综采工作面供电设计

合集下载

设计综采工作面供电设计

设计综采工作面供电设计

设计综采工作面供电设计综采工作面供电设计一、工作面概况与设备选型配置里机巷走向长度460米,外机巷走向长度385米,切眼开采长度为110米,工作面煤层倾角25°-32°,平均倾角28°,煤层厚度2.5米-4.2米,平均厚度3.5,采煤方式为综合机械化采煤,设备选型配置情况如设备选型配置情况如下表:序号设备名称设备型号数量电机功率(KW)额定电压(V)额定电流(A)1 采煤机MG400/920-QWD 1 920 3300 200.42 运输机SGZ800/800 1 400×2 3300 178/1163 乳化液泵MRB-400/31.5 2 2×250 3300 524 控制台KTC-2 15 贝克开关KE3002 46 移动变电站KBSGZY-1600/6/3.4527 移动变电站KBSGZY-800/6/1.218 转载机SZZ-764/60 1 160 1140 90.59 破碎机LPS-1000 1 110 1140 62.310 皮带机DSJ 1000/100/2×110 1 2×110 1140 124.611 皮带机 1 2×75 1140 85 总计2860二、供电系统的选择确定综采供电电源来自北六下部变电所,高压采用两路供电,一路在轨道石门处供800KVA移变,(由保运区安装),另外一路至工作面开关车供两台1600KVA移变.电缆敷设巷道路线为:下部变电所→北八大巷→充电硐室→进风石门→Ⅰ联巷→机巷,移动变电站及泵站放置进风石门附近,设备控制开关放置距工作面190m附近,低压电缆沿进风石门→机巷敷设,采用电压等级为3300KV。

三、负荷统计及移动变电站选择⑴、根据工作面设备选型配置、电压等级列出用电设备负荷统计表如下:设备名称设备型号电机台数额定功率(KW)额定电压(V)额定电流(A)功率因数采煤机MG-400/920-QWD2 400 3300 87 0.852 50 380 95.6 0.851 20 3300 4.4 0.85运输机SGZ800/800 2 400 3300 89 0.85 乳化液泵MRB-400/31.5 1 250 3300 52 0.9 转载机SZZ-764/60 1 160 1140 90.5 0.85 破碎机LPS-1000 1 110 1140 62.3 0.85皮带机DSJ 1000/100/2×11012×110 1140 124.60.85皮带机 1 2×75 1140 85⑵、变压器的选择:根据供电系统拟定原则,选择两台移动变电站,其容量分别决定如下:1、1#移动变电站向采煤机组、一台乳化液泵供电,供电电压为3450V。

综采工作面供电设计

综采工作面供电设计

综采面供电设计说明一、电源及负荷综采面电源取自井下中央变电所9101高压开关柜,MYPTJ-3×185+1×95/10KV矿用移动屏蔽监视型橡套软电缆4500米沿胶运大巷到设备列车移变。

综采面用电设备负荷统计表二、工作面配电点与移动式变电站位置向回采工作面供电的移动式变电站安装在进风顺槽设备列车上,距工作面200米左右,通过滑动电缆向各设备供电。

三、供电系统采用单电源移动式变电站供电,配电点到各用电设备采用副射式供电。

四、变压器选型校验㈠校验向采煤机、运输机供电的3300V移动式变电站供电的3300V移动式变电站型号为:KBSGZY-4000/10/3.3(盐城)移变视在容量计算为:对于综采面:COSφPj=0.7需用系数 KX =0.4+0.6∑e PPα Pα为最大电机功率数所以:K X =0.4+0.6×1162210001162≈⨯+0.6 S B =PjeXCOS P Kφ∑=()0.62100011620.7⨯⨯+≈2710 KVA <4000 KVA选用KBSGZY-4000/10型矿用隔爆移动式变电站一台,其额定容量S N.T =4000KVA ;额定电压为10/3.3KV ,满足要求。

㈡ 校验向泵站、转载机、破碎机供电的1140V 移动式变电站泵站、转载机、破碎机供电的1140V 移动式变电站为: KBSGZY- 2500/10/1.14(盐城) 移变视在容量计算为: 对于综采面:COS φPj =0.7需用系数 K X =0.4+0.6∑eP Pα P α为最大电机功率数所以:K X =0.4+0.6×37543153160237543≈⨯+⨯+⨯+⨯0.49 S B =KVA KVA COS P K Pje X 250017517.0250249.0<≈⨯=∑φ选用KBSGZY- 2500/10型矿用隔爆移动式变电站一台,其额定容量S N.T =2500KVA ;额定电压为10/1.2KV ,满足要求。

综采工作面供电设计

综采工作面供电设计

目录一、综采工作面设备选型及配套··4(一)综采工作面合理参数确定··4(二)大倾角综采工作面设备选型基本要求··4(三)液压支架选型··4(四)采煤机选型··5(五)工作面刮板运输机选型··7(六)转载机选型··8(七)破碎机选型····9(八)胶带输送机选型···9(九)乳化液泵站及喷雾泵站选型··9(十)综采工作面设备选型结果··11(十一)工作面三机配套图··12二、供电设计··12(一)供电系统的确定、供电系统图··12(二)工作面设备布置图··14(三)负荷统计··14(四)变压器容量计算··14(五)高压配电装置选择及校验··15(六)供电电缆选择··16(七)短路电流及控制器整定计算··26(八)工作面照明、信号系统··31三、通风设计··32(一)工作面风量计算··32(二)通风系统··34(三)安全监测系统··34(四)瓦斯管理制度··35(五)综合防尘··36(六)工作面防灭火措施··39(七)避灾路线··39(八)通风系统图··40四、压风系统··40五、运输系统··40(一)运煤系统··40(二)主要运输设备··41六、设备安装··41(一)安装使用的相关设备及工具··41 (二)设备安装运输系统··41(三)液压支架安装前的准备工作··41 (四)设备安装顺序··42(五)设备安装方法··42(六)液压支架装车··43(七)安全技术措施··43七、设备的撤除··49(一)撤除使用的相关设备及工具··49 (二)设备撤除运输系统··49(三)设备回撤前的准备工作··49 (四)设备回撤顺序··50(五)设备拆除方法··50(六)设备回撤的安全技术措施··51 八、采煤设计··58(一)工作面概况及地质情况··58(二)井巷工程设计··60(三)采煤工艺及方法··61(四)循环作业、劳动组织及技术经济指标预测··62九、附图··64一、综采工作面设备选型及配套(一)综采工作面合理参数确定1、工作面技术参数工作面走向长610m,倾斜长143m,煤层平均倾角17.5°,采高2.5m,储量29.8万t。

综采工作面供电系统设计

综采工作面供电系统设计

综采工作面供电系统设计第一节供电系统设计要求一、设计内容1、设计依据综采工作面巷道布置、巷道尺寸及支护方式;综采工作面地质、通风、排水、运输情况;综采工作面的技术和经济参数;综采工作面的作业制度;综采工作面机械设备性能、数据及布置。

2.设计内容根据所设计综采工作面设备选型情况,选定移动变电站与各配电点位置;确定变压器容量、型号、台数;拟定综采工作面供电系统图;确定电缆型号、长度和截面;选择高低压开关;做继电保护的整定计算;绘制综采工作面供电系统图;造综采工作面供电设备表。

二、设计要求设计应符合《煤矿安全规程》、《煤矿工业设计规范》和《煤矿井下供电设计技术规定》;设备应选用定型产品并尽量选用新产品和国产设备;设计要保证技术先进、经济合理、安全可靠。

三、供电设计有关规定1、《煤矿安全规程》中的规定严禁井下配电变压器中性点直接接地。

井下电气设备的选用,应符合表5—1要求。

表5—1 井下电气设备的选用井下各级配电电压和各种电气设备的额定电压等级,应符合下列要求:(1)高压,不应超过10000V;(2)低压,不应超过1140V;(3)照明、手持电气设备的额定电压和电话和信号装置的额定供电电压,都不应超过127V;(4)远距离控制线路的额定电压,不应超过36V。

采区电气设备使用3300V供电时,必须制定专门的安全措施。

(国外采煤工作面供电电压已达5000V)井下电力网的短路电流,不得超过其控制用的断路器的开断能力,并应校验电缆的热稳定性。

40kw及以上的电动机,应使用真空电磁起动器控制。

井下高压电动机、动力变压器的高压侧,应有短路、过负荷和欠电压释放保护。

井下由采区变电所、移动变电站或配电点引出的馈电线上,应装设短路和过负荷保护装置,或至少应装设短路保护装置。

低压电动机应具备短路、过负荷、单相断线的保护及远方控制装置。

移动变电站必须采用监视型屏蔽橡套电缆。

移动式和手持式电气设备都应使用专用的分相屏蔽不延燃橡套电缆.1140V 设备使用的电缆必须用带有分相屏蔽的不延燃橡套电缆;660V 的设备应使用带有分相屏蔽的橡套绝缘屏蔽电缆。

煤矿综采工作面供电设计说明

煤矿综采工作面供电设计说明

煤矿综采工作面供电设计说明一、供电系统的分类根据煤矿综采工作面的情况和电压等级,供电系统可以分为高压供电系统和低压供电系统两部分。

1.高压供电系统:2.低压供电系统:低压供电系统主要为井下照明、通风、监控等非主要设备供电。

具体包括配电箱、照明灯具、电缆桥架、插座等。

二、供电系统的设计原则供电系统的设计应遵循以下原则:1.安全可靠:供电系统设计应满足国家相关安全规定,确保供电设备在运行过程中不发生故障,且能够及时发现和排除隐患。

2.合理高效:供电系统设计应根据工作面的实际情况,满足设备运行所需的电能供应,降低能耗,提高供电的效率和质量。

3.经济合理:供电系统的设计应充分考虑成本问题,根据实际需要进行合理配置,避免不必要的浪费。

三、供电系统的具体设计要点1.高压供电系统设计要点:(1)变电站的选择:变电站应选择可靠性高、运行安全稳定的设备,具备过流、过压、短路等保护功能。

(2)高压开关柜的选型:高压开关柜应满足可靠性高、操作简便、经济合理的要求,具备过流、短路等继电保护功能。

(3)高压电缆敷设:应选择符合国家标准的高压电缆,并进行正确敷设,保证电缆的绝缘完好性和安全可靠性。

2.低压供电系统设计要点:(1)配电箱的选型:配电箱应选择品牌可靠、结构合理的产品,具备过载保护、漏电保护等功能。

(2)电缆的选择:应选择符合国家标准的低压电缆,并进行正确敷设和维护,保证电缆的安全可靠性。

(3)照明设计:应根据工作面的具体情况,合理选用照明灯具,并进行合理布局,保证工作面的照明质量,提高工作面的安全性。

四、供电系统的检验和维护程序1.定期检测:供电系统应定期进行综合性能和安全性能的检查,排除存在的故障和隐患。

2.配电设备的定期维护:配电设备应进行定期的保养和维修,并进行记录,以保证设备的安全可靠性。

3.灯具的定期更换:照明灯具应定期进行检查和更换,保证井下的照明质量。

总之,煤矿综采工作面供电设计是煤矿安全生产中的重要环节,其合理的设计能够保证设备的安全高效运行,并提高煤矿的开采效率和安全性。

{工作规范制度}综采工作面供电设计作业规程

{工作规范制度}综采工作面供电设计作业规程

17-{工作规范制度}综采工作面供电设计作业规程15200综采工作面供电设计一、工作面供电系统概况15200综采工作面走向长2000m,采长196m,工作面支护采用ZZ5最新0液压支架。

综采工作面移动变电站的电源由2#采区变电所5#高压防爆开关供电,在轨道巷距工作面切眼80m处安装3台KBSGZY-1250/10移变对工作面采煤机、刮板运输机、转载机、破碎机、乳化泵和喷雾泵供电,二次电压为1140V,总负荷为2267KW;位于皮带巷口下方硐室安装一台KBSGZY-1000/10移变对皮带巷一、二部皮带供电,二次电压为1140V,总负荷为800KW;由原15200皮带巷KBSGZY-630/10移变供皮带巷、轨道巷两道低压负荷,二次电压为660V,总负荷为550KW;工作面通信闭锁控制保护装置KTC2型、照明系统由1140/127V综合保护装置供电,该面供电系统均设过流、漏电和接地三大保护。

二、移变容量计算1、设备负荷统计15200工作面的装机总功率为3817KW,其中综采工作面开关列车移动变电站1140V系统总功率为2267KW,最大负荷为采煤机,功率为730KW;皮带巷1140V系统总功率为800KW最大负荷为皮带机,功率为2*200KW;660V系统总功率为550KW,最大负荷为绞车,功率为40KW。

具体负荷情况详见负荷统计表: 15200工作面负荷统计表序号设备名称型号(KW)台数电压﹙V﹚配用开关1采煤机MGTY300/73011140VQJZ-1600/1140-82刮板运输机SGZ-764/630 2*31511140V3乳化液泵站BRW400/315 2*25021140V4喷雾泵站Ba/Σa=730KW;K=0406×a=630KW;K=0406×a=400KW;K=0406×a=40KW;K=0406×g=S/eq\r2,3*10=2477/1732*10=143A故选择电缆经济截面为:MY。

综采工作面供电设计

综采工作面供电设计

2092综采工作面供电设计(一)综采工作面主要条件该工作面属于9#煤层,平均煤层厚度3m,工作面长度240m,走向长度为1000m,平均倾角3-5度,采用一次采全高采煤工艺,可采最高煤层厚度3m。

矿井井下高压采用10KV供电,由中央变电所负责向该综采工作面供电。

变电所高压设备采用PBG-315/10Y型高压隔爆开关,中央变电所距综采工作面皮带机头600m。

(二)设备选用1、工作面设备采煤机选用三一重型装备有限公司生产的MG300/710-WD型采煤机,其额定功率710KW,其中两台截割主电动机功率为300KW,额定电压为1140V;两台牵引电机功率为45KW,额定电压为380V;调高泵电机电压1140V,功率20KW。

工作面刮板输送机三一重型装备有限公司制造的SGZ764/630型输送机,机头及机尾都采用额定功率为160/315KW的双速电机,额定电压为1140V。

2、顺槽设备1)破碎机:采用三一重型装备有限公司制造的PLM-1000型破碎机,其额定功率160KW,额定电压1140V。

2)转载机:采用三一重型装备有限公司制造的SZZ764/250型转载机。

其额定功率250KW,额定电压1140V。

3)顺槽带式输送机:采用兖州市华泰机械公司制造的DSJ100/63/2*75型输送机(1部),驱动电机额定功率2×75 KW,4)乳化液泵站:两泵一箱,乳化液泵采用无锡威顺生产的BRW200/31.5型液泵,其额定功率200KW,额定电压1140V。

5)喷雾泵:采用无锡威顺生产的BPW315/6.3型(2台),其额定功率75KW,额定电压1140V。

3、其它设备(三)工作面移动变电站及配电点位置的确定工作面电源电压为10kV,来自井下盘区变电所。

根据用电设备的容量与布置,采用1140V 电压等级供电,照明及保护控制电压采用127V。

在临时变电所处设置移动变电站,为顺槽皮带机供电;在顺槽皮带巷每450米设置配电点,用以对工作面设备进行供电。

综采工作面供电系统设计_百度文库.

综采工作面供电系统设计_百度文库.

L1815综采工作面供电系统设计一、供电概况:L1815综采工作面走向长度1200m,工作面长度170m;供电方式拟定为:采用移动变电站供电,其中高压6KV电源引自+1050井下中央变电所高压开关柜,移动变电站设在运输顺槽内,随工作面的推进而移动。

在胶带运输机侧敷设一条专供变电站移动的轨道,在开采初期将1#、2#、3#移动变电站、乳化液泵站、喷雾泵站等设备停放在距工作面200米处,4#移动变电站停放在+l067M车场。

二、供电负荷统计:(L1815综采工作面供电负荷统计序号名称型号功率(KW台数合计(KW电压(V)使用地点1 电牵引采煤机MG300/690-W690 1 920 1140 工作面2 刮板输送机SGZ764/632×3151 630 1140 工作面4 转载机SZZ764/16160 1 160 1140 机巷5 破碎机PLM1000 110 1 110 1140 机巷6 带式输送机SSJ1000/160160 2 320 1140 机巷7 乳化液泵站BRW400/31.5250 2 500 1140 机巷8 喷雾泵WPB160/6.345 2 90 660 机巷9 连续牵引车SQ-1200/110110 1 110 660 风巷10 回柱绞车JH-14 14 1 14 660 机巷13 潜水泵 5.5 3 16.5 660 风巷16 潜水泵 5.5 4 22 660 机巷17 信号、照明 4 2 8 660 机巷18 煤电钻 1.2 1 1.2 660 机巷合计2901三、移动变电站选型计算1、综采工作面需用系数:Kr=0.4+0.6×Pmax/ΣPN ;Pmax――机组最大一台电动机的额定功率;ΣPN――参加计算的所有电动机的额定功率之和;2、移动变电站负荷计算:S=ΣPN·Kr/COSфCOSф――功率因数,对综采工作面取COSф=0.7S――移动电站视在功率KVA采煤机组:采煤机组移动变电站所带负荷为采煤机左、右截割部电动机300kw,一)、采煤机行走部电动机90kw,破碎机电动机160kw。

简述综采工作面供电系统设计

简述综采工作面供电系统设计

简述综采工作面供电系统设计摘要:综采工作面供电系统设计中,遵循煤矿企业对供电的基本要求及《煤矿安全规程》、《煤矿井下供电设计技术规定》。

对于工作面供电设备要求及选择和一些保护措施。

关键词:综采工作面概述;设备选型原则;工作面保护系统目录前言一、综采工作面供电概述及原始资料1.1 综采工作面供电概述1.2 综采工作面供电设计所需原始资料二、综采工作面的设备选择及布置2.1 综采工作面设备选择2.2 综采工作面供电系统的拟定2.3 综采工作面供电系统设备布置三、供电负荷3.1 供电电压3.2 供电系统拟定原则四、工作面电缆的选择4.1 低压电缆型号、芯数的确定4.2 低压电缆截面的选则原则4.3 高压电缆的选择五、综采工作面电器的选择5.1 高压开关的选择5.2 综采工作面低压电器型号的选择5.3 综采工作面低压保护装置六、综采工作面过电流、漏电保护与接地系统6.1 过电流保护6.2 漏电保护6.3 综采工作面接地系统结束语参考文献前言综采工作面供电综采工作面供电系统设计中,遵循煤矿企业对供电的基本要求及《煤矿安全规程》、《煤矿井下供电设计技术规定》。

根据工作面用电设备的技术参数,对综采工作面进行供电设计。

设计内容为:综采工作面设备的选型、布置及应用,综采工作面的保护措施及接地系统。

在相关的设计中达到了事半功倍的效果。

一、综采工作面供电概述及原始资料综采工作面供电设备的选型包括主变压器的选型、采区供电系统的拟定、低压电缆的选择和低压开关的选择。

1.1 综采工作面供电概述综采工作面供电是否安全、可靠、技术和经济合理,将直接关系到人身、矿井和设备的安全及采区生产的正常进行。

由于煤矿井下工作环境十分恶劣,因此在供电上除采取可靠的防止人身触电危险的措施外,还必须正确地选择电气设备的类型及参数,并采用合理的供电、控制和保护系统,加强对电气设备的维护和检修,以确保电气设备的安全运行和防止瓦斯、煤尘爆炸。

随着煤炭工业的现代化,综采工作面机械化程度越来越高,机电设备的单机容量和工作面总容量都有了很大的增加。

综采工作面供电设计说明

综采工作面供电设计说明

综采工作面供电设计说明综采工作面供电设计煤矿供电, 因其工作场所特殊, 对供电要求特别严格。

在供电方面要求:①供电的可靠性;②供电的安全性;③供电的质量;④供电的经济合理。

因而,合理地选择供电方案和设备,是一个值得探讨的课题。

1 采区工作面供电设计一个工作面的供电系统一般由高压开关、变压器、低压馈电开关、动力电缆、用电设备等组成,见图1 (以普通综采工作面为例) .1.1 高压开关的选择及整定高压开关主要保护动力变压器低压侧发生的两相短路,因此选择高压开关的关键是电流互感器的容量,要求其灵敏度系数Km&gt;1。

5。

高压开关的保护性能要齐全,具有良好的防爆性能, 要便于运输, 断流容量大。

矿井中多使用BGP- 6 型高压真空开关。

该开关保护性能齐全,具有过流、漏电、短路、断相、失电压等保护,应用广泛,以此开关为例进行整定计算.1.1。

1 短路电流整定短路电流整定倍数: 1, 2, 3,4,5, 6, 8, 10,12, 14, 16,共11 档。

1。

1。

2 过载保护整定过载保护整定倍数: 0。

4,0.5, 0。

6,0.7, 0.8,1。

0, 1。

2, 1.4,1。

6,1.8, 2。

0,共11 档。

1。

1.3 漏电保护整定漏电保护整定: 0.015 A~1.0 A。

1.1。

4 过载整定Iz= ( 1。

2~1。

4) &#215;&#931;Ie/(Ki&#215;Kb)。

式中: Iz———过载整定电流,A;Ki—-—电流互感器变流比;Kb——-变压器电压变比;&#931;Ie———所有负荷额定电流之和,A.例如:Iz=10 A, 二次电流为5 A, Iz/5=10/5=2,即整定在2.0 档。

1。

1。

5 短路整定Iz= ( 1.2~1。

4)&#215;(IQ+&#931;Ie) /(Ki&#215;Kb) 。

式中:IQ-——最大电机的启动电流;&#931;Ie———其余电机的额定电流之和。

综采工作面供电设计

综采工作面供电设计

综合机械化采煤工作面供电系统设计设计校验:解炜机电科长:徐意源机电副总:刘强机电矿长:侯国俊目录一、原始资料 (1)1、巷道布置及掘进方法 (1)2、运输及通风系统 (1)3、电源及负荷 (1)二、工作面配电点与移动式变电站位置的确定 (2)三、供电系统拟定 (2)四、负荷统计与变压器选择 (4)1、选择向皮带供电的660V移动式变电站(1#移变) (4)2、选择向掘进机供电的移动式变电站(2#移变) (4)五、供电电缆的选择 (4)1、确定电缆的型号和长度 (4)2、电缆主芯线截面的选择 (5)(1)向移动式变电站供电的高压电缆选择 (5)(2)低压电缆截面的选择 (7)六、短路电流的计算 (11)1、短路回路阻抗计算 (12)七、保护装置的整定计算 (15)1、掘进机配电箱的整定 (15)2、移动式变电站低压侧自动空气开关的整定 (15)3、高压配电箱的整定 (16)附录1 矿用660/1440V移动屏蔽橡套软电缆结构尺寸及主要技术参数 (18)附录2 煤矿用6/10kV移动金属屏蔽橡套软电缆简介 (19)附录3 35KV地面变电所8000KVA电力变压器参数 (21)附录4 电缆电阻统计表 (22)参考文献 (24)一、原始资料1、巷道布置及掘进方法1001综合机械化采煤工作面全长180m,一次采全高3.27米。

综采工作面回采用MCTY-300/700采煤机。

采取三班生产,一班检修的工作方式。

每日回采进米6米。

2、运输及通风系统运输顺槽回采出煤通过1部SGZ830/500型刮板输送机→SZZ830/200转载机→SSJ100/80型可伸缩胶带输送机→集中1部皮带→主斜井皮带→地面架空皮带,最后送入工业场地。

工作面所需材料和设备的运输,由无轨胶轮车由辅运大巷→辅运顺槽→工作面。

顺槽通风系统的新鲜风流由主斜井→集中运输皮带大巷→1001运输顺槽→工作面→1001回风顺槽→1001回顺回风绕道→总回风大巷→最后通过风机排至地面。

综采工作面供电方案设计书

综采工作面供电方案设计书

90102综采工作面供电设计说明书山西凌志成家庄煤矿二零一二年八月一日90102综采工作面供电设计(一)综采工作面主要条件该工作面属于9#煤层三采区,平均煤层厚度1.5m,工作面长度180m,走向长度为8000m,平均倾角3-5度,采用一次采全高采煤工艺,可采最高煤层厚度4m。

矿井井下高压采用10KV供电,由2#采区变电所负责向该综采工作面供电。

变电所高压设备采用PJG-200/10Y 型高压隔爆开关,保护选用河南济源市华宇矿业有限公司数字式综合继电保护装置,采区变电所距综采工作面皮带机头600m。

(二)设备选用1、工作面设备采煤机选用上海创力集团股份有限公司。

生产的MG400/930-WD型采煤机,其额定功率930KW,其中两台截割主电动机功率为400KW,额定电压为3300V;两台牵引电机功率为55KW,额定电压为3300V。

调高泵电机电压3300V,功率20KW。

工作面刮板输送机中煤张家口煤矿机械有限责任公司制造的SGZ800/1050型输送机,机头及机尾都采用额定功率为246/525KW的双速电机,额定电压为3300V。

2、顺槽设备1)破碎机:采用中煤张家口煤矿机械有限责任公司制造的PCM-200型破碎机,其额定功率200KW,额定电压3300V。

2)转载机:采用中煤张家口煤矿机械有限责任公司制造的SZZ-900/160/315型转载机。

额定功率为160/315KW 的双速电机,额定电压为3300V。

3)1、顺槽带式输送机:采用太原向明机械公司制造的DSJ100/100/2*315型输送机(1部),驱动电机额定功率2×315 KW,电机启动采用电光防爆有限公司生产的QJR-400/1140(660)开关,减速器启动采用采用山东科大机电科技有限公司生产的YN-250液粘软启动器,制动采用山东科大机电科技有限公司生产的KPZ-1200盘式可控制装置,皮带张紧装置采用无锡市锡安达防爆电机有限公司生产的ZYJ-800带式输送机用液压张紧装置。

综采工作面供电设计报告范文

综采工作面供电设计报告范文

综采工作面供电设计报告范文设计时间工作地点综采工作面供电系统图根据供电系统的拟订原则,变压器的选择原理如下:1.2.1 变压器 T1选型计算K x=0.4+0.45×P maxΣP e=0.4+0.45×300.00505.00=0.67,取0.60S=K xΣP ecosφpj=0.60×505.000.85=356.00 kVA平均功率因数cosφpj取0.85,当有功率因数补偿时,按计算的功率因数取值;选用型号为KBSGZY-400/10/1.2的移动变电站符合要求1.2.2 变压器 T2选型计算K x=0.4+0.45×P maxΣP e=0.4+0.45×60.0060.00=0.85,取0.85S=K xΣP ecosφpj=0.85×60.000.80=64.00 kVA平均功率因数cosφpj取0.8,当有功率因数补偿时,按计算的功率因数取值;选用型号为KBSGZY-315/10/0.693的移动变电站符合要求1.2.3 变压器 T3选型计算K x=0.4+0.45×P maxΣP e=0.4+0.45×60.0060.00=0.85,取0.85S=K xΣP ecosφpj=0.85×60.000.80=64.00 kVA平均功率因数cosφpj取0.8,当有功率因数补偿时,按计算的功率因数取值;选用型号为KBSGZY-315/10/0.693的移动变电站符合要求公式参数意义说明K x—需用系数;cosφpj—平均功率因数;P max—最大一台(套)电动机功率,kW;S—变压器需用容量,kVA;ΣP e—变压器的负荷额定功率之和,kW。

2. 短路电流计算2.1 高压短路电流计算变压器一次侧各点高压短路电流计算结果2.1.1 计算系统阻抗X s.max =U pj2S s.max=10.5280=1.3781ΩX s.min =U pj 2S s.min=10.5260=1.8375Ω2.1.2 d1点的短路电流计算过程(1)最大运行方式下和最小运行方式下总阻抗Z max =√R s.max 2+X s.max 2=√02+1.37812=1.3781 Ω Z min =√R s.min 2+X s.min 2=√02+1.83752=1.8375 Ω(2)d1最大三相短路电流和最小两相短路电流I d.max(3)=U ×103√3Z max =10.5×103√3×1.3781=4399 AI d.min(2)=U pj ×1032Z min =10.5×1032×1.8375=2857 A2.1.3 d2点的短路电流计算过程 (1)高压电缆线路的电阻、电抗R g =∑R i ×L i 1000ni=1=0.217×7001000=0.1519 Ω X g =∑X i ×L i 1000ni=1=0.069×7001000=0.0483 Ω (2)最大运行方式下和最小运行方式下总阻抗Z max =√(R s.max +R g )2+(X s.max +X g )2=√(0+0.1519)2+(1.3781+0.0483)2=1.4345 ΩZ min =√(R s.min +R g )2+(X s.min +X g )2=√(0+0.1519)2+(1.8375+0.0483)2=1.8919 Ω(3)d2最大三相短路电流和最小两相短路电流I d.max(3)=U ×103√3Z max =10.5×103√3×1.4345=4226 AI d.min(2)=U pj ×1032Z min =10.5×1032×1.8919=2775 A2.1.4 d7点的短路电流计算过程(1)最大运行方式下和最小运行方式下总阻抗Z max =√R s.max 2+X s.max 2=√02+1.19842=1.1984 Ω Z min =√R s.min 2+X s.min 2=√02+1.36112=1.3611 Ω(2)d7最大三相短路电流和最小两相短路电流I d.max(3)=U ×103√3Z max =3√3×1.1984=5059 AI d.min(2)=U pj ×1032Z min =10.5×1032×1.3611=3857 A2.1.5 d8点的短路电流计算过程 (1)高压电缆线路的电阻、电抗R g =∑R i ×L i 1000ni=1=0.145×6001000=0.0870 Ω X g =∑X i ×L i 1000ni=1=0.093×6001000=0.0558 Ω (2)最大运行方式下和最小运行方式下总阻抗Z max =√(R s.max +R g )2+(X s.max +X g )2=√(0+0.087)2+(1.1984+0.0558)2=1.2572 ΩZ min =√(R s.min +R g )2+(X s.min +X g )2=√(0+0.087)2+(1.3611+0.0558)2=1.4196 Ω(3)d8最大三相短路电流和最小两相短路电流I d.max(3)=U ×103√3Z max =10.5×103√3×1.2572=4822 AI d.min(2)=U pj ×1032Z min =10.5×1032×1.4196=3698 A2.1.6 d11点的短路电流计算过程 (1)高压电缆线路的电阻、电抗R g =∑R i ×L i 1000ni=1=0.217×801000+0.145×6001000=0.1044 Ω X g =∑X i ×L i 1000ni=1=0.069×801000+0.093×6001000=0.0613 Ω (2)最大运行方式下和最小运行方式下总阻抗Z max =√(R s.max +R g )2+(X s.max +X g )2=√(0+0.1044)2+(1.1984+0.0613)2=1.264 ΩZ min =√(R s.min +R g )2+(X s.min +X g )2=√(0+0.1044)2+(1.3611+0.0613)2=1.4262 Ω(3)d11最大三相短路电流和最小两相短路电流I d.max(3)=U ×103√3Z max =3√3×1.264=4796 AI d.min(2)=U pj ×1032Z min =10.5×1032×1.4262=3681 A2.2 低压短路电流计算变压器二次侧各点低压短路电流计算结果2.2.1 变压器阻抗计算(1)T3(T3)变压器每相电阻、电抗计算R b=ΔP×U2e2S e2=2500.00×0.6932315.002=0.0121 ΩZ b=U d%×10U2e2S e=4.00×10×0.6932315.00=0.061 ΩX b=√Z b2-R b2=√0.0612-0.01212=0.0598 Ω(2)T1(T1)变压器每相电阻、电抗计算R b=ΔP×U2e2S e2=3000.00×1.22400.002=0.027 ΩZ b=U d%×10U2e2S e=4.00×10×1.22400.00=0.144 ΩX b=√Z b2-R b2=√0.1442-0.02702=0.1414 Ω(3)T2(T2)变压器每相电阻、电抗计算R b=ΔP×U2e2S e2=2500.00×0.6932315.002=0.0121 ΩZ b=U d%×10U2e2S e=4.00×10×0.6932315.00=0.061 ΩX b=√Z b2-R b2=√0.0612-0.01212=0.0598 Ω2.2.2 T3(T3)变压器二次侧各点低压短路电流计算(1) d3点的短路电流计算过程①总电阻、总电抗ΣR=R s.minK b2+R gK b2+R b+R d=0.151914.432+0.0121=0.0128 ΩΣX=X s.minK b2+X gK b2+X b+X d=1.837514.432+0.048314.432+0.0598=0.0689 Ω②d3的两相短路电流计算过程I d3.min(2)=U ×1032√(ΣR )2+(ΣX )2=0.693×1032×√0.01282+0.06892=4947 A③d3的最大三相短路电流计算过程ΣR =R s.max K b 2+R g K b2+R b +R d =0.151914.432+0.0121=0.0128 Ω ΣX =X s.max K b 2+X g K b2+X b +X d=1.378114.432+0.048314.432+0.0598=0.0667 Ω I d3.max (3)=U ×103√3×√(ΣR )2+(ΣX )2=3√3×√0.01282+0.06672=5891 A(2) d4点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.23×2001000=0.0460 Ω X d =∑X i ×L i 1000ni=1=0.075×2001000=0.0150 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.151914.432+0.0121+0.046=0.0588 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.837514.432+0.048314.432+0.0598+0.015=0.0839 Ω ③d4的两相短路电流计算过程I d4.min(2)=U ×1032√(ΣR )2+(ΣX )2=32×√0.05882+0.08392=3383 A(3) d5点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.23×2001000=0.0460 Ω X d =∑X i ×L i 1000ni=1=0.075×2001000=0.0150 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.151914.432+0.0121+0.046=0.0588 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.837514.432+0.048314.432+0.0598+0.015=0.0839 Ω ③d5的两相短路电流计算过程I d5.min(2)=U ×1032√(ΣR )2+(ΣX )2=0.693×1032×√0.05882+0.08392=3383 A(4) d6点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.23×2001000=0.0460 Ω X d =∑X i ×L i 1000ni=1=0.075×2001000=0.0150 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.151914.432+0.0121+0.046=0.0588 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.837514.432+0.048314.432+0.0598+0.015=0.0839 Ω ③d6的两相短路电流计算过程I d6.min(2)=U ×1032√(ΣR )2+(ΣX )2=0.693×1032×√0.05882+0.08392=3383 A2.2.3 T1(T1)变压器二次侧各点低压短路电流计算 (1) d9点的短路电流计算过程 ①总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.0878.332+0.027=0.0283 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.36118.332+0.05588.332+0.1414=0.1618 Ω ②d9的两相短路电流计算过程I d9.min(2)=U ×1032√(ΣR )2+(ΣX )2=1.2×1032×√0.02832+0.16182=3653 A③d9的最大三相短路电流计算过程ΣR =R s.max K b 2+R g K b2+R b +R d=0.0878.332+0.027=0.0283 Ω ΣX =X s.max K b 2+X g K b2+X b +X d =1.19848.332+0.05588.332+0.1414=0.1595 Ω I d9.max (3)=U ×103√3×√(ΣR )2+(ΣX)2=3√3×√0.02832+0.15952=4277 A(2) d10点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.315×3001000=0.0945 Ω X d =∑X i ×L i 1000ni=1=0.078×3001000=0.0234 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.0878.332+0.027+0.0945=0.1228 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.36118.332+0.05588.332+0.1414+0.0234=0.1852 Ω ③d10的两相短路电流计算过程I d10.min(2)=U ×1032√(ΣR )2+(ΣX )2=1.2×1032×√0.12282+0.18522=2700 A(3) d14点的短路电流计算过程 ①总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.0878.332+0.027+0.1945=0.2228 Ω ΣX =X s.min K b 2+X g K b2+X b +X d=1.36118.332+0.05588.332+0.1414+0.044=0.2058 Ω ②d14的两相短路电流计算过程I d14.min(2)=U ×1032√(ΣR )2+(ΣX )2=1.2×1032×√0.22282+0.20582=1978 A(4) d17点的短路电流计算过程 ①总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.0878.332+0.027+0.1629=0.1912 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.36118.332+0.05588.332+0.1414+0.0405=0.2023 Ω ②d17的两相短路电流计算过程I d17.min(2)=U ×1032√(ΣR )2+(ΣX )2=32×√0.19122+0.20232=2156 A(5) d18点的短路电流计算过程 ①总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.0878.332+0.027+0.1732=0.2015 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.36118.332+0.05588.332+0.1414+0.0422=0.204 Ω ②d18的两相短路电流计算过程I d18.min(2)=U ×1032√(ΣR )2+(ΣX )2=1.2×1032×√0.20152+0.2042=2093 A(6) d19点的短路电流计算过程 ①总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.0878.332+0.027+0.1881=0.2164 Ω ΣX =X s.min K b 2+X g K b2+X b +X d=1.36118.332+0.05588.332+0.1414+0.0468=0.2086 Ω ②d19的两相短路电流计算过程I d19.min(2)=U ×1032√(ΣR )2+(ΣX )2=32×√0.21642+0.20862=1996 A2.2.4 T2(T2)变压器二次侧各点低压短路电流计算 (1) d12点的短路电流计算过程 ①总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.104414.432+0.0121=0.0126 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.361114.432+0.061314.432+0.0598=0.0666 Ω ②d12的两相短路电流计算过程I d12.min(2)=U ×1032√(ΣR )2+(ΣX )2=32×√0.01262+0.06662=5110 A③d12的最大三相短路电流计算过程ΣR =R s.max K b 2+R g K b2+R b +R d =0.104414.432+0.0121=0.0126 Ω ΣX =X s.max K b 2+X g K b2+X b +X d =1.198414.432+0.061314.432+0.0598=0.0658 Ω I d12.max (3)=U ×103√3×√(ΣR )2+(ΣX )2=0.693×103√3×√0.01262+0.06582=5972 A(2) d13点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.23×2001000=0.0460 Ω X d =∑X i ×L i 1000ni=1=0.075×2001000=0.0150 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.104414.432+0.0121+0.046=0.0586 ΩΣX =X s.min K b 2+X g K b2+X b +X d=1.361114.432+0.061314.432+0.0598+0.015=0.0816 Ω ③d13的两相短路电流计算过程I d13.min(2)=U ×1032√(ΣR )2+(ΣX )2=32×√0.05862+0.08162=3448 A(3) d15点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.23×2001000=0.0460 Ω X d =∑X i ×L i 1000ni=1=0.075×2001000=0.0150 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d =0.104414.432+0.0121+0.046=0.0586 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.361114.432+0.061314.432+0.0598+0.015=0.0816 Ω ③d15的两相短路电流计算过程I d15.min(2)=U ×1032√(ΣR )2+(ΣX )2=0.693×1032×√0.05862+0.08162=3448 A(4) d16点的短路电流计算过程 (1)低压电缆线路的电阻、电抗R d =∑R i ×L i 1000ni=1=0.23×2001000=0.0460 Ω X d =∑X i ×L i 1000ni=1=0.075×2001000=0.0150 Ω ②总电阻、总电抗ΣR =R s.min K b 2+R g K b2+R b +R d=0.104414.432+0.0121+0.046=0.0586 Ω ΣX =X s.min K b 2+X g K b2+X b +X d =1.361114.432+0.061314.432+0.0598+0.015=0.0816 Ω ③d16的两相短路电流计算过程I d16.min(2)=U ×1032√(ΣR )2+(ΣX )2=0.693×1032×√0.05862+0.08162=3448 A3. 高低压电缆选择和校验3.1 高压电缆选择和校验3.1.1 C10:电源引自中央变电所D20柜高压配电箱至T1变压器 电缆型号规格:MYPTJ-3×150-600m (1)长时负荷电流I n =K ×ΣP ×103√3U e ×cosφpj ×ηpj=0.72×565×103√3×10000×0.7×0.95=35.30 AK x —需用系数,取K x =0.72此高压电缆长时载流量为379A,满足要求。

21127综采工作面供电设计6011

21127综采工作面供电设计6011

21127综采工作面供电方案设计一、概况:(一)21127综采工作面为21采区12#煤第三亚阶段北翼回采工作面,南东至21采区21126外上山,北西至工业广场保安煤柱线,上覆7#煤2172、2174、2176采面早已回采结束,本阶段对应的21125上、下分层采面已回采结束。

下伏14#煤尚无工程。

(二)回采工作面采用MG200/600-WD型机械采煤机,并采用ZY3800/15/33型掩护式液压支架管理顶板。

(三)煤的运输方式:1.采面采用SGZ 764/2×250型刮板输送机。

2.21127运巷采用SGB-40T/2×55刮板输送机、SPJ-1000/2×75型胶带输送机。

3.214石门采用3部SPJ-800/55型胶带输送机运至煤仓,进入主运输系统。

21127综采工作面机电设备布置表二、移动变电站位置的确定:(一)根据21127采面工作面巷道布置设计和采区变电所的分布情况,在214石门安设移动变电站对采面进行供电,供电电源来自1400变电所,供电方式采用干线式。

(二)供电线路分高压和低压两路,高压电缆从1400变电所→214石门,低压电缆沿214石门→21127运巷→21127采面。

三、负荷统计及变电站容量选择(一)负荷统计(二)动力变电站的选择1.移动变电站容量、台数的确定:使用2台移动变压器,分组对综采工作面进行供电,具体分组容量计算如下:1)I组:采煤机、采面刮板输送机。

总负荷:∑P=598.5+500=1098.5KwN按需用系数法(式1-1)验算变电站容量是否满足需求:wmdeNcaK P S cos∑=(1-1)式中 :S ca ——用电设备的计算负荷,kVA ;∑N P ——具有相同需用系数K de 的一组用电设备的额定负荷之和,kW; ϕcos wm ——用电设备的加权平均功率因数,查表6-2,取ϕcos wm =0.7; K de 需用系数,查表6-2,取K de =0.6求得KVA 57.9417.06.05.1098S =⨯=ca 由S ca =941.57KVA <S e =1000KVA ,可得使用KBSG-1000/6型移动变电站可以足供电容量需求。

综采工作面供电系统设计

综采工作面供电系统设计

综采工作面供电系统设计第一节供电系统设计要求一、设计内容l、设计依据综采工作面巷道布置、巷道尺寸及支护方式;综采工作面地质、通风、排水、运输状况;综采工作面的技术和经济参数;综采工作面的作业制度;综采工作而机械设备性能、数据及布置。

2、设计内容依据所设计综采工作面设备选型状况,选定移动变电站和各配电点位置;确定变压器容量、型号、台数;拟定综采工作面供电系统图;确定电缆型号、长度和截面;选择凹凸压开关;做继电爱惜的整定计算;绘制综采T作面供电系统图;造综采T作面供电设备表。

二、设计要求设计应符合《煤矿平安规程》、《煤矿工业设计规范》和《煤矿井下供电设计技术规定》;设备应选用定型产品并尽量选用新产品和国产设备;设计要保证技术先进、经济合理、平安牢靠。

三、供电设训有关规定1、《煤矿平安规程》中的规定严禁井下配电变压器中性点干脆接地。

井下电气设备的选用,应符合表5 1要求。

(3)照明、于持电气设备的额定电压利电话和信号装置的额定供电电压,都不应超过127V;(4)远距离限制线路的额定电压,不应超过36V。

采区电气设备运用3300V供电时,必需制定特地的平安措施。

(国外采煤工作而供电电压己达5000v)井下电力网的短路电流,不得超过其限制用的断路器的丌断实力,并应校验电缆的热稳定性。

40kw及以上的电动机,应运用真空电磁起动器限制。

井下高压电动机、动力变压器的高压侧,应有短路、过负荷和欠电压释放爱惜。

井下由采区变电所、移动变电站或配电点引出的馈电线上,应装设短路和过负荷爱惜装置.或至少应装设短路爱惜装置。

低压电动机应具备短路、过负荷、单相断线的爱惜及远方限制装置。

移动变电站必需接受监视型屏蔽橡套电缆。

移动式和于持式电气设备都应运用专用的分相屏蔽不延燃橡套电缆.ll40V设备运用的电缆必需用带有分相并蔽的不延燃橡套电缆;660V的设备应运用带有分相屏蔽的橡套绝缘屏蔽电缆。

照明、通信、信号电缆应接受不延燃橡套电缆。

煤矿综采工作面供电设计

煤矿综采工作面供电设计

附件2:***矿综采工作面供电设计(一)综采工作面主要条件该工作面属于3#煤层一盘区,平均煤层厚度5m,工作面长度225m,走向长度为2000m,平均倾角3-5度,采用一次采全高采煤工艺,可采最高煤层厚度5.5m,工作面采用三进两回布置方式。

矿井井下高压采用10KV供电,由西翼盘区变电所负责向该综采工作面供电,西翼盘区变电所双回10KV电源来自地面***110KV站815、816号盘,变电所高压设备采用BGp9L-10型高压隔爆开关,保护选用上海山源ZBT——11综合保护,盘区变电所距综采工作面皮带机头200m。

(二)设备选用1、工作面设备采煤机选用德国艾柯夫公司生产的SL500型采煤机,其额定功率1815KW,其中两台截割主电动机功率为750KW,额定电压为3300V;两台牵引电机功率为90KW,额定电压为460V;调高泵电机电压1000V,功率35KW,破碎机功率100KW,额定电压为3300V。

两台主电动机同时起动。

工作面刮板输送机采用山西煤机厂制造的SGZ1000-Z×700型输送机,机头及机尾都采用额定功率为350/700KW的双速电机,额定电压为3300V。

2、顺槽设备1)破碎机:采用山西煤机厂制造PCM-315型破碎机,其额定功率315KW,额定电压1140V。

2)转载机:采用山西煤机厂制造SZZ1200/315型转载机。

其额定功率315KW,额定电压1140V。

3)顺槽带式输送机:采用**集团机电总厂生产的SSJ-140/250/3*400型输送机(1部),驱动电机额定功率3×400 KW,循环油泵电机额定功率3×18.5KW,冷却风扇电机额定功率3×5.5KV,抱闸油泵电机额定功率2×4KW,额定电压均为1140V,自动涨紧油泵电机额定功率12KW,卷带电机额定功率15KW,电压1140V。

皮带机采用CST启动方式。

4)乳化液泵站:三泵二箱,乳化液泵采用无锡威顺生产的BRW400/31.5型液泵,其额定功率250KW,额定电压1140V。

综采工作面供电设计教案

综采工作面供电设计教案

综采工作面供电设计教案PPT一、教学目标1. 让学生了解综采工作面的概念及其重要性。

2. 掌握综采工作面供电系统的基本构成和设计原则。

3. 学习综采工作面供电设备的选型和布置方法。

4. 了解综采工作面供电系统的运行管理和维护要点。

二、教学内容1. 综采工作面的概念及其重要性1.1 综采工作面的定义1.2 综采工作面在我国煤炭工业中的应用1.3 综采工作面供电系统的作用2. 综采工作面供电系统的基本构成2.1 电源设备2.2 配电设备2.3 供电线路2.4 保护装置3. 综采工作面供电系统的设计原则3.1 安全性原则3.2 可靠性原则3.3 经济性原则3.4 先进性原则4. 综采工作面供电设备的选型和布置方法4.1 电源设备的选型和布置4.2 配电设备的选型和布置4.3 供电线路的选型和布置4.4 保护装置的选型和布置5. 综采工作面供电系统的运行管理和维护要点5.1 运行管理要点5.2 维护要点5.3 常见故障及处理方法三、教学方法1. 讲授法:讲解综采工作面供电系统的基本概念、设计原则及设备选型等知识点。

2. 案例分析法:分析实际案例,让学生了解综采工作面供电系统的设计和运行维护过程。

3. 互动教学法:提问、讨论,激发学生的思考,提高学生的参与度。

四、教学准备1. 教案PPT:制作包含图文并茂的教学PPT,便于学生理解和记忆。

2. 案例资料:准备相关案例资料,用于案例分析环节。

3. 教学设备:投影仪、音响等教学设备。

五、教学进程1. 课时安排:本教案共需4个学时。

2. 教学进程:1) 综采工作面的概念及其重要性(0.5学时)2) 综采工作面供电系统的基本构成(0.5学时)3) 综采工作面供电系统的设计原则(0.5学时)4) 综采工作面供电设备的选型和布置方法(0.5学时)5) 综采工作面供电系统的运行管理和维护要点(0.5学时)6) 案例分析与讨论(0.5学时)7) 总结与答疑(0.5学时)六、案例研究:综采工作面供电设计实例分析1. 案例介绍:介绍一个具体的综采工作面供电设计案例,包括工作面的规模、地质条件、供电系统的配置等。

综采工作面供电设计

综采工作面供电设计

综采工作面供电设计Ⅰ、概述:二1煤综采工作面是我矿首个综采工作面,其供电线路为两趟线路;一趟来自中央变电所10#柜下层至二1上顺槽;另一趟来自风井底变电所2#水泵起动器至二1下顺槽。

其供电系统分为:二1上顺槽1#供电系统、二1上顺槽2#供电系统、二1下顺槽1#供电系统。

其中:采煤机、乳化泵、喷雾泵由二1上顺槽1#供电系统供电,1140V;前后溜子由二1上顺槽2#供电系统供电,1140V;转载机、破碎机、1#、2#皮带机由二1下顺槽1#供电系统供电,1140V。

一、二1上顺槽供电系统:负荷:采煤机487.5KW 1部乳化泵200KW 1部喷雾泵40KW 1部Σpe=727.5KW二、二1下顺槽1#供电系统负荷:前溜子2×200KW 1部后溜子2×200KW 1部Σpe=800KW三、二1下顺槽2#供电系统负荷:转载机200KW 1部破碎机110KW 1部1#皮带2×160KW 1部2#皮带2×75 KW 1部Σpe=780KW以上负荷统计为该工作面的总装机容量,采面照明、信号等小功率负荷忽略不计,在校验整定计算中按设备实际最大运行方式考虑。

具体开关选型,电缆配用情况详见供电系统图和设备布置图,以下将对具体方案进行检验计算。

Ⅱ、设备的选择、整定计算、校验:一、功率因数:cosФ=0.7需用系数:Kx=0.4+0.6×Pd/∑Pe二、各变压器容量校验;1、二1上顺槽1#移动变电站(1000KV A)(供采煤机、乳化泵、喷雾泵)Kx=0.4+0.6×Pd/∑Pe=0.4+0.6*400/727.5=0.73(采煤机考虑两滚筒电机同时启动)。

Sb=Kx*∑Pe/cosФ=0.73*727.5/0.7=761KV A ﹤800KV A (选1000KV A)故满足要求2、二1上顺槽2#移动变电站(1000KV A)(供前后溜子)Kx=0.4+0.6×Pd/∑Pe=0.4+0.6*400/800=0.7Sb=Kx*∑Pe/cosФ=0.7*800/0.7=800KV A =800KV A﹤1000KV A (选1000KV A)故满足要求3、二1下顺槽1#移动变电站(1000KV A)(供转载机、破碎机、1#、2#皮带机)Kx=0.4+0.6×Pd/∑Pe=0.4+0.6*320/780=0.65Sb=Kx*∑Pe/cosФ=0.65*780/0.7=725KV A ﹤800KV A(选1000KV A)故满足要求三、高压电缆选择1.按经济电流密度反算可以供电的容量可以供最大负荷电流为I=AJ=50*2.25=112.5AS= IU=1.732*112.5*10=1948.5KV A2.按长时允许负荷电流反算可以供电的容量S= IU=1.732*173*10=2996KV A3.按允许电压损失校验ΔU%=∑KP≤7%ΔU=10000*7%=700VΔU=〔[ IL]/DS〕cosФ=[1.732*173*1500*0.7][42.5*50]=148V <700V二1煤综采工作面主要设备明细表四、二1上顺槽1#供电系统1、设备选择:详见附表,其分布地点详见机电设备布置图。

综采工作面供电设计计算

综采工作面供电设计计算

综采工作面供电设计计算《煤矿安全规程》第448条规定:井下各级配电电压和各种电气设备的额定电压等级应符合下列要求:高压,不超过10KV;低压,不超过1140KV;照明、信号、电话和手持式电气设备的供电额定电压,不超过127V;远距离控制线路的额定电压,不超过36V;采区电气设备使用3300V供电时,必须制定专门的安全措施。

1、移动变电站变压器容量计算综采工作面变压器容量计算方法,通常采用需用系数法,由各用电设备的额定功率求取一组用电设备的计算负荷的方法,一组用电设备的计算负荷为:= (1)式中----一组用电设备的计算负荷,KV·A;---具有相同需用系数的一组用电设备额定功率之和,KW;---综采工作面用电设备的需用系数。

可按下式计算:=0.4+0.6 (2) ----最大一台电动机的额定功率,KW;---一组用电设备的加权平均功率因数,即各用电设备的额定功率与功率因数的乘积之和与它们总功率之比,即=(3)高压配电装置及高压电缆的选择2高压配电装置的选择:选择与电网相匹配的电压矿用隔爆型高压真空配电装置。

1)按线路的长时最大工作电流选择高压开关为额定电流, 2)动稳定校验和热稳定校验; 3)断流能力校验。

1)高压配电装置的额定电流,不应小于其所控制的设备或线路的长时最大工作电流,即。

= (1)------将高压配电装置所带用电设备的总负荷电流折算到高压侧的值,A;------该高压配电装置所带用电设备的额定功率之和,KW;------变压器变比,即变压器原副绕组的匝数比;---加权平均功率因数;------同时工作设备的加权平均效率,它反映各用电设备平均功率损耗,即各用电设备的功率与效率的乘积之和与总功率之比。

2)动稳定校验和热稳定校验(1)动稳定校验。

设备的极限通过电流峰值i max应大于等于短路电流冲击值i im即i max≥i im(2)(2)热稳定校验。

高压配电装置在出厂前都经过了试验,规定了在时间t内允许通过热稳定电流Ιts的数值。

综采工作面供电设计教案

综采工作面供电设计教案

教案章节:一、综采工作面供电设计概述1.1 综采工作面供电设计的意义和目的1.2 综采工作面供电设计的基本原则1.3 综采工作面供电设计的依据和标准二、综采工作面电力系统及设备2.1 综采工作面电力系统的组成及功能2.2 综采工作面主要供电设备及其特性2.3 综采工作面电力设备的选型及配置三、综采工作面供电设计的关键参数3.1 供电电压的选择与确定3.2 供电电流的计算与分析3.3 供电系统的负载特性及运行方式四、综采工作面供电设计的安全保障措施4.1 供电系统安全防护措施概述4.2 综采工作面供电设备的保护与控制4.3 综采工作面应急供电及备用电源配置五、综采工作面供电设计的案例分析5.1 综采工作面供电设计案例介绍5.2 案例中供电系统存在的问题及改进措施5.3 案例对综采工作面供电设计的启示和借鉴意义六、综采工作面供电设计的电气设备安装与调试6.1 综采工作面供电设备的安装要求与步骤6.2 综采工作面供电设备的调试方法与要点6.3 综采工作面供电设备的维护与管理七、综采工作面供电设计的故障诊断与处理7.1 综采工作面供电系统常见故障类型及原因7.2 综采工作面供电系统故障诊断方法与技术7.3 综采工作面供电系统故障处理流程与措施八、综采工作面供电设计的节能与环保考虑8.1 综采工作面供电系统节能技术及措施8.2 综采工作面供电系统环保要求与标准8.3 综采工作面供电系统节能环保的意义与价值九、综采工作面供电设计的经济效益分析9.1 综采工作面供电设计投资成本分析9.2 综采工作面供电系统运行成本分析9.3 综采工作面供电设计经济效益评价指标及方法十、综采工作面供电设计的综合评价与应用前景10.1 综采工作面供电设计的效果评价与改进方向10.2 综采工作面供电设计在实践中的应用案例分享10.3 综采工作面供电设计的发展趋势与未来展望重点和难点解析一、综采工作面供电设计的意义和目的:这是整个教案的核心,需要重点关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8103综采供电设计单位:机电科整定时间:二零一九年一月供电设计设计审批计算人:机电科:机电副总:机电矿长:总工:一、工作面概况与设备选型配置1、8103切眼长度为240m,切眼与两顺槽成90°夹角,方位角为135°17′41″。

切眼为矩形断面净宽7m,净高3m(沿煤层顶底板掘进)。

2、8103运输顺槽长度为1883m, 顺槽为矩形断面净宽5.0m,净高3.5m(沿煤层顶底板掘进),方位角为225°17′41″。

采用锚杆+钢筋网+梯子梁+锚索联合支护,供回采工作面进风、行人、运煤。

3、8103辅运顺槽长度为1813m, 顺槽为矩形断面净宽5.0m,净高3.5m。

方位角为225°17′41″。

采用锚杆+钢筋网+梯子梁+锚索联合支护,供回采工作面回风、行人、运料。

4、8103综采工作面采用走向长壁后退式综合机械化一次采全高采煤方法,全部垮落法管理顶板。

采用MG550/1220-WD型采煤机一台双向穿梭采煤,前滚筒割顶煤,后滚筒割底煤,滚筒自旋使其截齿将煤破碎。

采煤机端头斜切进刀,割三角煤采煤,按割煤—移架—推刮板输送机顺序进行,利用机组滚筒和输送机铲煤板将煤自行装入运输机,采用SGZ900/1050型双中心链可弯曲刮板输送机一部,支护利用ZY6800/18/38型液压支架。

8103运输顺槽采用SZZ900/315型转载机一部,配备PLM2200型破碎机一台和DSJ100/80/2*250型带式输送机一部负责原煤运输。

5、8103工作面两顺槽辅助设备配置:(1)8103运输顺槽为工作面配备BRW400/31.5型乳化泵两套,一用一备。

为工作面配备BPW320-10M型喷雾泵两套,一用一备。

工作面排水设备选用两台BQS50-100/5-45型潜水泵。

(2)8103辅运顺槽排水设备选用BQS50-50/2-13/N 型潜水泵一台。

8103综采工作面及顺槽负荷统计表8103综采工作面电气设备选型表二、供电系统的选择确定工作面采用MG550/1220-WD型滚筒式采煤机为综合机械化采煤,为保证供电质量和安全,根据8103综采工作面巷道布置,按需用系数法计算变压器容量和台数。

综采工作面电源来自采区变电所10kV母线段,高压采用三路供电,采区变电所DJ33-01-018#高防敷设一路高压电缆MYPTJ-8.7/10-3*95+3*25/3+3*2.5-2600M至综采工作面DJ36-01-05#KBSG-2500/10/3.3/1.2YZ 负荷中心移变供采煤机、转载机、乳化泵、喷雾泵共计1965.5kW ,从采区变电所DJ33-01-022#高防敷设一路高压电缆MYPTJ-8.7/10-3*95+3*25/3+3*2.5-2600M至综采工作面DJ36-01-06#KBSG-2500/10/3.3YZ 负荷中心移变供刮板机、破碎机总功率1250kW 。

从采区变电所DJ33-01-019#高防开关馈出一路高压电缆MYPTJ-8.7/10-3*50+3*25/3+3*2.5-730M 至8103运输顺槽皮带机头DJ36-02-06#KBSGZY-630/1.2移动变电站供8103运输顺槽皮带和8103辅运顺槽电源总功率共计613kW 。

三、电气设备的选择和校验 1、变压器容量的选择按需要系数法计算变压器的容量:S T=Kx φcos e∑P Kx=0.4+0.6 ∑e dP P其中 S T -------工作面的电力负荷视在功率(kVA ); ∑e P -----工作面用电设备额定功率之和(kW ); cos Φ-----工作面的电力负荷的平均功率因数; Kx--------需要系数;Pd--------最大一台(套)电动机功率;(1)安装于8103综采工作面控制采煤机、转载机、乳化泵、喷雾泵、移动变电站选择:Kx=0.4+0.6×5.1965550=0.57S T=Kx φcos e ∑P =0.57×7.05.1965=1600kVA根据∑N S ≥S T ,上述负荷供电选用一台KBSG2500/10/3.3/1.2YZ 型负荷中心能满足要求。

(2)安装于8103综采工作面控制刮板输送机、破碎机的移动变电站选择:Kx=0.4+0.6×12501050=0.9 S T=Kx φcos e ∑P =0.9×7.01250=1607kVA根据∑N S ≥S T ,上述负荷供电选用一台KBSG2500/10/3.3/1.2YZ 型负荷中心能满足要求。

(3)安装于8103运输顺槽偏口控制顺槽皮带、水泵的移动变电站选择: S T =Kx φcos e ∑P =0.7×7.0613=613kVA根据《供电设计规范》输送机系数选0.6-0.7功率因数取0.7; 根据∑N S ≥S T ,选用一台KBSGZY630/10/1.2型移变能满足要求。

2、移动变电站高压开关的选择(1)配电装置额定电压:选定为10kV 。

(2)高压配电装置额定电流应大于变压器的最大长时工作电流。

变压器最大长时工作电流即额定电流I e 为:I e =Uee ⨯3S式中 S e —变压器额定容量,kV .A ; U e —变压器高压侧额定电压,kV 。

(3)DJ36-01-05移变高压开关的选择: 高压侧额定电流为I e =Uee ⨯3S =A14410KV3500kVA 2=⨯根据计算在采区变电所选择PBG-400/10Y 高防开关一台,移动变电站高压侧选择KBG-630/10Y 型高压真空配电装置。

(4)DJ36-01-06移变高压开关的选择 高压侧额定电流为I e =Uee ⨯3S =A14410KV3500kVA 2=⨯根据计算在采区变电所选择PBG-200/10Y 高防开关一台,移动变电站高压侧选择KBG-630/10Y 型高压真空配电装置。

(5)高压开关分断能力校验:短路参数按采区变电所出口短路容量100MkV ·A 计算,则其最大三相稳态短路电流为:3、移动变电站高压侧保护整定计算:(1)DJ36-01-05#KBSG-2500/10/3.3/1.2YZ 移变高压侧保护整定计算:总功率:1965.5kW ,最大单机功率:采煤机电机550kW 、平均功率因数A U S I 577310000*732.110*1003dd6)3(===cosΦ=0.7、需用系数Kx=0.57、可靠系数取1.2;①过载电流:I z=1.2*Kx*∑Φ=1.2×0.57××10×0.7)=110A I z取值110A②短路电流:Id=IQe+∑IeI Qe=Pd/3Ucosϕ=550/3*10*0.85=37A≈35AId=35*8+(110-35)=355A (由于变压器送电时会产生励磁涌流,短路值取过载电流的5倍)Id取值550A式中:Id-开关短路整定值;Iz-开关过载整定值;IQe-最大的电动机额定启动电流;∑Ie-其余电动机的额定电流之和;Kx--需用系数;1.2--可靠系数;∑P-负荷总功率;Pa-容量最大电机功率;cosϕ平均功率因数取值0.7 (2)DJ36-01-06#KBSG-2500/10/3.3YZ移变高压侧整定计算:总功率:1250kW,最大设备启动功率:刮板机电机2*525kW、平均功率因数0.7、需用系数Kx=0.9、可靠系数取1.2;①过载电流:I z=1.2Kx∑cosΦN=1.2×0.9×10×0.7)=110AI z取值110A②短路电流:Id=IQe+∑IeI Qe=Pd/3Ucosϕ=2*525/(3*10*0.85)=71AId=71*7+(91-71)=517A Id取值540A(3)3#KBSGZY-630/10/1.2移变高压侧整定计算:变压器容量为630kVA,电压等级为10kV,则根据P=3UIcosϕ式得过载电流:I z=∑Φ10=36A Iz取值36A由于变压器送电时会产生励磁涌流电流,短路整定值取180A;4、高压电缆选择与校验(1)向DJ36-01-05#KBSG2500/10/3.3/1.2YZ 型负荷中心高压电缆选用MYPTJ-8.7/10-3×95+3×25/3+3*2.5型矿用10kV 铜芯橡套双屏蔽电缆,截面95mm 2,从采区变电所到顺槽负荷中心移动变电站长度选择:L=KmLm=1.08*2400=2592m式中:L m——电缆敷设路径的长度,m ;K m——电缆弯曲系数,橡套电缆取1.08(查表)。

(2)按长时允许电流选择校验电缆截面:MYPTJ-8.7/10-3×95+3×25/3+3*2.5型矿用移动屏蔽监视型橡套软电缆其长时允许电流为I y =237A 、综采负荷中心移变DJ36-01-05#KBSG2500/10/3.3/1.2YZ 型移变总负荷1965.5kW ;Ie=∑P ee×10=113A I y =237A >Ie=113A(3)按经济电流密度校验高压电缆截面 查表经济电流密度按I j =2.25A/mm 2A j = I fh /I j =113/2.25=50mm 2<95mm 2因此所选高压电缆满足要求。

(4)按热效应校验电缆截面:① 短路参数按采区变电所出口短路容量100 kV ·A 计算,则其最大三相稳态短路电流为:根据设备参数得知采区变电所高防开关分断能力为12.5KA >5.77KA;② 按下式求得采区变电所到综采工作面移动变电站间高压电缆的截面即Amin=Id ³×tj ÷C=5773*0.5/93.4=30.9mm ²A U S I 577310000*732.110*1003dd6)3(===所需要的最小截面30.9mm²<95mm²,因此所选高压电缆满足要求。

(5)按电压损失校验电缆截面:取负荷的功率因数cosΦ=0.7,tanΦ=1.02①地面35kV变电站至中央变电所线路电压损失为:ΔU1%=1.49②中央变电所至采区变电所线路电压损失为:ΔU2%=1.28③采区变电所至综采移动变电站线路电压损失为:ΔU3%=1.68④ΔU%=ΔU1%+ΔU2%+ΔU3%=1.49+1.28+1.68=4.45⑤ 4.45<5 电压损失符合要求;根据公式计算:()NUtgXRLPU210%•+•=∆ϕ式中ΔU%---电压损失百分数;P----有功功率kW;L----电缆的长度m;R0----线路单位长度电阻(Ω/km);X0----线路单位长度电抗(Ω/km);U N----线路额定电压kV;(6)校验高压电缆两相短路电流和短路保护灵敏度高压电缆的阻抗值:35kV变电站至井下中央变电所高压电缆阻抗(电抗值参照电缆电抗表选取)R2=R0*L=0.118*1.85=0.218ΩX2=X0*L=0.09*1.85=0.166Ω中央配电所至采区变电所电缆阻抗:R3=R0*L=0.181*1.5=0.27ΩX3=X0*L=0.094*1.5=0.141Ω采区变电所至综采负荷中心移变电缆阻抗:R 4=R 0*L=0.217*2.6=0.564ΩX 4=X 0*L=0.069*2.6=0.18Ω∑R=R 1+R T+R 2+R 3+R 4=0.068+0.065+0.218+0.27+0.564=1.185Ω∑X=Xs+X 1+X T+X 2+X 3+X 4=0.469+0.895+1.0578+0.166+0.141+0.18=2.907Ω式中: R ——高压电缆每相电阻, Ω;X ——高压电缆每相电抗, Ω;R 0——高压电缆每相每公里电阻, Ω;X 0——高压电缆每相每公里电抗, Ω;L — —高压电缆长度,km ;M — 最小两相短路电流为:灵敏度校验:k m =I d (2)/I dz =1592/640=2.4>1.5符合要求。

相关文档
最新文档