稀土元素的发现、种类和用途
17种稀土元素名称及用途
17种稀土元素名称及用途镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。
铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
不仅能防紫外线,还可降低车内温度,从而节约空调用电。
从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。
美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。
目前领先的是法国罗纳普朗克公司。
(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。
铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。
如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。
稀土材料的应用简介
稀土矿的应用简介一、稀土矿的简介1、稀土的发现史从1794年发现元素钇,到1945年在铀的裂变物质中获得钷,前后经过151年的时间,人们才将元素周期表中第三副族的钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥17个性质相近的元素全部找到,把它们列为一个家族,取名稀土元素。
我国稀土品种全,17种元素除钷尚未发现天然矿物,其余16种稀土元素均已发现矿物、矿石。
2、资源储量分布我国稀土矿产主要集中在内蒙古白云鄂博铁-铌、稀土矿区,其稀土储量占全国稀土总储量的90%以上,是我国轻稀土主要生产基地。
即轻稀土主要分布在北方地区,重稀土则主要分布在南方地区,尤其是在南岭地区分布可观的离子吸附型中稀土、重稀土矿,易采、易提取,已成为我国重要的中、重稀土生产基地。
此外,在南方地区还有风化壳型和海滨沉积型砂矿,有的富含磷钇矿(重稀土矿物原料);在赣南一些脉钨矿床(如西华山、荡坪等)伴生磷钇矿、硅铍钇矿、钇萤石、氟碳钙钇矿、褐钇铌矿等重稀土矿物,在钨矿选冶过程中可综合回收,综合利用。
二、稀土的用途稀土(RE)常被冠以“工业味精”的美誉。
稀土元素因其具有独特的电子结构而表现出特殊的光、电、磁学等物理化学性质。
无论是稀土金属还是其化合物都有良好的应用价值。
1、传统领域中的稀土材料(1)稀土在农轻工中的应用稀土元素作为微量元素用于农业有2个优点:一是作为植物的生长、生理调节剂;二是稀土属低毒、非致癌物质,合理使用对人畜无害、环境无污染。
如添加稀土元素的硝酸盐化合物作为微量元素化肥施用于农作物可起到生物化学酶或辅助酶的生物功效,具有增产效果。
纺织业中:铈组元素(Eu以前的镧系元素)的氯化物或醋酸盐可提高纺织品的耐水性,并使织物具有防腐、防蛀、防酸等性能。
某些稀土化合物还可以作为皮革的着色剂或媒染剂,La、Ce、Nd的一些化合物可用作油漆的干燥剂,增强油漆的耐腐蚀性。
(2)稀土在冶炼工业中的应用稀土元素对O、S和某些非金属具有强亲和力,利用这一特点,将稀土用于炼钢中能净化钢液,能起到脱S和脱O的作用,其原理是加入钢中的稀土能结合钢中可能生成的MnS、Al2O3和硅铝酸夹杂物中的O和S形成化合物。
稀土元素的重要性及应用领域
稀土元素的重要性及应用领域稀土元素,这一名称或许对许多人来说并不陌生,但要确切地说出它们到底是什么以及在我们的生活中扮演着怎样至关重要的角色,可能就不是那么容易回答的问题了。
稀土元素是一组特殊的金属元素,包括镧系元素(镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)以及与镧系元素化学性质相似的钪和钇,一共 17 种元素。
它们之所以被称为“稀土”,并不是因为它们很稀少,而是因为它们在自然界中分布较为分散,且提取和分离的过程相对复杂。
稀土元素在现代科技和工业领域中具有不可替代的重要性。
首先,在高科技材料领域,稀土元素发挥着关键作用。
例如,钕铁硼永磁材料中就含有大量的钕元素,这种永磁材料具有极高的磁能积和矫顽力,被广泛应用于电机、风力发电、电动汽车等领域。
相比传统的磁体材料,钕铁硼永磁材料能够大大提高设备的效率和性能,使电机更加小型化、轻量化,同时降低能耗。
在电子信息领域,稀土元素也有着重要的应用。
铕、铽等稀土元素常用于制造彩色荧光粉,使得显示器和照明设备能够呈现出更加鲜艳、逼真的色彩。
此外,稀土元素还用于制造高性能的电容器、电阻器等电子元件,提高电子设备的稳定性和可靠性。
在军事领域,稀土元素更是具有战略意义。
稀土元素可以用于制造高性能的导弹、雷达、卫星等军事装备。
例如,稀土元素能够提高导弹的制导精度和射程,增强雷达的探测能力,提升卫星的通信质量和寿命。
在医疗领域,稀土元素也有其独特的用途。
某些稀土元素的化合物可以作为磁共振成像(MRI)的造影剂,帮助医生更清晰地观察人体内部的组织结构和病变情况。
在环保领域,稀土元素也能大展身手。
稀土催化剂可以用于汽车尾气净化,有效地减少有害气体的排放,降低环境污染。
稀土元素在新能源领域的应用也日益广泛。
随着全球对清洁能源的需求不断增长,稀土元素在太阳能电池、风力发电、新能源汽车等领域的重要性愈发凸显。
例如,在太阳能电池中,镧、铈等稀土元素可以提高电池的光电转换效率;在新能源汽车的电池中,稀土元素能够改善电池的性能和寿命。
稀土元素的发现、种类和用途
稀土元素的发现、种类和用途稀土一词是历史遗留下来的名称。
稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。
稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。
这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。
其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。
钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。
过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。
1.稀土种类镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)共15种元素。
与镧系的15个元素密切相关的:钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
2.稀土分类(1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆(2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组:(1)除钪之外(有的将钪划归稀散元素)(2)轻稀土组:为镧、铈、镨、钕、钷;(3)中稀土组:钐、铕、钆、铽、镝;(4)重稀土组:钬、铒、铥、镱、镥、钇。
3.由来及用途3.1.镧(La)"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。
稀土元素(研)资料课件
供需平衡状况
近年来,全球稀土元素供需状况 总体保持平衡,但未来随着新兴 产业的发展,需求还将继续增长。
市场价格波动
影响因素
稀土元素市场价格波动受多种因素影响,包 括全球供需状况、政策调整、技术进步等。
价格走势
近年来,稀土元素市场价格呈现波动上涨趋势,未 来随着需求的增长,价格仍有上涨空间。
溶剂萃取法
原理
利用不同物质在两种不混溶液体中的溶解度差异,将目标稀土元素从 一种溶剂转移到另一种溶剂中。
步骤
混合、搅拌、分离、回收。
优点
高效、选择性高、操作简便。
缺点
需要大量有机溶剂,可能产生环境污染。
离子交换法
原理 利用离子交换剂与溶液中的离子发生交 换反应,将目标稀土元素留在离子交换
剂上,从而实现分离。 优点
选择性。
润滑油
02
添加稀土元素可改善润滑油的性能,延长润滑油的使用寿命。
高分子合成
03
在合成高分子材料中加入稀土元素,可改善其热稳定性、光稳
定性和力学性能。
玻璃陶瓷
玻璃
添加稀土元素可改变玻璃的透光性、颜色和电学性能,制造出各 种特殊功能的玻璃。
陶瓷
在陶瓷材料中加入稀土元素,可改善其力学性能、热稳定性和电学 性能。
稀土元素(研)资料课 件
目录
CONTENTS
• 稀土元素简介 • 稀土元素提取技术 • 稀土元素在各领域的应用 • 稀土元素的环境影响 • 稀土元素的市场前景 • 我国稀土政策与法规
01 稀土元素简介
定义与特性
定义
稀土元素是指元素周期表中镧系元素 加上钪和钇共17种元素的总称。
元素周期表中的稀土元素
元素周期表中的稀土元素元素周期表是化学中非常重要的一项工具,它将化学元素按照原子序数和元素性质进行排列。
在这个表中,我们可以发现一组非常特殊的元素,被称为稀土元素。
稀土元素被广泛应用于各个领域,包括材料科学、电子工程、生物医学等。
本文将深入探讨元素周期表中的稀土元素及其应用。
一、稀土元素的基本概述稀土元素是指原子序数为57至71的元素,它们的电子结构特殊,拥有一系列独特的物理和化学性质。
稀土元素包括镧系元素和铈系元素两个系列。
镧系元素包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和镧系元素最后一个元素镧,共15个元素。
铈系元素包括铈、镪、钆、铽、镎、钔和铼,共7个元素。
虽然稀土元素在地壳中相对较为丰富,但由于提纯和分离过程的复杂性,使得它们被称为稀土。
稀土元素在自然界中分布广泛,主要存在于矿石和土壤中。
它们具有良好的化学稳定性和高度的磁性,因此被广泛应用于材料科学和电子工程领域。
另外,稀土元素还被用于催化剂、荧光材料、生物医学等众多领域。
二、稀土元素的应用领域1. 磁性材料稀土元素在磁性材料中发挥着重要的作用。
以镧系元素为代表的稀土元素具有高度的磁性,可以用于制造永磁材料,如永磁铁、永磁铁氧体等。
这些材料具有较高的磁力和磁导率,广泛应用于电机、发电机和声音设备等领域。
2. 光学材料稀土元素还可以用来制备各种光学材料,如荧光粉、荧光玻璃等。
这些材料可以发出特定波长的光,被广泛应用于荧光显示器、荧光灯和激光器等设备中。
稀土元素还具有较高的折射率和透光性,可以用于光学透镜和光学纤维等领域。
3. 催化剂稀土元素在催化反应中起到重要的作用。
它们具有良好的催化活性和选择性,可以用来催化各种化学反应。
例如,钆元素可以作为切割和钻孔工具中的催化剂,用于提高切割效率和降低切削温度。
4. 生物医学稀土元素在生物医学领域也有广泛的应用。
它们可以作为生物标记物,用于显影、检测和治疗。
例如,铒元素可以用来标记生物分子,如蛋白质和核酸,以追踪其在生物体内的运动和代谢过程。
稀土元素-稀土的应用
一.稀土元素的简介
二. 稀土元素的应用
稀土元素 的组成
稀土元素 的发现
稀土元素的 稀土元素的 化学性质 物理性质
稀土元素的组成
稀土元素:周期系ⅢB族中原子序数为 21、39和57~71的17种化学元素的统称。 其中原子序数为57~ 71的15种化学元 素又统称为镧系元素。 稀土元素包括钪、钇、镧、铈、镨、钕、 钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、 镥。
④ 对人体皮肤的作用
⑤对人体癌症及爱滋病毒的作用
谢谢啊!
稀土元素的重要化合物
①氢氧化物
②氧化物 ③碱性氧化物
④配合物
大部分稀土金属呈紧密六方晶格或面 心立方晶格结构,只有钐为菱形结构,铕为 体心立方结构。 具有4f0构型的La3+、Ce3+和4f14的Yb2+、 Lu3+,因无成单电子而呈反磁性,而具有 4f1~13构型的镧系元素及其化合物,则因含有 成单电子而表现顺磁性。
稀 土 元 素 的 发 现
稀土金属是芬兰学者加多林 (Johan Gado1in)在1794年发现的。 当时在瑞典的矿石中发现了矿物 组成类似“土”状物而存在的钇 土,且又认为稀少,便定名为
(Baxe Earth)。
①燃点低。 ②比其他金属元素都活泼。 ③ 氧化物稳定。
④氧化物熔点高,生成自由能负值大。
稀土是一种低毒性物质,其毒性与铁差 稀土有促进保护效应。大量的实验表明,稀 直接食用稀土元素(或离子)浓 不多,适量摄人,有助于提高机体的免疫力; 土可促进细胞的活性;对胰岛素细胞的分泌 度过大,可能是致癌、促癌的原因之 有调节作用,对胃粘膜起保护作用。 但是,大量补充则会造成对机体的危害。 一。然而取食于动植物,从而获取稀 从大量的动物实验中可以看出REC1 对鼠腺垂体
17种稀土元素特点及应用大全
稀土元素是化学元素周期表中的一组元素,它们的化学性质和物理性质十分相似,难以分离和提纯。
但是,由于它们特殊的磁性、光学和电学性质,稀土元素在现代科技中扮演着重要的角色。
本文将介绍17种稀土元素的特点及其在各个领域的应用。
1. 钕(Nd)- 钕是稀土元素中最常见的一种,它具有很强的磁性。
NdFeB磁体是目前最常用的永磁材料,广泛应用于电机、发电机、音响和磁选等各种领域。
2. 镨(Pr)- 镨是一种铁磁性稀土元素,它具有很好的氧化性能,常用于制作高温陶瓷、金属合金等材料。
3. 钆(Gd)- 钆是一种铁磁性金属,在核磁共振成像、核磁共振磁体和磁性材料方面有着重要应用。
4. 铽(Tb)- 铽是一种铁磁稀土元素,它的化合物可用于制造高温超导体、磁性材料、激光器材料等。
5. 镝(Dy)- 镝是一种铁磁稀土元素,其化合物可用于制备高温超导体、磁性材料、金属合金等。
6. 镝(Dy)- 镝是一种铁磁稀土元素,其化合物可用于制备高温超导体、磁性材料、金属合金等。
7. 镱(Tm)- 镱是一种稀土元素,其化合物可用于激光材料、半导体材料、核燃料等。
8. 镱(Yb)- 镱是一种铁磁稀土元素,其化合物可用于磁性材料、高温超导体、核燃料等。
9. 镧(La)- 镧是一种铁磁稀土元素,其主要化合物氧化镧可用于制备催化剂、磁性材料、光学玻璃等。
10. 铈(Ce)- 铈是一种铁磁稀土元素,其化合物可用于制备催化剂、磁性材料、汽车尾气净化催化剂等。
11. 镨(Pr)- 镨是一种铁磁稀土元素,其化合物可用于制备高温超导体、磁性材料、激光器材料等。
12. 钆(Gd)- 钆是一种铁磁稀土元素,其化合物可用于制备高温超导体、磁性材料、核磁共振成像材料等。
13. 铽(Tb)- 铽是一种铁磁稀土元素,其化合物可用于制备高温超导体、磁性材料、激光器材料等。
14. 镝(Dy)- 镝是一种铁磁稀土元素,其化合物可用于制备高温超导体、磁性材料、金属合金等。
稀土元素——发现小史
铽(Tb)
铽(Tb)1843年瑞典的莫桑德(Karl G.Mosander)通过对钇 土的研究,发现铽(Terbium)。
镝(Dy)
镝(Dy) 1886年,法国人波依斯包德莱成功地将钬分离成两个元素, 一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝 (dysprosium)。
钬(H0))
铈(Ce)
铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌 斯伯齐力、希生格尔 于1803年发现并命名的,以纪念1801年发现的小行星——谷神 星。 铈广泛应用于 (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大 量应用于汽车玻璃. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止 大量汽车废气排到空气中。 (3)硫化铈可以取代铅、镉等对环境 和人类有害的金属应用到颜料中,可对塑料着色.目前领先的是 法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激 光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医 学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有 铈。如抛光粉、储氢材料、热电材料、铈钨电 极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、 汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
钬(Ho)1879年,瑞典人克利夫发现了钬并以瑞典首都斯德哥尔 摩地名命名为钬(holmium)。
铒(Er)
铒(Er) 1843年,瑞典的莫桑德发现了铒元素(Erbium)。
铥(Tm)
铥(Tm) 铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维 亚(Scandinavia)的旧名Thule命名为铥(Thulium)。
钕(Nd)
钕(Nd)伴随着镨的诞生,钕元素也应运而生,钕元素 的到来活跃了稀土领域,在稀土领域中扮演着重要角色, 并且左右着稀土市场。 钕元素凭借其在稀土领域中的独特 地位,多年来成为市场关注的热点。
稀土元素的开采和利用
稀土元素的开采和利用稀土元素是指自然界中存在于极少量的、具有特殊化学和物理性质的17种元素。
由于这些元素在生产中拥有十分重要的应用价值,其开采和利用已成为产业界和科学界极为关注的话题。
然而,稀土元素的开采和利用不仅存在技术挑战,也涉及到环境和政策等多方面的问题。
一、稀土元素的应用与价值随着现代工业的发展,由稀土元素生产的磁性材料、催化剂、光学材料等甚至已经渗透到了我们日常生活的方方面面。
比如,镝元素能制作高强度的永磁材料,用于电动汽车和风力涡轮机等领域;铈元素被广泛应用于汽车尾气净化器,有助于降低尾气排放物的含量。
此外,稀土元素制成的颜料、药品和照片材料等也被广泛应用于人类文化、医疗和科学方面。
稀土元素的应用价值不仅在于它们的少量含量,更在于它们的独特性质。
由于每种稀土元素的原子量、结构、电子配对等特性各不相同,因此它们在化学、物理和光学方面具有独特的性质。
例如,镝元素在磁学中表现出较强的磁各向异性;铽元素在光学和磁学领域有着广泛的应用。
由于其价值得到了广泛认可,稀土元素的全球生产和消费量也在逐年上升。
根据美国地质调查局的数据,2018年全球稀土元素总产量为210,000吨,其中中国占据了70%的市场份额。
此外,其他稀土元素生产国家和地区包括澳大利亚、美国、卢旺达等,产量相比于中国较低。
二、稀土元素的开采和环境问题稀土元素的开采自然也吸引了众多开采商的关注。
然而,稀少的资源也造就了其开采的高成本,从而在一定程度上限制了其产量和发展。
此外,稀土元素的开采、提取和加工等过程不仅涉及到大量的能源和劳动力投入,还面临着环境保护问题。
稀土元素开采的过程中产生的化学废物和废水等可能造成环境污染。
稀土元素含量较低,因此需要大量的化学药品和水来提取。
这些废水和化学废物很难被处理和转化,不仅对地下水和土壤的污染产生长期的危害,还会影响航空、农业、渔业等相关生态环境。
此外,稀土元素开采所带来的生态环境问题也引起了人们的关注。
稀土知识、用途及其世界分布情况.pdf
稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝 (Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15 个元素密切相关的两个元素—钪(Sc)和钇(Y)共 17 种元素,称为稀土元素(Rare Earth)。
简称稀土(RE 或 R)。
稀土分类为:1) 轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。
2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇.稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。
应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。
在目前已发现的 250 多种稀土矿物和含稀土元素的矿物,适合现今选冶条件的工业矿物仅有 10 余种: 1)含铈族稀土(镧、铈、钕)的矿物:氟碳铈矿、氟碳钙铈矿、氟碳铈钙矿、氟碳钡铈矿和独居石。
2)富钐及钆的矿物:硅铍钇矿、铌钇矿、黑稀金矿。
3)含钇族稀土(钇、镝、铒、铥等)的矿物:磷钇矿、氟碳钙钇矿、钇易解石、褐钇铌矿、黑稀金矿。
稀土元素在地壳中丰度并不稀少,只是分散而已。
因此,虽然稀土的绝对量很大,但就目前为止能真正成为可开采的稀土矿并不多,而且在世界上分布极不均匀,主要集中在中国、美国、印度、前苏联、南非、澳大利亚、加拿大、埃及等几个国家,其中中国的占有率最高。
(1)中国占世界稀土资源的 41.36%,是一个名符其实的稀土资源大国。
稀土资源极为丰富,分布也极其合理,这为中国稀土工业的发展奠定了坚实的基础。
主要稀土矿有白云鄂博稀土矿、山东微山稀土矿、冕宁稀土矿、江西风化壳淋积型稀土矿、湖南褐钇铌矿和漫长海岸线上的海滨砂矿等等。
白云鄂博稀土矿与铁共生,主要稀土矿物有氟碳铈矿和独居石,其比例为3∶1,都达到了稀土回收品位,故称混合矿,稀土总储量 REO 为 3500 万吨,约占世界储量的 38%,堪称为世界第一大稀土矿。
一文搞懂17种稀土元素和用途,太全了!
一文搞懂17种稀土元素和用途,太全了!一个常用的比喻是,如果说石油是工业的血液,那稀土就是工业的维生素。
稀土是一组金属的简称,稀土元素(Rare Earth Elements,REE)从18世纪末叶开始陆续被发现,共有17种,包括化学元素周期表中的15种镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系元素密切相关的两个元素钪(Sc)和钇(Y),目前已被广泛应用于电子、石化、冶金等众多领域。
几乎每隔3-5年,科学家们就能够发现稀土的新用途,每六项发明中,就有一项离不开稀土。
中国稀土矿藏丰富,雄踞着三个世界第一:资源储量第一,占23%左右;产量第一,占世界稀土商品量的80%至90%;销售量第一,60%至70%的稀土产品出口到国外。
同时,中国还是唯一一个能够提供全部17种稀土金属的国家,特别是军事用途极其突出的中重稀土,中国占有的份额让人艳羡。
稀土是宝贵的战略资源,有“工业味精”“新材料之母”之称,广泛应用于尖端科技领域和军工领域。
据工业和信息化部介绍,目前稀土永磁、发光、储氢、催化等功能材料已是先进装备制造业、新能源、新兴产业等高新技术产业不可缺少的原材料,还广泛应用于电子、石油化工、冶金、机械、新能源、轻工、环境保护、农业等。
早在1983年,日本就出台了稀有矿产战略储备制度,其国内83%的稀土来自中国。
再看美国,它的稀土储量仅次于中国,但是他的稀土都是轻稀土,稀土分为重稀土和轻稀土,重稀土是很贵重的,轻稀土开采起来很不合算,被业内人士成为假稀土,美国稀土进口量的80%来自中国。
邓小平同志曾说:“中东有石油,中国有稀土。
”其话语的弦外之音不言而喻。
稀土不但是世界上1/5高科技产品必备的“味精”,更是未来中国在世界谈判桌上的一张强有力的底牌筹码。
保护并科学利用好稀土资源,不让宝贵的稀土资源盲目贱卖出口西方国家,成为近年来诸多仁人志士呼吁的一项国家战略。
稀土是什么 有什么用途 组成元素有哪些
稀土是什么?有什么用途?组成元素有哪些稀土是什么?稀土是一种矿物资源。
1794年芬兰化学家加多林从一块形似沥青的重质矿石中分离出第一种稀土“元素”——钇(yǐ)土。
因为当时发现的稀土矿物非常少,当时只能用化学法制得少量不溶于水的氧化物,历史上习惯地把这种氧化物称为“土”,因而得名稀土。
稀土是十七种化学金属元素的总称。
通常被分为轻稀土和重稀土两类。
轻稀土包括:镧(lán)、铈(shì)、镨(pǔ)、钕(nǚ)、钷(pǒ)、钐(shān)、铕(yǒu)。
重稀土包括:钆(gá)、铽(tè)、镝(dī)、钬(huǒ)、铒(ěr)、铥(diū)、镱(yì)、镥(lǔ)、钪(kàng)、钇(yǐ)。
稀土有多“稀有”?1、不可再生稀土是不可再生资源。
在勘探不充分的情况下,目前全世界现有稀土可开采近1000年,意味着世界范围内稀土不那么稀缺。
2、矿藏分布稀土矿藏主要集中在中国、美国、印度、南非、澳大利亚、加拿大、埃及等几个国家。
中国是世界稀土资源储量最大的国家,也是唯一能够提供全部17种稀土金属的国家,主要产区有白云鄂博稀土矿、山东微山稀土矿、冕宁稀土矿等。
其中,白云鄂博矿是世界最大的稀土矿山,占国内稀土资源储量的90%以上,号称“稀土之都”。
3、开采提炼虽然稀土没有黄金白银等贵重金属那么稀有,但由于稀土通常和其他矿物质混合在一起,故而开采和提炼成本高昂。
中国对全球稀土的影响力恰恰就集中于产量上。
“中国稀土之父”“中国稀土之父”是带领中国走进稀土强国、“国家最高科技奖”获得者徐光宪,他研究出来的“稀土串级萃取理论”,使中国稀土产量跃居世界首位,实现了稀土市场的“中国冲击”!稀土能做什么?稀土元素由于原子结构特殊,电子能级异常丰富,具有许多优异的光、电、磁、核等特性,加之化学性质十分活泼,能与其它元素组成品类繁多、功能千变万化、用途各异的新型材料,被称作为“现代工业的维生素”、“工业黄金”、“新材料宝库”、“万能之土”。
稀土元素的研究和应用
稀土元素的研究和应用稀土元素是指地壳中含量比较稀少的一组元素,它们包括灯石族和釹系元素。
这些元素在人类的生存和发展中发挥着重要的作用,包括在特种合金、催化剂、光电材料、磁性材料、储氢材料、医药和环境保护等方面的应用,因此稀土元素的研究和应用一直备受关注。
稀土元素的研究历史可追溯到19世纪初。
1815年,发现一种新的矿物——铈矾土石。
1869年,瑞典的化学家Moseley利用X射线的特性发现了稀土元素原子序数与X射线谱线的关系,为稀土元素的系统研究奠定了基础。
20世纪50年代,因为其在核技术和电子学中的应用,稀土元素的研究得到了更大的重视。
目前,世界上最主要的稀土矿产国家是中国。
中国的稀土元素储量占全球的80%,且中国独有一些较为重要的稀土元素。
然而,中国的稀土资源开采量已经达到了最大限度,同时世界范围内对稀土元素的需求不断增长,这也促进了稀土元素的研究和应用。
在工业上,稀土元素的应用占据了举足轻重的地位。
例如,稀土元素在特种合金中的应用,能够提高材料的耐高温、耐腐蚀、耐磨损等性能,适用于航空、航天、汽车等领域。
稀土元素在催化剂中的应用,能够促进化学反应,提高催化效率,适用于炼油、化工、制药等领域。
稀土元素在光电材料中的应用,能够激发电子能级,提高材料的发光效率、电导率和磁学性能,适用于显示、照明、通信等领域。
除此之外,稀土元素在医药和环境保护等领域也有着重要的应用。
稀土元素能够被用来制备多肽荧光探针,以提高细胞成像和诊断的精度。
稀土元素还能够用于水处理和减少污染物的排放,提高环境保护效果。
稀土元素的研究不仅涉及到基础科学,还涉及到材料科学、化学、天然资源学等多个领域。
例如,稀土元素的催化剂研究需要了解催化剂的表面结构和活性中心等基础科学知识,还需要利用表征技术和计算方法对催化剂进行优化和设计。
稀土元素的光电材料研究需要了解能带结构和电子结构等基础科学知识,还需要利用化学方法和物理方法对材料进行制备和性能调控。
稀土知识点大全
稀土知识点大全稀土是指具有特殊性质和广泛应用价值的一组化学元素。
它们在现代科技和工业领域中起着至关重要的作用。
本文将逐步介绍一些与稀土相关的知识点。
一、稀土的发现与命名稀土元素最早在18世纪末被科学家们发现。
由于它们在自然界中分布较稀少,因此被命名为“稀土”。
稀土一共有17个元素,包括镧系和钆系两个系列。
它们分别是:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)以及钪(Sc)、钡(Ba)、铷(Rb)、钯(Y)。
二、稀土的特性与应用稀土元素具有独特的化学和物理性质,使得它们在众多领域中得到广泛应用。
1.磁性材料稀土元素具有良好的磁性,能够制备出强磁性材料。
这些磁性材料被广泛应用于电机、发电机、计算机硬盘驱动器、声音设备等多个领域。
2.光学材料稀土元素在光学材料中有着重要的作用。
它们能够发出特定波长的光,对于激光器、光纤通信等领域非常关键。
3.催化剂稀土元素在化学催化剂中扮演重要角色。
它们能够加速化学反应速率,提高工业生产效率。
稀土催化剂广泛应用于石油加工、化学合成等领域。
4.环境保护稀土元素在环境保护方面也具有重要意义。
它们在废水处理、脱硫、脱氮等环境治理技术中发挥着重要作用。
5.新能源材料稀土元素在新能源材料领域具有潜力。
它们能够应用于太阳能电池、燃料电池等新能源技术中,提高能源利用效率。
三、稀土资源与开发利用稀土资源在全球分布不均,主要集中在中国、澳大利亚、美国等少数国家。
中国是全球稀土产量最大的国家,几乎占据了全球稀土市场的主导地位。
稀土资源的开发利用面临着一些挑战。
首先,稀土开采对环境造成一定的污染。
其次,稀土的提取和分离工艺相对复杂,需要高耗能和高成本。
为了解决这些问题,各国都在积极研究和开发新的稀土资源和替代技术。
同时,通过加强国际合作,共同推动稀土资源可持续开发利用。
元素周期表中的稀土元素及其性质与应用研究
稀土元素的电子结构:以镧系元素为例,介绍其电子排布和能级特征
能级分裂:稀土元素的能级分裂现象及其原因
稀土元素的化学性质:介绍稀土元素的化学性质,如氧化还原性、酸碱性等
稀土元素的物理性质:介绍稀土元素的物理性质,如熔点、沸点、密度等
稀土元素的应用
PART 04
工业应用领域
稀土元素在化工工业中的应用:制造催化剂、颜料等
稀土元素在自然界中的循环对环境有重要影响
稀土元素的开采和加工过程中会产生大量的废气和废水,对环境造成污染
稀土元素的使用过程中也会产生一些有害物质,如放射性物质等,对环境和人体健康造成威胁
稀土元素的循环利用可以减少对环境的影响,提高资源的利用率
回收与利用
稀土元素在自然界中的循环:包括开采、提取、分离、回收等环节
稀土元素的磁性:许多稀土元素具有磁性,这使得它们在磁性材料和电子设备中有广泛的应用。
稀土元素的光学性质:一些稀土元素具有特殊的光学性质,如发光和激光性能,这使得它们在光电子和光学器件中有重要的应用。
稀土元素的电化学性质:稀土元素具有独特的电化学性质,如电导率和电化学活性,这使得它们在电池和燃料电池中有广泛的应用。
镧系元素:包括镧、铈、镨、钕等15种元素
稀土元素的分类:根据其原子序数、电子层结构和化学性质进行分类
发现与命名
发现:18世纪末,瑞典化学家莫桑得尔发现了稀土元素
命名:根据元素的化学性质和原子序数进行命名
稀土元素种类:共有17种稀土元素,包括镧、铈、镨等
发现过程:科学家们通过化学分析、光谱分析等方法,逐步发现了这些元素
稀土元素在生物医学领域的应用还可以用于治疗疾病,如钕、镨等元素可以用于制造药物,用于治疗癌症等疾病。
稀土元素的应用与研究
稀土元素的应用与研究稀土元素,是指化学元素周期表中镧系元素和钇、铈、铕、钆和铽等元素的总称,共有17种。
稀土元素具有丰富的物理、化学、光电学、磁学、生物学等性质,在生产和科学研究中有广泛的应用价值。
1. 稀土元素的应用领域1.1 电子、电器行业稀土元素作为加工电器、磁性材料等方面的重要材料,常常被用在手机、电脑、电视机等电子产品中的液晶显示屏、荧光粉、电子陶瓷、电流控制器、超级磁体等方面。
在电池、液晶显示和LED等光电子领域,稀土元素也扮演着重要的角色。
1.2 环保领域稀土元素的化合物对污水、土壤、空气等污染物具有较好的去除和吸附作用,可以用于活性炭、水处理、针刺滤料等。
1.3 能源领域稀土元素在能源领域也有广泛的应用,例如用作永磁体、高压开关、蓄电池等。
1.4 医疗保健领域利用稀土元素的发光性质,开发出一系列生物荧光试剂,其在生物医学成像、DNA检测等方面有大应用。
2. 稀土元素的研究稀土元素作为一种重要的新材料,其应用前景和开发价值不可小觑。
为了更好地开发和应用稀土元素,科学家们进行了大量的研究。
2.1 合成和制备稀土元素稀土元素的合成和制备是稀土元素研究的关键。
研究人员通过精细的化学合成技术,逐渐改进稀土元素的制备方法,发展和应用了一系列新的制备工艺和技术。
2.2 稀土元素的物理和化学性质稀土元素具有许多特殊的物理和化学性质。
例如在特定的温度和压力下,稀土元素会表现出超导、弹性、磁性等性质。
通过对这些特性的深入研究,可以更好地了解稀土元素的应用价值。
2.3 稀土元素的生物学性质稀土元素对生物体内的作用机理及其生物学过程的影响,也成为当前稀土元素研究的重要分支之一。
在遗传学和生物化学领域,稀土元素的研究可以开发出针对癌症、肺病等多种疾病的药物。
3. 稀土元素的未来发展虽然稀土元素在现有的应用领域上已经有了广泛的应用,但是新的发展方向正在不断涌现。
随着稀土元素技术的不断进步和开发,它们可能会在更多的领域发挥作用。
稀土元素的研究与应用
稀土元素的研究与应用稀土元素是指针对于稀土矿物(如氧化物、磷酸盐等)出现的元素组,在现代社会中具有举足轻重的地位。
从初期的探索研究到现在的广泛应用,稀土元素在高科技、绿色能源、新材料等领域发挥着日益重要的作用。
本文将介绍稀土元素的历史、研究现状、应用前景以及可能的风险。
一、稀土元素的历史稀土元素的历史可以追溯到19世纪初,法国化学家Charles James将从一种矿物中提取出一组新元素。
此后相继发现了稀土氧化物、二氧化铈等物质,广泛应用于石油催化剂、磁性材料、气体发光等领域中。
20世纪的中期,由于稀土元素在核技术、电子技术以及环保等领域中的广泛应用,稀土成为了当时的热门话题。
现在,随着绿色能源和高科技产业等的快速发展,稀土元素的价值和地位也日益提高。
二、稀土元素的研究现状稀土元素在理论基础研究和应用研究方面都有很高的水平。
近年来,稀土元素在太赫兹光学、元器件制造、磁性材料、天然气处理等领域的应用迅速发展,取得了显著的科学研究成果。
同时,也有不少稀土元素的研究难题困扰着学术界,例如提高稀土污染物治理的技术、稀土储氢材料的研发等领域尚待开发。
三、稀土元素的应用前景稀土元素在现代工业、高科技产业和生态环保产业等领域中都有广泛的应用前景。
例如,磁性材料、太赫兹光学、元器件制造和新能源汽车等领域都需要应用稀土元素。
同时,稀土元素在医药和农业方面的应用也卓有成效,例如医用含汞血压计和火车避雷器中都含有稀土元素。
在环保领域中,稀土元素也有广泛的用途。
例如,稀土在制造节水喷头和环保水处理中可以发挥重要作用。
因此,稀土元素在多个领域的应用前景十分广阔。
四、可能的风险稀土元素的广泛应用给环境带来了潜在不利影响。
生产和利用稀土元素过程中所产生的废物及其处理方式,会对环境和人类健康带来风险。
例如,稀土矿渣经过处理后将直接排放到空气和水中,从而导致重金属的污染。
此外,由于稀土供应来源集中在中国等少数国家,稀土市场的供求失衡也可能带来一些长期的风险。
17种稀土元素
17种稀土元素稀土元素是指周期表中的15个镧系元素和2个铯系元素,它们具有相似的化学性质和特殊的物理性质。
稀土元素在许多领域都有广泛的应用,包括电子技术、磁性材料、催化剂、光学材料等。
下面将分别介绍这17种稀土元素及其应用。
1. 镧(La):镧是稀土元素中最常见的元素之一,主要用于制备镧系合金和光学玻璃。
它还可以用于石油催化裂化催化剂、金属氢化物电池等。
2. 铈(Ce):铈在催化剂、储氢合金、磁性材料等方面有重要应用。
此外,铈还可以用于制备光学玻璃、陶瓷材料等。
3. 镨(Pr):镨主要应用于制备镨系合金和磁性材料。
它还可以用于石油催化裂化催化剂、光学玻璃等。
4. 钕(Nd):钕是稀土元素中最常见的元素之一,主要应用于制备磁性材料,如永磁材料。
此外,钕还可以用于制备玻璃、陶瓷材料等。
5. 钐(Sm):钐主要用于制备钐系合金和磁性材料。
它还可以用于制备储氢合金、光学玻璃等。
6. 铕(Eu):铕主要用于制备光学材料和荧光材料。
它还可以用于制备磁性材料、储氢合金等。
7. 钆(Gd):钆主要应用于制备磁性材料和核反应堆材料。
它还可以用于制备光学玻璃、陶瓷材料等。
8. 铽(Tb):铽主要用于制备磁性材料和荧光材料。
它还可以用于制备光学玻璃、陶瓷材料等。
9. 镝(Dy):镝主要应用于制备磁性材料和液晶显示器。
它还可以用于制备光学玻璃、陶瓷材料等。
10. 铒(Er):铒主要用于制备光学玻璃和激光材料。
它还可以用于制备磁性材料、陶瓷材料等。
11. 铥(Tm):铥主要用于制备激光材料和光学玻璃。
它还可以用于制备磁性材料、陶瓷材料等。
12. 镱(Yb):镱主要用于制备激光材料和光学玻璃。
它还可以用于制备磁性材料、陶瓷材料等。
13. 镥(Lu):镥主要用于制备光学玻璃和激光材料。
它还可以用于制备磁性材料、陶瓷材料等。
14. 铯(Cs):铯是稀土元素中唯一的两个铯系元素之一,主要应用于制备光电器件和光学玻璃。
此外,铯还可以用于制备磁性材料、催化剂等。
稀土元素的重要性及应用领域
稀土元素的重要性及应用领域稀土元素是指元素周期表中的15个元素,包括镧系和钇系元素。
尽管其名称中带有"稀"字,但它们实际上并不稀少,只是分布较为广泛但以稀散矿物形式存在。
稀土元素在各个领域有着广泛的应用,对于现代科技和工业的发展起到了重要的推动作用。
一、稀土元素的重要性1. 稀土元素在材料科学中的重要性稀土元素具有独特的电子结构和化学性质,使其在材料科学领域有着广泛的应用。
例如,镧系元素镧可用于制造金属合金,提高其力学性能;钇可以增强铝合金的强度和耐热性;镨可用于制作永磁材料等。
稀土元素还可以用于制造光学玻璃、陶瓷材料、电子材料等,促进了材料科学的发展。
2. 稀土元素在环境保护中的应用稀土元素在环境保护中发挥着重要的作用。
稀土元素可以用于制造催化剂,用于净化废气和废水中的有害物质。
此外,稀土元素还可以用于制造节能灯、LED等照明设备,减少能源消耗,降低环境污染。
3. 稀土元素在电子信息领域的应用稀土元素在电子信息领域具有重要的应用价值。
稀土元素的磁性和光学性质使其成为制造光纤通信和显示器件的重要材料。
稀土元素的特殊发光性能使其成为制造LED、激光器和荧光体等器件的关键原料。
此外,稀土元素还可用于制造电子器件、储存器件等。
4. 稀土元素在医疗领域的应用稀土元素在医疗领域有着广泛的应用。
例如,锶可用于治疗骨质疏松症;铈可用于治疗某些免疫系统疾病;镧可用于治疗肾脏疾病等。
稀土元素的荧光特性还可用于医学成像,帮助医生进行疾病诊断和治疗。
二、稀土元素在应用领域的具体案例1. 稀土元素在汽车工业中的应用稀土元素在汽车工业中有着重要的应用。
例如,镧系元素镧和铈可以用于制造汽车催化转化器,减少废气中有害物质的排放;钕铁硼永磁材料可用于制造电动汽车的电机和发电机等。
2. 稀土元素在新能源领域中的应用稀土元素在新能源领域具有广泛的应用。
例如,钕铁硼永磁材料可用于制造风力发电机和电动汽车的电机;镝铁硼磁体材料可用于制造高效电机和发电机等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀土元素的发现、种类和用途稀土一词是历史遗留下来的名称。
稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。
稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。
这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。
其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。
钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。
过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。
1.稀土种类镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)共15种元素。
与镧系的15个元素密切相关的:钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。
简称稀土(RE或R)。
2.稀土分类(1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆(2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组:(1)除钪之外(有的将钪划归稀散元素)(2)轻稀土组:为镧、铈、镨、钕、钷;(3)中稀土组:钐、铕、钆、铽、镝;(4)重稀土组:钬、铒、铥、镱、镥、钇。
3.由来及用途3.1.镧(La)"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。
镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。
她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧。
在国外,科学家把镧对作物的作用赋与"超级钙"的美称。
3.2.铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
铈的广泛应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。
不仅能防紫外线,还可降低车内温度,从而节约空调用电。
从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.。
(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。
美国在这方面的消费量占稀土总消费量的三分之一强。
(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。
目前领先的是法国罗纳普朗克公司。
(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。
铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。
如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
3.3.镨(Pr)大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。
"镨钕"希腊语为"双生子"之意。
大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。
这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。
镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。
镨的广泛应用:(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。
(2)用于制造永磁体。
选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。
广泛应用于各类电子器件和马达上。
(3)用于石油催化裂化。
以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。
我国70年代开始投入工业使用,用量不断增大。
(4)镨还可用于磨料抛光。
另外,镨在光纤领域的用途也越来越广。
3.4.钕(Nd)伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。
钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。
金属钕的最大用户是钕铁硼永磁材料。
钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。
钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。
阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。
钕还应用于有色金属材料。
在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。
另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。
在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。
钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。
随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
3.5.钷(Pm)1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。
钷为核反应堆生产的人造放射性元素。
钷的主要用途有:(1)可作热源。
为真空探测和人造卫星提供辅助能量。
(2)Pm147放出能量低的β射线,用于制造钷电池。
作为导弹制导仪器及钟表的电源。
此种电池体积小,能连续使用数年之久。
此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。
3.6.钐(Sm)1879年,波依斯包德莱从铌钇矿得到的"镨钕"中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。
这种永磁体有SmCo5系和Sm2Co17系两类。
70年代前期发明了SmCo5系,后期发明了Sm2Co17系。
现在是以后者的需求为主。
钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。
此外,氧化钐还用于陶瓷电容器和催化剂方面。
另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏蔽材料和控制材料,使核裂变产生巨大的能量得以安全利用。
3.7.铕(Eu)1901年,德马凯(Eugene-Antole Demarcay)从"钐"中发现了新元素,取名为铕(Europium)。
这大概是根据欧洲(Europe)一词命名的。
氧化铕大部分用于荧光粉。
Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。
现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。
再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。
近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。
氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
3.8.钆(Gd)1880年,瑞士的马里格纳克(G.de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
钆在现代技革新中将起重要作用。
它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。
(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。
(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。
(4)在无Camot循环限制时,可用作固态磁致冷介质。
(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。
(7)另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。
氧化钆还可用于制造电容器、x射线增感屏。
在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
3.9.铽(Tb)1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。
铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。
主要应用领域有:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。
(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。
(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。
(4)特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这种变化可以使一些精密机械运动得以实现。
铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节机翼调节器等领域。
3.10.镝(Dy)1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中"难以得到"的意思取名为镝(dysprosium)。