GWC3235船用齿轮箱外形图第1页05
主机减速齿轮箱 GW系统列使用说明书 C (1)
![主机减速齿轮箱 GW系统列使用说明书 C (1)](https://img.taocdn.com/s3/m/c15d942752ea551810a68768.png)
SERVICE MANUALGWGW265000.2817kw/r/minGW15GW PrefaceGW series marine gearboxes are designed and manufactured according to the license from LOHMANN & STOLTERFOHT, Germany GW series marine gears have minimum space requirements. In case of reduction ratio from 2 to 6 and input speed ranging from 500 to 1800r/min, the torque transmission capacity shall be 0.28 to 17kw/r/min, however the exact torque depends on the center distance and reduction ratio.GW series gears have eight different models four reverse reduction gears two reduction gears without reversing function one reverse double-reduction gears and one double-reduction gears without reversing function, each can be divided into fifteen sizes according to center distance or classified as coaxial and offset type as per relative arrangement of input and out-put shafts. For reasons of low-cost manufactureand less spare parts, GW series gears adoptmodular design, which can form differingvariant products with the same modules tomeet various Classification Societies.SERVICE MANUAL1()2345678910111213Content 1.Technical data (as per specific type)2.Description of gearbox 3.Installation and operating instructions 4.Intermediate storage, transportation and foundation 5.Gearbox alignment 6.Gearbox mounting 7. Remote control systems for gearbox 8.Initial & emergency operation 9.Lubrication requirements 10.Maintenance 11.Special notes 12.Trouble shooting 13.Standard accessoriesSERVICE MANUAL1./Technical Data1.General dataEngine manufacturerEngine typeOutput power of engine P= kw()Input speed of gearbox n= r/min(/)l ()Direction of rotation of engine (facing the flywheel:)Classification Society/Shipyard:Hull No2.Gearbox dataProduct NoType and size GWGear ratio i=3Cooling water flow rate V= m h ()Cooling water inlet temperature t 32Weight G= kg()Lubrication oil capacity L= L()Lub oil group CD30,CD401.List of Technical Data (double-reduction gearbox) i1 low speed =i2 high speed =i3 reverse speed ={SERVICE MANUAL Gear Components1 23 4 5 67 8 9 1011 12 13 142Description of gearbox1.Input shaft2.Helical gear3.Helical gear4.Intermedaite shaft5.Multiple-plate clutch6.Hollow pinion shaft7.Helical gear8.Ouput shaft9.utput flange10.Helical gear11.Helical gear12.Intermediate shaft13.Multipce-plate clutch14.Hollow pinion shaftOInput stageReduction stageReversing stage26 23 22 28 21 6 20 10 5 31942118171213112524141615972729GWC(fold out section for GWC series gearbox )SERVICE MANUAL1516. *1723.24. **25. **26.27.28.29.30.31.32.33.34.*49545259**49545259Gear components2Description of Gearbox 15,16: rolling bearing*17 ~ 23: rolling bearing 24 Thrust bearing**25 Thrust bearing**26 Gear set for driving gear pump 27 Gear pump 28 Gear controller (pneumatic)29 Gear housing 30.Helical gear 31.Helical gear 32.Multiple-plate clutch 33.Intermediate shaft 34.Hollow pinion shaft *)for gear sizes up to 49.54. for gear size larger than 52.59, plain bearings are used.**)for gear sizes up to 49.54.for gear sizes larger than52.59, Michel-type thrust bearings are used GWM (fold out section for GWM series gearbox )41921182017123 13 25 24 14 16 15 9 7 Driving stage2Description of Gearbox2Description of Gearbox2Description of Gearbox2Description of gearbox3.Installation and operating instructionsThe gearbox is delivered without oil.The gearbox is protected internally with preservative oil, effective against corrosion for a period of six months when the gearbox is stored in a dry area at an even temperature.The gearbox is painted externally. Flanges and shaft ends have a preservation paint.The connections for the air pipes, oil tubes and water pipes to be assembled at the site are sealed by means of flange or plugs.Pipelines, pipe connections etc. to the gearbox which have to be installed after having left our works, must be carefully pickled and cleaned before they are mounted. The direction of rotation is shown by an arrow.The adjustable parts of the gearbox (such as pressure control valves, variable nozzles etc.) are set before they are delivered. According to particular circumstances on board further adjustments may be necessary.Our liability is invalid when the gearbox is opened without our authorization.4.Intermedi a te storage, transportati o n and foundati o nIntermediate storageIf the gearbox is stored outside it must be protected from the atmospheric conditions by a protective cover or canopy.TransportationThe gearbox is suitably suspended on cables for transportation. Therefore, all cables taking the gearbox weight should be clear of the fittings. Slowly lift the gearbox and place in position. The lifting lugs on the upper part of the housing serve only to remove the upper section. T o lift the complete gearbox the transportation lugs are to be used.For safety, cables are to be used with shackles.FoundationIn order to facilitate the changing of oil and washing-out of the gearbox the foundation has been constructed so that there is sufficient space for the installation of an oil-collector below the drain plug.4.Intermedi a te storage, transportati o n and foundati o nThe aligning screws are to be inserted Installation in the engine roominto the tapped holes in the mounting feet.Via the aligning screws the gearbox restson the to plates.=5Maximum permissiblepermanent installationangle fore and aft =5Aligning screw4.Intermedi a te storage, transportati o n and foundati o n205 Alignment of the gearboxThe propulsion unit shall only be aligned when the vessel is afloat and it is definitely ensured it is not in contact with the ground. At first, the gearbox is placed in position in order to roughly align the unit. Now the holes for the fastening bolts shall be drilled through the holes in the mounting brackets.Alignment of the propeller shaftThe completely assembled propeller shaft shows s deflection between the supporting bearing and the flange due to shaft gravity. The extent of the deflection in relation to the shaft overhang and diameter can be seen in the diagram. This deflection is to be compensated.The distance between the bearing and flange1.51.00.5(m m )(mm)Overhanging length of shaft10002000100mm 0.01mmAligning the gearbox begins with eliminating the angular displacement.The illustration shows how this is to be done with the help of feeler gauges. It is important for this measurement that the shafts be turned in one direction only. The accuracy of axial parallelism should be no more than 0.01mm for 100mm of flange diameter.The above illustration shows how the deflection is eliminated for gearbox alignment. A roller block is placed underneath the end flange of the propeller shaft and raised by the amount of deflection ascertained. There are, however, cases where the free end of the propeller shaft due to additional loads is bent more than is required by natural deflection. In this case an additional dial gauge can be installed near the bearing which indicates the amount of lift required at the shaft end to ensure that the shaft in the bearing is evenly raised. The reading thus taken at the shaft flange dial gauge is twice the value of the actual deflection. Raising the roller block by half of this value corrects exactly the position of the propeller shaft flange.5 Alignment of the gearbox0.05mmIn the illustration it shows the procedure to be followed. Here direction only. A dial gauge can as well be mounted in a suitable manner on the propeller shaft flange to ensure correct and true measurements. Propeller shaft flange and gearbox flange are turned simultaneously so 5 Alignment of the gearbox5 Alignment of the gearbox6.Gearbox Mounting6.Gearbox MountingStop wedgesStopperGearbox footChockGearbox foundationStop wedges after beingsecured by screws or by weldingWeldedStopper faces on gearboxPneumatic gearbox controllerGearbox controllerGearbox housing7. Remote control systems for gearboxGW 1GWM21113A dependable remote control is of great importance for a ships driving system.GW series gearboxes are supplied, as standard, with one pneumatic gearbox switch. However, GWM gearboxes are normally equipped with two sets of pneumatic gearbox switches, one for switching over between ahead-stop-astern and another for switching between high and low speeds. Electrical gearbox controllers are also available.Pneumatically operated controller is provided with a return to the stop position through main air. Manual emergency operation is provided when cut off the air.Further details of the gearbox controllers paragraph also see in paragraph 13 of this manual.7. Remote control systems for gearbox(GWM)()16022.12.22.3(2-3)34 1.05Requirements of the control system (notsuitable for GWM)Even though the tuning of motorgovernor gearbox coupling and ifsupplied shaft brake is difficult it isnecessary to perform the following steps tocheck the system:T h e s w i t c h i n g s e q u e n c e f o r a l lswitching systems should conform to thefollowing specifications.Bridge controlController positions:Full Ahead onto AsternOrFull Astern onto AheadOrFull Ahead onto Full AsternOrFull Astern onto Full AheadSequence1 Control unit onto low speedlet the propeller shaft speed drop to60% of the rated speed or below2 Coupling in zero position2.1 Propeller shaft brake engages2.2 Propeller shaft brake stops2.3 Propeller shaft brake disengages(In case without brake the controller shouldbe retained at zero position for approx.2-3 sec.)3.Engage coupling4.Retain switch position for approx.1.0 sec.5.Increase speed.The control system must be carefullymaintained. Any faults must be immediatelyrepaired. The control units must be handledvery carefully.(GWM)()(i1i2)(i1i2)1602()2.12.22.33()2 3)4 1.05Requirements of the control system ( for GWM model only)Even though the tuning of motor governor gearbox coupling and if supplied shaft brake is difficult it is necessary to perform the following steps to check the system:The switching sequence for all switching system should conform to the following specifications.Bridge controlController positions:Full Ahead (i1 or i2) onto AsternorFull Ahead (i1 or i2) onto Full Astern Sequence1.Control unit onto low speedLet the propeller shaft speed drop toa minimum of 60% of the rated speed2.Coupling in zero position(Put both controllers in neutral position)2.1Propeller shaft brake engages2.2Propeller shaft stops2.3Propeller shaft brake disengages3.Engage coupling(Put the ahead-astern controller in the astern position and the high-low speed controller is kept in the neutral position)(In case without brake the controller should be retained at zero position for approx.2-3 sec.)4.Retain switch position for approx.1.0sec.5.Increase speed7. Remote control systems for gearbox(i1i2)(i1i2)160%2() 2.12.22.3(23s)3(i1i2)4 1.05Bridge controlController positionFull Astern onto Ahead (i1 or i2)orFull Astern onto Full Ahead (i1 or i2)Sequence1.Control unit onto low speedlet the propeller shaft speed drop toa minimum of 60% of the rated speed2.Clutch in zero position(Put both controllers in the neutral position)2.1 Propeller shaft brake engages2.2 Propeller shaft stops2.3 Open propeller shaft brake2.4 Put the ahead-astern controller in the ahead position(In case without brake the controller should be retained at zero position for approx.2-3sec.)3.Engage clutch(Put the high-low speed controller in the i1 or i2 position)4.Retain switch position for approx.1.0 sec.5.Increase speed7. Remote control systems for gearboxi1i2i2i1(i1)(i2)(i2)(i1)160%23i1i21 4 1.05!Bridge controlController positionFull Ahead (i1) onto Ahead (i2)orFull Ahead (i2) onto Ahead (i1)orFull Ahead (i1) onto Full Ahead (i2)orFull Ahead (i2) onto Full ahead (i1) Sequence1.Control unit onto low speedlet the propeller shaft speed drop toa minimum of 60% of the rated speed2.Clutch in zero position(Put the high-low speed controller at the neutral position and ahead-astern controller is kept in the ahead position)(Don t use brake if propeller with brake.)3.Engage clutch(Put the high-low speed controller for approx.1 sec. in position il or i2)4.Retain switch position for approx.1.0 sec.5.Increaee speedThe control system must be carefully maintained. Any faults must be immediately repaired. The control units must be handled very carefully.7. Remote control systems for gearbox60%GWM124613141516217 (10kp cm)192427Pneumatic remote controlWhen the gearbox is equipped with the standard controller, pneumatic remote controls can be used. The reversal speed, the clutch and the shaft brake are essential for a smooth operation over a long period.The illustrated single-level control system offers safe operation for the clutch engagement and engine speed adjustmentA control for the shaft brake can be connected if required. The system if wanted can be operated from numerous control positions. And the control time would not be altered.When planning the remote control system attention should be paid to:The switching speed by which the reversal follows should not amount to more than 60% of the motor rated speed. An agreement between the supplier and Chongqing Gearbox Co.,Ltd must be made for the requirements of the Crash-Stop manoeuvre design.Design example for pneumatic control of the ships drive (suitable for GWM gears only)Position Description1 Pressure reducing station2 Air reservoir4 Stopcock6 Control valve13 Pressure reducing valve14 Double non-return valve15 Double non-return valve for oil16 Non-return valve217 3-way valves 10kp/cm19 Adjustable 3-way valves.24 Multi-way valve hydraulic-pneumatic27Control unit7. Remote control systems for gearbox7. Remote control systems for gearboxAheadAsternGearboxEnginepneumatic remotoe control (only valid forGWM model)GWM Cabin Stationi1 i21315241416 1719AheadAsternAsternGearboxEngine16161414 1316194214212724161616151724i 1i 2GWMRemote Pneumatic lontrol (not suitable for GWM mode)Design example for pneumatic control of ship drives (for GWM model only)7. Remote control systems for gearbox(GWM)8.Initial operation, Emergency operation8.Initial operation, Emergency operation70101.2.3.4.,""""5.6.7.8.9.10The gearbox should be slowly run-in until an oil temperature of 70 is reached under a partial loading. Then all joints and connections of the oil pipelines and connecting faces should be checked for leakage and re-tighten if necessary. The cooling system must then be adjusted so that the operating temperature is kept constant within normal range under full load. After a total of 10 operating hours the foundation bolts must be checked and if required tighten again. All pipe connections must also be checked. The following table describes the sequence of operation in an abbreviated form.1.Check the oil and water supply systems according to oil circuit diagram2.Fill the gearbox with lubrication oil according to the enclosed lubrication oil specification table3.Turn the engine and propeller shaft when gearbox in "Stop" position.4.Start the motor, engage Ahead and Astern for a short period.5.Check the oil level.6.Operate under partial loading until the operating temperature is reached.7.Check the connections of the pipelines for leakage.8.Run at full loading and adjust the cooling water flow.9.After a total of 10 operating hours under full load re-tighten the connections of the pipelines and the foundation bolts.8.Initial operation, Emergency operation0.2-0.6MPa2.0MPa(3639 1.3MPa)1/30.04MPaThe control oil pressure has been set in the workshop. When the control valve keeps in "stop" position the average working oil pressure is 0.2-0.6MPa and increases to 2.0 MPa (1.3MPa for 36.39 model) when engaging.The lowest allowed lubrication oil pressure is 0.04MPa at the permissible working temperature and 1/3 rated speed.To raise the working oil pressure when the gearbox is switching is by means of a built-in two-stage switch. This stage-switch guarantees a smooth engagement and shock-free change of the drive installation and therefore protecting the complete drive system.The two-stage switch is described in a separate section. The filter must be checked at regular intervals and kept clean.Emergency operation of the gearboxIf for any reason the hydraulic switching of the gearbox is not possible, then there is always the possibility to block the clutch mechanically.Do as follows.8.Initial operation, Emergency operation8.Initial operation Emergency operation9.Lubrication Instructions9.Lubrication Instructions9.Lubrication Instructions9.Lubrication InstructionsPressure relationships in the clutch control pipeline during the gearbox controller engaging and disengaging phases.2.0MPaThe illustration shown is valid for gearbox of which the working oil pressure is 2.0MPa at rated speed.1.3MPaThe illustration shown is valid for gearbox of which the working oil pressure is 1.3MPa at rated speed.Add or thicken the washer of 2-stage valve can increase the final oil pressure.2.01.81.61.41.21.00.80.60.40.2ToIerance area1.21.00.80.60.40.200.20.5t ( )sect ( )secM p aM p a<0.2MPa250200012Daily: Check oil levelCheck the pressure differential before and after the filter (<0.2MPa)Check the gearbox for leakagesCheck the oil pressures and temperatures.Weekly: Clean the oil filterCheck the remote control operation systemCheck oil for cooling waterYearly: Check all exterior screw connectionsCheck the protection covering of the seawater cooler if usedOil change: Under normal service conditions, the first oil change must be after 250 working hours approximately.Further oil changes must be completed after approximately 2000 service hours, however, not longer than 12 months.Before filling with new oil in accordance with the enclosed lubricant specifications the gearbox must be cleaned with flushing oil.10.Gearbox maintenance11.Special Notes11.Special Notes() 1.2.Sealing Strips1.General InformationIt is absolutely necessary to observe that the colour marking on the side of the sealing strip lies on the bottom of the sealing strip groove. The total length of the fabric sealing strip has this colour marking. When the sealing strip is incorrectly inserted with the fabric side to the shaft can this fabric sealing strip be damaged. This sealing is inoperative. If there is no colour coding then the assembly is arbitary. To cut the sealing strip a good sharp knife is required. The cut must be at right-angle to the length.2.Measuring and FittingThe measurement of the sealing strip must be done with great care. Under no circumstances must there be a gap between two adjoining butts of the sealing strips. There must be a slight compression between the two butting ends so as to give a good seal.11.Special Notes3.4.()1.5-2mm 3.Runing-in conditionsThe sealing area of the sealing strip must be lubricated before the first run. It must be continuously lubricated to avoid the strip drying-up. When systems have an adjustable speed, the running-in of the sealing strip must always be at the lowest possible speed.4.Treatment of sealing stripsStore in a cool room. During storage the strips must not he exposed to a highly humid atmosphere nor must they come into contact with any kind of liquid.If the sealing strip is wound then the beginning of the winding must be located away from the shaft. The start of the winding can be determined by the frontal cut edge.With weaved sealing strips the assembly is arbitrary. Apply oil to the slide way of the sealing strip prior to installation. Press the sealing strip uniformly into the receiving groove using the handle of a hammer.After pressing in the sealing strip cut off the ends at the joint leaving 1.5-2mm margin.11.Special Notesrotation(sketch).11.Special Notes12.Trouble-Shooting12.Trouble-Shooting12.Trouble-Shooting12.Trouble-Shooting12.Trouble-Shooting12.Trouble-Shooting13.Standard Accessories 18.Lubrication pressure regulating valve。
GWC60.66船用齿轮箱融资投资立项项目可行性研究报告(中撰咨询)
![GWC60.66船用齿轮箱融资投资立项项目可行性研究报告(中撰咨询)](https://img.taocdn.com/s3/m/8614a1432b160b4e767fcf5c.png)
GWC60.66船用齿轮箱立项投资融资项目可行性研究报告(典型案例〃仅供参考)广州中撰企业投资咨询有限公司地址:中国〃广州目录第一章GWC60.66船用齿轮箱项目概论 (1)一、GWC60.66船用齿轮箱项目名称及承办单位 (1)二、GWC60.66船用齿轮箱项目可行性研究报告委托编制单位 (1)三、可行性研究的目的 (1)四、可行性研究报告编制依据原则和范围 (2)(一)项目可行性报告编制依据 (2)(二)可行性研究报告编制原则 (2)(三)可行性研究报告编制范围 (4)五、研究的主要过程 (5)六、GWC60.66船用齿轮箱产品方案及建设规模 (6)七、GWC60.66船用齿轮箱项目总投资估算 (6)八、工艺技术装备方案的选择 (6)九、项目实施进度建议 (6)十、研究结论 (6)十一、GWC60.66船用齿轮箱项目主要经济技术指标 (9)项目主要经济技术指标一览表 (9)第二章GWC60.66船用齿轮箱产品说明 (15)第三章GWC60.66船用齿轮箱项目市场分析预测 (15)第四章项目选址科学性分析 (15)一、厂址的选择原则 (15)二、厂址选择方案 (16)四、选址用地权属性质类别及占地面积 (17)五、项目用地利用指标 (17)项目占地及建筑工程投资一览表 (17)六、项目选址综合评价 (18)第五章项目建设内容与建设规模 (19)一、建设内容 (19)(一)土建工程 (19)(二)设备购臵 (20)二、建设规模 (20)第六章原辅材料供应及基本生产条件 (20)一、原辅材料供应条件 (20)(一)主要原辅材料供应 (21)(二)原辅材料来源 (21)原辅材料及能源供应情况一览表 (21)二、基本生产条件 (22)第七章工程技术方案 (23)一、工艺技术方案的选用原则 (23)二、工艺技术方案 (24)(一)工艺技术来源及特点 (24)(二)技术保障措施 (24)(三)产品生产工艺流程 (25)GWC60.66船用齿轮箱生产工艺流程示意简图 (25)三、设备的选择 (26)(一)设备配臵原则 (26)(二)设备配臵方案 (27)主要设备投资明细表 (27)第八章环境保护 (28)一、环境保护设计依据 (28)二、污染物的来源 (29)(一)GWC60.66船用齿轮箱项目建设期污染源 (30)(二)GWC60.66船用齿轮箱项目运营期污染源 (30)三、污染物的治理 (30)(一)项目施工期环境影响简要分析及治理措施 (31)1、施工期大气环境影响分析和防治对策 (31)2、施工期水环境影响分析和防治对策 (35)3、施工期固体废弃物环境影响分析和防治对策 (36)4、施工期噪声环境影响分析和防治对策 (37)5、施工建议及要求 (39)施工期间主要污染物产生及预计排放情况一览表 (41)(二)项目营运期环境影响分析及治理措施 (42)1、废水的治理 (42)办公及生活废水处理流程图 (42)生活及办公废水治理效果比较一览表 (43)生活及办公废水治理效果一览表 (43)2、固体废弃物的治理措施及排放分析 (43)3、噪声治理措施及排放分析 (44)主要噪声源治理情况一览表 (46)四、环境保护投资分析 (46)(一)环境保护设施投资 (46)(二)环境效益分析 (47)五、厂区绿化工程 (47)六、清洁生产 (48)七、环境保护结论 (48)施工期主要污染物产生、排放及预期效果一览表 (50)第九章项目节能分析 (51)一、项目建设的节能原则 (51)二、设计依据及用能标准 (51)(一)节能政策依据 (51)(二)国家及省、市节能目标 (52)(三)行业标准、规范、技术规定和技术指导 (53)三、项目节能背景分析 (53)四、项目能源消耗种类和数量分析 (55)(一)主要耗能装臵及能耗种类和数量 (55)1、主要耗能装臵 (55)2、主要能耗种类及数量 (55)项目综合用能测算一览表 (56)(二)单位产品能耗指标测算 (56)单位能耗估算一览表 (57)五、项目用能品种选择的可靠性分析 (58)六、工艺设备节能措施 (58)七、电力节能措施 (59)八、节水措施 (60)九、项目运营期节能原则 (60)十、运营期主要节能措施 (61)十一、能源管理 (62)(一)管理组织和制度 (62)(二)能源计量管理 (62)十二、节能建议及效果分析 (63)(一)节能建议 (63)(二)节能效果分析 (63)第十章组织机构工作制度和劳动定员 (64)一、组织机构 (64)二、工作制度 (64)三、劳动定员 (65)四、人员培训 (65)(一)人员技术水平与要求 (65)(二)培训规划建议 (66)第十一章GWC60.66船用齿轮箱项目投资估算与资金筹措 (66)一、投资估算依据和说明 (66)(一)编制依据 (67)(二)投资费用分析 (68)(三)工程建设投资(固定资产)投资 (69)1、设备投资估算 (69)2、土建投资估算 (69)3、其它费用 (69)4、工程建设投资(固定资产)投资 (70)固定资产投资估算表 (70)5、铺底流动资金估算 (71)铺底流动资金估算一览表 (71)6、GWC60.66船用齿轮箱项目总投资估算 (71)总投资构成分析一览表 (72)二、资金筹措 (72)投资计划与资金筹措表 (73)三、GWC60.66船用齿轮箱项目资金使用计划 (73)资金使用计划与运用表 (74)第十二章经济评价 (74)一、经济评价的依据和范围 (74)二、基础数据与参数选取 (75)三、财务效益与费用估算 (76)(一)销售收入估算 (76)产品销售收入及税金估算一览表 (76)(二)综合总成本估算 (76)综合总成本费用估算表 (77)(三)利润总额估算 (77)(四)所得税及税后利润 (78)(五)项目投资收益率测算 (78)项目综合损益表 (78)四、财务分析 (79)财务现金流量表(全部投资) (81)财务现金流量表(固定投资) (83)五、不确定性分析 (84)盈亏平衡分析表 (84)六、敏感性分析 (85)单因素敏感性分析表 (86)第十三章GWC60.66船用齿轮箱项目综合评价 (87)第一章项目概论一、项目名称及承办单位1、项目名称:GWC60.66船用齿轮箱投资建设项目2、项目建设性质:新建3、项目承办单位:广州中撰企业投资咨询有限公司4、企业类型:有限责任公司5、注册资金:100万元人民币二、项目可行性研究报告委托编制单位1、编制单位:广州中撰企业投资咨询有限公司三、可行性研究的目的本可行性研究报告对该GWC60.66船用齿轮箱项目所涉及的主要问题,例如:资源条件、原辅材料、燃料和动力的供应、交通运输条件、建厂规模、投资规模、生产工艺和设备选型、产品类别、项目节能技术和措施、环境影响评价和劳动卫生保障等,从技术、经济和环境保护等多个方面进行较为详细的调查研究。
青岛地铁3号线车辆齿轮箱结构特点及日常维护保养
![青岛地铁3号线车辆齿轮箱结构特点及日常维护保养](https://img.taocdn.com/s3/m/7817e6e210661ed9ac51f30b.png)
青岛地铁3号线车辆齿轮箱结构特点及日常维护保养车辆转向架是支撑车体的重要设备,而齿轮箱又是车辆转向架上的关键部件之一。
合理设计的齿轮箱结构对转向架性能具有极其重要的影响。
文章从青岛3号线车辆运营参数出发,详细介绍了齿轮箱结构特点及日常维护保养方法。
标签:齿轮箱;润滑;密封;维护青岛地铁3号线作为青岛市首条地铁路线,也是山东省境内建成的第一条地下铁路。
伴随着青岛3号线地铁的顺利开通试运营,车辆的运行安全变成了运营的重要工作,而齿轮箱的有效运转关系到车辆能否有效运营。
熟悉了解齿轮箱内部结构,有助于开展日常维护保养工作。
本文详细介绍了齿轮箱各零部件结构特点、日常维护方法及常见故障模式。
1 车辆运营参数青岛地铁3号线车辆采用国家标准B型车设计,最高运行速度80km/h,最高设计速度90km/h,满足100km/h列车回送运行速度要求。
工作环境温度:-25℃~+45℃。
线路最大坡度4%,最大超高120mm。
车辆车体采用铝合金设计,具有结构刚度好、承载能力强、质量轻等特点。
车辆主要设备使用寿命满足30年设计要求,橡胶材质部件满足6年免维护寿命要求。
通过以上参数可知,齿轮箱需满足高转速、长寿命及高可靠度等要求。
2 齿轮箱结构特点齿轮箱为单级圆柱斜齿轮传动,主要由齿轮、箱体、轴承、润滑系统、密封系统及附件等组成,各零部件和功能系统之间相辅相成,互相配合,形成了整个齿轮箱系统。
图1是齿轮箱外形图,表1是齿轮箱牵引技术参数。
1.构架;2.安全鼻;3吊杆;4.输入齿輪轴;5.车轴;6.上箱体;7.下箱体;8.注油塞;9.油位计;10.放油塞;11.视孔窗图1 齿轮箱外形图2.1 箱体齿轮箱箱体除了承受输出扭矩的反作用力,保证齿轮具有良好的啮合精度以外,还作为一个密闭空间,为齿轮、轴承提供充分的润滑渠道。
齿轮箱箱体采用卧式剖分结构,中分面采用4个M20内六角螺钉将上下箱体紧密结合。
输入轴线与输出轴线采用横向平行布置形式。
MB170船用齿轮箱外形图第1页05
![MB170船用齿轮箱外形图第1页05](https://img.taocdn.com/s3/m/8faa7efdaef8941ea76e05b5.png)
配主机飞轮罩壳 4135 For engine bell-housing 4135 配主机飞轮 4135 For engine flywheel 4135
∅47
∅36
231
H
I
停
顺
Ahead
45°
44
14
Stop
45 倒 ° Astern
A
B
C
6-∅16.7
E
656
D
F
∅152.4
∅120H7
18
∅370
12-∅11
产品设计保留修改与解释的权利。
To the product designs,we reserve the right of amendance and explanation
Hangzhou Advance Gearbox Group Co.,Ltd Jan.,2005
210
170
MB170船用齿轮箱外形图
Outside View of Marine Gearbox Model MB170
配主机飞轮罩壳 SAEJ617C NO: 1 For engine bell-housing SAEJ617C NO: 1 配主机飞轮 SAEJ620d NO: 14 For engine flywheel SAEJ620d NO: 14
配主机飞轮罩壳 SAEJ617C NO: 2 For engine bell-housing SAEJ617C NO: 2 配主机飞轮 SAEJ620d NO: 11.5 For engine flywheel SAEJ620d NO: 11.5
配主机飞轮罩壳 2135 For engine bell-housing 2135 配主机飞轮 2135 For engine flywheel 2135
(完整版)齿轮箱
![(完整版)齿轮箱](https://img.taocdn.com/s3/m/1ce9578052d380eb63946d10.png)
齿轮箱第一节概述风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。
通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。
根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。
为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。
由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。
例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件,等等。
对冬夏温差巨大的地区,要配置合适的加热和冷却装置。
还要设置监控点,对运转和润滑状态进行遥控。
不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。
在风电界水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动最为常见。
如前所述,风力发电受自然条件的影响,一些特殊气象状况的出现,皆可能导致风电机组发生故障,而狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上,大量的实践证明,这个环节常常是机组中的齿轮箱。
因此,加强对齿轮箱的研究,重视对其进行维护保养的工作显得尤为重要。
第二节设计要求设计必须保证在满足可靠性和预期寿命的前提下,使结构简化并且重量最轻。
通常应采用CAD优化设计,排定最佳传动方案,选用合理的设计参数,选择稳定可靠的构件和具有良好力学特性以及在环境极端温差下仍然保持稳定的材料,等等。
船舶动力装置原理与设计_第3章2
![船舶动力装置原理与设计_第3章2](https://img.taocdn.com/s3/m/a51aa74f767f5acfa1c7cd0b.png)
减速比
2.0 2.5454 3.0244 3.5788
4.0 4.4706
5.0 5.60 5.9310
传递能力 (kW/r·min-1)
3.147 2.471 2.081 1.757 1.537 1.397 1.243 1.103 1.044
20
船用齿轮箱GWC45.49 GWL45.49
额定输入转速 (r/min)
• 减速及变速传动 • 用以并车和分车组合或分配推
进功率 • 离合与倒顺 • 抗振与抗冲击 • 布置中的调节作用
下午3时15分48秒
3
船用齿轮箱
多片式摩擦离合、倒顺、减速箱工作原理
1-输入轴法兰; 2-输入轴; 3-返回油缸; 4-活塞; 5-顺车离合器外壳; 6、18-倒车齿轮; 7-从动摩擦片组; 8-主动摩擦片组; 9-空心套轴; 10、16-顺倒车小齿轮; 11-滚动轴承; 12、13-油孔; 14-输出轴法兰; 15-输出轴大齿轮; 17-倒车离合器外壳
• 5.该齿轮箱具有倒、顺、离合及承受螺旋桨推力 的功能。
• 可接受以下情况特殊订货: 1.特殊速比; 2.不同 的主机匹配; 3.电流控制; 4.温度、压力报警装 置。订货时注明配套主机型号或飞轮尺寸,并提 供H尺寸以便选用万向轴。
减速比
1.49 1.94 2.44 2.96 3.33
传递能 力
(kW/r pm)
传递能力 (kW/r·min-1)
0.98
0.66
28
GWD30.32Q
型号 : GWD30.32Q 规格 : 外形配套图: 额定转速(r/min) : 400-1800 减速比 : 2.0 传递能力(kW/r.min-1) : 0.499
中小功率船用齿轮箱选型方法-齿轮箱选型表(部分)
![中小功率船用齿轮箱选型方法-齿轮箱选型表(部分)](https://img.taocdn.com/s3/m/b3daacfd04a1b0717fd5dd3f.png)
SAE0
无罩壳 无罩壳 无罩壳 无罩壳 无罩壳 无罩壳 SAE1
SAE0
616000363145 配左机) (配左机) 617000360158 617000360159 617000360160 616000363146 配左机) (配左机) 617000360161 616000363147 (配左机) 配左机) 617000360162 617000360163 617000360164 616000363148 配左机) (配左机) 612600360080 617000360165 616000363149 (配左机) 配左机) 617000360166 617000360167 617000360168 616000363150 配左机) (配左机) 617000360169 616000363151 配左机) (配左机) 617000360170 617000360171 617000360172 616000363152 配左机) (配左机) 612600360081 617000360173 616000363153 配左机) (配左机) 617000360174 617000360175 617000360176 616000363154 配左机) (配左机) 617000360177 616000363155 配左机) (配左机) 617000360178 617000360179 617000360180 616000363156 配左机) (配左机) 612600360082 617000360181 616000363157 配左机) (配左机) 617000360182 617000360183 617000360184
2.5
2.5
0.331 SAE14 SAE16 SAE18 国内 SAE14 SAE14 SAE16 SAE18 国内
zf-duoplan 2k250 2k300 双速齿轮箱 使用手册说明书
![zf-duoplan 2k250 2k300 双速齿轮箱 使用手册说明书](https://img.taocdn.com/s3/m/67ad51f91b37f111f18583d049649b6649d70950.png)
ZF 股份公司版权所有 ©本文件受版权保护。
未经 ZF 股份公司许可不得对本文件的全部或摘选内容进行违法复制和传播。
违法行为将受到民事和刑事处罚。
目录1前言 (5)1.1适用性和应用范围 (5)1.2消耗品 (5)2安全规范 (6)2.1提示语与缩写符号 (6)2.2一般安全提示 (6)2.3与产品相关的安全提示 (8)3应用与设计 (9)3.1应用 (9)3.2特点 (9)3.3设计 (10)3.4技术资料 (11)3.5安装位置 (12)4初次安装 (13)4.1驱动电机径向跳动、轴向跳动和长度公差 (13)4.2动平衡 (14)4.2.1半键动平衡 (14)4.2.2全键动平衡 (14)4.2.3不带键槽的电机轴/轮毂 (15)4.3电机与齿轮箱的配合 (16)4.3.1开放式设计 (16)4.3.2封闭式设计附轮毂轴承与轴封 (17)4.3.3封闭式设计(附轴封) (18)4.3.4开放式设计附接合环 (19)4.3.5带轮毂轴承、轴封和无键轮毂的封闭式结构 (20)4.3.6齿轮箱的安装 (21)4.3.7皮带轮驱动设计 (22)4.3.8带轮毂轴承、轴封和夹紧轮毂的封闭式结构 (23)4.4输出 (25)4.4.1皮带式输入 (25)4.4.2轴式输出 (25)4.4.3TSC 式输出 (25)4.5齿轮箱换挡机构的电气连接 (25)4.5.1换档机构 (25)4.5.2换档逻辑 (28)ZH 4161.758.942r – 2018-09 3目录4.6润滑 (29)4.6.1泼溅式润滑 (29)4.6.2循环式润滑 (29)4.6.3润滑的连接口 (31)5运转 (34)5.1运转前检查 (34)5.2太阳轮安装位置检查 (34)6保养 (34)6.1换油 (34)7维修 (35)7.1齿轮箱故障检查表 (35)7.2齿轮箱的分离 (36)7.3带配合键的驱动轮毂 (36)7.4拆卸带夹紧轮毂的齿轮箱 (37)8常见问题与解决 (FAQ) (38)4 ZH 4161.758.942r – 2018-09前言ZH 4161.758.942r – 2018-09 51 前言 除 ZF 文件外,还需同时遵守车身制造商的规定。
6、GE齿轮箱概述
![6、GE齿轮箱概述](https://img.taocdn.com/s3/m/dcaa4b0acaaedd3383c4d390.png)
• 作用: 将输入轴的低转速经若级齿 轮传动变换到输出轴的高转 速,传输比为1:90。
• 结构: 三级行星齿轮传动机构。
• 能量损失: 对于1500kW风机,齿轮箱的 额定容量为1660kW,在经齿 轮箱、联轴器和发电机损耗 后,功率传输减小为1500kW。
一级行星齿轮
• 一级行星齿轮在靠 近低速轴一侧,用 于带动齿轮箱主轴 并初步加速。
• 结构包括三个行星 齿轮和支撑行星齿 轮的齿轮架。
• 行星齿轮作逆时针 旋转。
二级和三级恒星齿轮
• 图中左侧为二级恒星 正齿轮,右侧为三级 恒星齿轮。
• 二级恒星正齿轮顺时 针旋转并通过斜齿轮 轴驱动三级恒星齿轮 转动(逆时针旋转)。
• 三级恒星齿轮驱动高 速轴旋转。
• 三级恒星齿轮采用斜 齿目的在于减小震动。
• 工具:液压泵、力 矩放大器、60套筒
• M30螺母
• 设定力矩:1700Nm
• 一月期维护:紧固 所有螺栓。
• 一年期维护:抽查 10%,若其中有一 个旋转超过20度, 所有螺栓必须重新 紧固。
• 以上维护均不得使 用电动力矩扳手。
齿轮箱维护1
• 打开齿轮箱侧面方形 盖板即可看到二、三 级恒星齿轮。
• 维护时观察齿轮箱油 的颜色及齿轮是否有 裂纹和其他破损情况。
• 齿轮箱油通常三年更 换一次。
齿轮箱维护2
• 图示观察孔在 齿轮箱靠近叶 轮主轴一侧。
• 通过该观察孔 可以查看一级 行星齿轮表面 是否有划痕及 其他破损情况。
螺栓紧固
GWC49.54技术协议
![GWC49.54技术协议](https://img.taocdn.com/s3/m/ea23c94669eae009581bec34.png)
GWC49.54船用齿轮箱配套技术协议一、动力装置传动形式:主机(6320ZCd-6)—高弹联轴器(HGT40.20ⅢD) —船用齿轮箱(GWC49.54)—中间轴—螺旋浆。
二、柴油机主要参数:1、型号: 6320ZCd-6(广州协同和柴油机销售有限公司)2、额定功率:N=1544KW3、额定转速:H=525r/min4、转向:右机顺时针(自飞轮端向自由端看)三、联轴器主要参数:1、型号:HGT40.20ⅢD(杭州前进联轴器有限公司)2、额定扭矩:40KNm四、船用齿轮箱主要参数:1、型号:GWC49.54(杭州前进齿轮箱集团有限公司)2、形式:离合、减速、可逆转船用齿轮箱,输入、输出轴同中心。
3、减速比:3.4457:14、额定输入功率:1544KW5、额定输入转速:525r/min(允许承受主机1小时超负荷功率:1698KW/540r/min)6、输入转向:右机顺时针(自飞轮端向自由端看)7、顺车时输出轴转向:顺时针(右机右旋)8、可承受螺旋浆推力:≤284KN9、控制方式:气动操纵阀10、换向时间:t≤15s11、润滑油牌号:CD40(不含EP添加剂),润滑油容量:250L12、冷却水用量:13.2m3 /h,进水温度≤32℃,进水压力≤0.6Mpa。
13、润滑油最高温度:≤75℃14、润滑油压力:0.1-0.4 Mpa,工作压力:1.8-2.2 Mpa(额定工况)15、大修期:10000h16、随机附件(每台齿轮箱,装于箱体上)——齿轮箱泵 1只——滤油器 1只——油冷却器 1只——气动操纵阀 1只——液压控制二级阀 1只——工作油压力表、润滑油压力表、润滑油温度表各1只——压力控制器 3只其中:用于顺、倒车工作油低压报警各1只,油压降至1.5 Mpa时动作,用于润滑油低压报警1只, 油压降至0.04 Mpa时动作,均提供开关量信号。
——温度控制器 1只用于润滑油高温报警,油温升至75℃时动作,提供开关量信号。
船用齿轮箱的工作原理
![船用齿轮箱的工作原理](https://img.taocdn.com/s3/m/7d247285a0c7aa00b52acfc789eb172ded6399f4.png)
船用齿轮箱的工作原理
船用齿轮箱是船舶的重要动力传动装置之一,主要用于实现发动机的输出扭矩和转速与船舶的需求之间的转换。
其工作原理如下:
1. 牵引发动机输出将动力传递给齿轮箱纵轴上的输入轴,通过输入轴的转动将动力传递给齿轮箱内的齿轮系统。
2. 齿轮系统包括一系列的齿轮,其中一对主减速齿轮负责将高速低扭矩输入转换为低速高扭矩输出,从而提供足够的推力。
3. 齿轮箱通常还配备了多个档位以及倒档,通过选择不同档位或倒档,可以实现不同转速和扭矩输出,以适应不同的船速需求。
4. 齿轮箱内部还设有润滑系统,用于保证齿轮箱齿轮运转时的润滑和冷却,降低摩擦和磨损,并延长使用寿命。
5. 齿轮箱输出轴将转换后的扭矩和转速传递给船舶推进装置(如船桨),从而产生推力,驱动船舶前进。
总之,船用齿轮箱通过合理的齿轮传动设计,实现了高速低扭矩的发动机输出和低速高扭矩的船舶推进需求之间的转换,为船舶提供了稳定和高效的动力传输。