PLC与接近、光电开关的接线问题(有图的)

合集下载

PLC与接近、光电开关的接线问题

PLC与接近、光电开关的接线问题

PLC与接近、光电开关的接线问题PLC与接近、光电开关的接线问题一:引言PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。

因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。

目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点可选型,根据需要单端共点可以接负极也可以接正极。

于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。

二:输入电路的形式 1、输入类型的分类PLC的数字量输入端子,按电源分直流与交流,按输入接口分类单端共点输入与双端输入,单端共点接电源正极为SINK,单端共点接电源负极为SRCE。

2、术语的解释 SINK漏型 SOURCE源型SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。

国内对这两种方式的说法有各种表达: 1)、根据TI 的定义,sink Current 为拉电流,source Current为灌电流, 2)、按接口的单端共点的极性,共正极与共负极。

这样的表述比较容易分清楚。

3)、SINK为NPN接法,SOURCE 为PNP接法。

4)、SINK为负逻辑接法,SOURCE为正逻辑接法。

5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效。

这种表述的笔者接触的最多,也是最容易引起混淆的说法。

NPN和PNP接近开关和PLC接线问题

NPN和PNP接近开关和PLC接线问题

N P N和P N P接近开关和P L C接线问题------------------------------------------作者xxxx------------------------------------------日期xxxxNPN和PNP接近开关和PLC接线问题果到现在还不能搞清的话,可以使用OMRON的PLC。

NPN和PNP都可以接OMRON PLC。

我对NPN和PNP的认识PNP与NPN型传感器其实就是利用三极管的饱和和截止,输出两种状态,属于开关型传感器。

但输出信号是截然相反的,即高电平和低电平。

PNP输出是低电平0,NPN输出的是高电平1。

PNP与NPN型传感器(开关型)分为六类:1、NPN-NO(常开型)2、NPN-NC(常闭型)3、NPN-NC+NO(常开、常闭共有型)4、PNP-NO(常开型)5、PNP-NC(常闭型)6、PNP-NC+NO(常开、常闭共有型)PNP与NPN型传感器一般有三条引出线,即电源线VCC、0V线,out信号输出线。

1、NPN类NPN是指当有信号触发时,信号输出线out和电源线VCC连接,相当于输出高电平的电源线。

对于NPN-NO型,在没有信号触发时,输出线是悬空的,就是VCC电源线和out线断开。

有信号触发时,发出与VCC电源线相同的电压,也就是out 线和电源线VCC连接,输出高电平VCC。

对于NPN-NC型,在没有信号触发时,发出与VCC电源线相同的电压,也就是out线和电源线VCC连接,输出高电平VCC。

当有信号触发后,输出线是悬空的,就是VCC电源线和out线断开。

对于NPN-NC+NO型,其实就是多出一个输出线OUT,根据需要取舍。

2、PNP类PNP是指当有信号触发时,信号输出线out和0v线连接,相当于输出低电平,ov。

对于PNP-NO型,在没有信号触发时,输出线是悬空的,就是0v线和out 线断开。

有信号触发时,发出与OV相同的电压,也就是out线和0V线连接,输出输出低电平OV。

接近开关与PLC连接方法

接近开关与PLC连接方法

接近开关与PLC连接方法一、接近开关的连接方法接近开关分为两线制、三线制、四线制三种,其中两线制的连线方式最为简单,和普通按钮开关的接线方式一样,如果是三线制的传感器,那就要区分NPN和PNP,四线制的传感器就是多出一根OUT 输出线,可以同时输出两组信号。

NPN型和PNP型接线开关会有三根出线,分别为棕色VCC、蓝色0V,黑色OUT信号线,连线规则是棕正蓝负黑信号,下图是各个不同类型的传感器的接线说明以及内部结构原理,PLC输入端的漏型和源型决定了选用传感器的类型。

二、NPN、PNP区分外观辨别法接近开关出厂都会标明传感器的类型,在铭牌处还会标注NO或者NC,在购买的时候要认清楚标识,并且选择适合自己输入的类型;电源检测法电源检测法是第一种方法行不通的时候进行检测,准备万用表、开关电源,把三线制接近开关按照棕正蓝负的原则进行接线,空出黑线,连接以后会出现两种状态:①未触碰被测物检测灯亮为常闭②未触碰被检测物检测灯不亮为常开。

当没有触碰检测物,使用万用表直流电压档测量黑线与电源0V,测量值为0,检测物体以后电压值为24V,那么就是PNP;反之就是NPN。

三、PLC漏型和源型PLC品牌众多,但是无论哪一个品牌输入端都会有漏型输入方式和源型输入方式之分,下面就以三菱FX3U系列PLC为例介绍一下。

漏型输入是指电流经过外部开关,从模块的通道流入到模块内部;再经过内部电路,从公共端流出的接线方式。

在漏型输入中,公共端作为电源负极(共阴极),接线方式公共端S/S与24V连接,输入开关接入0V与X输入点;源型输入是指电流从模块的公共端流入,从模块的输入通道流出的接线方式。

源型输入的公共端作为电源正极(共阳极),接线方式公共端S/S与0V连接,输入开关接入24V和X输入点。

四、接线开关与PLC的连接方式无论是NPN型还是PNP型接入PLC的方式都相同,都为棕正蓝负黑信号,但是在选型的时候要注意PLC的输入类型,根据输入类型来选择传感器类型。

PLC与这7种外围设备的连接方式,一看就懂!

PLC与这7种外围设备的连接方式,一看就懂!

PLC与这7种外围设备的连接方式,一看就懂!技成培训技成培训网是一家致力于制造业远程教育品牌。

专注14年,专业课程涵盖了电工基础、PLC、变频器、伺服、人机界面、机械制图、数控、机器人等精品课程,利用全新线上模式,打造出制造业线上高端互动学习交流平台。

14年教育,300万学员共同选择!324篇原创内容公众号PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。

正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。

01PLC与主令电器类设备的连接图1是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。

图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。

若是分组式输入,也可参照图下图的方法进行分组连接。

▲图1 PLC与主令电器类输入设备的连接02PLC与旋转编码器的连接旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。

因此可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。

不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。

▲图2 旋转编码器与PLC的连接如图2所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。

编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。

编码器的电源可以是外接电源,也可直接使用PLC 的DC24V电源。

电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。

编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。

有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。

03PLC与传感器的连接传感器的种类很多,其输出方式也各不相同。

PLC与接近开关、光电开关的接线问题资料

PLC与接近开关、光电开关的接线问题资料

PLC与接近开关、光电开关的接线问题一:引言PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。

因此,输入端的信号只是驱动光电合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。

目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。

由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。

二:输入电路的形式1、输入类型的分类PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。

2、术语的解释SINK漏型SOURCE源型SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。

国内对这两种方式的说法有各种表达:1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流,2)、由按接口的单端共点的极性,共正极与共负极。

这样的表述比较容易分清楚。

3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。

4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。

PLC与常见设备的连接方式

PLC与常见设备的连接方式

PLC与常见设备的连接方式PLC与输入元件的连接PLC常见的输入元件有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。

正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。

与主令电器元件连接1如下图所示是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。

图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。

若是分组式输入,也可参照下图的方法进行分组连接。

与旋转编码器连接2旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。

因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。

不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。

如上图所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。

编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。

编码器的电源可以是外接电源,也可直接使用PLC 的DC24V电源。

电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。

编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。

有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。

与传感器连接3传感器的种类很多,其输出方式也各不相同。

当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC输入端并联旁路电阻R,如下图所示。

当漏电流不足lmA时可以不考虑其影响。

式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。

系列3——光电开关与PLC之间的接线

系列3——光电开关与PLC之间的接线
光电开关与PLC之间的接线图
光电开关与plc接线和接近开关与plc接线相同npn型三线开关引出的3根线棕色线接plc传感器输出电源24v端子蓝色线接plc传感器输出电源负极端子com黑色线为控制信号线接plc输人端子x图中为x0
系列3——光电开关与PLC之间的接线
光电开关是利用被检测物体对红外光束的遮光或反射,由同步回路选通而检测物体的有无, 其物体不限于金属, 对所有能反射光线的物体均可检测。光电开关与PLC接线和接近开关与PLC接线相同,NPN型三线开关引出的3根线, 棕色线接PLC传感器输出电源+24V端子, 蓝色线接LC传感器输出电源负极端子COM, 黑色线为控制信号线, 接PLC输人端子x(图中为X0)。

接近开关与plc连接

接近开关与plc连接
这接近开关与PLC接线很简单,接近开关是三线的:棕色线接PLC输入端DC24+,兰色线接PLC输入端的COM,黑色线接你需要控制的输入端上;接近开关是二线的:兰色线接PLC输入端的COM,黑色线接你需要控制的输入端上就可以了.
1、二线接法是直接串联在电路中,就和普通开关一样(即一个触点),只是这个触点分正负而已。
棕色接 + 24伏 ,蓝色接 0伏 ,黑线是输出信号线.
三线的接近开关有PNP ,NPN 之分. PNP输出高电平(正电压) .NPN输出低电平(0伏)
PNP的 黑线(正电压)对蓝色接(0伏)为输出信号,带负载.
NPN的 黑线(0伏)对棕色(+24伏)为输出信号,带负载.
按极性分,三极管有PNP和NPN两种,而二极管有P型和N型之分。多数国产管用xxx表示,其中每一位都有特定含义:如 3 A X 31,第一位3代表三极管,2代表二极管。第二位代表材料和极性。A代表PNP型锗材料;B代表NPN型锗材料;C为PNP型硅材料;D为NPN型硅材料。第三位表示用途,其中X代表低频小功率管;D代表低频大功率管;G代表高频小功率管;A代表高频大功率管。最后面的数字是产品的序号,序号不同,各种指标略有差异。注意,二极管同三极管第二位意义基本相同,而第三位则含义不同。对于二极管来说,第三位的P代表检波管;W代表稳压管;Z代表整流管。上面举的例子,具体来说就是PNP型锗材料低频小功率管。对于进口的三极管来说,就各有不同,要在实际使用过程中注意积累资料。
常用的进口管有韩国的90xx、80xx系列,欧洲的2Sx系列,在该系列中,第三位含义同国产管的第三位基本相同。

2、三线中分别是棕、蓝和黑三色,听人家说棕是+、蓝是-、黑是信号线,这个我这样理解不知道对不对:

PLC与接近开关

PLC与接近开关

接近开关与PLC连接输入传感器为接近开关时,只要接近开关的输出驱动力足够,漏型输入的PLC输入端就可以直接与NPN集电极开路型接近开关的输出进行连接。

如图当采用PNP集电极开路型接近开关时,由于接近开关内部输出端与0V间的电阻很大,无法提供电耦合器件所需要的驱动电流,因此需要增加“下拉电阻”。

如图。

增加下拉电阻后应注意,此时的PLC内部输入信号与接近开关发信状态相反,即接近开关发信时,“下拉电阻”上端为24V,光电耦合器件无电流,内部信号为“0”;未发信时,PLC内部DC24V与0V之间,通过光电耦合器件、限流电阻、“下拉电阻”经公共端COM构成电流回路,输入为“1”。

下拉电阻的阻值主要决定于PLC输入光电耦合器件的驱动电流、PLC内部输入电路的限流电阻阻值。

通常情况下,其值为1.5—2KΩ,计算公式如下:公式:R≤[(Ve-0.7)/Ii]-Ri式中:R——下拉电阻(KΩ)Ve——输入电源电压(V)Ii——最小输入驱动电流(mA)Ri——PLC内部输入限流电阻(KΩ)公式中取发光二极管的导通电压为0.7V。

源型输入的PLC输入端就可以直接与PNP集电极开路型接近开关的输出进行连接。

如图相反,当采用NPN集电极开路型接近开关时,由于接近开关内部输出端与24V间的电阻很大,无法提供电耦合器件所需要的驱动电流,因此需要增加“上拉电阻”。

如图,增加上拉电阻后应注意,此时的PLC内部输入信号与接近开关发信状态相反,即接近开关发信时,“上拉电阻”下端为0V,光电耦合器件无电流,内部信号为“0”;未发信时,PLC内部DC24V与0V之间,通过光电耦合器件、限流电阻、“上拉电阻”经公共端COM构成电流回路,输入为“1”。

上拉电阻的阻值主要决定于PLC输入光电耦合器件的驱动电流、PLC内部输入电路的限流电阻阻值。

通常情况下,其值为1.5—2KΩ,其计算公式与下拉电阻计算公式相同。

PLC与光电开关接线

PLC与光电开关接线
一:引言
PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。
目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。
另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。
注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值2.7KΩ。
四:外部输入元件
1:无源干接点(按钮开关、行程开关、舌簧磁性开关、继电器触点等)
无源干接点比较简单,接线容易。不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型。这里不重复介绍。
NPN型当传感器有检测信号VT导通,输出端OUT的电流流向负极,输出端OUT电位接近负极,通常说的高电平翻转成低电平。
PNP型当传感器有检测信号VT导通,正极的电流流向输出端OUT,输出端OUT电位接近正极,通常说的低电平翻转成高电平。

初学者必看!PLC与常见设备连接方式

初学者必看!PLC与常见设备连接方式

初学者必看!PLC与常见设备的连接方式plc常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。

正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。

1、PLC与主令电器类设备的连接图1是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。

图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。

若是分组式输入,也可参照图下图的方法进行分组连接。

图1 PLC与主令电器类输入设备的连接2、 PLC与旋转编码器的连接旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。

因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。

不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。

图2 旋转编码器与PLC的连接如图2所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。

编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。

编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。

电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。

编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC的输入端连接,连接时要注意PLC输入的响应时间。

有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。

3、 PLC与传感器的连接传感器的种类很多,其输出方式也各不相同。

当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC输入端并联旁路电阻R,如图3所示。

当漏电流不足lmA时可以不考虑其影响。

图3 PLC与两线式传感器的连接式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。

光电开关接线图

光电开关接线图

1接近开关有两线制和三线制之区别,三线制接近开关又分为NPN型和PNP型,它们的接线是不同的;请见下图所示:
2两线制接近开关的接线比较简单,接近开关与负载串联后接到电源即可;
3三线制接近开关的接线:红棕线接电源正端;蓝线接电源0V端;黄黑线为信号,应接负载;而负载的另一端是这样接的:对于NPN型接近开关,应接到电源正端;对于PNP型接近开关,则应接到电源0V端;
4接近开关的负载可以是信号灯、继电器线圈或可编程控制器PLC的数字量输入模块;
5需要特别注意接到PLC数字输入模块的三线制接近开关的型式选择;PLC数字量输入模块一般可分为两类:一类的公共输入端为电源0V,电流从输入模块流出日本模式,此时,一定要选用NPN型接近开关;另一类的公共输入端为电源正端,电流流入输入模块,即阱式输入欧洲模式,此时,一定要选用PNP型接近开关;千万不要选错了;
6两线制接近开关受工作条件的限制,导通时开关本身产生一定压降,截止时又有一定的剩余电流流过,选用时应予考虑;三线制接近开关虽多了一根线,但不受剩余电流之类不利因素的困扰,工作更为可靠;
7有的厂商将接近开关的“常开”和“常闭”信号同时引出,或增加其它功能,此种情况,请按产品说明书具体接线;。

PLC光电开关、编码器三极管接线详图

PLC光电开关、编码器三极管接线详图

说明1:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,PNP编码器接法如图所示。 说明2:HSCO 模式10 的接法 说明3:HSCO 模式10 的接法,A、B、Z分别接I0.0、I0.1、I0.2
!
" #$%


þ



Ï[Ì«þ

欧姆龙E3Z光电开关接线图详细
说明:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,NPN光电三极管接法如图所示。
说明1:右上角M L+为PLC CPU单元工作电源用电接入端,分别接直流开关电源的负极与正极。 说明2:每一路输出端子驱动能力为0.75A,而常用DC24V中间继电器线圈一般为1.8W也就是75ma,所以可以直接接。 说明3:直流中间继电器一般有正负极之分,连接的时候主意正负极,接反会无法恒常使用。 说明4:右上角模块接地,是真正的接地可以与交流接地一起接地,不要接零线,接 PE. 说明5:其它M接地,接开关电源的接地即可形成完整的回路。 说明6:输入部分有限流电阻,并且有两个相反方向的发光二极管,所以,输入部分无极性限制,NPN、PNP光电开关都可以接。 说明7:分组是为了减小公共输入端M电流,防止烧坏。 不使用的组可以不接。
说明:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,PNP光电开关接法如图所示。
说明:HSCO 模式10 的接法,A、B、Z分别接I0.0、I0.1、I0.2
说明1:输入部分有两个相反方向的发光二极管,所以,输入部分无极性限制,输入端子的公共接线端子M接正负都可以,NPN编码器接法如图所示。 说明2:HSCO 模式10 的接法 说明3:HSCO 模式10 的接法,A、B、Z分别接I0.0、I0.1、I0.2

PLC与这7种设备的连接方式,一看就懂!

PLC与这7种设备的连接方式,一看就懂!

PLC与这7种设备的连接方式,一看就懂!PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、拨码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。

正确地连接输入和输出电路,是保证PLC安全可靠工作的前提。

1、PLC与主令电器类设备的连接图1是与按钮、行程开关、转换开关等主令电器类输入设备的接线示意图。

图中的PLC为直流汇点式输入,即所有输入点共用一个公共端COM,同时COM端内带有DC24V电源。

若是分组式输入,也可参照图下图的方法进行分组连接。

▲图1 PLC与主令电器类输入设备的连接2、 PLC与旋转编码器的连接旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号)。

因些可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC的高速计数器对其脉冲信号进行计数,以获得测量结果。

不同型号的旋转编码器,其输出脉冲的相数也不同,有的旋转编码器输出A、B、Z三相脉冲,有的只有A、B相两相,最简单的只有A相。

▲图2 旋转编码器与PLC的连接如图2所示是输出两相脉冲的旋转编码器与FX系列PLC的连接示意图。

编码器有4条引线,其中2条是脉冲输出线,1条是COM端线,1条是电源线。

编码器的电源可以是外接电源,也可直接使用PLC的DC24V电源。

电源“-”端要与编码器的COM端连接,“+ ”与编码器的电源端连接。

编码器的COM端与PLC输入COM端连接,A、B两相脉冲输出线直接与PLC 的输入端连接,连接时要注意PLC输入的响应时间。

有的旋转编码器还有一条屏蔽线,使用时要将屏蔽线接地。

3、 PLC与传感器的连接传感器的种类很多,其输出方式也各不相同。

当采用接近开关、光电开关等两线式传感器时,由于传感器的漏电流较大,可能出现错误的输入信号而导致PLC的误动作,此时可在PLC输入端并联旁路电阻R,如图3所示。

当漏电流不足lmA时可以不考虑其影响。

▲图3 PLC与两线式传感器的连接式中:I为传感器的漏电流(mA),UOFF为PLC输入电压低电平的上限值(V),RC为PLC的输入阻抗(KΩ),RC的值根据输入点不同有差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PLC与接近、光电开关的接线问题一:引言PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。

因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。

目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。

由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。

二:输入电路的形式1、输入类型的分类PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。

2、术语的解释SINK漏型SOURCE源型SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。

SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。

国内对这两种方式的说法有各种表达:1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流,2)、由按接口的单端共点的极性,共正极与共负极。

这样的表述比较容易分清楚。

3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。

4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。

5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。

这种表述的笔者接触的最多,也是最容易引起混淆的说法。

接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。

对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。

以上的情况只是针对,传感器是属于常开的状态下。

目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。

因此用户在选型上与供应商配合上经常产生偏差。

另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。

原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。

并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。

SINK漏型、SOURCE源型在下文有详细图解描述。

3、按电源配置类型3.1、直流输入电路如图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器内部LED,VD1(接口指示)到COM端形成回路,光电耦合器内部接收管接受外部元件导通的信号,传输到内部处理;这种由直流电提供电源的接口方式,叫直流输入电路;直流电可以由PLC内部提供也可以外接直流电源提供给外部输入信号的元件。

R2在电路中的作用是旁路光电耦合器内部LED的电流,保证光电耦合器LED不被两线制接近开关的静态泄漏电流导通。

3.1、交流输入电路如图2,交流输入电路要求外部输入信号的元件为无源的干接点或交流有源的无触点开关接点,它与直流接口的区分在光电耦合器前加一级降压电路与桥整流电路。

外部元件与交流电接通后,电流通过R1,C2经过桥整流,变成降压后的直流电,后续电路的原理与直流的一致。

交流PLC主要适用相对环境恶劣,,布线技改变动不大等场合;如接近开关就用交流两线直接替代原来行程开关。

4:按端口类型4.1单端共点(Comcon)数字量输入方式为了节省输入端子,单端共点输入的结构是在PLC内部将所有输入电路(光电耦合器)的一端连接在一起接到标示为COM的内部公共端子(internal comcon terminal),各输入电路的另一端才接到其对应的输入端子X0、X1、X2、....,com共点与N个单端输入就可以做N个数字量的输入(N+1个端子),因此我们称此结构为"单端共点"输入。

用户在做外部数字量输入组件的接线时也需要同样的作法,需要将所有输入组件的一端连接在一起,叫输入组件的的外部共线(external comcon wire);输入组件的另一端才接到PLC的输入端子X0、X1、X2、....。

如果COM为电源24V+(正极),外部共线就要接24V-(负极),此接法称SINK(sink Current 拉电流)输入方式;也称之PLC接口共电源正极。

如果COM为电源24V-(负极),外部共线就要接24V+(正极),此接法称SRCE(source Current 灌电流)输入方式;也称之PLC接口共电源负极。

SINK(sink Current 拉电流)输入方式,可接NPN型传感器,即X端口与负极相连。

SRCE(source Current 灌电流)输入方式,可接PNP型传感器。

即X端口与整机极相连。

为了适应各地区的使用习惯,内部公共端子有的厂家的PLC是采用S/S端子,此端子可以与电源的24V+(正极)或24V-(负极)相连,结合外部共线接线变化使PLC可以SINK(sink Current 拉电流)输入方式,可接NPN 型传感器和SRCE(source Current 灌电流)输入方式,可接PNP型传感器。

较采用COM端的PLC更灵活。

S/S端子的发展是为了适用日系与欧系PLC混合使用工控场合,起到通用的作用,S/S端子也称之SINK/SRCE可切换型。

(外部输入组件可以为按钮开关、行程开关、舌簧开关、霍尔开关、接近开关、光电开关、光幕传感器、继电器触点、接触器触电等开关量的元件。

)4.1.1 SINK(sink Current 拉电流)输入方式●单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。

如图3:4.1.2 SRCE(source Current 灌电流)输入方式●单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。

如图4:4.1.3 SINK/SRCE可切换输入方式S/S端子与COM端不同的是,COM是与内部电源正极或负极固定相连,S/S端子是非固定相连的,根据需要才与内部电源或外部电源的正极或者负极相连。

●单端共点SINK输入接线(内部共点端子S/S→24V+,外部共线→24V-)。

●单端共点SRCE输入接线(内部共点端子S/S→24V-,外部共线→24V+)。

4.2.4:当有源输入元件(霍尔开关、接近开关、光电开关、光幕传感器等)数量比较多,消耗功率比较大,PLC内置电源不能满足时,需要配置外置电源。

根据需求可以配24VDC,一定功率的开关电源。

外置电源原则上不能与内置电源并联,根据COM与外部共线的特点,SINK(sink Current 拉电流)输入方式时,外置电源与内置电源正极相连接;SRCE(source Current 灌电流)输入方式时,外置电源与内置电源负极相连接。

4.2.5:简单判断SINK(sink Current 拉电流)输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式。

共正极的光藕合器,可接NPN型的传感器。

SRCE(source Current 灌电流)输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式。

共负极的光藕合器,可接PNP型的传感器。

4.2.4:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入。

我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书。

4.2、超高速双端输入电路主要用于硬件高速计数器(HHSC)的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式(Line-Drive)。

如果工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC的单端SINK或者SRCE接法。

4.2.1、双输入端双线驱动方式(Line-Drive)。

4.2.2、5VDC的单端SINK或者SRCE接法。

4.2.3、24VDC的单端SINK或者SRCE接法。

注:24VDC供电的传感器,在输入回路上需要串联限流电阻,R1为10Ω,R2为2KΩ,不串联限流电阻,将烧毁接口回路,限流电阻取值2.7KΩ。

四:外部输入元件1:无源干接点(按钮开关、行程开关、舌簧磁性开关、继电器触点等)无源干接点比较简单,接线容易。

不存在电源的极性,压降等因素,上图3-6中的输入元件这是此类型。

这里不重复介绍。

2:有源两线制传感器(接近开关、有源舌簧磁性开关)有源两线接近开关分直流与交流,此传感器的特点就是两根线,传器输出端导通后,为了保证电路正常工作需要一个保持电压来维持电路工作,通常在3.5-5V的压降,静态泄露电流要小于1mA,这个指标很重要;如果过大,在接近开关没检测信号时,就使PLC的输入端的光电耦合器导通。

我公司的LJK系列两线制接近开关静态泄露电流控制在0.35-0.5mA之间适应各类型PLC。

直流两线制接近开关分二极管极性保护与桥整流极性保护,前者在接PLC时需要注意极性,后者就不需要注意极性。

有源舌簧磁性开关主要用在汽缸上做位置检测,由于需要信号指示,内部有双向二极管回路,因此也不需要注意极性;交流两线制接近开关就不需要注意极性。

如图10:2.1、单端共点SINK输入接线(内部共点端子COM→24V+,外部共线→24V-)。

如图112.2、单端共点SRCE输入接线(内部共点端子COM→24V-,外部共线→24V+)。

如图12:2.3、S/S端子接法参考图5-图6以及图11-图12。

3:有源三线传感器(电感接近开关、电容接近开关、霍尔接近开关、光电开关等)直流有源三制线接近开关与光电开关输出管使用三极管输出,因此传感器分NPN和PNP输出,有的产品是四线制,有双NPN或双PNP,只是状态刚好相反,也有NPN和PNP结合的四线输出。

相关文档
最新文档