滑块—木板模型专题附详细答案

合集下载

高考物理《滑块—木板模型》真题练习含答案

高考物理《滑块—木板模型》真题练习含答案

高考物理《滑块—木板模型》真题练习含答案1.如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是()A.若货车向前加速时,木箱对车厢的摩擦力方向向左B.为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s2C.若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D.若货车的加速度为5 m/s2时,木箱受到的摩擦力为静摩擦力答案:B解析:若货车向前加速时,车厢对木箱的摩擦力方向向左,根据牛顿第三定律得木箱对车厢的摩擦力方向向右,A错误;当摩擦力达到最大静摩擦力时刚好不发生相对滑动,最大加速度a=μg=4 m/s2,B正确;若货车行驶过程突然刹车,加速度小于等于4 m/s时木箱不会相对车厢滑动,发生相对滑动时也不一定与车的前端相撞,C错误;货车的加速度5 m/s2>4 m/s2,木箱已经发生相对滑动,木箱受到的摩擦力为滑动摩擦力,D错误.2.[2024·广东省中山市第一次模拟](多选)如图甲所示,物块A与木板B静止地叠放在水平地面上,A、B间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,地面光滑.现对A施加水平向右的大小不同的拉力F,测得B的加速度a与力F的关系如图乙所示,取g =10 m/s2,则()A.当F<24 N时,A、B间的摩擦力保持不变B.当F>24 N时,A、B间的摩擦力保持不变C.A的质量为4 kgD.B的质量为2 kg答案:BCD解析:由图乙可知,当F<24 N时,A、B保持相对静止,B的加速度逐渐增大,则A、B间的摩擦力逐渐增大;当F>24 N时,A、B发生相对滑动,A、B间滑动摩擦力保持不变,A错误,B正确;设A、B的质量分别为m1、m2,当F=24 N时,根据牛顿第二定律,对A,有F-μm1g=m1a,对B,有μm1g=m2a,解得A、B的质量分别为m1=4 kg,m2=2 kg,C、D正确.3.[2024·广西南宁市开学考试]如图所示,质量m A=2 kg的小物块A可以看作质点,以初速度v0=3 m/s滑上静止的木板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直至停下.已知m B=1 kg,A、B间的动摩擦因数μ1=0.2,木板B 与水平面间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)小物块A刚滑上木板B时,A、B的加速度大小a A和a B;(2)A、B速度达到相同所经过的时间t;(3)A、B一起在水平面上滑行至停下的距离x.答案:(1)a A=2 m/s2,a B=1 m/s2(2)t=1 s(3)x=0.5 m解析:(1)根据题意可知,A与B之间的滑动摩擦力大小f1=μ1m A g=4 NB与水平面之间的滑动摩擦力大小f2=μ2(m A+m B)g=3 N当A刚滑上B时,由牛顿第二定律,对A有f1=m A a A对B有f1-f2=m B a B解得a A=2 m/s2,a B=1 m/s2(2)设A、B达到相同的速度为v,对A、B相对滑动的过程,由公式v=v0+at对A有v=v0-a A t对B有v=a B t解得t=1 s,v=1 m/s(3)以A、B整体为研究对象,由牛顿第二定律得f2=(m A+m B)a一起在水平面上滑行至停下过程0-v2=-2ax解得x=0.5 m4.[2024·辽宁省阜新市月考]如图所示,水平桌面上质量m1为0.01 kg的薄纸板上,放有一质量m2为0.04 kg的小水杯(可视为质点),小水杯距纸板左端距离x1为0.5 m,距桌子右端距离x2为1 m,现给纸板一个水平向右的恒力F,欲将纸板从小水杯下抽出.若纸板与桌面、水杯与桌面间的动摩擦因数μ1均为0.4,水杯与纸板间的动摩擦因数μ2为0.2,重力加速度g取10 m/s2,设水杯在运动过程中始终不会翻倒,则:(1)求F多大时,抽动纸板过程水杯相对纸板不滑动;(2)当F为0.4 N时,纸板的加速度是多大?(3)当F满足什么条件,纸板能从水杯下抽出,且水杯不会从桌面滑落?答案:(1)0.3 N(2)12 m/s2(3)F≥0.315 N解析:(1)当抽动纸板且水杯相对纸板滑动时,对水杯进行受力分析,根据牛顿第二定律得μ2m2g=m2a1,解得a1=2 m/s2对整体分析,根据牛顿第二定律得F1-μ1(m1+m2)g=(m1+m2)a1解得F1=0.3 N故当F1≤0.3 N抽动纸板过程水杯相对纸板不滑动;(2)当F2=0.4 N时,纸杯和纸板已经发生相对滑动,则有F2-μ2m2g-μ1(m1+m2)g=m1a解得a=12 m/s2(3)纸板抽出的过程,对纸板有F-μ2m2g-μ1(m1+m2)g=m1a纸板抽出的过程,二者位移关系满足x1=12at2-12a1t2纸板抽出后,水杯在桌面上做匀减速直线运动,设经历时间t′恰好到桌面右边缘静止,有μ1m2g=m2a′1由速度关系有a1t=a′1t′纸杯的位移关系有x2-12a1t2=a1t2×t′联立解得F=0.315 N所以,当F≥0.315 N时,纸板能从水杯下抽出,且水杯不会从桌面滑落.。

(完整版)高中物理滑块-板块模型(解析版)

(完整版)高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。

二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。

假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。

现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。

下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

3.1滑块-木块模型(解析)

3.1滑块-木块模型(解析)

滑块—木块模型应用参考答案与试题解析一.多选题(共39小题)1.如图甲所示,质量为M的足够长的木板置于粗糙的水平面上,其上放置一质量为m的小物块,当木板受到水平拉力F的作用时,用传感器测出木板的加速度a与水平拉力F的关系如图乙所示,重力加速度g=10m/s2,下列说法中正确的是()A.小物块的质量m=0.5kgB.小物块与长木板间的动摩擦因数为0.2C.当水平拉力F=7N时,长木板的加速度大小为6m/s2D.当水平拉力F逐渐增大时,小物块的加速度一定逐渐增大【分析】当拉力较小时,m和M保持相对静止一起做匀加速直线运动,当拉力达到一定值时,m和M发生相对滑动,结合牛顿第二定律,运用整体和隔离法分析.【解答】解:对整体分析,由牛顿第二定律有:F﹣F0=(M+m)a,代入数据解得:M+m=1.5kg当F大于5N时,根据牛顿第二定律得:a=,知图线的斜率k==2,解得:M=0.5kg,滑块的质量为:m=1kg。

故A错误。

B、根据F大于5N的图线知,F=4时,a=0,即:0=2(F﹣F0)﹣,代入数据解得:μ=0.2,所以a=2(F﹣F0)﹣4,当F=7N时,长木板的加速度为:a=6m/s2。

根据μmg=ma′得:a′=μg=1m/s2,故BC正确。

D、由图象可知,当F>5N时,两物体发生相对滑动,此后小物体的加速度恒定,故D错误;故选:BC。

【点评】本题考查牛顿第二定律与图象的综合,知道滑块和木板在不同拉力作用下的运动规律是解决本题的关键,掌握处理图象问题的一般方法,通常通过图线的斜率和截距入手分析.2.如图所示,滑块放置在厚度不计的木板上,二者处于静止状态。

现对木板施加一水平向右的恒力F,已知各个接触面均粗糙,且最大静摩擦力等于滑动摩擦力。

下列关于滑块和木板运动的v﹣t图象中可能正确的是(实线、虚线分别代表木板和滑块的v﹣t图象)()A.B.C.D.【分析】根据牛顿第二定律求出滑块不发生相对滑动的最大加速度,对整体分析,根据牛顿第二定律可得出F在一定的范围内二者一起做加速运动。

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。

【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。

薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。

已知物块与薄板的质量相等。

它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。

求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。

(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。

2024届高考物理微专题:“滑块-木板”模型问题

2024届高考物理微专题:“滑块-木板”模型问题

微专题24“滑块-木板”模型问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fm m.假设两物体同时由静止开始运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.如图所示,静止在水平地面上的木板(厚度不计)质量为m 1=1kg ,与地面间的动摩擦因数为μ1=0.2,质量为m 2=2kg 且可看成质点的小物块与木板和地面间的动摩擦因数均为μ2=0.4,以v 0=4m/s 的水平初速度从左端滑上木板,经过t =0.6s 滑离木板,g 取10m/s 2,以下说法正确的是()A .木板的长度为1.68mB .小物块离开木板时,木板的速度为1.6m/sC .小物块离开木板后,木板的加速度大小为2m/s 2,方向水平向右D .小物块离开木板后,木板与小物块将发生碰撞答案D 解析由于μ2m 2g >μ1(m 1+m 2)g ,对木板,由牛顿第二定律得μ2m 2g -μ1(m 1+m 2)g =m 1a 1,解得a 1=2m/s 2,即物块在木板上以加速度大小a 2=μ2g =4m/s 2向右减速滑行时,木板以加速度大小a 1=2m/s 2向右加速运动,在0.6s 时,物块的速度v 2=1.6m/s ,木板的速度v 1=1.2m/s ,B 错误;物块滑离木板时,物块位移为x 2=v 0+v 22t =1.68m ,木板位移x 1=v 12t =0.36m ,两者相对位移为x =x 2-x 1=1.32m ,即木板长度为1.32m ,A 错误;物块离开木板后,木板做减速运动,加速度大小为a 1′=μ1g =2m/s 2,方向水平向左,C 错误;分离后,物块在地面上的加速度大小为a 2′=μ2g =4m/s 2,在地面上物块会滑行x 2′=v 222a 2′=0.32m ,木板会滑行x 1′=v 122a 1′=0.36m ,所以两者会相碰,D 正确.2.(多选)如图a ,一长木板静止于光滑水平桌面上,t =0时,小物块(可视为质点)以速度v 0滑上长木板左端,最终小物块恰好没有滑出长木板;图b 为物块与木板运动的v -t 图像,图中t 1、v 0、v 1已知.重力加速度大小为g .由此可求得()A .木板的长度B .物块的质量C .物块与木板的质量之和D .物块与木板之间的动摩擦因数答案AD 解析根据最终小物块恰好没有滑出长木板,由图像可求出木板的长度为L =v 1+v 02t 1-v 12t 1=v 02t 1,故A 符合题意;物块的质量不能求出来,也无法求出木板的质量,故不能求出物块与木板的质量之和,故B 、C 不符合题意;对物块,根据图像可以求出物块匀减速阶段的加速度大小,即a =v 0-v 1t 1,由牛顿第二定律可知a =F f m =μmg m=μg ,联立解得物块与木板之间的动摩擦因数为μ=v 0-v 1gt 1,故D 符合题意.3.(多选)一长轻质薄硬纸片置于光滑水平地面上,其上放质量均为1kg 的A 、B 两物块,A 、B 与薄硬纸片之间的动摩擦因数分别为μ1=0.3,μ2=0.2,水平恒力F 作用在A 物块上,如图所示.已知最大静摩擦力等于滑动摩擦力,g 取10m/s 2.下列说法正确的是()A .若F =1.5N ,则A 物块所受摩擦力大小为1.5NB .若F =8N ,则B 物块的加速度大小为2.0m/s 2C .无论力F 多大,A 与薄硬纸片都不会发生相对滑动D .无论力F 多大,B 与薄硬纸片都不会发生相对滑动答案BC 解析A 与硬纸片间的最大静摩擦力为F f A =μ1m A g =0.3×1×10N =3N ,B 与硬纸片间的最大静摩擦力为F f B =μ2m B g =0.2×1×10N =2N .当B 刚要相对于硬纸片滑动时静摩擦力达到最大值,由牛顿第二定律得F f B =m B a 0,得a 0=2m/s 2.对整体,有F 0=(m A +m B )×a 0=2×2N =4N ,即F ≥4N 时,B 将相对纸片运动,此时B 受到的摩擦力F B =2N ,则对A 分析,A 受到的摩擦力也为2N ,所以A 的摩擦力小于最大静摩擦力,故A 和纸片间不会发生相对运动;则可知,当拉力为8N 时,B 与纸片间的摩擦力即为滑动摩擦力为2N ,此后增大拉力,不会改变B 的受力,其加速度大小均为2m/s 2,由于轻质薄硬纸片看作没有质量,故无论力F 多大,A 和纸片之间不会发生相对滑动,故B 、C 正确,D 错误;F =1.5N<4N ,所以A 、B 与纸片保持相对静止,整体在F 作用下向左匀加速运动,对A 根据牛顿第二定律得F -F f =m A a ,所以A 物块所受摩擦力F f <F =1.5N ,故A 错误.4.如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板的加速度a 的大小可能是()A .μgB.13μgC.23μg D.F 2m -14μg 答案D 解析若物块和木板之间不发生相对滑动,物块和木板一起运动,对木板和木块组成的整体,根据牛顿第二定律可知:F -14μ·2mg =2ma ,解得:a =F 2m -14μg ;若物块和木板之间发生相对滑动,对木板,水平方向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -14μ·2mg =ma ,解得:a =12μg ,故A 、B 、C 错误,D 正确.5.(多选)如图所示,在桌面上有一块质量为m 1的薄木板,薄木板上放置一质量为m 2的物块,现对薄木板施加一水平恒力,使得薄木板能被抽出而物块也不会滑出桌面.物块与薄木板、薄木板与桌面间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,则下列说法正确的是()A .物块在薄木板上滑动的时间和在桌面上滑动的时间相等B .拉力越大,物块刚离开薄木板时的速度越大C .薄木板对物块的摩擦力方向与拉力方向相同D .拉力的最小值为μ(2m 1+m 2)g答案AC 解析物块在薄木板上相对滑动过程,从静止加速至速度v 时离开木板,加速度大小为μg ,在桌面上滑动的过程,受桌面滑动摩擦力作用,加速度大小为μg ,从速度v 减速至静止,由对称性可知,物块在薄木板上滑动的时间和在桌面上滑动的时间相等,A 正确;拉力越大,物块在薄木板上滑行时间越短,由v =μgt 可知,物块刚离开薄木板时的速度v 越小,B 错误;物块在薄木板上滑行过程,相对薄木板向左运动,故受到的滑动摩擦力向右,与拉力方向相同,C 正确;物块加速过程的加速度为μg ,薄木板的临界加速度为μg ,整体由牛顿第二定律可得F -μ(m 1+m 2)g =(m 1+m 2)μg ,解得F =2μ(m 1+m 2)g .为使薄木板能抽出,故拉力的最小值应大于2μ(m 1+m 2)g ,D 错误.6.如图甲所示,一质量为M 的长木板静置于光滑水平面上,其上放置一质量为m 的小滑块.木板受到水平拉力F 作用时,用传感器测出长木板的加速度a 与水平拉力F 的关系如图乙所示,重力加速度g =10m/s 2,下列说法正确的是()A .小滑块的质量m =3kgB .小滑块与长木板之间的动摩擦因数为0.1C .当水平拉力F =7N 时,长木板的加速度大小为3m/s 2D .当水平拉力F 增大时,小滑块的加速度一定增大答案C 解析由a -F 图像可知,小滑块的最大加速度为2m/s 2,对小滑块分析有μmg =ma m ,解得μ=0.2,B 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,对长木板受力分析有F-μmg =Ma ,整理得a =1M F -μmg M .由a -F 图像可知图像的斜率为k =1M ,代入数据解得1M=k =26-41,解得M =1kg.由a -F 图像可知,外力小于6N 时,两物体有共同加速度,外力等于6N 时,两物体加速度为2m/s 2,对整体分析有F =(M +m )a ,解得M +m =3kg ,则有m =2kg ,A 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,相对滑动后小滑块的加速度不随外力的增大而改变,D 错误;由a -F 图像可知,外力大于6N 后两物体相对滑动,对长木板受力分析有F -μmg =Ma ′,当水平拉力F =7N 时,代入数据得长木板的加速度大小为3m/s 2,C 正确.7.(多选)如图所示,有一倾角θ为37°、下端固定一弹性挡板的光滑斜面,挡板与斜面垂直.一长木板质量为M ,下端距挡板的距离为L ,上端放有一质量为m 的小物块,长木板由静止自由下滑,与挡板每次发生碰撞后均以原速率弹回,且每次碰撞的时间极短,小物块和木板的运动始终与斜面平行.已知m ∶M =1∶2,长木板上表面与小物块之间的动摩擦因数为μ=0.5,取sin 37°=0.6,cos 37°=0.8,重力加速度为g ,不计空气阻力.则下列说法正确的有()A.长木板第一次与挡板碰撞后的瞬间,小物块的加速度大小为0.2gB.长木板第一次与挡板碰撞后的瞬间,长木板的加速度大小为0.8gC.若长木板的长度为10L,则第三次碰撞前小物块已从长木板上滑落D.若长木板的长度为10L,则第三次碰撞前小物块仍没有从长木板上滑落答案ABD解析长木板第一次与挡板碰撞后的瞬间,对木板,有Mg sinθ+μmg cosθ=Ma1,a1=0.8g.对物块,有mg sinθ-μmg cosθ=ma2,a2=0.2g,选项A、B正确;木板从开始下滑到与挡板第一次碰撞v02=2gL sinθ,碰后木板与挡板往复碰撞,加速度不变,相邻两次碰撞的时间为t=2v00.8g=5v02g.若木板足够长,物块一直向下加速,加速度不变,则木板第一次与挡板碰撞到第二次碰撞的过程,两者相对位移x1=2v0t-12(a1-a2)t2=25v028g,物块的速度为v=v0+0.2gt=1.5v0.木板第二次与挡板碰撞到第三次碰撞的过程,两者相对位移x2=(1.5v0+v0)t-12 (a1-a2)t2=35v028g,则第三次碰前,两者的相对位移为x1+x2=15v022g=9L.木板长10L,故第三次碰撞前小物块仍没有从长木板上滑落,故C错误,D正确.8.如图所示,在光滑水平面上一质量为M=3kg的平板车以v0=1.5m/s的速度向右匀速滑行,某时刻(开始计时)在平板车左端加一大小为8.5N、水平向右的推力F,同时将一质量为m=2kg的小滑块(可视为质点)无初速度地放在小车的右端,最终小滑块刚好没有从平板车上掉下来.已知小滑块与平板车间的动摩擦因数μ=0.2,重力加速度g=10m/s2,求:(1)两者达到相同速度所需要的时间t;(2)平板车的长度l.答案(1)3s(2)2.25m解析(1)小滑块相对平板车滑动时,设小滑块和平板车的加速度大小分别为a1、a2,根据牛顿第二定律有μmg=ma1,F-μmg=Ma2解得a1=2m/s2,a2=1.5m/s2又a1t=v0+a2t解得t =3s.(2)两者达到相同速度后,由于F m +M=1.7m/s 2<a 1,可知它们将一起做匀加速直线运动.从小滑块刚放在平板车上至达到与平板车相同速度的过程中,滑块向右的位移大小为x 1=12a 1t 2平板车向右的位移大小为x 2=v 0t +12a 2t 2又l =x 2-x 1解得l =2.25m.9.如图所示,在倾角为θ=37°的足够长斜面上放置一质量M =2kg ,长度L =1.5m 的极薄平板AB ,在薄平板上端A 处放一质量m =1kg 的小滑块(可视为质点),将小滑块和薄平板同时无初速度释放,已知小滑块与薄平板之间的动摩擦因数为μ1=0.25,薄平板与斜面之间的动摩擦因数为μ2=0.5,sin 37°=0.6,cos 37°=0.8,取g =10m/s 2,求:(1)释放后,小滑块的加速度大小a 1和薄平板的加速度大小a 2;(2)从释放到小滑块滑离薄平板经历的时间t .答案(1)4m/s 21m/s 2(2)1s 解析(1)设释放后,滑块会相对于平板向下滑动,对滑块:由牛顿第二定律有mg sin 37°-F f1=ma 1其中F N1=mg cos 37°,F f1=μ1F N1解得a 1=g sin 37°-μ1g cos 37°=4m/s 2对薄平板,由牛顿第二定律有Mg sin 37°+F f1′-F f2=Ma 2其中F N2=(m +M )g cos 37°,F f2=μ2F N2,F f1′=F f1解得a 2=1m/s 2a 1>a 2,假设成立,即滑块会相对于平板向下滑动.(2)设滑块滑离时间为t ,由运动学公式,有x 1=12a 1t 2,x 2=12a 2t 2,x 1-x 2=L 解得:t =1s .。

专题 动力学中的“滑块木板模型” (解析版)

专题 动力学中的“滑块木板模型” (解析版)

专题18 动力学中的“滑块木板模型”常考点动力学中的“滑块木板模型”分析【典例1】质量m0=30kg、长L=1m的木板放在水平面上,木板与水平面的动摩擦因数μ1=0.15.将质量m=10kg的小木块(可视为质点),以v0=4m/s的速度从木板的左端水平滑到木板上(如图所示),小木块与木板面的动摩擦因数μ2=0.4(最大静摩擦力近似等于滑动摩擦力,g取10m/s2),则以下判断中正确的是()A.木板一定向右滑动,小木块不能滑出木板B.木板一定向右滑动,小木块能滑出木板C.木板一定静止不动,小木块能滑出木板D.木板一定静止不动,小木块不能滑出木板【解析】木块受到的滑动摩擦力为F f2,方向向左F f2=μ2mg=40N木板受到木块施加的滑动摩擦力为F′f2,方向向右,大小为F′f2=F f2=40N木板受地面的最大静摩擦力等于滑动摩擦力,即F f1=μ1(m+m0)g=60NF f1方向向左F′f2<F f1木板静止不动,木块向右做匀减速运动,设木块减速到零时的位移为x,则由0-v2=-2μ2gx得x=2m>L=1m故小木块能滑出木板。

【典例2】如图所示,一块足够长的轻质长木板放在光滑水平地面上,质量分别为m A =1kg 和m B =2kg 的物块A 、B 放在长木板上,A 、B 与长木板间的动摩擦因数均为μ=0.4,最大静摩擦力等于滑动摩擦力。

现用水平拉力F 拉A ,取重力加速度g =10m/s 2。

改变F 的大小,B 的加速度大小可能为( )A .1.5m/s 2B .2.5m/s 2C .3.5m/s 2D .4.5m/s 2【解析】物块A 、B 放在轻质长木板上,二者所受摩擦力大小相等,由于A 物块所受最大静摩擦小于B 物块的。

故B 物块始终相对长木板静止,当拉力增加到一定程度时,A 相对长木板滑动,B 所受的最大合力等于A 的最大静摩擦力,即B Amax A f f m g μ==根据牛顿第二定律,有B B Bmax f m a =可知B 的最大加速度为2Bmax 2m /s a =【典例3】如图所示,质量为M =5kg 的足够长的长木板B 静止在水平地面上,在其右端放一质量m =1kg 的小滑块A (可视为质点)。

专题05 滑块木板模型(教师版) 2025年高考物理模型归纳

专题05 滑块木板模型(教师版) 2025年高考物理模型归纳

专题05 滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (1)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (2)问题1.板块模型中的运动学单过程问题 (2)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (3)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (4)【模型演练】 (18)条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2A .小物块在03t t =时刻滑上木板C .小物块与木板的质量比为3︰4【答案】ABD【详解】A .v t -图像的斜率表示加速度,可知时刻滑上木板,故A 正确;【答案】(1)4m/s;1s3;(2)59【详解】(1)物块在薄板上做匀减速运动的加速度大小为(1)施加推力时,物块A的加速度的大小;(2)物块A、B碰撞后的瞬间各自的速度大小;(1)若对A施加水平向右的拉力F,A、(2)若对A施加水平向右的恒力7 F=图(a) 图(b)μ1及小物块与木板间的动摩擦因数μ2;【答案】(1)1m/s;0.125m;(2)0.25m;3m/s2;(3)43【详解】(1)由于地面光滑,则m1、m2组成的系统动量守恒,则有【例7】如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.【审题指导】:如何建立物理情景,构建解题路径①首先分别计算出B与板、A与板、板与地面间的滑动摩擦力大小,判断出A、B及木板的运动情况.②把握好几个运动节点.③由各自加速度大小可以判断出B与木板首先达到共速,此后B与木板共同运动.④A与木板存在相对运动,且A运动过程中加速度始终不变.⑤木板先加速后减速,存在两个过程.【解析】:(1)滑块A和B在木板上滑动时,木板也在地面上滑动。

深圳高中物理滑块及木板模型专题及答案

深圳高中物理滑块及木板模型专题及答案
专题Ⅱ 滑块及木板模型专题
例1、一质量为M的长木板静止在光滑水平桌面上.一质量为m的小滑块以水平速度v0从长木板的一端开始在 木板上滑动,直到离开木板.滑块刚离开木板时的速度为v0/3.若把该木板固定在水平桌面上,其它条件相 同,求滑块离开木板时的速度v.
例 2、一块质量为 M 长为 L 的长木板,静止在光滑水平桌面上,一个质量为 m 的小滑块以水平速度 v0 从长 v 木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为 0.若把此木板固定在水平桌面 5 上,其他条件相同.求: (1)求滑块离开木板时的速度 v; (2)若已知滑块和木板之间
碰撞+弹簧模型专题
例 1、如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设 Q 静止, P 以某一初速度向 Q 运动并与弹簧发生碰撞. 在整个碰撞过程中, 弹簧具有的最大弹性势能等于 ( ) A.P 的初动能 B.P 的初动能的 1/2 Q P C.P 的初动能的 1/3 D.P 的初动能的 1/4
例 2、如图所示,质量为 1.0kg 的物体 m1,以 5m/s 的速度在水平桌面上 AB 部分的左侧向右运动,桌面 AB 部分与 m1 间的动摩擦因数μ=0.2, AB 间的距离 s=2.25m, 桌面其他部分光滑。 m1 滑到桌边处与质量为 2.5kg 的静止物体 m2 发生正碰,碰撞后 m2 在坚直方向上落下 0.6m 时速度大小为 4m/s,若 g 取 10m/s2,问 m1 碰 撞后静止在什么位置?
与它碰后以原速率反弹(碰后立即撤去该障碍物) .求 B 与 A 的粗糙面之间的动摩擦因数 和滑块 B 最终 2 停在木板 A 上的位置. (g 取 10m/s ) (深圳晏老师 150-0206-5320)

滑块—木板模型专题(附详细答案)(1)

滑块—木板模型专题(附详细答案)(1)

牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动. 2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A =1 kg ,m B =2 kg ,A 、B 间动摩擦因数是0.5,水平面光滑. 用10 N 水平力F 拉B 时,A 、B 间的摩擦力是 用20N 水平力F 拉B 时,A 、B 间的摩擦力是例2、如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加, 若使AB 不发生相对运动,则F 的最大值为针对练习1、如图5所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则 ( )A .当拉力F <12 N 时,物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对运动C .两物体从受力开始就有相对运动D .两物体始终没有相对运动例3、如图所示,质量M =8 kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10 m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?1、动力学问题【例1】如图,A是小木块,B是木板,A和B都静止在地面上。

高考物理计算题训练——滑块与木板模型(答案版)

高考物理计算题训练——滑块与木板模型(答案版)

1、木板 M 静止在圆滑水平面上,木板上放着一个小滑m,与木板之的摩擦因数μ,了使得m 能从 M 上滑落下来,求以下各样状况下力 F 的大小范。

( 1)m 与 M 要生相滑的界条件:①要滑:m 与 M的静摩擦力达到最大静摩擦力;②未滑:此m 与 M 加快度仍同样。

受力分析如,先隔绝 m,由牛第二定律可得:a=μ mg/m= μ g再整体,由牛第二定律可得:F0=(M+m)a解得: F0= μ (M+m) g因此, F 的大小范:F>μ (M+m)g( 2)受力剖析如,先隔绝M ,由牛第二定律可得:a=μ mg/M再整体,由牛第二定律可得:F0=(M+m)a解得: F0= μ (M+m) mg/M因此, F 的大小范:F>μ (M+m)mg/M2、如所示,有一木板静止在圆滑水平面上,木板量M=4kg , L=1.4m. 木板右端放着一个小滑,小滑量m=1kg ,其尺寸小于 L ,它与木板之的摩擦因数μ =0.4, g=10m/s 2,( 1)用水平向右的恒力 F 作用在木板 M 上,了使得 m 能从 M 上滑落下来,求 F 的大小范 .( 2)若其余条件不,恒力F=22.8N ,且始作用在M 上,求 m 在 M 上滑的 .( 1)小滑与木板的滑摩擦力f= μFN= μ mg=4N⋯⋯⋯⋯①滑摩擦力 f 是使滑生加快度的最大合外力,其最大加快度a1=f/m= μ g=4m/s 2⋯②当木板的加快度a2 > a1,滑将相于木板向左滑,直至离开木板F-f=m a 2>m a1F> f +m a 1=20N⋯⋯⋯⋯③即当 F>20N ,且保持作用一般后,小滑将从木板上滑落下来。

( 2)当恒力 F=22.8N ,木板的加快度a2',由牛第二定律得F-f= M a2'解得: a2'= 4.7m/s2⋯⋯⋯④两者相滑t,在分别以前小滑: x 1=? a1t 2⋯⋯⋯⋯⑤木板: x 1=? a2 ' t2⋯⋯⋯⋯⑥又有 x2- x1=L ⋯⋯⋯⋯⑦根源于网解得: t=2s ⋯⋯⋯⋯⑧3、量 mA=3.0kg 、度L=0.70m 、量 q=+4.0 × 10-5C 的体板 A 在足大的水平面上,量 mB=1.0kg 可点的物 B 在体板 A 的左端,开始A、B 保持相静止一同向右滑,当它的速度减小到 v0=3.0m/s,立刻施加一个方向水平向左、大小板的距离S =2m ,今后 A 、 B 始在匀中,如所示E=1.0 × 105N/C 的匀 ,此 A 的右端到直.假设 A 与板碰撞极短且无机械能失, A 与B 之(摩擦因数 1 =0.25)及 A 与地面之(摩擦因数 2 =0.10)的最大静摩擦力均可等于其滑摩擦力,g 取 10m/s2(不空气的阻力)求:(1) 施加匀,物 B 的加快度的大小?(2) 体板 A 走开板, A 的速度大小?(3)B 可否走开A, 若能,求 B 走开 A , B 的速度求 B 与 A 的左端的最大距离?大小;若不可以,解:( 1) B 遇到的最大静摩擦力f1m,f1m1m B g 2.5N . ①(1分)A 遇到地面的滑摩擦力的 f 2, f2 2 ( mA mB ) g 4.0N . ②(1 分)施加后, A .B 以同样的加快度向右做匀减速运,加快度大小a,由牛第二定律qE f2(m A m B )a ③( 2分)解得:a 2.0m / s2(2 分)B 遇到的摩擦力f1,由牛第二定律得f1m B a ,④解得: f1 2.0N . 因 f1f1m,因此作用后, A .B 仍保持相静止以同样加快度 a 向右做匀减速运,因此加上匀, B 的加快度大小a 2.0m / s2(2 分)( 2) A 与板碰前瞬, A . B 向右的共同速度v1,v12v022as( 2 分)解得v11m / s(1 分)A 与板碰撞无机械能失,故 A 走开板速度大小v11m / s(1 分)( 3) A 与板碰后,以 A . B 系研究象,qE f2⑥故 A 、B 系量守恒,A 、B 向左共同速度,定向左正方向,得:m A v1m B v1 (m A m B )v⑦(3 分)程中, B 相于 A 向右的位移s1,由系功能关系得:1mBgs11(m A m B )v121(m A m B ) v2⑧( 4 分)解得s10.60 m (2分)22因 s1L ,因此B不可以走开A ,B 与 A 的左端的最大距离s10.60m(1 分)4、如所示,圆滑水平面MN 的左端 M 有一射装置P(P 左端固定,于状且定的簧,当 A 与 P 碰撞 P 立刻排除定),右端 N 与水平送恰平且很凑近,送沿逆方向以恒定速率υ =5m/s匀速,水平部分度L = 4m。

“滑块—木板”模型中的动力学问题(解析版)—2025年高考物理一轮复习

“滑块—木板”模型中的动力学问题(解析版)—2025年高考物理一轮复习

运动和力的关系“滑块—木板”模型中的动力学问题素养目标:1.掌握“滑块—木板”模型的运动及受力特点。

2.能正确运用动力学观点处理“滑块—木板”模型问题。

1.如图所示,质量为4kg 的薄木板静置于足够大的水平地面上,其左端有一质量为2kg 的物块,现对物块施加一大小为12N 、水平向右的恒定拉力F ,只要拉力F 作用的时间不超过1s ,物块就不能脱离木板。

已知物块与木板间的动摩擦因数为0.4,木板与地面间的动摩擦因数为0.1,物块可视为质点,取重力加速度大小210m/s g =。

则木板的长度为( )A .0.8mB .1.0mC .1.2mD .1.5m考点一 水平面上的板块问题1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动,滑块和木板具有不同的加速度。

2.模型构建(1)隔离法的应用:对滑块和木板分别进行受力分析和运动过程分析。

(2)对滑块和木板分别列动力学方程和运动学方程。

(3)明确滑块和木板间的位移关系如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。

3.解题关键(1)摩擦力的分析判断:由滑块与木板的相对运动来判断“板块”间的摩擦力方向。

(2)挖掘“v物=v板”临界条件的拓展含义摩擦力突变的临界条件:当v物=v板时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动)。

①滑块恰好不滑离木板的条件:滑块运动到木板的一端时,v物=v板;②木板最短的条件:当v物=v板时滑块恰好滑到木板的一端。

例题1.如图所示,质量为m的长木板A放在光滑的水平面上,物块B、C放在长木板上。

物块B的质量也为m,B、C与A间的动摩擦因数均为m,A、B、C均处于静止状态,最大静摩擦力等于滑动摩擦力,重力加速度为g 。

滑块木板模型+图像(解析版)--2024高考物理疑难题分析与针对性训练

滑块木板模型+图像(解析版)--2024高考物理疑难题分析与针对性训练

2024高考物理疑难题分析与针对性训练滑块木板模型+图像高考原题(2024高考山东卷第17题)1如图甲所示,质量为M 的轨道静止在光滑水平面上,轨道水平部分的上表面粗糙,竖直半圆形部分的表面光滑,两部分在P 点平滑连接,Q 为轨道的最高点。

质量为m 的小物块静置在轨道水平部分上,与水平轨道间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。

已知轨道半圆形部分的半径R =0.4m ,重力加速度大小g =10m/s 2.(1)若轨道固定,小物块以一定的初速度沿轨道运动到Q 点时,受到轨道的弹力大小等于3mg ,求小物块在Q 点的速度大小v ;(2)若轨道不固定,给轨道施加水平向左的推力F ,小物块处在轨道水平部分时,轨道加速度a 与F 对应关系如图乙所示。

(i )求μ和m ;(ii )初始时,小物块静置在轨道最左端,给轨道施加水平向左的推力F =8N ,当小物块到P 点时撤去F ,小物块从Q 点离开轨道时相对地的速度大小为7m/s 。

求轨道水平部分的长度L 。

思路分析(1)在竖直面内半圆轨道最高点,由牛顿第二定律列方程得出;(2)轨道不固定,根据图乙的加速度随作用力F 的图像,分析得出F =4N 时是小物块相对于水平轨道滑动的临界点。

结合图像乙,利用牛顿第二定律列方程得出相关物理量。

【答案】(1)v =4m/s ;(2)(i )m =1kg ,μ=0.2;(3)L =4.5m 【解析】(1)根据题意可知小物块在Q 点由合力提供向心力有mg +3mg =mv 2R代入数据解得v =4m/s(2)(i )根据题意可知当F ≤4N 时,小物块与轨道是一起向左加速,根据牛顿第二定律可知F =(M +m )a 根据图乙有k =1M +m=0.5kg -1当外力F >4N 时,轨道与小物块有相对滑动,则对轨道有F -μmg =Ma结合题图乙有a =1M F -μmg M可知k=1M=1kg-1截距b=-μmgM=-2m/s2联立以上各式可得M=1kg,m=1kg,μ=0.2 (ii)由图乙可知,当F=8N时,轨道的加速度为6m/s2,小物块的加速度为a2=μg=2m/s2当小物块运动到P点时,经过t0时间,则轨道有v1=a1t0小物块有v2=a2t0在这个过程中系统机械能守恒有1 2Mv21+12mv22=12Mv23+12mv24+2mgR水平方向动量守恒,以水平向左的正方向,则有Mv1+mv2=Mv3+mv4联立解得t0=1.5s根据运动学公式有L=12a1t20-12a2t20代入数据解得L=4.5m针对性训练1(18分)(2024年5月湖北武汉武昌高考适应性考试)如图甲所示,一可看作质点的物块A位于底面光滑的木板B的最左端,A和B以相同的速度v₀=7m/s在水平地面上向左运动。

第六章 微专题47 “滑块-木板”模型综合问题-2025年物理《加练半小时》新教材版

第六章 微专题47 “滑块-木板”模型综合问题-2025年物理《加练半小时》新教材版

第六章机械能守恒定律微专题47“滑块-木板”模型综合问题1.分析滑块与木板间的相对运动情况,确定两者间的速度关系、位移关系,注意两者速度相同时摩擦力可能变化。

2.用公式Q=F f·x相对或动能定理、能量守恒定律求摩擦产生的热量。

1.(多选)(2023·云南丽江市统测)质量为m1=4kg的木板放在光滑的水平面上,其上放置一个质量m2=2kg的小物块,木板和物块间的动摩擦因数为0.4,木板的长度为4m,物块可视为质点,现用一大小为F=16N的力作用在物块上,下列说法正确的是(g取10m/s2)()A.木板的加速度为2m/s2B.物块的加速度为6m/s2C.经过2s物块从木板上滑离D.物块离开木板时的速度为8m/s答案ACD解析对木板,由牛顿第二定律可得μm2g=m1a1,解得a1=2m/s2,对物块,由牛顿第二定律可得F-μm2g=m2a2,解得a2=4m/s2,A正确,B错误;物块从木板上滑离时,位移关系满足12a2t2-12a1t2=L,解得t=2s,C正确;物块离开木板时的速度为v2=a2t=8m/s,D正确。

2.(多选)如图甲,长木板A放在光滑的水平面上,质量为m=3kg的木块B可看作质点,以水平速度v0=2m/s滑上原来静止的长木板A的表面。

由于A、B间存在摩擦力,之后A、B速度随时间变化情况如图乙所示,则下列说法正确的是(g取10m/s2)()A.木板的质量为M=3kgB.木块减小的动能为1.5JC.系统损失的机械能为3JD.A、B间的动摩擦因数为0.2答案AC解析由题图乙可知,A 、B 的加速度大小都为1m/s 2,根据牛顿第二定律知μmg m =1m/s 2,μmg M =1m/s 2,代入数据解得M =3kg ,μ=0.1,故A 正确,D 错误;木块减小的动能ΔE k =E k0-E k1=12m v 02-12m v 12=4.5J ,故B 错误;由题图乙可知,A 、B 的相对位移大小Δx =12×2×1m =1m ,则系统损失的机械能为ΔE =W f =μmg Δx =3J ,故C 正确。

专题 滑块—木板模型(板块模型)(附精品解析)

专题  滑块—木板模型(板块模型)(附精品解析)

专题 滑块—木板模型(板块模型) 专题训练一、单选题1.(2021·湖南·长郡中学高一期中)木板B 静止在水平面上,其左端放有物体A 。

现对A 施加水平恒力F 的作用,使两物体均从静止开始向右做匀加速直线运动,直至A 、B 分离,已知各接触面均粗糙,则( )A .A 和地面对B 的摩擦力是一对相互作用力B .A 和地面对B 的摩擦力是一对平衡力C .A 对B 的摩擦力水平向右D .B 对A 的摩擦力水平向右2.(2021·黑龙江·农垦佳木斯学校高三月考)如图所示,质量为M 的木板放在水平桌面上,一个质量为m 的物块置于木板上。

木板与物块间、木板与桌面间的动摩擦因数均为μ。

现用一水平恒力F 向右拉木板,使木板和物块共同向右做匀加速直线运动,物块与木板保持相对静止。

已知重力加速度为g 。

下列说法正确的是( )A .木板与物块间的摩擦力大小等于0B .木板对物块的摩擦力水平向左C .木板与桌面间的摩擦力大小等于μMgD .当拉力2()F M m g μ>+时,m 与M 发生相对滑动 3.(2021·山东师范大学附中高三月考)如图所示,质量为3kg 的长木板B 静置于光滑水平面上,其上放置质量为1kg 的物块A ,A 与B 之间的动摩擦因数为0.5设最大静摩擦力等于滑动摩擦力,且当地的重力加速度为210m/s 。

当木板A 和B 刚好要发生相对滑动时,拉力F 的大小为( )A .20NB .15NC .5ND .25N4.(2021·安徽·定远县民族中学高三月考)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A 。

木板B 受到随时间t 变化的水平拉力F 作用时,木板B 的加速度a 与拉力F 的关系图象如图乙所示,则小滑块A 的质量为( )A .4kgB .3kgC .2kgD .1kg二、多选题5.(2021·四川·眉山市彭山区第一中学高三月考)物体A 和物体B 叠放在光滑水平面上静止,如图所示。

高考物理计算题训练——滑块与木板模型(答案版)完整版.doc

高考物理计算题训练——滑块与木板模型(答案版)完整版.doc

1、木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。

(1)m与M刚要发生相对滑动的临界条件:①要滑动:m与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与M加速度仍相同。

受力分析如图,先隔离m,由牛顿第二定律可得:a=μmg/m=μg再对整体,由牛顿第二定律可得:F0=(M+m)a解得:F0=μ(M+m) g所以,F的大小范围为:F>μ(M+m)g(2)受力分析如图,先隔离M,由牛顿第二定律可得:a=μmg/M再对整体,由牛顿第二定律可得:F0=(M+m)a解得:F0=μ(M+m) mg/M所以,F的大小范围为:F>μ(M+m)mg/M2、如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2,(1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围.(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间.(1)小滑块与木板间的滑动摩擦力f=μFN=μmg=4N…………①滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度a1=f/m=μg=4m/s2…②当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板F-f=m a2>m a1F> f +m a1=20N …………③即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。

(2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2'解得:a 2'=4.7m/s 2………④设二者相对滑动时间为t ,在分离之前小滑块:x 1=½ a1t 2 …………⑤木板:x 1=½ a2't 2 …………⑥又有x 2-x 1=L …………⑦解得:t=2s …………⑧3、质量mA=3.0kg 、长度L=0.70m 、电量q=+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量mB=1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左、场强大小E=1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 与A 的左端的最大距离?解:(1)设B 受到的最大静摩擦力为m f 1,则.5.211N g m f B m ==μ ① (1分)设A 受到地面的滑动摩擦力的2f ,则.0.4)(22N g m m f B A =+=μ ② (1分) 施加电场后,设A .B 以相同的加速度向右做匀减速运动,加速度大小为a ,由牛顿第二定律 a m m f qE B A )(2+=+ ③ (2分)解得:2/0.2s m a = (2分)设B 受到的摩擦力为1f ,由牛顿第二定律得 a m f B =1,④解得:.0.21N f =因为m f f 11<,所以电场作用后,A .B 仍保持相对静止以相同加速度a 向右做匀减速运动,所以刚加上匀强电场时,B 的加速度大小2/0.2s m a = (2分)(2)A 与挡板碰前瞬间,设A .B 向右的共同速度为1v ,as v v 22021-= (2分)解得s m v /11= (1分) A 与挡板碰撞无机械能损失,故A 刚离开挡板时速度大小为s m v /11= (1分)(3)A 与挡板碰后,以A .B 系统为研究对象,2f qE = ⑥故A 、B 系统动量守恒,设A 、B 向左共同速度为ν,规定向左为正方向,得: v m m v m v m B A B A )(11+=- ⑦ (3分)设该过程中,B 相对于A 向右的位移为1s ,由系统功能关系得:22111)(21)(21v m m v m m gs m B A B A B +-+=μ ⑧ (4分) 解得 m s 60.01= (2分) 因L s <1,所以B 不能离开A ,B 与A 的左端的最大距离为m s 60.01= (1分)4、如图所示,光滑水平面MN 的左端M 处有一弹射装置P (P 为左端固定,处于压缩状态且锁定的轻质弹簧,当A 与P 碰撞时P 立即解除锁定),右端N 处与水平传送带恰平齐且很靠近,传送带沿逆时针方向以恒定速率υ = 5m/s 匀速转动,水平部分长度L = 4m 。

滑块—木板模型专题(附详细参考答案)

滑块—木板模型专题(附详细参考答案)

精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿定律——滑块和木板模型专题
一.“滑块—木板模型”问题的分析思路
1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导
解此类题的基本思路:
(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度
(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,
建立方程.特别注意滑块和木板的位移都是相对地面的位移.
例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.
用10 N水平力F拉B时,A、B间的摩擦力是
用20N水平力F拉B时,A、B间的摩擦力是
例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为
针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()
A.当拉力F<12 N时,物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12 N
时,开始相对运动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:
(1)小物块放上后,小物块及小车的加速度各为多大?
(2)小车的长度L是多少?
针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2
,求:
(1)木板的加速度;
(2)要使木块能滑离木板,水平恒力F 作用的最短时间;
(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.
(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?
牛顿定律——滑块和木板模型专题答案
例1、3.3 N 5 N
例2、48 N
针对练习1、答案 D
解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.
例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m
解析 (1)以小物块为研究对象,由牛顿第二定律,得
μmg =ma 1
解得a 1=μg =2 m/s 2
以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2
解得a 2=F -μmg M
=0.5 m/s 2 (2)由题意及运动学公式:a 1t =v 0+a 2t
解得:t =v 0a 1-a 2
=1 s 则物块运动的位移x 1=12
a 1t 2=1 m 小车运动的位移x 2=v 0t +12
a 2t 2=1.75 m L =x 2-x 1=0.75 m
针对练习2、
解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N
木板的加速度a =F -F f M =2.5 m/s 2.
(2分) (2)设拉力F 作用时间t 后撤去
F 撤去后,木板的加速度为a ′=-F f M =-2.5 m/s 2
(2分) 木板先做匀加速运动,后做匀减速运动,且a =-a ′,故
at 2=L
解得t =1 s ,即F 作用的最短时间为1 s .
(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分) 得a 木块=μ1g =3 m/s 2
对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 (2分)
木板能从木块的下方抽出的条件为a 木板>a 木块
解得F 1>25 N .
(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2 (1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g M =4.25 m/s 2
(1分) 木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即
12a 木板′t 2-12a 木块′t 2=L (2分) 代入数据解得t =2 s . (2分)
答案 (1)2.5 m/s 2 (2)1 s (3)大于25 N (4)2 s
分析滑块—木板模型问题时应掌握的技巧
1.分析题中滑块、木板的受力情况,求出各自的加速度.
2.画好运动草图,找出位移、速度、时间等物理量间的关系.
3.知道每一过程的末速度是下一过程的初速度.
4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。

相关文档
最新文档