容积节流调速
二、快速运动回路
作用:空载时加快执行元件的运动速度。
1.差动
动画演示
2. 双泵供油
快进:双泵供油 工进:左泵卸荷, 右泵压力由溢流阀调定 快退:双泵供油
三、速度换接回路
作用:在一个工作循环中,实现不同速度的转换。 1.用行程阀
下位:快进 上位:工进
动画演示
2. 调速阀并联
3.调速阀串联
AT 3 < AT 2
1.变量泵-定量马达式调速回路 调速特性:
(1)转速
qM nM = ηv qM = qP = VP nP VM VP nP nM = ηv VM
当nP , VM 一定, VP b, nM b .
调速范围较大 RC ≈ 40
(2) 转矩
pM VM TM = ηm 2π TM 与 qP 无关, VP b, TM = C.
第七章 液压基本回路
压力回路 速度控制回路 方向控制回路 多缸工作控制回路 其它回路
§7-1 压力控制回路
调压回路 减压回路 卸荷回路 平衡回路 保压回路
一、调压回路
作用:调整或限定系统压力。 作用 1.单级调压回路
a.调整系统压力并保持
A
电磁阀断电,最高压力由A调定, 电磁阀通电,系统压力由B调定. p1 > p 2

液压传动系统基本回路

液压传动系统基本回路

液压传动系统基本回路液压传动系统是一种通过液体介质传递能量的系统,广泛应用于工程机械、航空航天、冶金、石化等领域。

其基本回路是实现液体在不同部件之间传递能量和控制的重要组成部分。

本文将介绍液压传动系统基本回路的组成和工作原理。

一、液压传动系统基本回路组成液压传动系统基本回路由液压泵、油箱、液压马达、液压阀等组成。

液压泵通过压力油将液体送入液压马达,驱动其旋转或直线运动,从而输出功。

液压阀则用于调节和控制液体流量、压力等参数。

二、液压传动系统基本回路工作原理液压传动系统的工作原理可以用下面的流程进行描述:1. 液压泵抽油:当液压泵启动时,它的齿轮、齿条等运动部件开始运转,使泵腔内形成破真空状态,油液从油箱被抽入泵腔。

2. 油液送入液压马达:随着泵腔内部的容积增大,压力油被抽进泵腔,然后在泵的工作行程中被迫出来,进入液压马达的油缸或油腔。

3. 液压马达工作:当压力油进入液压马达的油腔后,液压马达开始工作。

如果液压马达是液压马达,油液的压力和流量将驱动液压马达转动或直线运动。

4. 油液返回油箱:液压泵将通过压力油送入液压马达的油液压力升高,流动速度增加,从而形成驱动力,使马达得以运转。

马达工作时,压力油将被排出液压马达,并返回油箱。

在液压传动系统的工作中,液压阀发挥着重要的作用。

液压阀可以根据需要控制和调节液体流量、压力,以满足系统的工作要求。

同时,液压阀还可以实现流量方向的控制,将压力油导向不同的液压执行元件,从而实现系统的运动控制。

三、液压传动系统基本回路的应用液压传动系统基本回路的应用广泛。

在工程机械领域,液压传动系统被用于操纵各类工程机械的液压动力系统,包括挖掘机、铲车、起重机等。

在航空航天领域,液压传动系统被应用于飞机、导弹等飞行器的液压传动系统,实现操纵用、起落架、襟翼等功能。

在冶金、石化领域,液压传动系统被应用于高温高压环境下的各种液压机械和液压设备。

液压传动系统基本回路的优点在于具有稳定、平稳、可控性好、传动效率高等特点。

液压基本回路详解

液压基本回路详解

液压缸: v qp pv npVp pv
A
A
变化Vp,即可变化缸旳运动速 度v .
qP
v
安 全 阀
qP
VM
液压马达:
nM
nM
qp pV MV
VM
n pV p VM
pVMV
变化Vp,即可变化nM .
2、定量泵-变量马达构成旳容积调速回路
p1
qP
TM
nM VM 马达输出转矩:
p2
TM
pMVM
AT1
AT3
AT1 < AT2 < AT3
特点: ① 速度稳定性大大提升;
0
R
② 功率损失比同类采用节流阀旳大。
(二)容积调速回路
经过变化变量泵旳输出流量或变化变量马达旳 排量来实现执行元件旳速度调整。 1、变量泵-定量执行元件构成旳容积调速回路
P1
P2
安 全 阀
开式回路
闭式回路
A
速度特征分析:
基本回路:有关液压元件所构成旳能独立完毕 特定功能旳经典回路。
类型
压力控制回路 速度控制回路 方向控制回路
等等
多缸工作回路
要点:
1、方向、速度、压力等控制回路旳基本原理、功能、 回路中各元件作用和经典回路图;
2、节流调速回路旳参数计算措施,其中涉及正确地应 用薄壁小孔流量公式,精确列出液压缸受力平衡方程 等;
1DT(+):
P= Py2
2DT(+):
P= Py3
4、连续、按百分比进行压力调整回路
采用先导式百分比电磁溢流阀,调整进入阀旳输 入电流(或电压)旳大小,即可实现系统压力旳无 级调整。
优点:简朴,压力切换平稳,更轻易实现远距离控制或程控。

液压传动系统基本回路

液压传动系统基本回路

液压传动系统基本回路液压传动系统是一种常用的力传递和控制装置,其基本组成部分是液压元件、液压控制阀和液压能源单元。

而液压传动系统的基本回路则是指通过液压元件将液压能源转化为机械能的系统。

液压传动系统的基本回路可以分为两大类:单向回路和双向回路。

单项回路又可分为单向控制回路和单向控制回路。

下面将详细介绍这两类液压传动系统的基本回路。

一、单项回路单项回路是指通过液压元件将液压能源转化为机械能的系统。

单项回路中的液压元件通常包括液压缸和液压马达。

1. 单向控制回路单向控制回路是指通过单向阀控制液压元件的液压油流的流向,从而实现工作机构的单向运动。

单向控制回路通常由液压泵、阀组、液压缸和单向阀等组成。

液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸则利用压力油液来驱动工作机构。

单向阀的作用是使液压油只能在一个方向上流动,从而控制液压缸的单向运动。

2. 单向反控制回路单向反控制回路是指通过单向阀和控制阀控制液压元件的液压油流的流向,从而实现工作机构的反复往复运动。

单向反控制回路通常由液压泵、阀组、液压缸、双向控制阀和单向阀等组成。

液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸利用压力油液来驱动工作机构。

而双向控制阀的作用是控制液压油液的流动方向,使液压缸能够实现反复往复的运动。

二、双向回路双向回路是指通过液压元件将液压能源转化为机械能的系统,能够实现工作机构的双向运动。

双向回路通常由液压泵、阀组、液压缸和双向阀等组成。

液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸则利用压力油液来驱动工作机构。

双向阀的作用是使液压油可以在两个方向上流动,从而实现液压缸的双向运动。

总结:液压传动系统的基本回路包括单向回路和双向回路。

单向回路可以分为单向控制回路和单向反控制回路,通过控制液压油流的流向实现工作机构的单向运动和反复往复运动。

而双向回路则能够实现工作机构的双向运动。

通过合理选择和布置液压元件、液压控制阀和液压能源单元,可以设计出不同类型和功能的液压传动系统,满足不同工况下的力传递和控制需求。

第七章 液压系统基本回路

第七章  液压系统基本回路

(1)进油节流调速回路 进油节流调速回路
节流阀进口节流调速回路特征 将节流阀串联在进入液压缸的油路 即串联在泵和缸之间,调节A 上,即串联在泵和缸之间,调节A节,即 可改变q 从而改变速度, 可改变q,从而改变速度,且必须和溢流 阀联合使用。 阀联合使用。
进油路节流调速回路适用于轻载、 进油路节流调速回路适用于轻载、 低速、 低速、负载变化不大和速度稳定性要 求不高的小功率液压系统。 求不高的小功率液压系统。
(4)节流调速回路工作性能的改进 用调速阀代替节流阀,可以提高 节流调速回路的速度稳定性和运动平稳性。 但功率损失大,效率低。
v
2、容积调速回路 容积调速回路特点
∵节流调速回路效率低、发热大,只适用于小 节流调速回路效率低、发热大, 功率场合。 功率场合。 而容积调速回路, ∴而容积调速回路,因无节流损失或溢流损 故效率高,发热小, 失 ,故效率高,发热小,一般用于大功率场 合。
用三位换向阀的中位机能卸荷。 1、用三位换向阀的中位机能卸荷。 用二位二通阀卸荷。 2、用二位二通阀卸荷。
用换向阀的卸荷回路: 1、用换向阀的卸荷回路: 利用主阀处于中位时M. H.K型机能 型机能, 利用主阀处于中位时M. H.K型机能, p→T,属零压式卸荷。 使p→T,属零压式卸荷。 泵卸荷时,溢流阀关闭。 图7-3中, 泵卸荷时,溢流阀关闭。系统重 新启动时,因溢流阀有不灵敏区, 会冲击。 新启动时,因溢流阀有不灵敏区, 会冲击。
(2)回油节流调速回路
节流阀出口节流调速回路特征 将节流阀串联在 液压缸的回油路上, 液压缸的回油路上, 即串联在缸和油箱之 调节A 间,调节AT,可调节 以改变速度, q2以改变速度,仍应 和溢流阀联合使用, 和溢流阀联合使用, pP = pS 。

液压传动系统的基本回路

液压传动系统的基本回路

同兴液压总汇:贴心方案星级服务液压传动系统的基本回路由有关液压元件组成,用来完成特定功能的典型油路。

任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。

几个基本回路组合在一起,可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。

根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。

压力控制回路用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。

根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压4种回路。

①调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,图中的溢流阀就起这一作用。

当压力大于溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。

②变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高于液压源压力。

③卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。

④稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。

速度控制回路通过控制介质的流量来控制执行元件运动速度的回路。

按功能不同分为调速回路和同步回路。

①调速回路:用来控制单个执行元件的运动速度,可以用节流阀或调速阀来控制流量,如图中的节流阀就起这一作用。

节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。

也可用改变液压泵输出流量来调速,称为容积调速。

②同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。

方向控制回路控制液压介质流动方向的回路。

用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图中的换向阀即起这一作用。

液压系统的基本回路总结

液压系统的基本回路总结

精心整理目录1液压基本回路的原理及分类2换向回路3调压回路2压力控制回路:他的作用是利用压力控制阀来实现系统的压力控制,用来实现稳压、减压、增压和多级调压等控制,以满足执行元件在力或转矩及各种动作对系统压力的要求3速度控制回路:它是液压系统的重要组成部分,用来控制执行元件的运动速度。

换向回路:用二位三通、二位四通、三位四通换向阀均可使液压缸或液压马达换向!A1_1A1-2载越大,油压越高!但最高工作压力必须有定的限制。

为了使系统保持一定的工作压力,或在一定的压力范围内工作因此要调整和控制整个系统的压力.调定为较高压力,阀2换位后,泵出口压力由远程调压阀1调为较低压力。

??? 图(b)为三级调压回路。

溢流阀1的远程控制口通过三位四通换向阀4分别接远程调压阀2和3,使系统有三种压力调定值;换向阀在左位时,系统压力由阀2调定,换向阀在右时,系统压力由阀3调定;换向阀在中位时,系统压力由主阀1调定。

o????? 在此回路中,远程调压阀的调整压力必须低于主溢流阀的调整压力,只有这样远程调压阀才能起作用。

?,在工作时往往需要稳定的低压,为此,在该支路上需串接一个减压阀[图(a)]。

图(b)所示为用于工件夹紧的减压回路。

夹紧工作时为了防止系统压力降低(例如送给缸空载快进)、油液倒流,并短时保压,通常在减压阀后串接一个单向阀。

图示状态,低压由减压阀1调定;当二通阀通电后,阀1出口压力则由远程调压阀2决定,故此回路为二级减压回路。

保压回路1用定量泵和溢流阀直接保压,图a所示,在执性元件已达到工作行由液控单向阀的内锥阀关闭的严密性来保证,这种保压方式特点是保压时间短,能保压10MIN4用保压液压泵保压:图d所示,保压液压泵5的流量很小,液压缸上腔保压时,压力继电器4发出电信号,主液压泵1卸荷,保压液压泵5供油保压。

这种保压方法的特点是保压时间长调速回路8.2.2采用节流阀的节流调速回路节流调速回路根据流量控制元件在回路中安放的位置不同,分为进油路节流调速,回油节路流调速,旁路节流调速三种基本形式,下面以定量泵-液压缸为11A q =υ (8.1)活塞受力方程为F A p A p +=2211 (8.2)式中F —外负载力;2p —液压缸回油腔压力,当回油腔通油箱时,2p ?0。

液压基本回路原理与分析

液压基本回路原理与分析

液压基本回路原理与分析液压基本回路是用于实现液体压力、流量及方向等控制的典型回路。

它由有关液压元件组成。

现代液压传动系统虽然越来越复杂,但仍然是由一些基本回路组成的。

因此,掌握基本回路的构成,特点及作用原理,是设计液压传动系统的基础。

1. 压力控制回路压力控制回路是以控制回路压力,使之完成特定功能的回路。

压力控制回路种类很多。

例如液压泵的输出压力控制有恒压、多级、无级连续压力控制及控制压力上下限等回路。

在设计液压系统、选择液压基本回路时,一定要根据设计要求、方案特点,适当场合等认真考虑。

当载荷变化较大时,应考虑多级压力控制回路;在一个工作循环的某一段时间内执行元件停止工作不需要液压能时,则考虑卸荷回路;当某支路需要稳定的低于动力油源的压力时,应考虑减压回路;在有升降运动部件的液压系统中,应考虑平衡回路;当惯性较大的运动部件停止、容易产生冲击时,应考虑缓冲或制动回路等。

即使在同一种的压力控制基本回路中,也要结合具体要求仔细研究,才能选择出最佳方案。

例如选择卸荷回路时,不但要考虑重复加载的频繁程度,还要考虑功率损失、温升、流量和压力的瞬时变化等因素。

在压力不高、功率较小。

工作间歇较长的系统中,可采用液压泵停止运转的卸荷回路,即构成高效率的液压回路。

对于大功率液压系统,可采用改变泵排量的卸荷回路;对频繁地重复加载的工况,可采用换向阀的卸荷回路或卸荷阀与蓄能器组成的卸荷回路等。

1.1调压回路液压系统中压力必须与载荷相适应,才能即满足工作要求又减少动力损耗。

这就要通过调压回路实现。

调压回路是指控制整个液压系统或系统局部的油液压力,使之保持恒定或限制其最高值。

1.1.1用溢流阀调压回路1.1.1.1远程调压回路特点:系统的压力可由与先导式溢流阀1的遥控口相连通的远程调压阀2进行远程调节。

远程调压阀2的调整压力应小于溢流阀1的调整压力,否则阀2不起作用。

特点:用三个溢流阀进行遥控连接,使系统有三种不同压力调定值。

第六章液压基本回路ppt课件

第六章液压基本回路ppt课件
2. 回油节流调速回路(动画演示)
(1) 该 回路速度负载特性、最大承载 能力、损失功率和效率基本相同。
(2) 与进油节流调速回路的比较
a. 承受负值负载的能力 b.运动平稳性 c.发热及泄漏的影响 d.实现压力控制的方便性 e.停车后的起动性能
3.旁路节流调速回路(动画演示)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动画演示
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
3.采用液控单向阀的平衡回路 4.采用远控平衡阀的平衡回路
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(四)卸荷回路
1.功用
是在液压泵不停止 转动时,使其输出的 流量或压力在很低的 情况下工作。
2.类型
(1)换向阀卸荷回路
M、H、K型中位机能的三位换向阀处于中位时,泵即卸荷 。 (动画)
(2)二通插装阀卸荷回路(动画)
当二位二通电磁阀通电后,主阀上腔接通油箱,主阀口全开,泵 即卸荷。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(七)泄压回路
1.功用 液压系统在保压过程中,由
于油液压缩和机械部分产生弹 性变形,因而储存了相当的能 量,若立即换向,则会产生压 力冲击。因而对容量大的液压 缸和高压系统应在保压与换向 之间采取泄压措施。

第九章 液压基本回路

第九章 液压基本回路
常用的调速回路:节流调速、容积调速和容积节流调速。
(一)节流调速回路 按照流量阀安装位置的不同,有进油路节流调速、回 油路节流调速和旁油路节流调速三种。下面对常用的前两 种基本回路进行分流调速回路
式中
p1A= F +p2A p1 ——液压缸右腔的工作压力; p2 ——液压缸左腔的背压,在此 p2≈0; A ——活塞有效作用面积。
F ——活塞的负载阻力。
整理上式得
p1 = F/A
故节流阀前后的压力差为
Dp =pp -p1 =pp -F/A
因通过节流阀进入液压缸的流量为
q1 = CAT(Dp)j
故活塞运动的速度为
v = q1/A =CAT(Dp)j /A =CAT(pp-F/A)j /A
根据上式v =CAT(pp-F/A)φ /A及对回路工作情况的分 析可知,进油路节流调速有如下性能:
中的局部压力远高于液压泵的输出压力。 回路内有三个以上液压
缸,其中之一需要较高的工 作压力,同时其它的液压缸 仍用较低的压力,此时即可 用增压回路提供高压给那个 特定的液压缸。最简单的增 压方法是采用增压器,右图 为采用增压器的增压回路。
图 采用增压器的增压回路 1-增压器 2-补油箱 3-工作缸
4、保压回路 有的机械设备在工作过程中,常常要求液压执行机构在其
四、数字式多速回路 图所示是一种数字式多级选速回路,多用于数字控制 系统。
图数字式多速回路
第三节 多缸动作回路 在多缸液压系统中,各液压缸之间往往需要有一定的 控制要求,或顺序动作,或同步动作。这就需要用多缸控 制回路来实现。 一、顺序回路 1.用行程开关和电磁阀联合控制的顺序回路(见图)
图用行程开关和电磁阀的顺序回路
图用三位换向阀使泵卸荷的回路

液压基本回路故障分析报告(20201226133602)

液压基本回路故障分析报告(20201226133602)

四、液压基本回路故障分析液压基本回路的故障很多,有由元件本身故障引起的,也有由于回路设计不当造成的,这里就几个典型的故障实例进行分析,希望能起到举一反三的作用。

例1:有一回油节流调速回路,该回路中液压泵异常发热。

该系统采用定量柱塞泵,工作压力为26MPa。

系统工作时,回路中各元件工作均正常。

检查:发现油箱内油温为45C左右,液压泵外壳温度为60C。

另发现液压泵的外泄油管接在泵的吸油管中,且用手摸发烫。

原因:液压泵的温度较油温高15C左右,这是由于高压泵运转时内部泄漏造成的。

当泵的外泄油管接入泵的吸油管时,热油进入液压泵的吸油腔,使油的粘度大大降低,从而造成更为严重的泄漏,发热量更大,以致造成恶性循环,使泵的壳体异常发热。

措施:排除液压泵异常发热的措施是将液压泵的外泄油管单独接回油箱。

另外,还可以扩大冷却器的容量。

例2:某双泵回路中液压泵产生较大的噪声。

检查:发现双泵合流处距离泵的出口太近,只有10cm原因:在泵的排油口附近产生涡流。

涡流本身产生冲击和振动,尤其是在两股涡流汇合处, 涡流方向急剧变化,产生气穴现象,使振动和噪声加剧。

措施:排除故障的方法是将两泵的合流处安装在远离泵排油口的地方。

例3:有一双泵系统,如图7.5.1所示。

该系统有两个溢流阀,它们的调定压力均是14MPa,当两个溢流阀均动作时,溢流阀产生笛鸣般的叫声。

图7.5.1 溢流阀回路检查:溢流阀产生笛鸣般啸叫声的原因是两个溢流阀产生共振原因:因为两个阀调定压力一样、结构一样,所以固有频率相同,从而产生共振措施:排除故障的方法有三个。

第一个处理方法是将两个溢流阀的调定压力错开,一个为14MPa,—个为13MPa。

一般来说,调定压力错开1MPa就可以避免共振。

但液压缸工作在13MPa以下时,液压缸速度由两个泵供油量决定。

若缸的工作压力在13MPa〜14MPa之间时,缸的速度由一个泵的供油量决定;第二个处理方法是用一个大流量的溢流阀代替原来的两个溢流阀,其调定压力仍为14MPa,见图7.5.2第三个处理方法是增加一个远程控制阀3,将远程控制阀与溢流阀远控口相连通。

液压系统的基本回路

液压系统的基本回路

(1) 进油节流调速回路
进油节流调速回路是将节流 阀装在执行机构的进油路上, 调速原理如图6-20所示。
根据进油节流调速回路的特 点,节流阀进油节流调速回路 适用于低速、轻载、负载变化 不大和对速度稳定性要求不高 的场合。
图6-20 进油节流调速回路
(2) 回油节流调速回路
回油节流调速回路将节流阀安装
活塞的液压作用力Fa推动大 小活塞一起向右运动,液压
缸b的油液以压力pb进入工作 液压缸,推动其活塞运动。
其关系如下:
pb
pa
Aa Ab
三、增压回路
2.双作用增压回路
四、保压回路
有些机械设备在工作过程中,常常要求液压执行机构在 工作循环的某一阶段内保持一定压力,这时就需要采用保 压回路。保压回路可在执行元件停止运动或仅仅有工件变 形所产生的微小位移的情况下使系统压力基本保持不变。
一、启停回路
当执行元件需要频繁地启动或停止时,系统中经常采用 启、停回路来实现这一要求。
二、换向回路 1. 简单换向回路
简单换向回路是指在液压泵和执行元件之间加装普通换向 阀,就可实现方向控制的回路。如图6-2、6-3所示。
2.复杂换向回路
采用特殊设计的机液换向阀,以行程挡块推动机动 先导阀,由它控制一个可调式液动换向阀来实现工作 台的换向,既可避免“换向死点”,又可消除换向冲 击。这种换向回路,按换向要求不同可分为 时间控制 制动式 和 行程控制制动式 两种。
图6-19 采用顺序阀的平衡回路
第三节 速度控制回路
速度控制回路是调节和变换执行元件运动速度的回路,它包 括调速回路、快速回路和速度换接回路。
一、调速回路
调速回路主要有以下三种方式: (1)节流调速回路 (2)容积调速回路 (3)容积节流调速回路

液压基本回路及典型液压系统

液压基本回路及典型液压系统

5.2 速度控制回路
2.采用蓄能器的快速补油回路:对于间歇 运转的液压机械,当执行元件间歇或低速运动 时,泵向蓄能器充油。而在工作循环中某一工 作阶段执行元件需要快速运动时,蓄能器作为 泵的辅助动力源,可与泵同时向系统提供压力 油。图5-13所示为一补助能源回路。将换向阀 移到阀右位时,蓄能器所储存的液压油即释放 出来加到液压缸,活塞快速前进。例如活塞在 做浇注或加压等操作过程时,液压泵即对蓄能 器充压(蓄油)。当换向阀移到阀左位时,此 时蓄能器液压油和泵排出的液压油同时送到液 压缸的活塞杆端,活塞快速回行。这样,系统 中可选用流量较小的油泵及功率较小电动机, 可节约能源并降低油温。
5.1压力控制回路
4.利用溢流阀远程控制口卸载的 回路:图5-6所示,将溢流阀的远 程控制口和二位二通电磁阀相接。 当二位二通电磁阀通电,溢流阀的 远程控制口通油箱,这时溢流阀的 平衡活塞上移,主阀阀口打开,泵 排出的液压油全部流回油箱,泵出 口压力几乎是零,故泵成卸荷运转 状态。注意图中二位二通电磁阀只 通过很少流量,因此可用小流量规 格(尺寸为1/8或1/4)。在实际应 用上,此二位二通电磁阀和溢流阀 组合在一起,此种组合称为电磁控 制溢流阀。
5.1压力控制回路
2.利用二位二通阀旁路卸荷的回路: 3.利用换向阀卸载的回路:
5.1压力控制回路
2.利用二位二通阀旁路卸荷的回路:图5-4所示回路,当二位二通阀左位工 作,泵排除的液压油以接近零压状态流回油箱以节省动力并避免油温上升。 图中二位二通阀系以手动操作,亦可使用电磁操作。注意二位二通阀的额 定流量必须和泵的流量相适宜。
5.1压力控制回路
5.1.4 增压回路 1.利用串联液压缸的增压回路:图5-7所
示,将小直径液压缸和大直径液压缸串联可使 冲柱急速推出,且在低压下可得很大的力量输 出。将换向阀移到左位,泵所送过来的油液全 部进入小直径液压缸活塞后侧,冲柱急速推出, 此时大直径液压缸由单向阀将油液吸入,且充 满大液压缸后侧空间。当冲柱前进达尽头受阻 时,泵送出的油液压力升高,而使顺序阀动作, 此时油液以溢流阀所设定的压力作用在大小直 径液压缸活塞后侧,故推力等于大小直径液压 缸活塞后侧面积和乘上溢流阀所调定的压力。 当然如想以单独使用大直径液压缸以同样速度 运动话,势必选用更大容量的泵,而采用这种 串联液压缸则只要用小容量泵就够了,节省许 多动力。

液压系统基本回路介绍

液压系统基本回路介绍
液压马达制动回路:当执行机构停止工作时,为防止
液压马达因惯性而继续转动,常设置制动装置使其迅速停止转动
采用溢流阀制动的回路 用节流阀和机械制动器的制动回路
用机械制动器的制动回路
手动换向阀控制的液压马达串联回路
每个换向阀控制一只液压马达,各马达可单独运转,也可以同时 运转,各自的转向也可分别控制
采用溢流阀制动的回路
溢流阀产生的背压使马达迅速制动
用节流阀和机械制动器的制动回路
回路制动效果可调节,液压冲击小,但制动时需辅助压力油 适用于负载转动惯量大、转速高的场合
量泵供油的同时减少快速行程时液压缸的有效面积
优点:较高的效率 较平稳的快、慢速切换
速度换接回路
功能: 使液压执行元件在一个工作循环中根据预定的要求顺
序实现运动速度的切换
要求: 具有较高的速度换接平稳性
用行程阀或行程开关的速度切换回路 两种工作速度的切换回路
用行程阀或行程开关的速度切换回路
液压泵的供油流量等于液压马达最高转速所需的流量,而供油压 力等于各液压马达工作压力之和
适用于高转速,小扭矩多轴输出的场合
液压马达串联回路之二
➢液压马达a由溢流阀c控制 最大工作压力,旁路截流调 速阀e控制转速。 ➢双向液压马达b由溢流阀d 控制最大工作压力,回油节 流调速阀f控制转速。
适用于两液压马达输出转矩和转速要求不同的场合
快速运动回路(增速回路)
功能: 使系统既能满足在空行程时的快速运动要求,又能减
少慢速运动时的功率损耗,以提高系统的工作效率
方法: 减小执行元件的有效工作面积(或排量);
增大进入执行元件流量的方法; 联合使用上述两种方法
液压缸差动连接增速回路 双泵供油增速回路 用快速柱塞缸与变量泵组合的增速回路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q1 q2 v A1 A2
图 回油节流调速回路
1)回路结构和主要液压参数
图 回油节流调速回路
p1 A1 F p2 A2
Δp p2
2)速度负载特性
A1 F KA T pp A A q2 2 2 v A2 A2
m
KAT p p A1 F q2 v A2 A21 m
以v为纵坐标,FL为横坐 标,将式子按不同节流 阀通流面积AT作图,可 得一组抛物线,称为进 油路节流调速回路的速 度负载特性曲线。
q1
v 与AT ,pp ,F 有关, 当AT 一定,F↑,v↓; 当F一定,AT↑,v↑。
这组曲线表示液压缸运 动速度随负载变化的规 律,曲线越陡,说明负 载变化对速度的影响越 大,即速度刚性越差。 当AT一定时,重载区 域比轻载区域的速度刚 性差; 在相同负载条件下, AT大时,亦即速度高时 速度刚性差。 所以这种调速回路适 用于低速轻载的场合。 用于低速轻载的场合
式中: qt——变量泵的理论流量; 理论流量 k1——变量泵的泄漏系数; 泄漏系数
改变变量泵的排量即可调节活塞的 运动速度v。若不考虑液压泵以外 的元件和管道的泄漏,这种回路的 活塞运动速度为 : F qt k1 qp A1 v A1 A1
节流调速:
由定量泵供油,由流量控制阀控制流入或流出执行 元件的流量来调节速度。
容积调速:
改变变量泵或变量马达的排量来调节速度。
容积节流调速:
采用变量泵供油,由流量控制阀控制流入或流出执 行元件的流量来调节速度,同时又使变量泵的输出流量 与通过流量控制阀的流量相适应。
(一) 节流调速回路 节流
3.旁路节流调速回路 旁路节流
1)回路结构和主要液压参数
图旁路节流调路回路 a)回路图 b)速度负载特性
3.旁路节流调速回路 旁路节流
其调定压力为最大工作压力的1.1~1.2倍。
2)速度负载特性
由于在回路中泵的工作压力随负 载而变化,正比于压力的泄漏量也是 变量(前两回路中为常量),对速度 产生了附加影响,因而泵的流量中要 计入泵的泄漏流量Δqp,所以有:
m
回油节流调速和进油节流调速的速度负载特性以及速度刚性 基本相同,若液压缸两腔有效面积相同(双出杆液压缸), 基本相同 那么两种节流调速回路的速度负载特性和速度刚度就完全一 样。
3)最大承载能力
无论AT为何值,当F=ppA1时,节流阀两端压差Δp为零,活 塞运动也就停止,此时液压泵输出的流量全部经溢流阀回油 Fmax=ppA1。 箱。所以此F值即为该回路的最大承载值,即 最大承载值
工作原理:通过改变回路中流量控制元件(节流阀或调速 工作原理: 阀)通流截面积的大小来控制流入执行元件或自执行元件流 出的流量,以调节其运动速度。 根据流量阀在回路中的位置不同,分为: 进油节流调速回 回路中的位置 路、回油节流调速回路和 回油节流调速回路 旁路节流调速回路。 旁路节流调速回路
1、进油节流调速回路 、进油节流
2)最大承载能力
无论AT为何值,当F=ppA1时,节流阀两端压差Δp为零,活 塞运动也就停止,此时液压泵输出的流量全部经溢流阀回油 箱。所以此F值即为该回路的最大承载值,即 Fmax=ppA1。 最大承载值
KAT 1 m ( p p A1 F ) m A1 A1
q1
3)功率 回路输入功率(泵输出功率):
(二) 容积调速回路 容积
容积调速回路是用改变液压泵或液压马达的排量来实现调速的。 改变液压泵或液压马达的排量 优点:没有节流损失和溢流损失,因而效率高,油液温升小,适 优点 用于高速、大功率调速系统。 缺点:变量泵和变量马达的结构较复杂,成本较高。
1.变量泵和 变量泵 定量液压执行元件容积调速回路 定量液压执行元件 (1)变量泵—缸
液压与气压传动 基本回路
第六章 基本回路
任何液压系统都是由一些基本回路组成, 所谓基本回路是指能完成特定功能的液压元件的组合。 基本回路是液压传动系统的基本组成单元。 从本质上看,基本回路主要包括压力控制回路、流量控制 回路和方向控制回路三种类型,其他回路一般都是从这三 种回路中派生出来的。
一、速度控制回路 调速目的:满足液压执行元件对工作速度的要求。 调速目的
图 进油节流调速回路
有溢流是这种调速回路能够正 有溢流 常工作的必要条件。 必要条件
qp=const
pp=const
q1 v A1
流量关系: qp= q1+Δq 压力关系: p p= Δ p + p 1
p1 A1 p2 A2 F
F p2 0, p1 A1
1)速度负载特性
F p1 A1
F F q1 qp qT (qt qp ) KAT p m qt K 1 KA T A A 1 1
m
式中
qt—液压泵的理论流量; K1—液压泵的泄漏系数;
所以,液压缸的速度负载特性为
F F qt K 1 KAT A A q1 1 1 v A1 A1
当使用同一个液压缸和同一个节流阀,且负载F和活塞运动速度 v相同时,因此可以认为进、回油节流调速回路的效率是相同的。 在回油节流调速回路中,当 F接近于零时,回油腔的背压有可能 回油节流调速回路 比液压泵的供油压力还要高,这样会使节流功率损失大大提高, 且加大泄漏,因而其效率实际上比进油节流调速回路的要低。 其效率实际上比进油节流调速回路的要低
因为液压泵的供油压力pp为定 值,故节流阀两端的压力差为
F p pp p1 pp A1
经节流阀进入液压缸的流量为
F m q1 KAT p KAT pp A 1
m
式中 K——常数; AT——节流阀的通流面积; m——指数,0.5≤m≤1。
m
选取不同的AT值可作出一组速度负载特性 曲线,由曲线可见, 曲线 当AT一定而负载增加时,速度显著下 一定而负载增加时 降,即特性很软; 特性很软 当AT一定时,负载越大,速度刚度越 一定时 大; 当负载一定时, 当负载一定时 AT越小(即活塞运动速 度越高),速度刚度越大。
3)最大承载能力
进、回油节流调速回路相比较,其特点是:
4)实现压力控制的方便性 进油节流调速回路中,进油腔的压 力将随负载而变化,当工作部件碰到死挡块而停止后,其压力将 升到溢流阀的调定压力,压力继电器发出信号,可控制下一步动 作利用这一压力变化来实现压力控制是很方便的。但在回油节流 调速回路中,只有回油腔的压力才会随负载变化,当工作部件碰 到死挡块后,其压力将降至零,只能取零压发信利用这一压力变 化来实现压力控制比较麻烦,故一般较少采用。 5)回油压力 回油节流调速回路回油腔压力较高,特别是负载接 近零时,压力更高,这对回油管的安全、密封及寿命均有影响。
Pp p p q p
回路输出功率(缸输入功率):
P 1 F p1q1
回路功率损失:
P Pp P 1 p p q p p1q1 p p (q1 q y ) ( p p p )q1 p p q y pq1
溢流损失: P溢 p p q y
节流损失: P节 pq1
损失的功率变成热,使油温升高。
4)效率 回路效率:不考虑损失时,执行元件的输入功率与 液压泵的输出功率之比即为调速回路的效率
P p1q1 1 Pp p p q p
q1 , qp q1 q p q y
p1 , pp
FL p1 , A1
溢流量越少,效率越高。
溢流损失功率:ppqy 节流损失功率:Δpq2
它与进油节流调速回路的功率损失相似。
5)效率
回路的效率为:
A2 p p q1 p 2 p p q1 p 2 q 2 A1 Fv c pp q p pp q p pp q p
p1 A1 F p2 A2
q1
液压缸的运动速度v和节流阀通 流面积AT成正比。调节AT可实 现无级调速,这种回路的调速 无级调速 范围较大(速比最高可达 100)。
上式为进油节流调速回路的 上式为进油节流调速回路 速度负载特性方程。 速度负载特性方程
K AT 1 m ( p p A1 F ) m A1 A1
1)速度负载特性
F q1 KAT p KAT pp A 1
m m
故液压缸的运动速度为
q KA T v 1 A1 A1
F pp A 1
m
K AT 1 m ( p p其特点是:
1 )承受负值负载的能力 回油节流调速回路中回油腔有一定背 压,故液压缸能承受负值负载,且运动速度比较平稳。 2) 发热及泄漏的影响 在进油节流调速回路中,经过节流阀发 热后的液压油直接进入液压缸的进油腔;而在回油节流调速回路 中,经过节流阀发热后的液压油流回油箱冷却。因此,发热和泄 漏对进油节流调速的影响均大于回油节流调速。 3)停车后的起动性能 长期停车后液压缸油腔内的油液会流回油 箱,当液压泵重新向液压缸供油时,在回油节流调速回路中,由 于进油路上没有节流阀控制流量,即使回油路上节流阀关得很 小,也会使活塞前冲;而在进油节流调速回路中,由于进油路上 有节流阀控制流量,故活塞前冲很小,甚至没有前冲。
q2 KAT pp A1 F v 1 m A2 A2
m
4)功率和效率
液压泵的输出功率:Pp 液压缸的输出功率:
ppqp
P1 Fv ( p p A1 p2 A2 )v p p q1 p2 q2
该回路的功率损失为:
P Pp P1 pp qp pp q1 p2 q2 pp (qp q1 ) p2 q2 pp qy pq 2
相关文档
最新文档