相似三角形中考复习学案(教师用)

合集下载

【教学设计】相似三角形中考复习精品教案

【教学设计】相似三角形中考复习精品教案

相似三角形中考复习教学设计
一.教学目标
1.掌握并能运用相似三角形判定与性质
2.能了解和解决相似三角形基本题型
3.用动态观解相似三角形题目
二.教学重点
培养学生对相似三角形基本图形的感觉,能正确找到对应角和对应边三.教学难点
找对应角和对应边,尤其是动态题.
四.学情分析
相似三角形在初中数学中属于知识较难掌握的一章,题目在中考中往往偏难,学生就算是会做,也容易想错或算错数.在广州市近几年的中考试题中,相似三角形多数是难题,分值不固定,一般是3到10分之间.预测20**年要重视复习基础图形,注意对知识的理解.在此基础上,适当加强对探索题,动态题的研究与训练,培养数学能力.所以本节课题目都来自于平时的学习资料中,学生平时起码看过想过,又或者是广州中考的原题即学生比较感兴趣的题目.在解题讲题的过程中尽量将基本的,典型的,容易的题目讲得的透彻一些,太容易的,或者太难的少讲.
五.教学过程。

(完整版)相似三角形专题复习教案

(完整版)相似三角形专题复习教案

龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。

考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。

教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。

对应边的比叫做相似比。

三条平行线截两条直线所得的对应线段的比相等。

2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。

相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。

3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。

4.相似三角形的应用:求物体的长或宽或高;求有关面积等。

(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。

2019-2020学年九年级数学下册《相似三角形(复习课)》教案-新人教版

2019-2020学年九年级数学下册《相似三角形(复习课)》教案-新人教版

A C A'B'C 'B 2019-2020学年九年级数学下册《相似三角形(复习课)》教案 新人教版教学目标:1.回忆两个三角形相似的概念,巩固两个三角形相似的性质与判定。

2.归纳总结一般几何证明题的思路与相似三角形的基本模型。

3.通过学生动手画,动脑想,动笔写,进一步加深对三角形相似与理解。

教学重难点:相似三角形的性质与判定的综合应用。

教学方法:启发讨论式与讲练结合法。

教学课时:讲练结合1课时,学生自练1课时。

教学过程:一、概念:1.相似三角形的定义:对应角相等、对应边成比例的三角形叫做相似三角形。

2.相似比:相似三角形的对应边的比,叫做相似三角形的相似比。

△ABC ∽△A ′B ′C ′,如果BC=3,B ′C ′=1.5,那么△AB C 与△A ′B ′C ′的相似比为多少?(学生齐答) 二、相似三角形的判定、性质和应用1、判定①如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似. 几何语言:∵ ∴△ABC ∽△A ′B ′C ′②如果一个三角形的两条边分别与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.几何语言:∵ ∴△ABC ∽△A ′B ′C ′③如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似. 几何语言:∵ ∴△ABC ∽△A ′B ′C ′2、性质:两个三角形相似,则:①它们的对应边成比例,对应角相等;②它们的对应高、对应中线、对应角平分线的比等于相似比;③它们的周长比等于相似比;④面积比等于相似比的平方.三、应用举例:例1 下列说法中正确的有: (填序号)(1)所有的等腰三角形都相似.(2)所有的直角三角形都相似.(3)所有的等边三角形都相似.(4)所有的等腰直角三角形都相似.(5)全等三角形一定是相似三角形.四、及时练习A AB B '∠=∠⎫⎬'∠=∠⎭AB AC A B A C A A ⎫=⎪''''⎬⎪'∠=∠⎭AB AC BC A B A C B C ==''''''A DB CC B E AD C'B'D'A'E'(1)如图1,当 时,△ABC ∽ △ADE 。

相似三角形复习课学案

相似三角形复习课学案

相似形复习课学案 总编号:NO. 22命题人:陈光双 审核人:初二数学组学习目标:1.熟练掌握相似三角形的基础知识 2.灵活应用相似三角形的知识解决数学问题重点、难点:相似三角形知识的应用课前复习:比例的性质 比例的基本性质 和比性质 等比性质定义相似三角形对应中线,对应高,对应角平分线的比等于 相似三角形 性质 相似三角形周长的比等于 相似三角形面积的比等于1. ,两三角形相似2. ,两三角形相似 判定3. ,两三角形相似直角三角形的判定方法是课中探究:一.基础巩固(易错点):1. △ ABC 中,D 、E 分别是AB 、AC 上的点,且∠AED= ∠ B , 那么△ AED ∽ △ ABC ,从而AD ( ) =DEBC2.如图,DE ∥BC, AD:DB=2:3, 则S △ AED:S △ ABC =___.DACB ABCDEA BCDE第1题第2题第5题3. 已知三角形甲各边的比为3:4:6, 和它相似的三角形乙的最大边为10cm , 则三角形乙的最短边为______cm.4.等腰三角形ABC 的腰长为18cm ,底边长为6cm,在腰AC 上取点D, 使△ABC ∽ △BDC, 则DC=______.5. 如图,D 是△ABC 一边BC上一点,连接AD,使 △ABC ∽ △DBA 的条件是( ).A.AC:BC=AD:BDB. AC:BC=AB:ADC. AB 2=CD·BCD.AB 2=BD·BC 二·基础巩固(易漏点)6·D 、E 分别为△ABC 的AB 、AC 上的点,且DE ∥BC ,∠DCB= ∠ A ,把每两个相似的三角形称为一组,那 么图中共有相似三角形_______组。

7·已知菱形ABCD 的边长为8,点E 在直线AD 上,DE 等于4,连接BE 与对角线AC 相交于点N ,则 NC:AN=三.跟踪检测:第6题 8.如图,△ADE ∽ △ACB, 则DE:BC=_____ 第8题 9.·如图若∠1=∠2=∠3,则图中相似的三角形有( )A 、1对B 、2对C 、3对D 、4对 第9题10、如图:DE ∥BC, AD:DB=3:4, △ADE 与 △ ABC 的周长比为 , △ABC 与四边形DBCE 的面积的比为A BEDC A C BD E 2733图6A四·重点知识应用:11..如图,AB ∥CD ,AO=OB ,DF=FB ,DF 交AC 于E , 求证:ED 2=EO · EC探究:12.已知:如图,△ABC 中,P 是AB 边上的一点,连结CP .满足什么条件时△ ACP ∽△ABC .13.将两块完全相同的等腰直角三角板摆成如图的样子,假设图形中的所有点、线都在同一平面内,则图中有相似三角形吗?如有,把它们一 一写出来.ABCDEFOA P BC 1 24课后延伸:(用相似知识解决实际问题)14.如图:A , B 两个工厂合用一个变压器,两厂位于高压输电线的同一侧,A 厂据高压线30千米,B 厂据高压线40千米,D ,C 两点之间的距离为80千米,试问变压器装在何处,所用电线最短?ABD E GBD。

九年级数学《相似三角形判定-复习课》教案

九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。

帮助学生回忆相似三角形的几种判定方法。

以简单的选择、判断题复习相关知识点。

目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。

2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。

学生熟悉学习目标学生按照学习目标复习知识点。

帮助学生梳理知识要点。

学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。

以相似三角形的基本图形为主线回顾知识点。

从形的角度帮助学生更好地理解知识点。

议探交流尝试练习:学生完成尝试练习1、2两题。

议探交流:组内相互交流,先对议,再互议。

教师适时巡堂,深入小组,进行个别指导。

学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。

)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。

各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。

人教版数学九年级中考复习课《相似三角形》教学设计

人教版数学九年级中考复习课《相似三角形》教学设计
c.探讨相似三角形在建筑、设计等领域的应用。
5.写作任务:结合本节课所学内容,撰写一篇关于相似三角形在实际生活中的应用的小论文,要求不少于500字,以提高学生的写作能力和几何应用意识。
注意事项:
1.作业布置要注意分层设计,使不同层次的学生都能得到适当的锻炼和提高;
2.鼓励学生独立思考,遇到问题时积极寻求解决方法,培养自主学习能力;
2.逻辑思维能力:运用相似三角形的性质和判定方法解决具体问题,培养学生的逻辑思维;
3.团队合作能力:分组讨论,共同探究相似三角形的性质和应用,培养学生的团队协作精神;
4.解决问题能力:将相似三角形的知识应用于解决实际生活中的问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.积极主动:鼓励学生积极参与课堂讨论,主动探究相似三角形的性质和应用;
c.相似三角形在实际问题中如何应用?
2.汇报交流:各小组汇报讨论成果,分享解题思路和方法,教师进行点评和指导。
(四)课堂练习
1.设计具有代表性的习题,让学生当堂完成,巩固所学知识。
2.练习题包括:
a.判断两个三角形是否相似,并说明理由;
b.利用相似三角形的知识解决实际问题;
c.证明相似三角形的性质。
3.相似三角形的判定方法:讲解AA、SAS、SSS等判定方法,结合实例进行解释,使学生理解并掌握。
4.相似三角形的应用:介绍相似三角形在实际问题中的应用,如测量物体的高度、计算图形的面积等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
a.相似三角形的性质有哪些?
b.如何判断两个三角形是否相似?
(2)终结性评价:通过课后作业、测试等形式,评价学生对相似三角形知识的掌握程度;

数学九年级下册《相似三角形-复习课》教案

数学九年级下册《相似三角形-复习课》教案

初中20 -20 学年度第一学期教学设计1能根据相似的基本性质进行判断和计算。

2运用相似三角形的判定定理分析两个三角形是否相似。

两夹角相等或三边对应成比例来判断.例2、如图2所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .点评:结合判定方法补充条件.三、课堂练习(2008年福州市中考题)如图6,己知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 的运动速度是1cm/s ,点Q 的运动速度是2cm/s ,当Q 点到达点C 时,P 、Q 两点都停止运动,设运动时间为t(s),作QR ∥BA 交AC于点R ,连接PR ,当t 为何值时,△APR ∽△PRQ ? 分析:这是一道动态探究型试题,解题时用到了相似三角形的性质和判定。

解:∵ QR ∥BA ∴∠QRC =∠A ∠RQC =∠B∵∠A =∠B ∴∠QRC =∠RQC ∴CQ =CR∵CB =CA ∴AR =BQ =2t∵△APR ∽△PRQ ∴∠ARP =∠RQP∵ QR ∥BA , ∴∠RQP =∠BPQ , ∴∠ARP =∠BPQ ∵∠A =∠B ∴△APR ∽△BQP ∴AP BQ AR BP= ∴226t t t t=- 解得t =65。

答:当t =65时,△APR ∽△PRQ 。

四、课堂小结1、判定三角形相似的几条思路:(1)条件中若有平行,可采用判定定理1;(2)条件中若有一对角相等,可再找一对角相等或找夹边对应成比例;(3)条件中若有两边对应成比例,可找夹角相等;图6B Q P CR A。

中考数学一轮复习 第22讲 相似三角形及其应用教案-人教版初中九年级全册数学教案

中考数学一轮复习 第22讲 相似三角形及其应用教案-人教版初中九年级全册数学教案

第22讲: 相似三角形及其应用一、复习目标1. 复习相似三角形的概念。

2. 复习相似三角形的性质。

3. 复习相似三角形的判定。

4. 复习相似三角形的应用,用相似知识解决一些数学问题。

二、课时安排1课时三、复习重难点重点:运用相似三角形的判定定理分析两个三角形是否相似。

难点:正确运用相似三角形的性质解决数学问题。

四、教学过程(一)知识梳理相似图形的有关概念比例线段平行线分线段成比例定理相似三角形的判定相似三角形及相似多边形的性质位似相似三角形的应用(二)题型、技巧归纳考点1比例线段技巧归纳:本题考查的是平行线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键考点2相似三角形的性质及其应用技巧归纳:1. 利用相似三角形性质求角的度数或线段的长度;2. 利用相似三角形性质探求比值关系.考点3三角形相似的判定方法及其应用技巧归纳:判定两个三角形相似的常规思路:①先找两对对应角相等;②若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;③若找不到角相等,就判断三边是否对应成比例,否则可考虑平行线分线段成比例定理及相似三角形的“传递性”.考点4位似技巧归纳:本题考查位似变换和坐标与图形的变化的知识,解题的关键根据已知条件求得两个正方形的边长。

(三)典例精讲例1 如图已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE =6,BD=3,则BF=( )A.7 B.7.5C.8 D.8.5[解析] 因为a ∥b ∥c ,所以AC CE =BD DF ,∴46=3DF,DF =4.5,BF =7.5. 例2 如图△ABC 是一X 锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这X 硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM HG AD BC(2)求这个矩形EFGH 的周长.[解析] (1)证明△AHG ∽△ABC ,根据相似三角形对应高的比等于相似比,证明结论. (2)设HE =x ,则HG =2x ,利用第一问中的结论求解. 解:(1)证明:∵四边形EFGH 为矩形, ∴EF ∥GH. ∴∠AHG =∠ABC. 又∵∠HAG =∠BAC , ∴△AHG ∽△ABC ,∴AM AD =HGBC.(2)由(1)得AM AD =HGBC .设HE =x ,则HG =2x ,AM =AD -DM =AD -HE =30-x.可得30-x 30=2x 40,解得x =12,2x =24.所以矩形EFGH 的周长为2×(12+24)=72 (cm).例3、如图在矩形ABCD 中,AB =6,AD =12,点E 在AD 边上,且AE =8,EF ⊥BE 交CD 于F.(1)求证:△ABE ∽△DEF ; (2)求EF 的长.[解析] (1)由四边形ABCD 是矩形,易得∠A =∠D =90°,又由EF ⊥BE ,利用同角的余角相等,即可得∠DEF =∠ABE ,则可证得△ABE ∽△DEF ;(2)由(1)△ABE ∽△DEF ,根据相似三角形的对应边成比例,即可得BE EF =ABDE ,又由AB =6,AD =12,AE =8,利用勾股定理求得BE 的长,由DE =AD -AE ,求得DE 的长,继而求得EF 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴∠A =∠D =90°,∴∠AEB +∠ABE =90°. ∵EF ⊥BE ,∴∠AEB +∠DEF =90°, ∴∠DEF =∠ABE ,∴△ABE ∽△DEF ; (2)∵△ABE ∽△DEF ,∴BE EF =ABDE.∵AB =6,AD =12,AE =8, ∴BE =AB 2+AE 2=10,DE =AD -AE =12-8=4, ∴10EF =64, 解得EF =203.例4 如图正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC =3√2,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A 、16 B 、13 C 、12 D 、23[解析]延长A′B′交BC 于点E ,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.∵在正方形ABCD 中,AC =32, ∴BC =AB =3.延长A′B′交BC 于点E , ∵点A′的坐标为(1,2), ∴OE =1,EC =3-1=2=A′E, ∴正方形A′B′C′D′的边长为1,∴正方形A′B′C′D′与正方形ABCD 的相似比是13.故选B.(四)归纳小结本部分内容要求熟练掌握相似三角形的概念、性质、判定。

相似三角形 复习课教案

相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。

2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。

3、通过复习,培养学生的空间观念和创新意识,激发学生对数学的兴趣。

二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。

(2)相似三角形的应用。

2、难点(1)相似三角形的判定定理的灵活运用。

(2)相似三角形与其他几何图形的综合应用。

三、教学方法讲授法、练习法、讨论法四、教学过程1、知识回顾(1)相似三角形的概念:对应角相等,对应边成比例的三角形叫做相似三角形。

相似三角形对应边的比叫做相似比。

(2)相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

(3)相似三角形的性质定理①相似三角形对应角相等,对应边成比例。

②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

③相似三角形周长的比等于相似比,面积的比等于相似比的平方。

2、例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。

解:因为 DE∥BC,所以△ADE∽△ABC。

所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠C = 90°,D 是 AC 上一点,DE⊥AB 于 E,若 AC = 8,BC = 6,DE = 3,求 AD 的长。

解:在 Rt△ABC 中,AB =\(\sqrt{AC^2 + BC^2} =\sqrt{8^2 + 6^2} = 10\)因为∠A =∠A,∠AED =∠C = 90°所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{DE}{BC}\)即\(\frac{AD}{10} =\frac{3}{6}\)解得 AD = 53、课堂练习(1)如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2,DB = 1,AE = 15,求 EC 的长。

初中数学复习相似三角形教案

初中数学复习相似三角形教案

初中数学复习相似三角形教案一、教学目标:1.知识目标:复习相似三角形的概念和性质,学习相似三角形的判定条件。

2.能力目标:能够判断两个三角形是否相似,并根据相似比例求解问题。

3.情感目标:培养学生对数学的兴趣和学习积极性,培养学生的观察和推理能力。

二、教学重点和难点:1.教学重点:相似三角形的判定条件及应用。

2.教学难点:理解和运用相似三角形的判定条件。

三、教学方法:1.情景导入法:通过提问或展示一个实际生活中的问题,引起学生的兴趣。

2.归纳法:通过对已学知识进行归纳总结,加深学生的理解。

3.合作学习法:通过小组合作学习,让学生互相合作、共同探讨问题,提高学生的思考能力。

四、教学过程1.情景导入(10分钟)教师可通过一个有趣的问题导入,如:小明的房子与小刚的房子相似吗?为什么?请学生们思考并讲解。

2.知识点讲解(20分钟)步骤1:复习相似三角形的定义和性质。

-复习相似三角形的定义:如果两个三角形的对应角相等,那么这两个三角形是相似的。

-复习相似三角形的性质:相似三角形的对应边成比例,对应角相等。

步骤2:讲解相似三角形的判定条件。

-边比例判定定理:如果两个三角形的三条边各对应边的比例相等,那么这两个三角形是相似的。

-AA判定法:如果两个三角形的两个对应角相等,那么这两个三角形是相似的。

步骤3:示例讲解。

-通过示例,引导学生理解判定条件的应用。

3.拓展探究(20分钟)步骤1:学生小组合作学习。

-学生们分小组进行合作探究,每组一份练习题,完成后进行讨论。

步骤2:学生展示和讲解。

-每组选择一位学生代表进行展示和讲解。

-其他学生进行提问和讨论。

-教师对学生的答案进行点评和指导。

4.知识运用(20分钟)步骤1:课堂练习。

-教师出示一些练习题,让学生独立完成。

-教师巡视课堂,提供必要的帮助和指导。

步骤2:学生讲解和讨论。

-随机点名学生讲解答案和解题思路。

-其他学生进行提问和讨论。

5.归纳总结(10分钟)-教师引导学生对本节课所学内容进行归纳总结。

相似三角形复习教案

相似三角形复习教案

设计意图:1、通过学生对一道中考题的解答,让学生认识到有时利用相似三角形解决问题较简便。

2、以小题目的形式来回顾梳理相似三角形的基本图形,并重点得到“三垂直型”;使学生熟练掌握基本题型。

3、通过变式训练让学生感受图形从一般到特殊的变化;感受到题目的多解性;提高培养学生分析问题、解决问题的能力。

4、通过拓展训练让学生感受图形从特殊到一般(“三垂直型”拓展到“三角相等型”);加强学生对图形的感觉。

5、通过课堂及作业训练学生会用分类思想解决问题;巩固“三垂直型”和“三角相等型”。

设计方案:一、情境:如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C. D.2(检查学生做的情况,大部分学生利用勾股定理计算。

)这道题目也可以利用相似三角形来计算。

有时利用相似三角形解决问题较简便。

今天我们复习相似三角形。

(出示课题)二、梳理相似三角形基本图形:在我们学习相似三角形这一章时同学们做了许多题目,今天我们来回顾一下,看看他们之间有没有联系,同时检验一下同学们对图形的感觉。

1、如图(1),已知CA=8,CB=6,AB=5,CD=4(1)若CE= 3,则DE=____(2) 如图(2)若CE= ,则DE=____.2、如图(3),在⊿ABC中,D为AC边上一点,∠DBC=∠A,BC= ,AC=3,则CD的长为()(A)1 (B)2 (C)(D)3、如图(4),∠ABC=90埃?SPAN>BD⊥AC于D,DC=4 ,AD=9,则BD的长为()(A)36 (B)16 (C) 6 (D)4、如图,F、C、D共线,BD⊥FD,EF⊥FD,BC⊥EC ,若DC=2 ,BD=3,FC=9,则EF的长为()(A)6 (B)16 (C) 26 (D)(这四道题目先留时间给学生在下面做,再让一个学生上黑板讲解。

)由这四条题目让学生感受图形从一般到特殊的变化。

2020年中考复习专题《相似三角形》教学设计

2020年中考复习专题《相似三角形》教学设计

三、例题精讲例1 如图,在△ABC中,DE∥BC,,判断正误:;21)1(==ECAEDBAD例2如图,在△ABC中,AB=8cm,AC=16cm ,点P从点A出发,以每秒2cm的速度向B运动,点Q从点C出发,以每秒3cm的速度向A运动,其中一个动点到端点时,另一个动点也停止运动,设运动时间为t(s).(1)用含t的代数式表示AP、AQ的长度;(2)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似.教师在黑板上板书分析,规范解答格式。

学生独立完成,点名学生回答。

教学引导学生分析,完成。

巩固“A”字型模型图形,复习相似三角形的性质和判定。

例2是一个相似三角形判定、相似三角形性质的小综合题,训练学生灵活运用的能力。

;21)2(=ACAE;21)3(=BCDE;31)4(=的周长△的周长△ABCADE;31)5(=的面积△的面积△ABCADE21=DBAD四、针对训练1.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为_________2.如图,在△ABC中,EF∥BC,21=EBAE,8=BCFES梯形,则ABCS△的面积是()A. 9B. 10C. 12D. 13(第1题图)(第2题图)(第3题图)3.如图,点P在△ABC的边AC上,添加一个条件不能判定△ABP∽△ACB的是()A.CABP∠=∠ B. ABCAPB∠=∠C.ACABABAP= D.CBACBPAB=4.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.24 C.6 D.34学生独立完成,教师点评纠错。

夯实基础,利用A字型模型解决相似三角形中常见问题,巩固相似三角形的性质和判定。

五、课堂小结今天你有什么收获?学生交流,归纳总结本节课所学知识。

培养学生语言表达能力及归纳能力,提炼归纳本节课所学知识,培养学生良好的学习习惯。

六、作业布置5.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求AGAF的值.6.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?7.如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为____________学生回家独立完成。

中考复习——相似三角形教案人教版

中考复习——相似三角形教案人教版
核心素养目标分析
本节课旨在培养学生的数学抽象、逻辑推理、数学建模和数学运算的核心素养。
1.数学抽象:通过学习相似三角形的定义和性质,学生能够从具体的情境中抽象出相似三角形的概念和规律,理解数学的一般性。
2.逻辑推理:学生能够运用已知知识,通过归纳、演绎等逻辑推理方法,证明相似三角形的性质和判定,提高推理能力。
《相似三角形的故事》:这篇文章通过讲述相似三角形在古代中国的故事,让学生了解相似三角形的发现过程,以及它在我国数学发展中的地位。
2.鼓励学生进行课后自主学习和探究:
(1)探究相似三角形的性质:学生可以自行研究相似三角形的其他性质,如相似三角形的面积比、周长比等,并尝试证明自己的发现。
(2)应用相似三角形解决实际问题:学生可以尝试寻找身边的相似形状物品,如相似的纸牌、玩具等,通过实际操作来加深对相似三角形理解。此外,学生还可以尝试利用相似三角形解决生活中的问题,如测量不规则物体的尺寸、计算建筑物的高度等。
除了以上教学资源,还需要准备一些练习题和案例分析题,以便学生在课堂上进行练习和应用所学知识。同时,教师还应该充分利用网络资源和数学软件,如几何画板等,以丰富教学手段,提高教学效果。
在教学资源准备过程中,教师应注重资源的多样性和实用性,确保资源能够满足学生的学习需求,并激发学生的学习兴趣。同时,教师还需要对资源进行合理的整合和利用,以提高教学质量和效果。
5.解:在直角三角形中,若两个锐角的度数之和为90°,则这两个锐角的度数相等,均为45°。
(3)探索相似三角形的拓展领域:学生可以研究相似三角形在其他学科领域的应用,如物理学、化学、生物学等。例如,学生可以研究相似三角形在电子电路、生物细胞等方面的应用。
(4)了解相似三角形在数学史中的地位:学生可以阅读有关相似三角形的数学历史资料,了解相似三角形的发现、发展及其对数学界的影响。

数学九年级上《相似三角形》复习教学案

数学九年级上《相似三角形》复习教学案

相似三角形 复习课[要点复习]要点1:相似三角形的概念、相似比的意义、画图形的放大和缩小要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.要点2:平行线分线段成比例定理、三角形一边的平行线的有关定理要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算. 注意:被判定平行的一边不可以作为条件中的对应线段成比例使用. 要点3:相似三角形的概念要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义. 要点4:相似三角形的判定和性质及其应用要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用. 要点5:三角形的重心要求:知道重心的定义并初步应用. 【历年考点例析】考点一 比、比例及有关概念,比例的基本性质例1 ① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km 。

② 若b a =32 则 b b a +=__________ ③ 若b a b a -+22=59则 a :b=__________④ 已知:2a =3b =5c且3a+2b-c=14 ,则 a+b+c 的值为_____ ⑤ 某同学想利用影子的长度测量操场上旗杆的高度,在某一时刻他测得自己影子长为0.8m ,立即去测量旗杆的影子长为5m ,已知他的身高为1.6m ,则旗杆的高度为___m 。

考点二判断四条线段是否成比例例1 已知线段 a=3cm, b=4cm ,c=5cm, d=2cm.那么这四条线段是否成比例?例2 一个钢筋三角架的三边长分别是20cm 、60cm 、50cm ,现要作一个与其相似的钢筋三角形。

因为只有长为30cm 和50cm 的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,问有几种截法,并指出余料最少的截法截出的三边长各为多少?提示:分三种.有一种不成立,只有一种最少.考点三 比例中项与黄金分割例1 如图,已知线段AB ,点C 在AB 上,且有AC:AB=BC:AC ,则AC :AB 的数值为______;若AB 的长度与中央电视台的演播舞台的宽度一样长,那么节目主持人应站在_________位置最好。

《第27章相似三角形》复习(教学设计)教学文案

《第27章相似三角形》复习(教学设计)教学文案

《第27章相似三角形》复习(教学设计)《第27章相似》复习一、诱导复习1.导入课题通过对本章的学习,你学习了哪些知识?它们之间有何关联?重点是什么?如何运用这些知识解决问题呢?(板书课题)2.复习目标(1)疏通本章知识,弄清知识脉络.(2)进一步熟悉相似三角形的判定及其性质,并能运用这些判定和性质解决一些相应的问题.(3)知道什么是位似,能利用位似将一个图形放大或缩小,知道位似变换的点的坐标变化规律.3.学习重、难点重点:相似三角形的判定和性质、位似图形的性质.难点:相似三角形的判定和性质的应用.二、分层复习1.复习指导(1)复习内容:教材P24~P59.(2)复习时间:10分钟.(3)复习方法:阅读课本,运用图表梳理本章知识.(4)复习参考提纲:①形状相同的两个图形,叫做相似图形, 当相似比等于1时,这两个图形全等 .相似多边形的对应角相等,对应边成比例 .②相似三角形有哪些判定方法?又有哪些性质?......abc⎧⎪⎨⎪⎩三边成比例的两个三角形相似判定方法两边成比例且夹角相等的两个三角形相似两角分别相等的两个三角形相似....ab⎧⎨⎩相似三角形对应线段的比等于相似比性质相似三角形面积的比等于相似比的平方③什么叫位似?位似与相似有何关系?位似变换的点的坐标有何规律?两个图形相似且对应顶点的连线交于一点,对应边互相平行,像这样的两个图形叫做位似图形.位似图形一定是相似图形,相似图形不一定是位似图形.在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标是(kx,ky)或(-kx,-ky).④试画本章知识结构框图.2.自主复习:学生参考复习指导进行复习.3.互助复习(1)师助生:①明了学情:明了学生对本章知识的掌握情况.②差异指导:指导学生画知识结构框图,理顺知识脉络.(2)生助生:小组交流、研讨.4.强化复习:师生互动梳理知识,画知识结构框图.1.复习指导(1)复习内容:典例剖析、考点跟踪.(2)复习时间:12分钟.(3)复习方法:小组交流协作.(4)复习参考提纲:①如图,已知AB∥CD∥EF,AF交BE于点H,下列结论错误的是(C)A.BH AHHC HD= B.AD BCDF CE= C.HC HDHE DF= D.AF BEDF CE=第①题图第②题图第③题图②如图,AC⊥BC,∠ADC=90°,∠1=∠B,若AC=5,AB=6,求AD的长. ∵AC⊥BC,∴∠ADC=∠ACB=90°,又∵∠1=∠B,∴△ADC∽△ACB.∴AD AC AC AB=,即556AD=,解得 AD=256.③如图,四边形ABCD是平行四边形,则图中与△DEF相似的三角形共有(B)A.1个B.2个C.3个D.4个④如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,求证:AD·AE=AB·AC.∵AE是直径,AD⊥BC,∴∠ABE=∠ADC=90°,又∵∠E=∠C,∴△ADC∽△ABE.∴AD ABAC AE=,即AD·AE=AB·AC.⑤如图,小明为测量学校操场上小树CD的高,他站在教室里的A点处,从教室的窗口望出去,恰好能看见小树的整个树冠HD.经测量,窗口高EF=1.2 m,树干高CH=0.9 m,A点距墙根G 1.5 m,C点距墙根G 4.5 m,且A、G、C三点在同一直线上.请根据上面的信息,帮小明计算出小树CD的高.∵FG∥DC,∴△BFE∽△BDH.∴FE AG DH AC=.即12151545....DH=+,解得 DH=4.8(m).∴CD=CH+HD=0.9+4.8=5.7(m).即小树CD的高为5.7 m.2.自主复习:学生参考复习指导进行复习.3.互助复习(1)师助生:①明了学情:明了学生复习参考提纲的解题情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:同桌之间交流、研讨.4.强化复习:相似三角形的判定和性质的应用.三、评价1.学生学习的自我评价:在这节课的学习中,你有哪些新的认识和收获?掌握了哪些解题技能和方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度,积极主动性,小组交流协作情况及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时是全章的复习课,教学时先由师生共同回顾本章的知识,建立全章的知识框架图,然后由学生提出有关疑问,教师予以解答.本章的核心是相似三角形的判定以及相似三角形的有关性质.在相似三角形的判定定理证明中,因为涉及了构造全等三角形作为中介,学生不太习惯,所以在进行本章复习时应注意引导学生进行针对性训练,并分析证明思路,引导学生进行转化,帮助学生克服学习困难.一、基础巩固(70分)1.(10分)如图,在大小为4×4的正方形网格中,是相似三角形的是(C )A.①和②B.②和③C.①和③D.②和④2.(10分)如图, 小李打网球时, 球恰好打过网, 且落在离网4 m 的位置上, 则球拍击球的高度h 为(D)A.0.6 mB.1.2 mC.1.3 mD.1.4 m3.(10分)在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形△A′B′C′,使△ABC 与△A′B′C′的相似比等于12,则点A′的坐标为331122,⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭或,. 4.(20分)李华要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要支付180元的广告费,如果她要把版面的边长扩大为原来的3倍,要支付多少广告费?(假设单位面积广告费相同)解:将边长扩大3倍后,面积扩大为原来的9倍.所以要支付广告费:180×9=1620(元).5.(20分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F.求证:(1)△ACB ∽△DCE ;(2)EF ⊥AB.证明:(1)∵32AC BC DC EC ==,∠ACB=∠DCE=90°,∴△ACB∽△DCE.(2)∵△ACB∽△DCE,∴∠B=∠E,又∵∠E+∠CDE=90°,∠BDF=∠CDE,∴∠B+∠BDF=90°,∴∠BFD=90°,即EF⊥AB.二、综合应用(20分)6.(20分)如图, △ABC是一张锐角三角形的硬纸片, AD是边BC上的高, BC=40 cm, AD=30 cm, 从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上, 顶点G,H分别在AC,AB上,AD与HG 的交点为M.求这个矩形EFGH的周长.解:设HE为x,则HG为2x.∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴HG AMBC AD=,即2304030x x-=,解得x=12.∴矩形EFGH的周长为(12+2×12)×2=72(cm).三、拓展延伸(10分)7.(10分)如图所示,四边形ABCD是以O为圆心,AB为直径的半圆的内接四边形,对角线AC、BD相交于点E.(1)求证:△DEC∽△AEB;(2)当∠AED=60°时,求△DEC与△AEB的面积比.(1)证明∵∠BDC=∠BAC,∠DEC=∠AEB,∴△DEC∽△AEB.(2)解:∵AB是直径,∴∠ADB=90°,又∵∠AED=60°,∴∠DAC=30°,∴12 DEAE=,∴14DECAEBSS∆∆=.。

九年级数学相似三角形复习教案学案(第四次)

九年级数学相似三角形复习教案学案(第四次)

三角形相似的判定教学目标:1、理解并掌握两个相似三角形判定的方法2、能灵活应用四种判定方法判定两个三角形相似,并能结合相似三角形的性质进行证明3、培养学生的观察、动手探究及归纳总结的能力重点、难点:灵活应用判定方法判定两个三角形相似,并能结合相似三角形的性质进行证明 教学内容相似三角形的判定方法:1、有两个角对应相等的三角形相似2、 平行于三角形一边的直线和其他两边相交所构成的三角形与原三角形相似3、 两边对应成比例,且夹角相等的两个三角形相似4、 三边对应成比例的两个三角形相似相似三角形的几个基本图形一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽∽ 。

分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。

本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。

再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。

例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。

借助于计算也是一种常用的方法。

证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72°又BD 平分∠ABC ,则∠DBC=36° 在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36°∴△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD 。

求证:△DBE ∽△ABC分析: 由已知条件∠ABD=∠CBE ,∠DBC 公用。

《相似三角形专题复习》教学设计

《相似三角形专题复习》教学设计

本课教学流程:设疑导入f合作探究一学以致用(找、选、造)基于基本图形的问题导向式复习课例—以《相似三角形专题复习》为例课题】九年级总复习第二轮专题复习《相似三角形专题复习》教学设计【所需课时】1课时【课标要求及分析】课标要求:了解相似三角形的定义、判定定理、性质定理,并会解决简单的实际问题.课标分析:《标准》的要求定位在“了解”和“简单”的层面,因此在复习过程中要注重对相似三角形相关基础知识和常见题型的把握. 【教材及学情分析】北师大版九年级上册《图形的相似》是在研究“图形的全等”的基础上集中研究“图形的相似”.在前面的学习中,学生已经较为系统的学习了线段的比、成比例线段、平行线分对应线段成比例定理、相似图形、相似多边形、位似图形等,具备了一定的合情推理和演绎推理能力,为该章节中的重点内容《相似三角形专题复习》做好了知识和能力的准备.【学习目标】1.掌握相似三角形的定义、判定定理、性质定理;2.能根据相似三角形的判定定理和性质定理以及已经学习过的其他知识解决简单的实际问题,进一步体会类比、分类、归纳、数形结合的思想方法.【教学重、难点分析】教学重点为相似三角形的判定定理和性质定理,教学难点为相似三角形性质定理的灵活应用.【教学方式与方法的选择】设疑引导、讲练结合教学设计思路】首先通过小组合作把学生的个人课前作业进行讨论、完善和展示,总结出相似三角形的常见基本图形,为本节专题复习做好知识铺垫.接着以问题为导向,以“找”“选”“造”三道低起点、缓坡度的例题,引导学生自主探究相似三角形的相关问题,感受基本图形在相似三角形问题中的应用,并总结归纳出相关的解题方法.课后作业设计了两道有梯度的题目,既加深对知识本质的理解,又强化知识之间的联系,在巩固检测所学知识的同时,激发和提升学生的数学思维能力和创新意识。

【教学资源】学案图表资料、多媒体课件、几何画板合作探究学以致用(找相似型)学以致用(选相似型)学以致用(造相似型)【例1】如图,在\ABC中,DE〃BC,AE:EC=2:3,则BC等于()A.10B.8C.9D.6【设疑】这题用到什么相似基本型?【学生回答】A型.【追问】选D的同学错在哪里?【学生回答】把AE:EC=2:3当作A型相似三角形的相似比了,应该是2:5才对.【例2】如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.独立完成学生说题学生体会找相似基本型是解题的关键,培养学生的表达能力【设疑】这题用到什么相似基本型?【学生回答】A型,X型.【追问】从哪个基本型入手?怎么解决?【学生回答】因为已知的AB和CD在X型中,所以从乂型厶ABEs^DCE入手,知道BE:EC=1:3,所以在人型厶BEFs^BCD中,EF:CD=1:4,从而求3出EF二4【追问】还有别的方法吗?【学生回答】选A型厶DEFs^DAB也可以.【例3】如图,在口ABCD中,对角线AC与BD相交于点0,在DC的延长线上取一点E,连接0E交BC于点F.已知AB=a,BC=b,CE=c,求CF的长.【设疑】这题有相似基本型?能否直接解决问题?【学生回答】有X型,但是与CF无关,不能求CF.【追问】有什么好办法解决这个问题?独立完成后小组讨论学生说题思考分析学生体会有多个相似基本型时,如何进行选择并解题,培养学生的数学思维能力从“找”到“选”到“造”相似基本型,突出重难点,并使学生的探究变得自然,使思维得到有层次的提升△EDG ,所以CF DG ECED'CFc即='b -CFa +c从而解得CFbe a +2 e讨论交流 相互补充 鼓励学生从多角度多方面考虑问题,实现一题多解,增加学生思维的灵活性总结经验归纳方法 【学生回答】利用平行构造相似•在△CEF 中,已知CE二c,求CF,所以应构造一个与ACEF 相似的三角形.从而有OH 二2CD L-iHFOH再证△OFHS ^EFC ,所以FC =EC【师生总结】通过前面三个例题,我们学会了“找”“选”“造”相似基本型,而“造”相似基本型的常用方法是作平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形
一、三角形的相似
考点1 相似三角形的概念及性质
1.相似三角形的定义:对应角相等,对应边_________①____的三角形叫做相似三角形。

2.相似三角形对应边的比叫做相似比,全等三角形是特殊的相似三角形,两全等三角形的相似比为1。

3.成比例线段与比例性质
成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段简称比例线段。

比例的性质:(1)比例的基本性质:b a =d
c ⇔ad=bc (b
d ≠0) (2)合比性质:b a =d c ⇒b b a +=d
d c + (3)等比性质:b a =d c =…n m ⇒n d b n c a ++++=b
a (
b +d +……+n ≠0) 3.相似三角形的对应角________②________,对应边成比例。

4.相似三角形对应中线、对应角平分线及对应高的比等于_________③_______。

5.相似三角形的周长的比等于相似比。

6.相似三角形面积的比等于相似比的__________④_________。

温馨提示:三角形的相似具有传递性,若△ABC ∽△C B A ''',△C B A '''∽△C B A '''''',则△ABC ∽△C B A ''''''。

7.相似三角形证明线段成比例的一般步骤
(1)先确定比例式中四条线段所在的两个可能相似的三角形。

(2)再找出两个三角形相似所需要的条件。

(3)最后根据以上分析,写出证明过程。

温馨提示:如果两个三角形不相似,则可采用等量代换线段,用中间比进行替代,或利用平行线等知识解答。

考点2 相似三角形的判定条件
1.两角对应相等的两三角形相似。

2.两边对应成比例且_____⑤________的两三角形相似。

3.三边对应_________⑥_______的两三角形相似。

4.几种特殊三角形相似的判定
等腰三角形:(1)顶角或底角相等;(2)腰与底边对应成比例
直角三角形:(1)一锐角相等;(2)斜边和一直角边对应成比例
温馨提示:两边对应成比例,其中一边的对角相等的两个三角形不一定相似。

就好比“边边角”的两个三角形不能全等一样。

证明两个角相等,除了用全等等的知识外,证明两个三角形相似也是常用的手段。

可类比全等的知
识点来学习相似的性质与判定。

考点3 相似三角形的应用
1.证明角相等或线段成比例等。

2.利用相似三角形的性质计算。

3.应用相似三角形的性质,条件进行探究等。

温馨提示:相似的知识点是初中阶段以及后续学习的重要
考点4 相似多边形的定义
把对应边成比例,对应角相等的两个多边形叫做相似多边形。

考点5 相似多边形的性质
1.相似多边形的对应角相等;
2.相似多边形的对应边的比相等;相似多边形的对应边的比叫做相似比。

3.相似多边形的周长比等于相似比,相似多边形的面积比等于相似比的平方;
考点6:位似的定义
两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做位似中心。

考点7:位似的性质
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。

(2009年衡阳市)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG 的长为()
A.1 B.C.D.2
(检查学生做的情况,大部分学生利用勾股定理计算。


这道题目也可以利用相似三角形来计算。

有时利用相似三角形解决问题较简便。

今天我们复习相似三角形。

(出示课题)
二、梳理相似三角形基本图形:
在我们学习相似三角形这一章时同学们做了许多题目,今天我们来回顾一下,看看他们之间有没有联系,同时检验一下同学们对图形的感觉。

1、如图(1),已知CA=8,CB=6,AB=5,CD=4
(1)若CE= 3,则DE=____ (2)如图(2)若CE=,则DE=____.
2、如图(3),在⊿ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()
(A)1 (B)2 (C)(D)
3、如图(4),∠ABC=90,BD⊥AC于D,DC=4,AD=9,则BD的长为()
(A)36 (B)16 (C)6 (D)
4、如图,F、C、D共线,BD⊥FD, EF⊥FD,BC⊥EC ,若DC=2,BD=3,FC=9,则EF的长为()
(A)6 (B)16 (C)26 (D)
归纳小结相似三角形的基本图形:
“A”型公共角型公共边角型双垂直型三垂直型(母子型)(母子、子子型)
“X”型蝴蝶型
三、学生探究:
1、在△ABC中,AB>AC,过AB上一点D作直线DE交另一边于E,使所得三角形与原三角形相似,画出满足条件的图形.
变式:在Rt△ABC中,∠C=90埃 ?SPAN>AB上一点D作直线DE交另一边于E,
使所得三角形与原三角形相似,画出满足条件的图形.
让学生感受图形从一般到特殊变化时,题目的答案从四解减少到三解。

2.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连结BF,则图中与△ABE一定相似的三角形是()
A.△EFB B.△DEF C.△CFB D.△EFB和△DEF
变式:如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连结BF,若使图中△BEF与△ABE相似,需添加条件:。

(让学生感受三垂直型)
3.如图,在矩形ABCD中,AB=4,AD=10,点P在BC边上,若△ABP与△DCP相似。

△APD一定是()
(A)直角三角形
(B)等腰三角形
(C)等腰直角三角形
(D)等腰三角形或直角三角形
变式:如图,在矩形ABCD中,AB=4,AD=10,若点P在BC边上,则△ABP与△DCP相似的点P有个。

(进一步让学生感受“三垂直型”,并提醒学生注意全等三角形是特殊的相似三角形)
四、拓展:
1、梯形ABCD中,AD∥BC,AD<BC,P为AD上的一点(不与A、D重合),
∠BPC=∠A=∠D,找出图中的相似三角形。

(将“三垂直型”拓展到“三角相等型”,让学生感受图形从特殊到一
般。


2、如图,梯形ABCD中,AD∥BC,∠ABC=90?SPAN>,AD=9,BC=12,AB=10,在线段BC上任取一点P,作射线PE⊥PD,与线段AB交于点E.
(1)试确定CP=3时点E的位置;
(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式,并求出自变量x的取值范围.
(作辅助线:过点D作DH⊥BC于H。

构造“三垂直型”)
六、作业:
1.如图,在直角梯形ABCD中,AD‖BC,∠B=90埃?SPAN>AD=3,BC=6,点P在AB上滑动。

若△DAP与△PBC 相似,且AP=,
求PB的长。

(本题有两解)
2、已知:点D是等边三角形ABCBC边上任一点,∠EDF=60啊?/SPAN>
求证:△BDE∽△CFD。

相关文档
最新文档