化工原理课件5
化工原理课件第五章 蒸馏
Q FcP (T tF )
FcP (T te ) (1 q)Fr
T
te
(1
q)
r cp
tF-原料液的温度℃ T-通过加热器后原料液的温度℃
te-分离器中的平均温度℃ F-原料液流量Kmol/h
cp-原料液平均比热KJ/(Kmol. ℃) r-平均汽化潜热
三、气液平衡关系
理想溶液:
x
A
A
p
1.2.2 非理想物系的气液平衡
1.具有正偏差的溶液 一般正偏差:pA>pA理, pB>pB理。
乙醇-水溶液相图 正偏差溶液:x=0.894,最低恒沸点,78.15℃
2. 具有负偏差的溶液 一般负偏差 pA<pA理, pB<pB理。
硝酸-水溶液相图 负偏差溶液:x=0.383,最高恒沸点,121.9℃
组分: A、B 一、相律分 析: 变量 : t、p、xA、 yA
相数: 气相、液相
自由度:f c 2 2
C:独立组分数
Ø:相数
一定压力下:液相(气相)组成xA(yA)与温度t存在一 一对应关系气液组成之间xA~yA存在一一对应关系
二、两组分理想物系气液平衡函数关系 1. 拉乌尔定律( Raoult’s Law)
xF,y,x--分别为原料液、气相与液相产 品的组成,摩尔分率。
y
FxF Wx D
F
F W
xF
W F W
x
q W 液化分率 F
=1 1 q
xF
q 1 q
x
qx q 1
q
1
1
xF
平率衡为蒸馏中气液相平衡组q 成的关系。通过(xF, xF )斜
化工原理下册课件第5章 干燥(湿物料的性质)
影响降速阶段的因素: • 干燥速率主要决定于物料本身的结构、形状和大小
(水分在物料内部的迁移速率)。而与空气的性质 关系很小。
三、临界含水量
临界含水量=f(物料的性质、厚度、干燥速率、干燥器 的种类、干燥操作条件)
无孔吸水性材料XC>多孔材料XC 厚度增加 XC 分散越细, 干燥面积 XC 恒速段干燥速率 XC
定时测定物料的质量变化,并记录每一时间间隔D内 的物料的质量变化DW及表面温度q,直到物料的质量
恒定为止。此时物料所含的水分即为该条件下的平衡 水分。
干燥曲线和干燥速率曲线
AB和A’B的区别:AB段是在物料初始温度小于空 气的湿球温度,而A’B段则是物料的初始温度大于 空气的湿球温度
• AB(或A’B)段: AB为湿物料不稳定的加热过程。 该过程的时间很短, 将其作为恒速干燥的一部分。 X下降,θ增加至空气的湿球温度。
生产中为保证产品质量,降低XC 措施:减小物料的厚度
非结合水分:包括机械地附着于固体表面的水分,如 物料表面的吸附水分、较大孔隙中的水分等。
特点:物料中非结合水分与物料的结合力弱,其蒸汽 压与同温度下纯水的饱和蒸汽压相同,干燥过程中除 去非结合水分较容易。
ቤተ መጻሕፍቲ ባይዱ强调:
物料的结合水分和非结合水分的划分只取决于物料
本身的性质,而与干燥介质的状态无关;
平衡水分与自由水分则还取决于干燥介质的状态。
二、结合水分(bound water)与非结合水分(unbound water)
划分依据:根据物料与水分结合力的状况 结合水分: 包括物料细胞壁内的水分、物料内毛细 管中的水分、及以结晶水的形态存在于固体物料之中 的水分等。
《化工原理》课件
学习资源
1 教材推荐
2 参考书目
除了《化工原理》教材外, 我们还推荐以下参考教材, 有助于更深入地理解化工 原理。
在课程中提供的参考书目 中,您可以找络资源
我们提供一些网络资源, 供学生进一步学习化工原 理和实际应用。
推荐使用《化工原理》教材, 该教材详细解释了化工原理 的基本概念和实际应用。
重要概念
1 反应原理
了解不同类型的化学反应和它们的原理,如 合成反应、分解反应和酸碱反应。
2 质量守恒与能量守恒
理解质量守恒定律和能量守恒定律,并学会 在化工过程中应用。
3 化学平衡
4 反应动力学
学习如何计算和控制化学反应中的平衡常数, 以及如何进行反应平衡的优化。
《化工原理》PPT课件
欢迎来到《化工原理》PPT课件!本课程将介绍化工基本原理和实际应用,帮 助您理解化工流程和反应动力学。
课程介绍
课程目标
掌握化工基本原理,理解反 应动力学,培养化工工艺设 计的能力。
课程概述
介绍化工原理相关的重要概 念和实际应用,涵盖质量守 恒、能量守恒和化学平衡等 方面。
教材介绍
掌握反应速率和化学动力学的概念,了解如 何改变反应速率和提高反应效率。
实际应用
化工工艺流程
了解化工工艺流程的基本原理,包括物料流动、反 应控制和产品分离等关键步骤。
催化剂的应用
探索催化剂在化工过程中的重要作用,了解如何选 择和使用催化剂以提高反应效率。
课程评估
课堂作业 期中考试 期末考试
通过完成课堂作业,巩固对课程知识的理解和应 用能力。 进行期中考试,评估学生对化工原理的掌握程度。
化工原理蒸馏课件5
4.操作型计算的类型(1)(P288 例7-6)
Nm
D W
zF
xw
R
q
N M 平衡曲线
设xD
精馏段、提馏段操作线方程 重设xD
Nm’=Nm ?
输出
二)精馏塔的操作 1.保持操作稳定,使塔内各处汽液组成和温度 稳定,料液在塔内汽液组成与其相同的位置加 入避免不同组成的物流的混合,是保持最佳操 作状态的基本条件。 2.保持精馏装置进、出物料平衡是保证塔稳定 操作的必要条件。
Rmin 与此对应 NT 全回流 NT N min
1
3.简捷法的步骤:
R Rmin N N min , R 1 N 1
六 Gilliland 快速估值法
4.研究条件:吉利兰图是用8个物系在下面的条件 下逐板计算得出的结果绘制,这些条件见下表。 组分数目 进料状态 2~11 5
四.加料状态的影响和加料板位置 L L I iF q F I i
过冷液体 q>1 饱和液体(泡点)q=1 汽液混合物 0<q<1 饱和蒸汽 q=0 过热蒸汽 q<0 (4)精馏段与提馏段的 汽液流量之间的关系 L' L qF
V V (1 q) F
'
二)精馏段和提馏段操作线的交点 -----q线方程 精: yn 1 提:
xD ye Rmin Rmin 1 xD xe Rmin x D ye ye xe
(xe,ye)由平衡线和q线(或者
精馏段操作线)联立求解确定。
对非理想溶液最小回流比确定:
平衡线下凹,出现拐点,只能图解。
最小回流比--解析求解
xe ye 平衡线:ye= , xe= 1 ( 1) xe + ( 1) ye
化工原理完整教材课件
深入理解实验的基本原理,为实验操作和结果分析提供理论依据。
实验数据处理与分析方法
数据记录与整理
掌握实验数据的记录方法,以及如何整理和筛选有效数据 。
误差分析
了解误差的来源和其对实验结果的影响,掌握误差分析和 减小误差的方法。
数据分析与处理
掌握常用的数据处理和分析方法,如平均值、中位数、标 准差等。
物质从高浓度区域向低浓度区域 的转移过程。
传质速率
表示物质转移快慢的物理量,与 扩散系数、浓度差和传质面积成
正比。
扩散系数
表示物质在介质中扩散快慢的物 理量,与物质的性质、温度和压
力有关。
吸收
吸收过程
利用混合气体中各组分在液体溶剂中的溶解度差异,使气体混合 物中的有害组分或杂质组分被吸收除去的过程。
在制药工业和食品工业中,化工原理 涉及药物的合成、分离和提纯,以及 食品的加工和保藏等环节。
02
流体流动
流体静力学
总结词
描述流体在静止状态下的压力、密度和重力等特性。
详细描述
流体静力学主要研究流体在静止状态下的压力分布、流体对容器壁的压力以及 流体与固体之间的作用力。它涉及到流体的平衡性质和流体静压力的基本规律 。
利用气体在液体中的溶解度差异,通过鼓入空气或通入其他气体 产生泡沫而实现分离的方法。
05
化学反应工程
化学反应动力学基础
1 2 3
反应速率与反应机理
介绍反应速率的定义、计算方法以及反应机理的 基本概念,阐述反应速率的测定和影响因素。
反应动力学方程
介绍反应动力学方程的建立、求解及其在化学反 应工程中的应用,包括速率常数、活化能等参数 的确定方法。
对流传热速率方程
化工原理ppt课件
B
•
•••••
• •
H
u hor izont al
qV BH
设在水平方向上,颗粒与气体流同速。
工程处理方法:寻找颗粒得以分离的条件,从时间上考虑。
((停沉rseemt留降tlain时时ingin间间dgu::rdau颗trioa粒nti)o随n同)t 气流uh在t 降尘h室为中颗的粒时距间离段底平 r面的u距horL离izontal
A
B
D
B D 4
ui
qV A B
ui 的大小影响到器内进口旋涡、锥形底口灰 卷起情况、气流经过设备的总压降均有关。
27
两种常用旋风分离器的各部位尺寸比例
28
根据实验气体旋转圈数N一般去3-5. 例1:已知含尘气体中尘粒速度为2300kg/m3.气体温度为500℃, µ=0.036cp流量为1000m3/h.采用某种形式的旋风分离器,D=400mm, B=D/4,A=D/2,H=2D,d=D/2.试估算临界直dpc(即dmin)
16
2
理 论 上 :i
dp d pc
两边同时取自然对数:
lni
2 ln d p d pc
d p d pc 注意:dmin或者d pc指能够100%被沉降分离的最小颗粒粒径。
17
5.3.2 离心沉降(centrifugal settling) 和 离心沉降设备
在离心力的作用下,使流体中的颗粒产生沉降运动(离心力 方向上的运动),称为离心沉降。
分离器。以旋风分离器为例,分析离心分离设备的工作原理、 生产指标与设备尺寸、操作条件的关系。
处理物料为含尘气体,连续稳定的操作状况。
21
(1)旋风分离器的构造及工作状态
南京理工化工原理课件5 --蒸 馏
蒸 馏
第一节 概述
蒸馏是分离液体混合物的典型单元操 作。这种操
作是利用液体混合物中各组分挥发度不同的特性 而实现分离的目的。
蒸馏按操作是否连续可分为连续蒸馏和间歇蒸馏。
按蒸馏方法可分为简单蒸馏、平衡蒸馏、精馏和
特殊精馏等。
按操作压强可分为常压、加压和减压精馏 。
第二节 两组分理想物系气液平衡
E NT NP 100%
3.塔高的确定
Z =(NP-1)·T H
二、塔径的计算
V
D
4
D 2u
4V u
5-5-8 两组分精馏的其它类型
(1)直接蒸气加热;
(2)多侧线进料或出料; (3)塔顶为分凝器; (4)回收塔。
一、直接蒸汽加热 总物料 : L′+V0=V′+W
易挥发组分
L′xm′+V0y0=V′ym+1′+Wxw
一、进料热状况的影响
A
B
冷液
泡点 饱和液体 气液混合 平衡
C
DLeabharlann 露点饱和蒸汽E 过热蒸汽
1.q与五种进料的关系
q
L L F
进料中液相所占的比例
L L qF
V V 1 q F
泡点进料
q 1
L´=F+L
V´=V
平衡进料
0 q 1
L´=qF+L
V´=V-(1-q)F
R R 1 xD R 1
yn 1
xn
xD
x
5.5.2
提馏段操作线方程推导
y
xD R 1
xW
ym 1 L' L W
'
化工原理第四版课件(第五章吸收)
第五章:吸收 概述气液相平衡吸收过程的传质速率吸收塔的计算填料塔第一节:概述一、吸收吸收的定义:吸收是利用气态均相混合物中各组分在吸收剂中溶解度的差异来实现分离的单元操作。
吸收的目的:I.回收或捕获气体混合物中的有用物质,以制取产品II.除去工艺气体中的有害成分,使气体净化,以便进一步加工处理III.除去工业放空尾气中的有害气体,以免环境污染。
二、工业吸收了解工业生产中吸收及解吸过程、所需条件和典型设备例子工业上从合成氨原料混合气体中回收CO2乙醇胺脱硫法•需要解决的问题1.选择合适的溶剂2.提供适当的传质设备3.溶剂的再生三、溶剂的选择1.对溶质较大的溶解度;2.良好的选择性;3.温度变化的敏感性;4.蒸汽压要低;5.良好的化学稳定性;6.较低的黏度且不易生泡;7.廉价、无毒、易得、不易燃烧等经济和安全条件。
四、吸收的分类按有无化学反应:物理吸收和化学吸收按溶质气体的浓度:低浓度和高浓度吸收按溶质气体组分的数目:单组分和多组分吸收按有无热效应:等温和非等温吸收本章只讨论低浓度、单组分、等温的物理吸收过程。
五、吸收操作的经济性(费用)气液两相流经设备的能量损耗;溶剂的挥发及变质损失;溶剂的再生费用。
√六、吸收设备第二节:气液相平衡一、平衡溶解度恒温、恒压下,相互接触的气液两相的浓度不变时,气液两相之间的浓度关系。
气液两相组成的浓度分别用物质的摩尔分数来表示,即y= n i /Σn y 、x= n i /Σn x:气液两相中惰性组分的量不变,溶质与惰性组分摩尔比。
yy Y −=1xx X −=11.气体的溶解度气体在溶液中的溶解平衡是一个动态平衡,该平衡的存在是有条件的;平衡时气相中溶质的分压——平衡分压(或饱和分压),液相中溶质的浓度——平衡浓度(或饱和浓度),也即是气体在溶液中的溶解度;气体的溶解度是一定条件下吸收进行的极限程度;温度和压力对吸收操作有重要的影响;加压和降温对吸收有利;升温和降压对解吸有利。
化工原理课件第五章 吸收
η=
被吸收的溶质量 进塔气体的溶质量
Y1 Y 2 Y1
Y2=Y1(1-η)
qn,v Y1 Y2 条件所规定
X2 一般为吸收工艺
qn ,l ,m qn,v
Y1 Y2 X1* X 2
Y1 Y2
Y1 m
X
2
qn,l=(1.1~1.5)qn,l,m
2020/7/16
16
5-14 填料层高度的计算
溶解度随温度和溶质气体的分压不同而不同,平衡时溶质在 气相中的分压称为平衡分压。溶质组分在两相中的组成服从 相平衡关系。
加压和降温有利于吸收操作,反之,升温和减压对解吸有利。 但加压、减压费用太高一般不采用。
2020/7/16
6
5-2 亨利定律
亨利定律
当总压不高(一般小于500KPa)时,在一定温度下,稀溶液上 方气相中溶质的平衡分压与其在液相中的浓度之间存在着如下 的关系:
一、 填料层高度的基本计算式
填料层高度计算涉及物料衡算、传质 速率和相平衡关系。我们前面介绍的 所有传质速率方程都适用于稳定操作 的吸收塔中的"某一横截面",而不能用 于全塔。
该微元内,吸收质的传递量dG为:
dG qn,vdY qn,ldX
由吸收速率方程可知,该微元内,气相
和液相吸收质的变化量dG为:
在相内(气相或液相)传质方式包括分子扩散和湍流扩散。
分子扩散:当流体内部某一组分存在浓度差时,因微观的分 子热运动使组分从浓度高处传递到较低处,这种现象称为分 子扩散。
湍流扩散:当流体流动或搅拌时,由于流体质点的宏观运动
(湍流),使组分从浓度高处向低处移动,这种现象称为湍
流扩散。在湍流状态下,流体内部产生旋涡,故又称为涡流
化工原理课件5.颗粒的沉降和流态化
ut
dP2(P )g 18
2 Re P
500,阿仑区
,ut
0.781
d
1.6 P
(
P
0.4
0.6
)
g
0.714
当dp ,500 ReP 2105,牛顿(Newton )定律区 ,
ut 1.74
dP (P )g
与u无关。
5. 颗粒的沉降和流态化
5.2.2 静止流体中颗粒的自由沉降
前提:P
一、沉降的加速阶段:设初始速度等于0。
在沉降过程中颗粒的受力如下:
Fb
1、体积力:重力场:Fg mg
离心力:Fg
其中:对于球形颗粒:m
mr2
1 d
2、浮力:重力场:Fb
m
p
6
g
3
p
p
离心力:Fb
m
p
r 2
3、曳力:FD
Ap
1 2
u 2
FD Fg
5. 颗粒的沉降和流态化
5.2.2 静止流体中颗粒的自由沉降
度,曳力减小。
5、非球形:曳力系数比同体积球形颗粒为大, ut减少。
返回
5. 颗粒的沉降和流态化
5.3 沉降分离设备
基础:颗粒在外力作用下产生沉降运动,具有两 相 p 为前提。悬浮颗粒的直径越大,两相的密 度差越大,使用沉降分离方法的效果就越好。
根据作用于颗粒上的外力不同,沉降分离设备 可分为重力沉降和离心沉降两大类。
二、沉降的等速阶段
u曳力项 ,du d
du
d
0, 此时恒定u
ut
球形颗粒:
du
d
(P )g P
3 4d P P
化工原理下册课件第5章 干燥(湿空气的湿度图 (焓湿图))
二、 等焓线(等I线) 一组与水平线倾斜135°的直线 。读数范围0~
680kJ/kg绝干气。 三、 干球温度线(等t线)
固定总压下,给定不同的温度t值,以H为自变量,I为因变量, 根据I=(1.88t+2490)H+1.01t作出的曲线。当空气的干球温度t不变 时,I与H成直线关系,故在I-H图中对应不同的t,可作出许多 等t线。 各种不同温度的等温线,其斜率为(1.88t+2490),故温度 愈高,其斜率愈大。因此,成直线的等t线并不互相平行。
p
0
二、确定湿空气的状态点 (1)湿空气的干球温度t和湿球温度tw,70,30 ℃(a) (2)湿空气的干球温度t和露点td, 70,20 ℃ (b)
(3)湿空气的干球温度t和相对湿度j,70 ℃,20% (c)
例【5-3】:已知湿空气的总压为101.3kN/m2 , 湿度为 H=0.02 kg水/kg干空气,干球温度为70oC。试用I-H图 求解:
5.2.2 湿空气的湿度图 (焓湿图)
在工程计算中,常用的是以湿空气的焓值I为纵坐 标,湿度H为横坐标的焓湿图,即I-H图。
图上共有五种线,图上任一点都代表一定温度t和
湿度H的湿空气状态。
等湿度线(等H线): 等焓线(等I线): 等温线(等t线): 等相对湿度线(等j线) 水蒸汽分压线:
一、等湿度线(等H线) 一组与纵轴平行的直线。在同一条等H线上,湿空气
三、湿空气的状态变化过程 1、加热与冷却过程 加热:湿空气的加热与冷却
属等压过程,p不变,H不 变,AB线为一垂直线,沿 等H线由A到达B点,温度
升高,空气的j下降,干燥
能力上升。 冷却与加热过程相反
化工原理课件第五章 传热
温度场的通式
温度场的通式:
t f x, y, z,
式中: t —— 某点的温度,k;
X,y,z —— 这点的空间坐标;
θ —— 时间,s。
若在稳定温度场中, 表示式为:
t f x, y, z
稳定温度场和不稳定温度场
(1)不稳定温度场 —— 温度随时间而改变 的温度场,称为:不稳定温度场 。
称为:传热速率,用Q表示,单位:J/s, 即w(瓦)。
(三)辐射
1、辐射——是一种以电磁波传递能量的现象。 物体可以由不同原因发出辐射能。
2、热辐射——物体因热而发出辐射能的过程, 称为:热辐射radiation。
3、 只要物体的绝对温度大于 0K,便会不停地 将热量以电磁波的形式传递出去,同时也不断 地将其他物体辐射来的能量转为热量。辐射与 吸收能 量的差额转变为低温物体的热量。但 是,只有物体具有较高温度时, 辐射才为主 要形式。
传热面上不同局部面积的热通量可以不同。
3、热流量Q与热通量q的关系
式中:
q dQ dA
Q——热流量,单位为:J/s,即w(瓦) 。
q——热通量(热流密度),单位为:J/(m2·s),即 w/m2。
A——传热面积, m2 。
热流量Q与热通量q的关系
(1)热通量q基于微元面dA,热通量q可以 用于局部地区。
1、热源——电热、饱和水蒸汽、烟道气、高 温载体等。
2、冷源——冷却水、空气、冷却盐水等。 冷却水——河水、海水、井水等。
二、传热的三种基本方式
• 1、热传导(导热) • 2、对流 • 3、辐射
(一)热传导(简称:导热)
1、热传导——热量从物体内部温度较高
的部分传递到温度较低的部分或者传递到与 之接触的另一物体的过程,称为:热传导, 简称:导热conduction。
化工原理流体静力学课件5-阻力计算
⑤ 进口阻力损失:容器
流体 (a)
管 = 0.5
(a)
(b) 流体 (b)
⑥ 出口阻力损失:管
容器 = 1
Yang Yanzhao
SHANDONG UNIVERSITY
2. 当量长度法
le u hf d 2
/
2
J kg
le – 当量长度,m d – 与管件相连的管路内径
Yang Yanzhao
1.09 10
取
5
0.2 mm
0.2 mm 0.002 d 吸 100 mm
Yang Yanzhao
SHANDONG UNIVERSITY
查 0.025
H f吸
2 u吸 l ( 0.75 0.5) d 2g
H f吸
20 m (0.823m s ) (0.025 0.75 0.5) 0.1 m 2 9.81m s -2
A
B
②
如何通过实验装置测量直管段阻力损
失?并画出实验装置图。
Yang Yanzhao
SHANDONG UNIVERSITY
将式 (1) 代入式 (2) 得:
4l hf d
4 l hf d
(3)
2 u2 2 u 2
令
8 2 — 摩擦系数 u J l u2 hf (4) kg d 2
SHANDONG UNIVERSITY
例1-8 有一套管式换热器,内管为 25 mm1.5 mm,外管为45 mm2.0 mm。套管环隙通以冷却用的盐水,其 流量为2.5 t∙h-1, =1150 kg∙m-3, =1.210-3 Pas。试判断该盐水的流动型 态。 解: de = 41 mm – 25 mm = 16 mm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液面上方压力、流体饱和蒸汽压、吸入管路情况
(4) 适用场合 适用于:流量小,扬程高,粘度大的流体。
不适用:腐蚀性介质或含有固体颗粒的流体。
(5) 其它类型的正位移泵 ① 隔膜泵 实际上是一种往复泵
② 计量泵 也是往复泵的一种 多股进料,按比例输送
③ 齿轮泵 齿轮泵可用于输送粘稠液体以至膏状物
齿轮泵
往复泵装置简图
③ 往复泵的输液量
单缸单作用泵:
流量
qV ,T
AF snr 60
12
3
1—泵缸 2—活塞
5
3—活塞杆
4—吸入阀
4
5—排出阀
qV
t
往复泵装置简图
0
π 2π 3π
单缸单作用往复泵流量曲线
排液量不均匀
双动泵: 流量
qV ,T
z (2 AF
Af 60
)snr
qV
t
0
π
2π
3π
单缸双作用往复泵流量曲线
2.3 容积式泵(正位移泵) 2.3.1 往复泵
(1) 结构和工作原理 ① 结构: 泵缸、活塞、阀门 冲程:活塞在两端点间移动的距离 冲程容积:活塞往复一次的容积排量
② 工作原理 ● 活塞右移时,排出阀关闭, 吸液阀开启,开始吸液, 当活塞移至右端点时,吸液 行程结束; ●活塞由右端点向左移时,
吸液阀关闭,排出阀开启, 开始排液,当活塞移至左 端点时,排液行程结束。
1-机壳 2-叶轮 3-吸入口 4-排除口
2.6.2 鼓风机
类型:离心式、罗茨式 (1)离心式鼓风机(透平鼓风机)
主要结构和工作原理与离心通风机类似,为产生较高的风压, 采用多级。出口表压力一般不超过294×103Pa。
(2)罗茨鼓风机 ① 结构
② 工作原理 同齿轮泵
说明:①为正位移型,风量与转速成正比,而与出口压力无关 ; ② 流量采用旁路调节; ③ 出口阀不能完全关闭; ④ 操作温度不超过85ºC。
p1
P2 3
2
P1 4
1
5
0
V2
6 V1 V
无余隙压缩循环
Ws
p2 nRT dp p p1
Ws
nRT
ln
p2 p1
p1V1 ln
p2 p1
绝热压缩循环:
p1V1r p2V2r pV r
r ——绝热指数
r 1
Ws
r
r 1
p1V1
p2 p1
r
1
出口温度:
r 1
T2
T1
p2 p1
r
P2 3
④ 螺杆泵 属容积式转子泵
双螺杆泵
新型泵
无噪音 无振动 流量均匀
指标
离心泵、往复泵、转子泵比较
离心泵
往复泵
转子泵
流量,m3/h 扬程 ,m 效率
结构特点
均匀、不稳定、 不均匀、恒定
1.6~30000
0~600
定流量→扬程 扬程与流量无关
10~2600
0.2~100MP
设计点最高,偏 扬程高效率降低 离越远效率越低 很少0.7~0.85
P2 3
2
P1 4
1
5
0
V2
6 V1 V
无余隙压缩循环
整个循环活塞对气体所作的功:
V2
Ws pdV p2V2 p1V1
V1
等温压缩循环: 理想气体
p1V1 piVi nRT k const
p2V2 p1V1
Ws
V2 V1
pdV
d pV pdV Vdp 0
p2
Ws Vdp
2.6.1 离心式通风机
型式: 离心式——多用于气体输送; 轴流式——一般用于通风换气。
(a) 离心式
(b) 轴流式
离心式和轴流式通风机示意图
(1) 离心式通风机结构及工作原理 ① 结构: 主要部件:叶轮、蜗壳; 叶片形式: 低压风机 ——叶片平直; 中、高压风机—— 叶片弯曲。 ② 工作原理 :同离心泵
2 2'
P1 4
1
5
0
V2
6 V1 V
无余隙压缩循环
多变压缩循环:
k 1
Ws
k
k 1
p1V1
p2 p1
k
1
k——多变指数,1~ r
出口温度:
k 1
T2
T1
p2 p1
k
影响压缩所需轴功Ws和排气温度 T2 的主要因素:
(1)压缩比p1/p2愈大,Ws和T2也愈大;
注意:当离心式压缩机进气量减小到允许的最小值, 压缩机会发生喘振。因此,压缩机必须在比喘 振流量大5%~10%的范围内操作。
(2) 往复式压缩机 ① 结构和工作原理 与往复泵相似 吸入和排出阀更加灵巧 ② 无余隙压缩循环
压缩:
V2
pdV
V1
排气: p(2 V2 0) p2V2
吸气: p1(0 V1) p1V1
双往复泵
qV
t
0
π
2π
3π
双缸双作用往复泵的流量曲线
往复泵的特性曲线的确定
qV ,T
z(2 AF Af 60
)snr
qV ,T f (z, AF , s, nr )
qV ,T
zAF snr 60
流量与管路特性无关 流量与泵扬程无关
H
H
H’
H
qVqVT
qV
qV
qV
④ 正位移特性 a)流量与管路特性无关
2.6.3 压缩机
类型:离心式、往复式 (1) 离心式压缩机(透平压缩机)
作用原理与离心鼓风机相同,为达到较高的出口压力,采用 多级数,大叶轮直径,高转数 (一般在5000rpm以上)。
说明:
◆ 段间设冷却器,各段温度大致相等。
优点:机体体积较小,流量大,供气均匀,运动平稳,易损部 件少和维修较方便等。 缺点:离心式压缩机的制造精度要求极高,否则,在高转速情 况下将会产生很大的噪音和振动。
0.5~0.8
比较均匀、恒定、 1~600
扬程与流量无关 0.2~60MP
扬程高效率降低较 大0.6~0.8
简单、造价低、 复杂、振动大、 体积小、安装方 体积大、造价高 便
简单、造价低、体 积小、安装方便
指标
离心泵、往复泵、转子泵比较
离心泵
往复泵
转子泵
流量调节 出口截流、转速、 旁路、转速、冲程 旁路
叶轮
自吸
一般没有
有
有
启动
关闭调节阀
全开
全开
适用范围 粘度较低的各种 高压力小流量清洁 中压力小流量尤
介质
介质
其是高粘度
2.6 通风机、鼓风机、压缩机和真空泵
属于气体输送设备。 (1) 分类:
* 按出口压力或者压缩比
通风机:终压不大于0.01471MPa (表压),压缩比< 1.15; 鼓风机:终压不大于0.01471~0.292MPa (表压) ,压缩比< 4; 压缩机:终压> 0.292MPa (表压) ,压缩比> 4; 真空泵:从设备中抽出气体,使设备中产生负压。
b)压头取决于管路需要
H
H’
H
qV
qV
(2) 往复泵的流量调节 ① 改变活塞冲程
qV ,T f (z, AF , s, nr )
② 改变活塞往复次数
V2
③ 旁(支)路调节,不能封闭启动;
V1
(3) 往复泵的安装
① 有自吸能力,不需灌泵。
② 有允许安装高度限制 影响安装高度的因素:
回流支路调节流量法