实验4:连续系统的频域分析

合集下载

信号与系统MATL实验及代码

信号与系统MATL实验及代码

实验一、MATLAB编程基础及典型实例一、实验目的(1)熟悉MATLAB软件平台的使用;(2)熟悉MATLAB编程方法及常用语句;(3)掌握MATLAB的可视化绘图技术;(4)结合《信号与系统》的特点,编程实现常用信号及其运算。

示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。

编制一个函数型m文件,实现这个功能。

function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2)a=min(min(n1),min(n2));b=max(max(n1),max(n2));n=a:b;f1_new=zeros(1,length(n));f2_new=zeros(1,length(n));tem1=find((n>=min(n1))&(n<=max(n1))==1);f1_new(tem1)=f1;tem2=find((n>=min(n2))&(n<=max(n2))==1);f2_new(tem2)=f2;四、实验内容与步骤− 2 t (2)绘制信号x(t)= esin( t=0:0.1:30; 23t ) 的曲线,t的范围在0~30s,取样时间间隔为0.1s。

y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);(3)在n=[-10:10]范围产生离散序列:x( n)=⎧2 n ,− 3⎨≤ n ≤ 3,并绘图。

⎩0, Othern=-10:1:10;z1=((n+3)>=0);z2=((n-3)>=0);x=2*n.*(z1-z2);stem(n,x);(4)编程实现如下图所示的波形。

t=-2:0.001:3;f1=((t>=-1)&(t<=1));f2=((t>=-1)&(t<=2));f=f1+f2;plot(t,f);axis([-2,3,0,3]);(5)设序列f1(k)={ 0 , 1 , 2 , 3 , 4 , 5 },f2(k)={ 6 , 5 , 4 , 3 , 2 , 1 , 0 }。

连续时间系统的频域分析-资料

连续时间系统的频域分析-资料
对离散时间LTI系统,也有同样的结论。但对线性 相位系统,当相位特性的斜率是整数时,只引起信号 的时域移位。若相位特性的斜率不是整数,由于离散 时间信号的时移量只能是整数,需要采用其他手段实 现,其含义也不再是原始信号的简单移位。
傅里叶变换形式的系统函数
et ht rt

E H R
若e(t) E(), 或E(j)

7

二维傅里叶变换的模
模相同,相位为零
模为1,相位相同

8

相位相同,模为(g)图的
(g)图
4.2 LTI系统频率响应的模和相位表示
The Magnitude-Phase Representation of the Frequency Response of LTI Systems
• LTI系统对输入信号所起的作用包括两个方面: 1.
求 稳 v2 (t)态 响 应
解:
V 1 ( j) j π ( 0 ) ( 奇函0 ) 数
V 2 (j) H (j)V 1 (j)
偶函数
H () j e j ( ) j π ( 0 ) ( 0 )
所 V 2 ( j ) H ( j 0 ) 以 j π ( 0 ) e j ( 0 ) ( 0 ) e j ( 0 )
这说明:一个信号所携带的全部信息分别包含在 其频谱的模和相位中。
因此,导致信号失真的原因有两种: 1.幅度失真:由于频谱的模改变而引起的失真。 2.相位失真:由于频谱的相位改变引起的失真。
在工程实际中,不同的应用场合,对幅度失真 和相位失真有不同的敏感程度,也会有不同的 技术指标要求。
原图像 傅里叶变换的相位
第四章 连续时间系统频域分析 齐开悦

第4章 连续信号与系统的复频域分析

第4章 连续信号与系统的复频域分析

式( 4.1-5 )和( 4.1-6 )称为双边拉普 拉斯变换对,可以用双箭头表示f ( t )与F(s) 之间这种变换与反变换的关系
记F (s) L [ f (t )], f (t ) L [ F (s)]
-1
f (t ) F ( s)
从上述由傅氏变换导出双边拉普拉 斯变换的过程中可以看出,f (t) 的双边 拉普拉斯变换F(s)=F( j )是把f (t)乘 以e - t之后再进行的傅里叶变换,或者 说F(s)是f ( t ) 的广义傅里叶变换。
j
1
j
st
ds
t > 0
(4.1-9)
记为£ -1[ F(s)]。即
F(s) =£ [ f (t) ]
–1 [ F (s) ] 和 f (t) = £
式(4.1-8)中积分下限用0-而不用0+, 目的是可把t = 0-时出现的冲激考虑到变换中 去,当利用单边拉普拉斯变换解微分方程时, 可以直接引用已知的起始状态f (0-)而求得全 部结果,无需专门计算0-到0+的跳变。
经过 0 的垂直线是收敛边界,或称为 收敛轴。
由于单边拉普拉斯变换的收敛域是由 Re[s] = > 0的半平面组成,因此其收敛 域都位于收敛轴的右边。
凡满足式(4.1-10)的函数f ( t )称为“指 数阶函数”,意思是可借助于指数函数的 衰减作用将函数f(t) 可能存在的发散性压下 去,使之成为收敛函数。
在收敛域内,函数的拉普拉斯变换存 在,在收敛域外,函数的拉普拉斯变换不 存在。
双边拉普拉斯变换对并不一一对应, 即便是同一个双边拉普拉斯变换表达式, 由于收敛域不同,可能会对应两个完全不 同的时间函数。
因此,双边拉普拉斯变换必须标明收 敛域。

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

连续时间系统的频域分析

连续时间系统的频域分析

d
ln(e2 )
12
d
1
2
2
d
1
1 2
1
d
lim
B
tg 1
B B
lim 2(B tg1B) 2 lim (B )
B
B
2
发散的,物 理不可实现
5.7 希尔伯特变换*(Hilbert)
物理可实现系统的实质是具有因果性 因果系统的实部和虚部之间相互限制 因果系统的模和相角之间相互限制
e
j
2
arctg (
2
)
2 2
V2 ( j )
j
E (1 e j )
j
E (1 e j ) E (1 e j )
j
j
v2 (t) E(1 et )u(t) E(1 e(t ) )u(t )
v2 (t )
t
5.3 周期信号激励下的系统响应*
一、正弦周期信号激励下的系统响应 正弦周期激励信号的傅氏变换
ln H ( j) ln H ( j) j( j)
ln H ( j ) 1 () d
( j ) 1
ln H ( j) d
因果系统的频谱模被已知的相位唯一地确 定,反过来也一样.
5.8 调制与解调
调制:
g(t) 相乘 g(t) cos0t f (t) g(t) cos0t
R( j) [ () 1 ](1 e j )e j t0 j
r(t) 1 R( j)e j t d 2
1
Si[(t
t0
)
Si[(t
t0
)]
Y=处,为Si(y)第一个峰起点, Si()=1.8514.
r(t)
|max

实验四连续时间系统的复频域分析

实验四连续时间系统的复频域分析
理论数据表
根据实验原理和系统设计,计算出理论上的关键数据,并与实验数据进行对比,以验证实验结果的正确性。
结果对比分析பைடு நூலகம்
1 2
波形图对比
将实验波形图与理论波形图进行对比,观察两者 在幅度、频率和相位等方面的差异,并分析产生 差异的原因。
数据对比
将实验数据与理论数据进行对比,计算误差并分 析误差来源,以评估实验结果的准确性和可靠性。
系统函数与传递函数
系统函数
描述系统动态特性的数学表达式,通 常表示为微分方程或差分方程的形式。 系统函数反映了系统对输入信号的响 应特性。
传递函数
在复频域中,传递函数表示系统输入 与输出之间的关系。它是系统函数在 复频域的表示形式,便于分析系统的 频率响应和稳定性。
稳定性分析
稳定性定义
稳定性是指系统在受到扰动后,能够恢复到原来平衡状态的 能力。对于连续时间系统,稳定性通常指系统的输出在有限 时间内有界。
稳定性判据
根据实验结果,可以总结出连续时间系统稳定的充分必要条件是系统函数H(s)的极点全部 位于s平面的左半平面。
收获与体会
理论与实践结合
通过实验操作,加深了对连续时间系统复频 域分析理论的理解,实现了理论与实践的有 机结合。
实验技能提升
在实验过程中,熟练掌握了信号发生器、示波器、 频谱分析仪等实验仪器的使用,提高了实验技能。
系统函数
连续时间系统的系统函数是复频域中 的传递函数,描述了系统的频率响应 特性。
03 复频域分析方法
CHAPTER
傅里叶变换与拉普拉斯变换
傅里叶变换
将时间域信号转换为频域信号,便于 分析信号的频率特性。通过正弦和余 弦函数的叠加来表示信号,实现信号 的时频转换。

信号与系统第4章

信号与系统第4章
35
正方波为奇谐函数
f (t)
1
OT
2T t
1
f
(t
)
4
sin(t)
1 3
sin(3t)
1 5
sin(5t)
36
傅里叶级数的指数形式
f
(t)
A0 2
n1
An
c os (nt
n)
A0 2
n1
An
1 2
e j (nt n )
e j(nt n )
A0 2
1 2
n1
Ane jn e jnt
t1
(t)
i
(t)dt
0,
i 1,2,, n
则称该函数集为完备正交函数集。函数 ψ (t) 应满足条 件
0 t2 2 (t)dt t1
5
正交的三角函数集 (1)
1, cos 2 1 t , cos 2 2 t ,cos 2 m t ,,
T T
T
sin 2 1 t ,sin 2 2 t ,sin 2 n t ,
1 2
n1
Ane jn e jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e j n
jnt
A0 2
1 2
n1
Ane jn e jnt
1 2
Ane
n1
e jn
jnt
1 2
Ane jn e jnt
n
37
傅里叶级数的指数形式
f
(t)
1 2
Ane
n
e j n
jnt
Fne jnt
n
上式中,

信号与系统第四章连续系统的频域分析

信号与系统第四章连续系统的频域分析

极点对系统频率响应的影响更为显著。极点 会使系统频率响应在某些频率处产生谐振峰 或反谐振峰,具体取决于极点的位置和数量。 极点越靠近虚轴,对频率响应的影响越显著。 同时,极点的实部决定了系统的阻尼程度, 虚部决定了谐振频率。
05 连续系统频域性能指标评 价方法
幅频特性曲线绘制方法
确定系统的传递函数
周期信号频谱特性
离散性
周期信号的频谱是离散的,即只在某些特定的频率点 上有值。
谐波性
周期信号的频谱由基波和各次谐波组成,各次谐波的 频率是基波频率的整数倍。
收敛性
随着谐波次数的增加,谐波分量的幅度逐渐减小,即 周期信号的频谱具有收敛性。
02 傅里叶变换及其在频域分 析中应用
傅里叶变换定义与性质
信号调制与解调
在通信系统中,通过傅里叶 变换实现信号的调制与解调 过程,将信息加载到载波信 号上进行传输。
信号滤波与处理
利用傅里叶变换设计数字滤 波器,对信号进行滤波处理 以去除噪声或提取特定频率 成分。
03 拉普拉斯变换及其在频域 分析中应用
拉普拉斯变换定义与性质
定义
拉普拉斯变换是一种线性积分变换,用于 将时间域的函数转换为复平面上的函数。 对于连续时间信号$x(t)$,其拉普拉斯变 换定义为$X(s) = int_{0}^{infty} x(t) e^{st} dt$,其中$s$是复数频率。
VS
性质
拉普拉斯变换具有线性性、时移性、频移 性、微分性、积分性、初值定理和终值定 理等重要性质。这些性质使得拉普拉斯变 换在信号与系统的分析中非常方便和有效 。
典型信号拉普拉斯变换举例
单位阶跃信号
指数信号
正弦信号
余弦信号
单位阶跃信号的拉普拉斯变 换为$frac{1}{s}$。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

连续系统复频域分析报告附MATLAB实现信号与系统实验报告

连续系统复频域分析报告附MATLAB实现信号与系统实验报告

计算机与信息工程学院设计性实验报告专业:通信工程年级/班级:2011级第二学年第二学期一、实验目的1.掌握用matlab分析系统时间响应的方法2.掌握用matlab分析系统频率响应的方法3.掌握系统零、极点分布与系统稳定性关系二、实验原理1.系统函数H(s)系统函数:系统零状态响应的拉氏变换与激励的拉氏变换之比.H(s)=R(s)/E(s)在matlab中可采用多种方法描述系统,本文采用传递函数(系统函数)描述法.在matlab中, 传递函数描述法是通过传递函数分子和分母关于s降幂排列的多项式系数来表示的.例如,某系统传递函数如下则可用如下二个向量num和den来表示:num=[1,1];den=[1,1.3,0.8]2.用matlab分析系统时间响应1)脉冲响应y=impulse(num,den,T)T:为等间隔的时间向量,指明要计算响应的时间点.2)阶跃响应y=setp(num,den,T)T同上.3)对任意输入的响应y=lsim(num,den,U,T)U:任意输入信号. T同上.3.用matlab分析系统频率响应特性频响特性: 系统在正弦激励下稳态响应随信号频率变化的特性.|H(jω)|:幅频响应特性.ϕ(ω):相频响应特性(或相移特性).Matlab求系统频响特性函数freqs的调用格式:h=freqs(num,den,ω)ω:为等间隔的角频率向量,指明要计算响应的频率点.4.系统零、极点分布与系统稳定性关系系统函数H(s)集中表现了系统的性能,研究H(s)在S平面中极点分布的位置,可很方面地判断系统稳定性.1) 稳定系统: H(s)全部极点落于S左半平面(不包括虚轴),则可以满足系统是稳定的.2)不稳定系统: H(s)极点落于S右半平面,或在虚轴上具有二阶以上极点,则在足够长时间后,h(t)仍继续增长, 系统是不稳定的.3)临界稳定系统: H(s)极点落于S平面虚轴上,且只有一阶,则在足够长时间后,h(t)趋于一个非零数值或形成一个等幅振荡.系统函数H(s)的零、极点可用matlab的多项式求根函数roots()求得.极点:p=roots(den)零点:z=roots(num)根据p和z用plot()命令即可画出系统零、极点分布图,进而分析判断系统稳定性.三、实验内容设①p1=-2,p2=-30; ②p1=-2,p2=31.针对极点参数①②,画出系统零、极点分布图, 判断该系统稳定性.2.针对极点参数①②,绘出系统的脉冲响应曲线,并观察t→∞时, 脉冲响应变化趋势.3.针对极点参数①, 绘出系统的频响曲线.四、实验要求1.预习实验原理;2.对实验内容编写程序(M文件),上机运行;3.绘出实验内容的各相应曲线或图。

信号与系统 实验四、五 实验报告

信号与系统 实验四、五 实验报告

实验五:基于Matlab的连续信号生成及时频域分析一、实验要求1、通过这次实验,学生应能掌握Matlab软件信号表示与系统分析的常用方法。

2、通过实验,学生应能够对连续信号与系统的时频域分析方法有更全面的认识。

二、实验内容一周期连续信号1)正弦信号:产生一个幅度为2,频率为4Hz,相位为π/6的正弦信号;2)周期方波:产生一个幅度为1,基频为3Hz,占空比为20%的周期方波。

非周期连续信号3)阶跃信号;4)指数信号:产生一个时间常数为10的指数信号;5)矩形脉冲信号:产生一个高度为1、宽度为3、延时为2s的矩形脉冲信号。

三、实验过程一1)t=0:0.001:1;ft1=2*sin(8*pi*t+pi/6);plot(t,ft1);2)t=0:0.001:2;ft1=square(6*pi*t,20);plot(t,ft1),axis([0,2,-1.5,1.5]);3)t=-2:0.001:2;y=(t>0);ft1=y;plot(t,ft1),axis([-2,2,-1,2]);4)t=0:0.001:30;ft1=exp(-1/10*t);plot(t,ft1),axis([0,30,0,1]);5)t=-2:0.001:6;ft1=rectpuls(t-2,3);plot(t,ft1),axis([-2,6,-0.5,1.5]);四、实验内容二1)信号的尺度变换、翻转、时移(平移)已知三角波f(t),用MATLAB画信号f(t)、f(2t)和f(2-2t) 波形,三角波波形自定。

2)信号的相加与相乘相加用算术运算符“+”实现,相乘用数组运算符“.*”实现。

已知信号x(t)=exp(-0.4*t),y(t)=2cos(2pi*t),画出信号x(t)+y(t)、x(t)*y(t)的波形。

3)离散序列的差分与求和、连续信号的微分与积分已知三角波f(t),画出其微分与积分的波形,三角波波形自定。

连续时间LTI系统的频域分析

连续时间LTI系统的频域分析

连续时间LTI 系统的频域分析一、实验目的1、 掌握系统频率响应特性的概念及其物理意义;2、 掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应 特性的滤波器对信号的滤波作用;3、 学习和掌握幅度特性、相位特性以及群延时的物理意义;4、 掌握用MATLA 爵言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 苗述方法,深刻理 LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利 用MATLAB 十算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指 系统在正弦信号 激励下的稳态响应随 频率变化的情况,包括响应的幅度随频率的变化情况 和响应的相位随频率的变化情况两个方面。

连续时间LTI 系统的时域及频域分析图上图中x(t)、y(t)分别为系统的时域激励信号和响应信号, h(t)是系统的单位冲激响。

它们三者之间的关系为:y(t) =x(t)*h(t),由傅里叶变换的时域卷积定理可得到:Y(j ) =X(j )H(j )3.1或者:H (j ,)二 Y(j -3.2X(浮)H(j )为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即Q0H (代)=Jh(t)e j<s dt3.3由于H(j ■)实际上是系统单位冲激响应h(t)的傅里叶变换,如果 h(t)是收敛的,或者 说是绝对可积(Absolutly integrabel)的话,那么 H(j •‘)一定存在,而且 H(j •‘)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把x(t)X (f .)y(t)Y(? ■)它表示成极坐标形式:H j)= Hj)e% 3.4上式中,H(jco)称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,申(①)称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

用MATLAB实现连续系统的频域分析

用MATLAB实现连续系统的频域分析

用MATLAB实现连续系统的频域分析
MATLAB是一款具有强大功能的科学数学软件,它用于数值计算、算法设计、函数图形化等,也可以用于连续系统的频域分析。

下面介绍一般的频域分析的基本步骤,并用MATLAB编程实现,从而实现连续系统的频域分析。

首先,将连续时间信号转换为数字,并计算出相应的变换系数。

一般情况下,可以使
用MATLAB中的函数“fft”和“ifft”根据时域输入信号进行傅里叶变换。

具体过程,可
以按照以下步骤逐步实现:
1. 首先,将函数转换成实数集合并将它们用MATLAB以连续信号的形式写出。

2. 接着,遵循N分频原则,解决连续信号的采样问题,然后对其进行频谱分析。

3. 然后,在实际计算中,根据采样时间及相关的参数计算频率及其带宽,并将每个
离散频率的相应信号分量分开。

4. 接着,使用MATLAB的fft()函数进行正变换处理,得到实现的频域模型。

5. 最后,使用disp()或plot()函数,将计算出的频谱信号以可视化的方式展现出来,方便观察和分析。

MATLAB中,提供了多种用于傅里叶变换的函数,可用于连续系统的频域分析,比如
fft()函数和ifft()函数,等等。

使用这些函数,可以在MATLAB中实现连续系统的频域分析,帮助用户轻松地进行频域分析,并展示出可视化的结果,提高效率。

第四章连续系统的复频域分析

第四章连续系统的复频域分析

(region of convergence)实际上就是拉氏变换存在的条
件;
则收敛条件为 。 lim f (t) eσt 0 t
σ σ0
jω 收敛轴
收敛区
收敛坐标
σ0 O
σ
图4-2拉普拉斯收敛域
4.1.2 拉普拉斯变换的收敛域
例 4-1-1 求指数函数 f (t) et ( 0) 的拉氏变换及其收敛域。
F(s) f (t)e-stdt 0
F( s ) :为s的函数,称为象函数。
s = + j,复频率。
变换对:
f( t ) F( s )
电压:u( t ) U( s )
电流:i( t ) I( s )
4.1.2 拉普拉斯变换的收敛域
收敛域就是使 存在的s的区域称为收敛域。记为:ROC
eα st


1
αs αs
σ α
3.单位冲激信号
0
L
t



0
t

estd
t

1
全s域平面收敛
L t t0



0
t t0
estd t est0
表4—1一些常见函数的拉氏变换
4.1.3 常用信号的拉普拉斯变换
解: 用两种方法进行求解。
dt
的拉普拉斯变换。
方法一:由基本定义求解。 d
因为 f (t) 的导数为
dt
[e
atu(t
)]

aeat
u(t)


(t
)
L

df (t) dt

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym(&#39;Heaviside(2*t+1)-Heaviside(2*t-1)&#39;);Gt1=sym(&#39;Heaviside(t1+1)-Heaviside(t1-1)&#39;);Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple(&#39;convert&#39;,Fw,&#39;piecewise&#39;);FFw1=maple(&#39;convert&#39;,Fw1,&#39;piecewise&#39;);FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym(&#39;(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)&#39;);Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)&#39;);ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym(&#39;((i*w)+5*i*w-8)/((i*w)+6*i*w+5)&#39;);ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

连续时间系统的频域分析

连续时间系统的频域分析

第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。

●简化电路分析与运算,总响应=单元响应之和。

1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。

一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。

2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。

令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。

3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。

物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。

二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。

连续系统的频域分析

连续系统的频域分析

连续系统的频域分析第三章傅⽴叶变换时域分析:f(t) y f(t)=h(t)*f(t)↓分解↑基本信号δ(t)→LTI →h(t)频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt↓分解↑基本信号 sinωt→LTI →H(jω)e jωte jωtH(jω):系统的频域响应函数,是信号⾓频率ω的函数,与t⽆关.主要内容:⼀、信号的分解为正交函数。

⼆、周期信号的频域分析?付⾥叶级数(求和),频谱的特点。

信号三、⾮周期信号的频域分析?付⾥叶变换(积分),性质。

分析四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)?F(jω). (系统分析)五、抽样定理:连续信号→离散信号.§3.1 信号分解为正交函数⼀、正交:两个函数满⾜φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。

⼆、正交函数集:⼏个函数φi(t)φi(t)dt= 0 当i≠j;K i 当i=j.三、完备正交函数集:在{φ1(t)…φn(t)}之外,不存在ψ(t)满⾜ψ (t)φi(t)dt= 0 (i=1,2,…n).例、三⾓函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt,sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期.满⾜: cosmΩtcosnΩtdt= 0 m≠nT/2 m=n≠0T m=n=0sin(mΩt)sin(nΩt)dt= 0 m≠nT/2 m=n≠0sin(mΩt)cos(nΩt)dt= 0. 所有的m和n.结论:三⾓函数集是完备正交集。

推导: cosmΩtcosnΩtdt=(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt=(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt=(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0]+(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0]=0 当m≠n时.m=n≠0,原式=(1/2) [ cos(m+n)Ωt+1]dt=(1/2)?t =T/2 m=n=0 , 原式=(1/2) [1+1]dt=T.4、复函数的正交函数集:⼏个复函数集{φi(t)},φi(t)φi*(t)dt= 0 i≠jk i i=j例:复函数集{ e jnΩt}(n=0,±1,±2…)区间(t0,t0+T),T=2π/Ω为周期。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4:连续系统的频域分析一、实验目的(1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。

(2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。

二、实验原理 1.周期信号的分解根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为()f t 的傅里叶级数。

在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。

例如一个方波信号可以分解为:11114111()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ⎛⎫=++++ ⎪⎝⎭合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布斯现象(Gibbs )。

2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式:()()lim()j tj n n F j f t edt f n e ωωττωττ∞∞---∞→=-∞==∑⎰当()f t 为时限信号时,上式中的n 取值可以认为是有限项N ,则有:()(),0k Nj n n F k f n e k N ωτττ-==≤≤∑,其中2k k N πωτ=3.系统的频率特性连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为()()()Y H X ωωω=三、实验内容与方法 1.周期信号的分解【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。

MATLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; endtitle(‘信号叠加前’); subplot(212) for n=1:2:9;sum=sum+4/pi*1/n*sin(2*pi*n*f0*t); endplot(t,sum,’k ’); title(‘信号叠加后’); 产生的波形如图所示:00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加前00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加后2.傅里叶变换和逆变换的实现求傅里叶变换,可以调用fourier 函数,调用格式为F=fourier(f,u,v),是关于u 的函数f 的傅里叶变换,返回函数F 是关于v 的函数。

求傅里叶逆变换,可以调用ifourier 函数,调用格式为f=ifourier(F,v,u),是关于v 的函数F 的傅里叶逆变换,返回函数f 是关于u 的函数。

【例2】已知连续信号2()tf t e-=,通过程序完成其傅里叶变换。

MATLAB 程序如下: syms t;f=fourier(exp(-2*abs(t))); ezplot(f) ;得到的傅里叶变换如图所示:w4/(4+w 2)【例3】已知连续信号21()1F j ωω=+,通过程序完成其傅里叶逆变换。

MATLAB 程序如下: syms t wifourier(1/(1+w^2),t)得到的结果为:ans =1/2*exp(-t)*heaviside(t)+1/2*exp(t)*heaviside(-t) 图形如图所示:t1/2 exp(-t) heaviside(t)+1/2 exp(t) heaviside(-t)3.傅里叶变换的性质举例验证傅里叶变换的时移特性和频移特性。

【例4】分别绘出信号21()()2t f t e t ε-=和(1)f t -的频谱,求21()()2t f t e t ε-=的频谱。

MATLAB 程序如下:r=0.02;t=-5:r:5;N=200;W=2*pi;k=-N:N;w=k*W/N; f1=1/2*exp(-2*t).*stepfun(t,0); F=r*f1*exp(-j*t'*w);F1=abs(F);p1=angle(F);subplot(3,1,1);plot(t,f1);grid xlabel('t');ylabel('f(t)');title('f(t)');subplot(3,1,2); plot(w,F1);xlabel('w');grid;ylabel('F(jw)');subplot(3,1,3);plot(w,p1*180/pi);grid;xlabel('w');ylabel('相位(度)');-5-4-3-2-10123450.5tf (t )f(t)-8-6-4-20246800.20.4wF (j w )-8-6-4-202468-100100w相位(度)再求信号(1)f t -的频谱,MATLAB 程序如下:%求(1)f t -的频谱r=0.02;t=-5:r:5;N=200;W=2*pi;k=-N:N;w=k*W/N; f1=1/2*exp(-2*(t-1)).*stepfun(t,1); F=r*f1*exp(-j*t'*w);F1=abs(F);p1=angle(F);subplot(3,1,1);plot(t,f1);grid xlabel('t');ylabel('f(t)');title('f(t-1)');subplot(3,1,2); plot(w,F1);xlabel('w');grid;ylabel('F(jw)的模');subplot(3,1,3); plot(w,p1*180/pi);grid;xlabel('w');ylabel('相位(度)');-5-4-3-2-10123450.5tf (t )f(t-1)-8-6-4-20246800.20.4wF (j w )的模-8-6-4-202468-200200w相位(度)【例5】傅里叶变换的频移特性:信号()()f t g t =为门信号,绘出信号101()()j t f t f t e -=和信号102()()j t f t f t e -=的频谱,并与原信号的频谱图进行比较。

(1)()()(1)(1)f t g t t t εε==--+,求其频谱可以采用数值就算得方法。

MATLAB 程序如下:R=0.02;t=-2:R:2;f=stepfun(t,-1)-stepfun(t,1); W1=2*pi*5;%频率宽度N=500;k=0:N;W=k*W1/N;%采样数为N ,W 为频率正半轴的采样点 F=f*exp(-j*t'*W)*R;%求F (jw ) F=real(F);W=[-fliplr(W),W(2:501)];%形成负半轴及正半轴的2N+1个频率点W F=[fliplr(F),F(2:501)];%形成对应于W 的F (jw )的值 subplot(2,1,1);plot(t,f);xlabel('t');ylabel('f(t)');axis([-2,2,-0.5,2]); title('f(t)=u(t+1)-u(t-1)');subplot(2,1,2);plot(W,F); xlabel('W');ylabel('F(W)'); title('f(t)的傅里叶变换');-2-1.5-1-0.500.511.52-0.500.511.52tf (t )f(t)=u(t+1)-u(t-1)-40-30-20-10010203040-0.500.511.52WF (W )f(t)的傅里叶变换(2)得到101()()j t f t f t e -=,102()()j t f t f t e =的频谱的MATLAB 程序如下:R=0.02;t=-2:R:2;f=stepfun(t,-1)-stepfun(t,1);f1=f.*exp(-j*10*t) ;f2=f.exp*(j*10*t) W1=2*pi*5; N=500; k=-N :N ; W=k*W1/N;F1=f1*exp(-j*t'*W)*R; F2=f2*exp(-j*t'*W)*R; F1=real(F1);F2=real(F2); subplot(2,1,1);plot(W,F1);xlabel('W');ylabel('F1(W)');title('频谱F1(jw)'); subplot(2,1,2);plot(W,F2);xlabel('W');ylabel('F2(W)');title('频谱F2(jw)'); 得到的傅里叶变换的频移特性如图所示:-40-30-20-10010203040-0.500.511.52WF 1(W )频谱F1(jW)-40-30-20-10010203040-0.500.511.52WF 2(W )频谱F2(jW)四、程序设计实验(1)方波的合成实验。

用5项谐波合成一个频率为50Hz ,幅值为3的方波,写出MATLAB 程序,给出实验的结果。

(2)编写程序,画出信号3()()t f t e t ε-=,(4)f t -以及信号4()j t f t e -的频谱图。

五、实验预习要求 (1)预习实验原理。

(2)熟悉实验程序。

(3)思考课程设计实验部分程序的编写。

六、实验报告要求(1)在MATLAB 中输入程序,验证实验结果,并将实验结果存入指定存储区域中。

(2)对于程序设计实验,要求通过对验证性实验的练习,自行编制完整的实验程序,实现对信号的模拟,并得出实验结果。

(3)在实验报告中写出完整的自编程序,并给出实验结果。

七、思考题(1)傅里叶级数是什么?非周期傅里叶变换的定义是什么? (2)将信号进行分解成谐波函数,n 次谐波时能否得到原波形?如不能会存在多少误差?(3)常数和阶跃函数是否能够直接利用傅里叶变换定义公式进行变换?为什么不能?(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档