高分子的分子量分布表征

合集下载

高分子物理---第四章 分子量与分子量分布

高分子物理---第四章 分子量与分子量分布
i i i
T c0
n Kc n M
1 Kc Mn
(2) 气相渗透法(VPO)

通过间接测定溶 液的蒸气压降低 值而得到溶质分 子量的方法
溶液
T 溶剂
T Ax2 n2 x2 n1 n2
n2 n2 n1 n2 , x2 n m/ M n1 n2 n1

假设聚合物试样的总质量为m, 总物质的量为 n, 不同分子量分子的种类用 i 表示
第 i 种分子的分子量为Mi , 物质的量为ni , 质量为mi , 在整 个试样中所占的摩尔分数为xi , 质量分数为wi , 则有:
n
i
n,
m
i
m
ni xi , n
mi wi m
x
i
1,
P
P T
1 1 T , P P T
V G G 1 而 n n P n V1 T 1 T P T P 1 T 1
M Mn
2 n


2
2 M n M w 1 n Mn
多分散系数: Polydispersity coefficient Mw Mz d or d Mn Mw
单分散 Monodispersity
4.2 聚合物分子量的测定





化学方法 Chemical method 端基分析法 热力学方法 Thermodynamics method 沸点升高,冰点降低,蒸气压下降,渗透压法 光学方法 Optical method 光散射法 动力学方法 Dynamic method 粘度法,超速离心沉淀 及扩散法 其它方法 Other method 电子显微镜,凝胶渗透色谱法

高聚物结构与性能的答案

高聚物结构与性能的答案

高聚物结构与性能试题参考答案一、名词解释(2.5×12 =30分)构型:由化学键决定的原子基团间的空间排列方式分子链柔顺性:高分子链能够改变其构型的性质高斯链:又名高斯线团,是末端距分布符合Gauss分布函数的线团。

熔限:高分子晶体的熔融发生在一个温度范围内,称为熔限。

多分散指数:描述高分子的分子量多分散性大小的参数,通常是Mw/Mn或Mz/Mw取向:高分子的链段、整链或其晶体结构沿外力方向所作的优先排列。

粘弹性:高分子固体的力学性质兼具纯弹性和纯粘性的特征,称为粘弹性。

溶度参数:定义为(CED)1/2,用于指导非极性聚合物的溶剂选择。

冷拉:高分子材料在拉伸条件下,发生应力屈服,出现细颈、细颈扩展所导致的大形变行为。

增韧:即增加聚合物材料韧性,所采用的技术路线有弹性体和刚性粒子增韧力学损耗:高分子材料在动态力学条件下,应力与应变出现滞后所导致的机械能损耗银纹:由于应力或环境因素的影响,聚合物表面所产生的银白色条纹二、简答题(8×5=40 分)1.分别写出顺丁橡胶、聚丙烯、聚异丁烯、聚甲醛、聚氯乙烯的结构式,比较其玻璃化温度的高低,并说明原因。

2.高聚物熔体的流动机理是什么?其流动行为上有什么特征?答:流动机理:高分子链的重心移动采用高分子链段的协同跃迁的方式完成,通常称为“蠕动”。

熔体流动的特征有三:1,高粘度,缘自高分子巨大的分子量;2,剪切变稀:高分子链受剪切作用时,发生构象变化。

3,弹性效应:高分子流动变形中包含可逆的构象变化,导致其表现出Barus效应、爬杆效应等现象。

3.何为θ溶液?θ条件下,Huggins参数取何值?此时溶液中高分子链的构象有何特征?答:处于θ状态,即高分子链段间作用等于高分子链段与溶剂分子作用的状态的高分子溶液,称为θ溶液。

此时,Huggins参数为1/2;溶液中高分子链的构象与同温度条件下的高聚物本体的非晶区构象相同。

4.请说明聚乙烯、尼龙-66和交联顺丁橡胶溶解行为上的差异。

分子量分布的测定

分子量分布的测定

8.1.4
分子量分布的一般测定方法
加入沉淀剂使其分相。当达到平衡时,把沉淀剂分离出来,在继续向 溶液中加入沉淀剂,就可以达到对高聚物进行分级的目的。 当然也可采用逆过程,即溶解分级或升温分级来完成这一过程。
3. 上述两类方法操作繁琐且费时,实际上得到的数据都是离散 型数据,因此,当前最好的方法就是利用高分子流体力学体积的不同 测定分子量分布,即凝胶渗透色谱法。 本章即重点介绍凝胶渗透色谱法测定高聚物的分子量及其分布。
8.1.1 测定高聚物分子量分布的意义
高分子材料的加工性能,不仅与高聚物的平均分子量有关,而且也与 分子量分布宽度有关。 分子量分布宽,成膜性差,抗应力开裂能力降低 (可以认为是不同分子量高聚物的混合物); 要求窄分布。 是高聚物的基本特征之一 用于表征聚合物的链结构 是决定高分子材料性能的基本参数之一
Mw = Mz
∫f(M)MdM ∫f(M)M2dM = ——————— ∫f(M)MdM
Mη = {∫f(M)MαdM }1/α
8.1.2
高聚物的统计平均分子量
有多种测定高聚物平均分子量的方法。例如

用化学反应测定聚合物的端基数; 利用高聚物的物化性质(高分子稀溶液的热力学性质——沸点上 升、冰点下降及渗透压); 利用高聚物的动力学性质(超速离心沉降、粘度); 利用高聚物的光学性质(光散射);
质 量 分 数
分子量
离散型分子量分布图
8.1.3
分子量分布的表示方法
W(M)
另一种图解法是采用连续分布曲 线。高聚物的微分分布曲线中,横坐 标为分子量M,是连续变量,当纵坐标 用分子量的重量分数时,得到的曲线 是重量分布曲线;采用分子量的摩尔 数时,得到的为数量分布曲线。 也可用积分曲线表示连续曲线。 当纵坐标用累积重量分数(或累积摩 尔分数)表示,称为积分重量分布 (或积分数量分布)曲线。

高分子物理第四章 聚合物的分子量与分子量分布

高分子物理第四章 聚合物的分子量与分子量分布

分子量分布宽度
第四章
聚合物的分子量与分子量分布
分子量分布宽度
分布宽度指数
n M Mn
2


2
n
Mw Mn 1 M n
2
w M Mw
2

M
2 n
2 w
Mz 1 M w
Mw
Mn

Mz
Mw
通过实验分别测定若 干不同浓度溶液的渗 透压π,用π/c对c作图 将得到一条直线,直 线的截距可以求得分 子量 M ,斜率可以求 得A2
第四章
聚合物的分子量与分子量分布

某种聚合物溶解于两种溶剂 A和B中,渗透压π和浓度c的关系
如图所示: (1)当浓度c→0时,从纵轴上的截距能得到什么? (2)从曲线A的初始直线段的斜率能得到什么? (3)B是良溶剂还是劣溶剂?
w
i
i
1
mi ni M i
分子量的 离散分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
间断函数变为连续函数,则得到
分子量的 微分分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
聚合物分子量积分分布函数
分子量的 积分分布
第四章
聚合物的分子量与分子量分布
聚合物的分子量
微分分布函数与积分分布函数之间的关系
大粒子Zimm图
第四章
聚合物的分子量与分子量分布
聚合物分子量的测定方法
粘度法-粘均分子量
液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏 性,粘度是表征液体流动时受内摩擦的大小。 高分子的 分子量影响 其在溶液中 的形态,进 而会影响其 溶液粘度。 第四章 聚合物的分子量与分子量分布

聚合物分子量及分子量分布表征方法——原理及应用

聚合物分子量及分子量分布表征方法——原理及应用

Melacular Weight Error(%)
70
60
50
40
30
20
10
0
0.00 0.01 0.02 0.03 0.04 0.05 0.06
Flow Rate Error(ml/min)
Influence of flow rate on Mw
1/31/2023 8:12 PM
23
Waters515 Pump
• 流动相不能腐蚀仪器部件,影响仪器使 用寿命;
1/31/2023 8:12 PM
38
5.4.3 样品制备
1/31/2023 8:12 PM
39
5.4.3.1 干燥
• 样品必须经过完全干燥,除掉水 分、溶剂及其它杂质。
1/31/2023 8:12 PM
40
5.4.3.2 溶解时间
• 允许充分的溶解时间使聚合物完 全经过溶胀再溶解的过程,分子 质量越大,所需要的溶解时间越 长。
12
5.4 凝胶渗透色谱(GPC)
• 测定聚合物的相对分子质量
• 聚合物的相对分子质量分布
• 是目前技术发展最完善,适用性最广的 一种方法。
1/31/2023 8:12 PM
13
主要内容
• 一、GPC定义及原理 • 二、仪器配置及流程 • 三、样品制备 • 四、数据处理 • 五、应用
1/31/2023 8:12 PM
1/31/2023 8:12 PM
24
进样器
• 手动进样器(manual syringe injection) • 自动进样器(Automatic sample)
1/31/2023 8:12 PM
25
Waters717 AutoSample

高分子材料的表征

高分子材料的表征

工作原理
• X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有 连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的粒子 (原子、离子或分子)所产生的相干散射将会发生光的干涉作用,从而使得 散射的X射线的强度增强或减弱。由于大量粒子散射波的叠加,互相干涉而产 生最大强度的光束称为X射线的衍射线。满足衍射条件,可应用布拉格公式: 2dsinθ=nλ应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于 X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射 线的波长,进而可在已有资料查出试样中所含的元素。
小的在后面(即淋洗时间长)。自试样进柱到被淋洗出来,所接受到
的淋出液总体积称为该试样的淋出体积。当仪器和实验条件确定后, 溶质的淋出体积与其分子量有关,分子量愈大,其淋出体积愈小。
应用领域
• 主要研究对象是通用树脂材料的分子量及其分布,如聚丙 烯、聚乙烯等。由于在常温下很难找到适合的能溶解这些 样品的溶剂,制备可用于凝胶分析的溶液系统。现在GPC
• 化学结构不同但相对分子质量相近的物质,不可能通过凝胶色谱法达
到完全的分离纯化的目的。凝胶色谱不能分辨分子大小相近的化合物, 相对分子质量相差需在10%以上才能得到分离。
凝胶渗透色谱的测试原理
• 凝胶具有化学惰性,它不具有吸附、分配和离子交换作用,让被测量 的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的 路径有粒子间的间隙(较大)和粒子内的通孔(较小)。当聚合物溶 液流经色谱柱时,较大的分子被排除在粒子的小孔之外,只能从粒子 间的间隙通过,速率较快;而较小的分子可以进入粒子中的小孔,通 过的速率要慢得多。经过一定长度的色谱柱,分子根据相对分子质量 被分开,相对分子质量大的在前面(即淋洗时间短),相对分子质量

高分子的分子量和分子量分布ppt课件

高分子的分子量和分子量分布ppt课件

15
1.2.2 高分子分子量的测定方法
2023/12/22
高分子物理
16



高聚物分子量大小以及结构的不同,所采用
的测量方法将不同;
不同方法所得到的平均分子量的统计意义及
适应的分子量范围也不同;
由于高分子溶液的复杂性,加之方法本身准
确度的限制,使测得的平均分子量常常只有
数量级的准确度。
2023/12/22
高分子物理
17
类 型
方 法
适用范围
化学法
端基分析法
3×104以下
Mn
绝对
冰点降低法
5×103以下
Mn
相对
沸点升高法
3×104以下
气相渗透法
3×104以下
膜渗透法
2×104~1×106
Mn
绝对
光散射法
1×104~1×107
Mw
相对
热力学法
光学法
动力学法
色谱法
2023/12/22
超速离心沉降平衡法 1×104~1×106
基和端羧基,以计算分子量。
2023/12/22
高分子物理
20
⑵计算公式:
W
M
n
ne
n
Z
W Z
M
ne
——试样重量
W
n——试样摩尔数
n——试样中被分析的端基摩尔数
e
Z——每个高分子链中端基的个数
⑶ 特点:



①可证明测出的是 Mn
②对缩聚物的分子量分析应用广泛
③分子量不可太大(<3万),否则误差太大
N i/ M i
i 1

高分子化学名词解释

高分子化学名词解释

第一章绪论(Introduction)高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

重复单元(repeating unit):聚氯乙稀分子链可以看作结构单元多次重复构成,因此括号内的化学结构也可称为重复单元或链节(chain element)。

聚合度(degree of polymerigation):重复单元的数目n,表征聚合物分子量大小的一个物理参数。

分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。

分子量分布指数(多分散系数): D=1 均一分子量 D>1 分子量多分散性多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。

加聚反应(addition polymerigation):通过打开环或双键、三键互相联结起来而形成聚合物的反应。

聚合过程中无小分子副产物生成。

缩聚反应(polycondensation):缩聚反应通常是经由单体分子的官能团间的反应,在形成缩聚物的同时,伴有小分子副产物的生成。

链(增长)式聚合(链式聚合,chain (growth) polymerigation):烯类单体的加聚反应,绝大多数属于链增长聚合反应。

反应过程中,反应体系始终由单体、高相对分子质量聚合物和微量引发剂组成,没有中间产物,单体转化率与反应时间无关。

逐步(增长)聚合(step growth polymerigation):逐步聚合没有活性中心,它是通过一系列单体上所带的能相互反应的官能团间的反应逐步实现的。

绝大多数缩聚反应以及合成聚氨酯的聚加成反应等等都是逐步增长聚合反应。

超高分子量聚乙烯的分子量及其分布的表征技术超高分子量聚乙烯

超高分子量聚乙烯的分子量及其分布的表征技术超高分子量聚乙烯

超高分子量聚乙烯的分子量及其分布的表征技术超高分子量聚乙烯(UHMWPE)一般是指相对分子质量在150万以上的聚乙烯。

大分子主要由亚甲基组成,分子链上基本不含极性基团,分子结构上没有支链和双键等。

这赋予了超高分子量聚乙烯具有其它常规分子量聚乙烯所不具备的优越的机械性能。

由于其具有很多优异的性能,如抗冲击性、耐磨损性、耐化学腐蚀性、耐低温性、耐应力开裂性、抗粘附、自身润滑性等。

随着加工工艺的研究和进步,已经扩大到军用,医用等高附加值的新产品领域。

传统测定超高分子量聚乙烯的方法为粘度法。

粘度法设备简单,操作技术容易掌握,所侧定的分子量的范围很宽且有一定的精确度,但实验条件控制不好,直接影响超高分子量的测定,得出实验结果又相差很大。

以下就针对粘度法测定超高分子量聚乙烯的影响因素作一探讨。

1.温度的影响超高分子量聚烯烃溶液的粘度随温度的升高而降低,其原因是高分子溶液的分散相粒子彼此纠缠形成网状结构的聚集体,温度愈高时,网状结构愈易破坏,故其粘度下降。

为了得到好的结果,必须在恒温下进行操作,严格控制温度变化不超过±0.5℃,如温度超过这个变化范围或有较大的改变时,影响测定的精确度,致使在作图时缺乏线性关系。

2.浓度的影响超高分子量聚乙烯溶液的粘度和浓度的关系,符合Huggins-Fouss公式的线性关系,即:外推c→0时,在纵坐标上的截距,即得到较准确的特性粘度值。

式中:为增比粘度,为相对粘度。

理论上溶液越稀,更符合无限稀释情况,但溶液太稀,溶剂和溶液的流出时相差较小,会引来较大的实验误差,而且要考虑超高分子量聚乙烯溶液在粘度计壁上的吸附所产生浓度的改变。

故溶液的起始浓度太稀不行.如起始浓度过大,与的实验直线在浓度大处发生向上弯曲,影响线性的外推,从而影响数值。

3.陈化时间的影响超高分子量聚乙烯溶液即使不受外界因素的影响,其粘度也随时间的延长而改变,从一些实验结果得知,陈化时间短,粘度较小,误差较大,这可能是由于聚乙烯还来不及形成网状结构所致。

高分子化学讲义四

高分子化学讲义四

因此应注意:
一般测得的高分子的分子量都是平均分子量; 聚合物的平均分子量相同,但分散性不一定相同。 分子量分布(molecular weight distribution, MWD) 不同分子量的分子所占的比例不同,所以高分子化合物存 在一个分子量分布的问题。分子量分布表征聚合物的多分散程度。
3
天然高分子 的直接利用 天然高分子 的化学改性
淀粉、蛋白质、棉麻丝、竹、木等
天然橡胶的硫化, 硝化纤维的合成等
高 分 子 合 成 高 分 子 时 代
缩聚反应,自由基、配位、离子聚合等
24
高分子化学
1.7 高分子化合物发展简史
Hermann Staudinger : 把“高分子”这个概念引进科学领域, 并确立了高分子溶液的粘度与分子量之间的关系(1953年诺贝尔 奖)。 Carothers : 建立缩聚反应理论。 Karl Ziegler, Giulio Natta : 乙烯、丙烯配位聚合 (1963年诺贝 尔奖)
2. 热塑性和热固性
线型高分子具有热塑性。如聚乙烯塑料受热到一定温度时开始软化, 直到熔化成流动的液体,冷却后又变成固体,加热后又熔化。根据 线型高分子的这一性质制成的高分子材料具有良好的可塑性,能制 成薄膜、拉成丝或压制成所需的各种形状。 有些线型分子一经加工成型就不会受热熔化,因而具有热固性,例 如酚醛树脂等。
4
高分子化学
1.5 聚合物平均分子量及其分布
以分子量分布曲线表示 将高分子样品分成不同分子量的级 分,这一实验操作称为分级 以被分离的各级分的质量分率对平 均分子量作图,得到分子量质量分 率分布曲线。 可通过曲线形状,直观判断分子量 分布的宽窄。绿线:分子量分布较 宽,即分散程度大;红线:分子量 分布较窄,即分散程度小。

高聚物分子量及其分布的测定

高聚物分子量及其分布的测定

数 重
均 均
多种平
绝对法 相对法 相对法 相对法 绝对法 绝对法
第三节 高聚物分子量分布旳测定
因为分子量具有多分散性,仅有平均分子量不 足于表征高聚物分子旳大小。因为平均分子量 相同旳试样,其分布却可能有很大旳差别。许 多实际工作和理论工作中都需要懂得高聚物旳 分子量分布。所以,分子量分布旳研究具有相 当主要旳意义。
h-高分子分子链末端距; λ’-入射光s2 KC
1
1
82
2sin R
M
9
h2 '
2
sin 2
...
2 A2C
试验措施:配制一系列不同浓度旳溶液,测定
各个溶液在各个不同散射角时瑞利因子Rθ,根 据上式进行数据处理。
令 Y 1 cos2 KC
2sin R
Y
1 M
82 9M
h2
2
sin 2
2
... 2 A2C
Y
1 M
2 A2C
Y
C
1 M
82 9M
h2
2
sin 2
2
...
Y
1
M C ,
数据处理:Y
1 M
2 A2C
Y C
1 M
82 9M
h2
2
sin 2
... 2
①作Y对C旳图,每一种θ值得到一条曲线,外 推至C=0处,得到一系列(Y)C→0旳值;
第四章 高聚物分子量 及其分布旳测定
对聚合物旳分子量加以控制旳意义:
聚合物分子量小,性能达不到要求; 当分子量大至某种程度时,其熔融状态旳流动
性很差,给加工成型造成困难。 兼顾到使用性能和加工性能两方面旳要求,需

高分子化学名词解释(拼音排序)

高分子化学名词解释(拼音排序)

B半衰期:物质分解至起始浓度(计时起点浓度)一半时所需的时间。

tl/2=ln2/kd=0.696/kd;ln[I]/[I]0=-kdt本体聚合:本体聚合是单体本身加入少量引发剂的聚合。

玻璃化温度:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。

其值依赖于温度变化速率和测量频率,常有一定的分布宽度。

D单基终止:链自由基从单体溶剂引发剂等低分子或大分子上夺取一个原子而终止,这些失去原子的分子可能形成新的自由基继续反应,也可能形成稳定的自由基而停止聚合。

单体:合成聚合物所用的低分子的原料。

如聚氯乙烯的单体为氯乙烯单体单元:结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。

单体活性:单体的活性我们一般通过单体的相对活性来衡量,一般用某一自由基同另一单体反应的增长速率常数与该自由基同其本身单体反应的增长速率常数的比值来衡量。

低分子基质:低分子反应物中的特定基团与保护试剂作用后受到保护不再参与主反应,这种受到保护的低分子反应物称作低分子基质。

定向聚合:任何聚合过程或任何聚合方法,只要它是经形成有规立构聚合物为主,都是定向聚合。

定向聚合等同于立构规整聚合。

动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。

多分散性:聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。

F反应程度与转化率:参加反应的官能团数占起始官能团数的分率。

参加反应的反应物与起始反应物的物质的量的比值即为转化率。

聚合度:Xn=l/(1-P)非理想共聚:竞聚率rl*r2#的聚合都是非理想聚合,非理想聚还可再往下细分。

rl〉l、r2〈l在对角线上方分散剂:分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。

高分子物理习题答案(名词解释4-9章)

高分子物理习题答案(名词解释4-9章)

第4章 聚合物的分子量与分子量分布1.统计平均分子量由于聚合物分子量具有两个特点,一是其分子量比分子大几个数量级,二是除了有限的几种蛋白质高分子外,分子量都不是均一的,都具有多分散性。

因此,聚合物的分子量只有统计意义,用实验方法测定的分子量只是具有统计意义的平均值。

2.微分分子量的分布函数0000()()()1()1n M dM n m M dM mx M dM w M dM ∞∞∞∞====⎰⎰⎰⎰以上是具有连续性的分子量分布曲线 3.分子量分布宽度实验中各个分子量与平均分子量之间差值的平方平均值 4.多分散系数α表征聚合物式样的多分散性。

w n M M α=或zwM M α= 5. Tung (董履和)分布函数表征聚合物的分子量分布,是一种理论分布函数,在处理聚合物分级数据时十分有用。

6.散射介质的Rayleigh 比表征小粒子所产生的散射光强与散射角之间的关系,公式为2(,)iI r R I θθγ= 7.散射因子()P θ表征散射光的不对称性参数,()P θ是粒子尺寸和散射角的函数。

具体公式如下:222216()1sin 3()2P S πθθλ-=-'注:nλλ'=,2S--均方旋转半径,λ'-入射光在溶液中的波长8.特性粘数[]η表示高分子溶液0c →时,单位浓度的增加对溶液比黏度或相对黏度对数的贡献,具体公式如下:0ln []limlimsprc c ccηηη→→==9.膨胀因子χχ维溶胀因子,在Flory 特性黏数理论中应用方式为;2220h hχ=10. SEC 校正曲线和普适校正曲线(1) SEC 校正曲线:选用一组已知分子量的单分散标准样品在相同的测试条件下做一系列的色谱图。

(2) 普适校正曲线:322()[]h Mφη=以lg[]M η对e V 作图,对不同的聚合物试样,所得的校正曲线是重合的。

第5章 聚合物的分子运动和转变1.玻璃-橡胶转变(玻璃化转变)非晶态聚合物的玻璃化转变即玻璃-橡胶转变,对于晶态聚合物是指其中的非晶部分的这种转变。

高分子化学名词解释精品(精)

高分子化学名词解释精品(精)

高分子化学名词解释第一章绪论(Introduction)1、高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

2、单体(Monomer):合成聚合物所用的-低分子的原料。

如聚氯乙烯的单体为氯乙烯3、重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。

4、结构单元(Structural Unit):单体在大分子链中形成的单元。

5、单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。

6、聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。

7、聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。

8、数均分子量M n(Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。

9、重均分子量M w(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。

10、粘均分子量M v(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。

M w>M v>M n11、分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。

第2讲 高分子链结构和表征F (1)

第2讲 高分子链结构和表征F (1)

2.1 高分子的近程结构
构造 结构单元的化学组成 结构单元的连接方式 ... 构型 (化学键固定的原子在空间的几何排列 由聚合方法 决定, 聚合完成后就不可改变) 键接异构 顺反异构 旋光异构 ...
2.1.1 高分子结构单元的化学组成
全碳链高分子
CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2
θ
透射光 散射光
对于高分子溶液,利用瑞利(Rayleigh)公式并考虑到浓度的 影响,其光散射的基本公式为: 2 2 2 h 1+ cos θ Kc 1 8π 2θ ⋅ = ⋅ ⋅ + 2 A2c 1+ sin 2 Rθ M 2 9 λ' 2
( )
式中:θ――散射角,为入射光与散射光之间的夹角 Rθ――瑞利比,定义为 ,
裂解谱图
13
2.3.1 高分子的分子量和分子量分布
分子量通常在103到107之间,单一的测试方法无法适用于整个 分子量范围 除去有限的几种蛋白质高分子以外,通常聚合物的分子量具有 多分散性
描述聚合物分子量时必须同时给出统计平均值和分子量分布
高分子的分子量的定义
假设聚合物试样的总质量为m, 总物质的量为n, 不同 分子量分子的种类用 i 表示 第 i 种分子的分子量为Mi , 物质的量为ni , 质量为mi , 在整 个试样中所占的摩尔分数为xi , 质量分数为wi , 则有:
controversial field of macromolecular chemistry, for the scientific recognition of which I had been forced to fight for many long years”

高分子分子量的主要测定方法

高分子分子量的主要测定方法

高分子分子量的主要测定方法用途高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。

它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。

也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。

表征方法及原理1.粘度法测相对分子量(粘均分子量Mη)用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。

其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。

2.小角激光光散射法测重均分子量(Mw)当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。

这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。

根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。

采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。

3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC))当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。

柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。

大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。

按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。

高分子的分子量和分子量分布讲解

高分子的分子量和分子量分布讲解

高分子物理
15
多分散系数 d
d M w 称为多分散系数,用来表征分散程度 Mn
d越大,说明分子量越分散 d=1,说明分子量呈单分散(一样大) M n M w
(d = 1.03~1.05 近似为单分散)
缩聚产物 d=2左右 自由基产物 d=3~5 有支化 d=25~30 (PE)
2019/6/4
1.2.3 高分子的分子量分布的测定方法
分子量分布的研究方法、分子量分布的表示方 法、分子量分布的数据处理、凝胶渗透色谱(GPC)
2019/6/4
高分子物理
2
教学目的:
通过本节的学习,全面理解和掌握各种统计平 均分子量和分子量分布的意义、表达式和分析 测试方法及测试基本原理。
重点:
各种统计平均分子量和分子量分布的表达式、 表示方法及测量手段;GPC测量分子量及分子 量分布的方法和原理。
相对
超速离心沉降平衡法 1×104~1×106
动力学法
粘度法
1×104~1×107
Mw~ Mz M
色谱法
2019/6/4
凝胶渗透色谱法 (GPC)
1×103~1×107 各种平均
高分子物理
相对 相对 相对
19
1.2.2.1 端基分析法
⑴适用对象:
① 分子量不大(3×104以下),因为分子量大, 单位重量中所含的可分析的端基的数目就相对 少,分析的相对误差大;
α为与溶液性质有光的常数 (0.5~1.0)
分子量高的组分在 Z 均中的贡献最大
2019/6/4
高分子物理
12
平均分子量的连续函数表示

Mn
n(M )MdM
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子的分子量分布表征
用途
高分子的平均分子量及分子量在聚合物内的分布情况对聚合物的加工性能(流变情况),以及聚合物的宏观力学性有着直接或间接的影响。

为了优化聚合物的加工、力学响应、以及其他的宏观材料性能,需要对聚合物中分子量分布加以设计和控制。

而达到此目的的前提:定量了解高分子聚合物的分子量及其分布。

表征方法及原理
1.高分子的结构
高分子是由结构单元(单体或其极性基团)通过化学键结合而成的长链大分子。

根据主链上的元素结构,高分子分为:
均链高分子—主链由单一的原子通过共价键组成。

杂链高分子—主链由两种或两种以上的原子组成
组成链结构的原子除C原子外,还可以是N、O、P、S、Si、B等元素。

与低分子量的分子相比,高分子具有复杂的结构和形态:同一分子链中的结构单元可以是一种,也可以为几种;同一反应中生成的高分子的相对分子质量,分子结构,分子空间构型,枝化度和交联度等不尽相同。

这样,同一批次、同一工艺合成的高分子聚合物内分子量呈现一定的分布形式。

通常人们所谈的分子量为该分布条件下的特征(平均)分子量。

2.分子量的分布形式
2.1 柱形图
选用分子量测定方法中的任一方法测定一定数量样品的分子量后,将测得的数据按从大到小的顺序排列。

根据样品的数量选取适宜的步长ΔWS=(Wmax-Wmin)/n
其中:ΔWS为步长;Wmax 是测得的最大分子量;Wmin)为测得的最小分子量;n为步数。

根据步长,把获得的分子量数据分组,统计出每组中所含分子量数据的个数ni,相应的分子量出现的概率为:
P=ni/N
N为测定分子量的总次数。

以分子量的出现概率为纵坐标,分子量为横坐标做图,得到的图形即为表现分子量分布形态的柱形图。

由柱形图可以得到分子量分布的总体概念,估计分布函数。

测量次数越多,步长分的越细,用柱形图对分子量分布的估计越准确。

多数情况下分子量的分布符合正态分布(高斯分布)。

2.2 正态分布函数
正态分布函数又称高斯分布函数(Gaussian function)。

多数物理量,包括高分子分子量的分布规律均符合正态分布形式。

正态密度分布函数包含一个变量x,两个参数:数学期望μ和方差σ2。

其中x’为在-∞≤x’≤x 区间内的变量。

累积函数往往用来表征变量为一定值下的发生概率,如分子量低于某一数值的概率。

数学期望代表了符合正态分布的分子量的真实中值。

在实践中往往以实测数据的平均值作为数学期望的估计值:
μ≈X=∑xi/N
方差用实测数据的标准差估计:
σ2≈S2=∑(x-X)2/(n-1)
显然,试验数据越多,数学期望和方差的估计值越逼近真值。

在实际应用中,高分子的分子量均用测量的平均值表示。

标准差的大小指示了分子量散布的程度。

分子量偏离中心值的程度可以用离散系数Cv表示:
Cv=S/X
3.高分子分子量分布的表征方法
高分子分子量的分布目前用重均分子量与数均分子量之比来表征:d=Mw/Mn
测量高分子材料中分子量分布的方法基本上可以分成两类:
3.1分级法
分级法实际上将受测样品分成不同分子量的等级。

采用的方法有:l 分级沉淀法
l 分级溶解法
l 色层分离法
l 超速离心分离法
l 液-液分隔法
l 区熔法
l 热重扩散法
在分级测定高分子材料的分子量后,采用前述的分子量分布形式表示方法即可得到分子量的分布。

3.2仪器分析法
l 光散射法
l 凝胶渗透色谱法
所用仪器
光散射仪
电子显微镜
凝胶色谱仪。

相关文档
最新文档