新人教版八年级数学第十一章三角形总复习教学设计
人教版八年级第十一章全等三角形复习教案
MF ECB A人教版第11章复习一、学习目标1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.2、能用尺规进行一些基本作图.能用三角形全等和角平分线的性质进行证明。
3、极度热情、高度责任、自动自发、享受成功。
二、重点难点教学重点:用三角形全等和角平分线的性质进行证明有关问题 教学难点: 灵活应用所学知识解决问题,精炼准确表达推理过程 三、合作本章知识结构梳理三角形⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧判定:(性质:(角的平分线直角三角形一般三角形)判定方法()性质:()定义:(全等三角形定义)2)1321 四、精讲精练1、精讲例题1、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MC例题2、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD例题3、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形例题4、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,EDCABE D CBA 4 321 EDC BAG FE DCBADB=DC , 求证:EB=FC例题5、如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,求证AB=AC+BD2、精练1、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30,BD :CD=3:2,则DE= 。
2、如图,已知E 在AB 上,∠1=∠2, ∠3=∠4,那么AC 等于AD 吗?为什么?3、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
(只写出一种情况)①AB=AC ②DE=DF ③BE=CF已知:EG ∥AF ,________,__________求证:_________A CE BD4、如图,在R△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC 于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.3、能用尺规进行下面几种作图1、已知三边作三角形2、作一个角等于已知角3、已知两边和它们的夹角作三角形4、已知两角和它们的夹边作三角形5、已知斜边和一直角边作直角三角形6、作角的平分线五、课堂小结学习全等三角形应注意以下几个问题(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”六、作业必做:课本26页复习题11第2、5、6、8、9题;选做:27页10-12题。
第十一章三角形综合复习教案人教版数学八年级上册
三角形综合1三边关系定理三角形三边关系定理:三角形任意两边之和大于第三边.(推论:两边之差<第三边<两边之和)求三角形第三边的范围2中线的性质三角形中的几条重要线段:(1)三角形的中线(三条中线的交点叫重心)(2)三角形的角平分线(三条角平分线的交点叫做内心)(3)三角形的高(三条高线的交点叫垂心)3三角形内角和与外角三角形内角和定理:三角形的内角和等于180°.定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形外角定理:三角形的一个外角等于与它不相邻的两个内角的和.多边形的内角和:(n2)×1800.正n边形的单个内角为.多边形的外角和:360°.正n边形的单个外角为.多边形的对角线条4飞镖模型与“8”字模型飞镖模型:如图:∠BDC=∠A+∠B+∠C.8字模型:如图:∠A+∠D=∠B+∠C.例1.(1)下列各组线段,不能组成三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,12,13(2)若三角形的三边分别为4,x,9,则x的取值范围是______________,三角形周长的取值范围是______________.1.一个等腰三角形的两边长分别是3和7 ,则它的周长为().A.17 B.15 C.13 D.13或172.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为().A.1B.2 C.3D.43.(1)等腰三角形的腰长为6,它底边长a的范围是;(2)等腰三角形的底边长为4,则它腰长b的范围是.4.已知a ,b ,c 是△ABC 的三条边长,化简c a b c b a ----+的结果为( )A .2a+2bB .2a+2b ﹣2cC .2b ﹣2cD .2a例2.如图所示,在△ABC 中,AD 为BC 边上的中线,若AB =5cm ,AC =3cm ,则△ABD 的周长比△ACD 周长多( )A .5cmB .3cmC .8cmD .2cm例3.如图,△ABC 中,D 、E 分别为BC 、AD 的中点,S △ABC =20,则阴影部分的面积是( )A .18B .10C .5D .11.如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC =1cm 2,则S △ABC =______________.2.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.3.如图,AD 是△ABC 的中线,DE=2AE ,若△ABC 的面积是18平方厘米,则△ABE 的面积=______________.4.如图,在△ABC 中,E 为AC 的中点,AD 平分∠BAC ,BD :CD =2:3,AD 与BE 相交于点O ,若△OAE 的面积比△BOD 的面积大1,则△ABC 的面积是( )A .8B .9C .10D .115.如图,在△ABC 中E 是AC 上的一点,EC =2AE ,点D 是BC 的中点,连接AD 、BE 交于点F ,若△ABC 的面积为36,则四边形CDFE 的面积为 .6.如图,在△ABC 中,∠BAC =90°,AB =6,AC =8,BC =10,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠F AG =2∠ACF ;④AD =2.4.A .①②③④B .①②③C .①②④D .③④例4.在△ABC 中,∠A :∠B :∠C=2:3:4,则∠B= .1.已知在△ABC 中,∠A=60°,∠B ﹣∠C=40°,则∠B= .2.锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( )A. 10°<∠B<20°B. 20°<∠B<30°C. 30°<∠B<45°D. 45°<∠B<60°例5.已知一个凸多边形的每个内角都是150°,则它的边数为. 1.一个多边形的内角和比它的外角和的3倍还多180度,求这个多边形的边数.2.已知正多边形的一个外角为40°,则这个正多边形的边数是.3.正多边形的一个外角是40°,则这个正多边形从一个顶点出发有条对角线.例6.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为度.1.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)图1中的∠ABC的度数为.(2)图2中已知AE∥BC,则∠AFD的度数为.例7.(1)如图1,有一个五角星ABCDE,你能说明∠A+∠B+∠C+∠D+∠E=180°吗?(2)如图2、图3,如果点B向右移到AC上,或AC的另一侧时,上述结论仍然成立吗?1.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=_ __.2.如图,∠O=140°,∠P=100°,BP、CP分别平分∠ABO、∠ACO,则∠A=_______.3.如图(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;如图(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.1.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)例8.如图,已知∠1=48°,∠2=56°,∠3=66°,则∠4的度数为.1.如图,已知∠1=48°,∠2=56°,则∠3+∠4的度数为.例9.如图,在折纸活动中,小明制作了一张△ABC的纸片,点D、E分别是边AB、AC上的点,将△ABC沿着DE折叠压平,A与A’重合,若∠A=70°,则∠1+∠2= .1.现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是;研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.例10.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,求证:∠C=∠B,∠CFE=∠A.1.如图,AB⊥BD,AC⊥CE,ED⊥BD,已知∠A=35°,则∠E= .2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,∠A=65°,则∠BCD= .3.小明在学习过程中,对教材中的一个有趣问题做如下探究:【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;【探究廷伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.。
人教版数学八年级上册第十一章三角形全章复习说课稿
为了更好地辅助教学,我将使用多媒体课件、几何画板、实物模型等教学资源。多媒体课件能够提供丰富的视觉信息,帮助学生直观地理解三角形的性质和判定方法。几何画板则可以动态展示几何图形的变换和性质,让学生更深入地掌握几何知识。实物模型则可以提供直观的感知,帮助学生更好地理解和记忆三角形的各种性质。这些资源的使用,旨在提高教学的趣味性和互动性,激发学生的学习兴趣,提高他们的学习效果。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计一些巩固练习和实践活动。例如,我可以设计一些填空题、选择题和解答题,让学生通过独立完成这些题目,巩固和加深对三角形知识的理解。此外,我还可以组织一些小组实践活动,如几何模型制作、几何问题探究等,让学生通过实际操作和合作交流,提升几何知识和技能的应用能力。
2.教学难点:三角形计算中的复杂情况,如解三角形、三角形的内切圆和外接圆等问题,因其涉及的知识点较多,计算过程较为复杂,对学生的逻辑思维和计算能力提出了较高的要求,故成为本节课的教学难点。
二、学情分析导
(一)学生特点
我所教授的八年级学生在年龄特征上正处于青少年时期,他们具有较强的好奇心,喜欢探索未知领域。在认知水平方面,他们已经掌握了基本的代数和几何知识,具备一定的逻辑推理能力。大部分学生对几何学科有较高的兴趣,尤其是那些喜欢画图和探索图形性质的学生。在学习习惯上,他们习惯于通过合作交流来解决问题,乐于在小组内分享自己的想法和观点。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我计划通过一个有趣的几何问题来导入新课。例如,我可以提出一个问题:“在一个三角形中,如果知道两个角的大小,如何求出第三个角的大小?”这个问题与学生的日常生活紧密相关,能够激发他们的好奇心和求知欲。然后,我可以引导学生思考和讨论这个问题,从而引出本节课的主题——三角形的全章复习。
人教版八年级上册第十一章三角形复习课教学设计
人教版数学八年级上册三角形复习课教学设计当阳市慈化初级中学史君姣【教学目标】1进一步理解并掌握三角形及三角形的重要线段的概念,会利用三角形的内角和定理及外角公式、多边形的内角和公式及外角和计算角度。
2、复习本章内容,整理本章知识,形成知识体系,体会研究几何问题的思路和方法。
3、进一步发展推理能力,能够有条理地思考、解决问题。
【教学重点】复习本章内容并运用它们进行有关的计算和证明,构建本章知识结构【教学难点】灵活运用、解决问题【教材分析】本章主要内容有三角形的有关线段、角,多边形及内角和、镶嵌等。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其他图形的基础。
【学情分析】学生在学完本章知识后,对三角形的有关知识已有所了解,本节课将进一步对知识加以理解、运用。
【课型】复习课【教学时间分配】1课时【教学准备】PPT【教学方法】讲授法、谈话法、演示法、练习法【教学过程】一、情景导入、直击主题根据网上一句流行的话“世界那么大,我想去看看”带领大家出去看看。
由三哥和娇妹先带大家去往埃及金字塔,引出本节课的复习知识一一三角形。
出示金字塔照片,让学生说出熟悉的图形一一三角形,给出概念填空:由的线段相接所组成的图形叫做三角形。
出示一张路标,让学生说出特殊三角形一一等边三角形,将它放入框中。
二、复习旧知、梳理脉络让学生自由选择目的地一一法国、英国、美国,开始复习三角形的知识。
法国(卢浮宫)一一三角形的有关线段情景题:在参观卢浮宫博物馆前,三哥和娇妹决定将肚子填饱,但是由于三哥的马虎,两人只带了一个三明治,要想两人吃得同样多的三明治,应该怎么分?答:任意一边的中线。
任何一边的中线可以将三角形分成两个面积相等的三角形。
由中线引出三角形有关的线段如图:(1)若AD丄BC垂足为D,贝/ 二/ = 90 ° ;在三角形中,有咼线。
----------- ►计算面积有关(2)若/ BAE =Z CAE AE与BC相交于点E,贝线段AE是厶ABC的___________ ;(3)若AF =CF, BF与AC相交于点F,贝ABC的中线是______________ .三角形的三条中线相交于一点,交点在三角形的内部,叫三角形的重心。
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.1.3 三角形的稳定性教案
第十一章三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性第1课时三角形的稳定性一、教学目标【知识与技能】了解三角形的稳定性以及三角形的稳定性在实际生活中的应用.【过程与方法】培养动手操作、归纳概括能力,提高运用知识解题的能力,训练思维的灵活性.【情感、态度与价值观】感受生活中数学的美学价值,体会生活中处处有数学,体验学习数学的乐趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】了解三角形的稳定性及其在生产、生活中的应用.【教学难点】1.了解三角形的稳定性.2.体会三角形的稳定性在生产和生活中的应用,会利用三角形的稳定性解决实际问题。
.五、课前准备教师:课件、三角尺、四边形框架、小木棍等。
学生:三角尺、四边形框架、小木棍、细绳。
六、教学过程(一)导入新课教师问:三角形在我们日常生活中应用广泛,在我们的生产和生活中哪里用到了三角形?学生回答:房屋的人字梁、大桥钢架、索道支架、建筑用的三脚架等.教师问:观察下图,将四边形木架上再钉一根木条,将它的一对顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?(二)探索新知师生互动,探究新知1.通过实际操作探索三角形的稳定性教师问:如图,在盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做?(出示课件3)学生讨论,得出各种结论.这样不容易变形.教师问:将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(出示课件5)生动手操作,通过实验得出结论:它的形状不会改变.教师问:将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?学生动手操作,通过实验得出结论:它的形状会改变.教师总结:(1)三角形具有稳定性.(2)四边形没有稳定性.(出示课件6)教师问:在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?学生动手操作,通过实验得出结论:它的形状不会改变.教师问:经过以上三次实验,你发现了什么规律?学生讨论回答:可以发现,三角形不会变形,即三角形具有稳定性,而四边形不具有稳定性.教师总结讲解:(出示课件7)“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.2.通过生活中的实例感受数学知识在生产和生活中的应用教师问:三角形的稳定性在我们的生产和生活中有哪些应用?学生回答:起重机、屋顶架构等.(出示课件8-10)教师问:四边形的不稳定性在我们的生产和生活中有哪些应用?学生回答:衣服挂架、放缩尺等.(出示课件13-15)例:要使四边形木架不变形,至少要钉上一根木条,把它分成两个三角形使它保持形状,那么要使五边形,六边形木架,七边形木架保持稳定该怎么办呢?(出示课件20)师生共同解答如下:都加上木条,分成三角形即可,如下图:总结点拨:为了使多边形具有稳定性,一般需要用木条将多边形固定成由一个一个的三角形组成的形式.(三)课堂练习(出示课件23-28)1.下列图中具有稳定性有()A.1个B.2个C.3个D.4个2.下列关于三角形稳定性和四边形不稳定性的说法正确的是()A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3. 如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.三角形两边之和大于第三边C.长方形的四个角都是直角D.三角形的稳定性4. 如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A. 节省材料,节约成本B. 保持对称C. 利用三角形的稳定性D. 美观漂亮5. 如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?(3)AB、BC、CD能围成一个三角形吗?参考答案:1.C2.C3.D4.C5. 解:(1)x最大值= AB + BC + CD = 19.x最小值=BC – AB – CD = 3;(2)3 < x < 19;(3)不能.(四)课堂小结今天我们学了哪些内容:本节课主要学习三角形的稳定性、四边形的不稳定性及其在生产、生活中的应用.(五)课前预习预习下节课(11.2.1)的相关内容。
人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计
人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。
本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。
在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。
这些看似简单的概念,实则是解锁三角形众多性质的关键。
通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。
例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。
除了线段,章节还深入探讨了三角形的角,包括内角和外角。
学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。
外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。
本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。
多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。
更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。
通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。
这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。
《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。
通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。
八年级数学上册 第11章全等三角形复习教案 人教新课标版【教案】
第11章《全等三角形》复习教案教学目标:1.了解图形的全等,经历探索三角形全等条件及性质的学习过程,掌握两个三角形全等的条件与性质。
2.能用三角形的全等和角平分线性质解决实际问题 3.培养逻辑思维能力,发展基本的创新意识和能力 教学重点难点:1.重点:掌握全等三角形的性质与判定方法 2.难点:对全等三角形性质及判定方法的运用教学过程:1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。
2)全等三角形性质: (1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等例 1.已知如图(1),A B C ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______. 例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3) 例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.2.全等三角形的判定方法 1)、三边对应相等的两个三角形全等 ( SSS )例1.如图,在ABC ∆中,90=∠C ,D 、E 分别为AC 、AB 上的点,且A D=BD,AE=BC,DE=DC.求证:DE ⊥AB 。
例2.如图,AB=AC,BE 和CD 相交于P ,PB=PC,求证:PD=PE.例3. 如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 。
求证:MB=MC2)两边和夹角对应相等的两个三角形全等( SAS )例4.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠3)、两角和夹边对应相等的两个三角形全等 ( ASA )例5.如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F 求证:ABE ∆≌FCE ∆4)、两角和夹边对应相等的两个三角形全等 ( AAS )例6.如图,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。
新人教版八年级上册数学第11章《三角形》复习课教学设计
课堂流程
学习内容
与三角 形有关 的线段
边 高 中线
自主学习
三
角
形
三角形的内角和
三角形的外角和
角平分线 多边形的内角和 多边形的外角和
1 . 三角形的边
( 1)两边之和
第三边,两边之差
( 2)
< 第三边 <
2.三角形的高、中线、角平分线
( 1)△的高、△的中线、△的角平分线都是
( 2)交点情况 :
第三边. .
A2009 =
.
A
A
A
B
C
D
2):如图,△ ABC中, ABC的角平分线与 ACB的外角 ACD的平分线交于 A1 ,若 E 为 BA延长线上一动点,连 EC, AEC与 ACE的角
平分线交于 Q,当 E 滑动时有下面两个结论:
E
① Q+ A1 的值为定值;② Q- A1 的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值
合作探究
c. 三角形的三条角平分线交于一点,交点位于三角形的
.
3 . 三角形内角和定理: 任何三角形的内角和都等于
度.
推论:直角三角形两锐角
.
.
4 . 三角形的一个外角等于
.
5.
的多边形叫做正多边形 .
6 . 多边形的内角和公式: n 边形内角和 =_________________. 多边形的外角和等于 ________.
7. 过多边形的一个顶点可以引 9 条对角线,那么这个 .1980° D . 2160°
8.若一个正多边形的每一个外角为 20°,则这个多边形的边数为(
)
A .9 B .10 C .11 D .18
新人教版八年级数学上册第十一章三角形总复习教案
(二)复习三角形的分类
1.等边三角形按角分类一定是()。
A.直角三角形B.锐角三角形C.钝角三角形
2.有一个锐角是45°的直角三角形按边分一定是()三角形
A.等边三角形B.等腰三角形C.一般三角形
3.直角三角形,一个锐角30°,另一个锐角()°
A. 40°B. 50°C. 60°
师:老师的三角形属于哪一类?你的呢?为什么很多人的三角形既不是等腰三角形也不是等边三角形呢?揭示第10号知识卡片(非等腰三角形:三边不等),明确像这样的三角形居多。
2、介绍课前准备的三角形。
联系刚刚回顾的所有知识,介绍手中的三角形。(学生于课前完成作高、量边长度、量角的度数)同桌互相介绍后,全班汇报。
师:你三角形三条边的长度分别是多少?能再说出一组可以围成三角形的三条线段吗?3cm、5cm和9cm的三条线段可以围成三角形吗?)
③三角形中顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
师:一个三角形有多少条高?高一般用什么线来画?你的高和底分别是多少?[三条]贴出知识卡片
④三角形具有稳定性。
A
B
C
D
四、知识应用,能力拓展
3、猜一猜。
(1)下面的三角形都被一张纸遮住了一部分。你能确定它们各是什么三角形吗?
(2)有一个三角形,其中一个角是20。,它可能是什么三角形?如果还知道第二个角是65。,那么你知道它是什么三角形了吗?
5.智慧角
⑴已知三角形中的两条边分别是4cm、6cm,那么第三条边必须大于()cm,必须小于()cm;如果这是一个等腰三角形,那么第三条边可以是()cm。
师:你会联想到哪个图形正好和他有相反的特性吗?
人教版八年级数学上册第十一章三角形小结教学设计
2.全等三角形判定定理的应用,让学生互相出题,讨论如何求解。
在讨论过程中,我会巡回指导,解答学生的疑问,并引导学生深入思考。讨论结束后,每个小组选派一名代表汇报讨论成果,共同分享学习心得。
(四)课堂练习
为了巩固所学知识,我设计了以下课堂练习:
1.基础题:勾股定理的应用题,让学生计算直角三角形的边长。
2.全等三角形的判定方法:以实际操作为主,让学生通过画图、剪贴等手段,直观感受全等三角形的特点。接着,讲解SSS、SAS、ASA、AAS等全等三角形的判定定理,并举例说明。
(三)学生小组讨论
在讲授新知之后,我会组织学生进行小组讨论。将学生分成若干小组,每组选出一个组长,负责组织和协调讨论。讨论的主题包括:
5.课后阅读:推荐一本关于几何学的课外阅读书籍,让学生在课后进行自主Biblioteka 习,拓宽知识面。作业布置要求:
1.学生在完成作业时,要认真审题,确保理解题目的要求。
2.做题过程中,注意书写规范,保持解答过程的简洁。
3.鼓励学生在解题过程中尝试不同的方法,培养发散性思维。
4.小组合作题目要求每个成员积极参与,充分发挥团队协作精神。
2.学生对几何证明的掌握程度:关注学生在全等三角形证明过程中的逻辑思维,培养学生严谨的证明习惯。
3.学生的空间想象能力:通过丰富的教学活动,提高学生的空间想象能力,为后续几何知识的学习打下基础。
4.学生的合作学习能力:鼓励学生进行小组合作学习,培养学生的团队协作能力和沟通能力。
5.学生的学习兴趣和积极性:激发学生的学习兴趣,关注学生的个体差异,因材施教,提高学生的学习积极性。
接着,我会简要回顾一下学生已学习的三角形知识,如三角形的定义、内角和等。在此基础上,提出本节课将要学习的新内容,如三角形的勾股定理、全等三角形的判定方法等。这样的导入既能够激发学生的学习兴趣,又能够为新课的学习做好铺垫。
初中八年级数学教案-八年级上册数学人教版教案《第十一章 三角形》章节复习【全国一等奖】
《第十一章三角形》复习课教学设计【知识与技能】1.了解与三角形有关的线段(边、高、中线、角平分线).理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形.会画任意三角形的高、中线、角平分线.了解三角形的稳定性.2.了解与三角形有关的角(内角、外角),会用平行线的性质与平角的定义证明三角形内角和等于180°,探索并了解三角形的一个外角等于与它不相邻的两个内角的和.3.了解多边形的有关概念(边、内角、对角线、正多边形),探索并了解多边形的内角和与外角和公式.4.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【过程与方法】结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上,进行典型题、热点题的较大量的训练,旨在提高同学们对三角形有关知识、多边形内角和、外角和知识综合运用能力.【情感态度】通过初步的几何证明的学习培养学生的推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力,以达到培养学生良好学习习惯的目的.【教学重点】三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.【教学难点】简单的几何证明及几何知识的简单应用.一、知识框图,整体把握二、回顾思考,梳理知识1.本章的主要内容是:三角形的概念,三角形的三边关系定理,三角形的三条重要线段(高线、中线和角平分线).三角形内角和定理.三角形的外角,多边形的内、外角和定理,简单的平面镶嵌.三角形的稳定性和四边形的不稳定性.2.经历三角形内角和等于180°的验证与证明过程,初步体验对一个规律的发现到确认的艰辛历程.体会证明的重要性,初步接触辅助线在几何研究中不可或缺的作用.3.三角形是我们认识许多其他图形的基础,如研究多边形的内角和时,就是过多边形的某顶点作出它的全部对角线,将多边形的内角和问题转化为三角形的内角和问题.三、典例精析,复习新知例1如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为.分析:由三角形内角和定理得∠C=180°-∠A-∠B=180°-65°-75°=40°.折叠以后,变成了四边形,因四边形的内角和为360°,故∠AED∠BDE=360°-∠A-∠B=220°.在△CDE中,∠CDE∠CED=180°-∠C=180°-40°=140°.所以∠2=220°-140°-∠1=60°.例2 在绿茵场上,足球队带球进攻,总是向球门AB冲近,说明这是为什么解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB 的张角也扩大,球就更容易射中,理由说明如下:延长CD 到E ,则∠ADE >∠ACE ,∠BDE >∠BCE ,所以∠ADE ∠BDE >∠ACE ∠BCE ,即∠ADB >∠ACB . 【教学说明】1.本题作了一条辅助线,构造了两个三角形的外角,在说理中发挥了至关重要的作用;2.辅助线要画成虚线.例3 已知一个等腰三角形的三边长分别为,2-1,5-3,求其周长.解:本题分类讨论,求出后再求出三边,一定要检验是否符合三角形三边关系定理,若不符合,必须舍去. (1)若=2-1,则=1,此时三边为1,1,2,因为11=2,不符合三角形三边关系,舍去;(2)若=5-3,=43.此时三边为43,21,43,符合三角形三边关系,周长为432143=2. (3)若2-1=5-3,=32.此时三边为32,31,31,因为3131=32,所以不符合三角形三边关系,舍去.综上,此等腰三角形周长为2.例4 如图,D 、E 为△ABC 内的两点,试说明ABAC >BDECDE 的理由.解:本题显然要运用三角形三边关系定理证明.由于BD 、DE 、CE 不是三角形的边,于2121212121212121,所以延长BD 、CE 交于F ,再延长BF 交AC ∠D=m ,∠F=3m .由(1)得m2m=2×3m , ∴=4.例7 阅读下面的问题及解答:如图(1),△ABC 中∠ABC 、∠ACB 的角平分线交于O 点,则∠BOC=90°21∠A=21×180°21∠A ,如图(2),△ABC 中∠ABC 、∠ACB 的三等分线交于O1、O2,则∠BO 1C=32×180°31∠A ,∠BO2C=31×180°32∠A .根据以上信息:(1)你能猜想出它的规律n 等分时[内部有(n-1)个点],∠BO1C=,∠BO n-1C=(用含n 的代数式表示). (2)根据你的猜想,当n=4时说明∠BO 3C 的度数成立. 解:(1)当n=2时,∠BOC=21×180°21∠A ,当n=3时,∠BO 1C=32×180°31∠A ,∠BO2C=31×180°32∠A .由此可见,系数分母即是n ,∠BO 1C 的系数的第一个分子是n-1,第二个分子是1.由此可猜想∠BO 1C=n n 1-×180°n 1∠A .同理:∠BO n-1C=n 1×180°nn 1-∠A . (2)当n=4时,代入所猜想的公式得∠BO 3C=41×180°43∠A .另外,在△BO 3C 中,由三角形内角和定理得∠BO 3C=180°-(∠O 3BC ∠O 3CB )=180°-43(∠ABC ∠ACB )=180°-43(180°-∠A )=41×180°43∠A .结果与猜想一致.【教学说明】本题是阅读猜想题,是热点题型,能大大激发学生的求知欲,深受师生欢迎. 例8 求证:两条平行线被第三条直线所截得的一组同旁内角的平分线互相垂直.(仿照教材证明三角形内角和等于180°的过程进行证明,先画出图形,按图形写出已知和求证,再进行证明.)解:已知:如图,AB ∥CD ,EF 交AB 、CD 于E 、F ,EM 平分∠BEF ,FN 平分∠DFE ,EM 与FN 交于G . 求证:EM ⊥FN 证明:∵AB ∥CD , ∴∠BEF ∠DFE=180°.∵EM 平分∠BEF ,FN 平分∠DFE ,∴∠1=21∠BEF ,∠2=21∠DFE . ∴∠1∠2=21(∠BEF ∠DFE )=21×180°=90°.∴∠EGF=180°-(∠1∠2)=90°.∴EM ⊥FN .【教学说明】证明过程由“∵、∴”构成,要求每一步都有依据.例9 一个多边形从某一个顶点出发截取一个角后,所形成的多边形的内角和是2520°,求原多边形的边数. 解:设原多边形是n 边形,分两种情况讨论:(1)若截线不经过多边形的另一个顶点,则新多边形仍是n 边形(如图(1)).由题设得(n-2)·180°=2520°.解得n=16;(2)若截线经过多边形的顶点,则新多边形(n-1)边形(如图(2)),由题设得(n-1-2)·180°=2520°.解得n=17.综上n=16或17.1.布置练习:从教材“复习题11”中选取.2.完成练习册中本课时的练习.利用知识回顾与典型剖析,使学生进一步巩固和深化对所学知识的理解,建立起清晰的知识框架,形成严谨的思维习惯.。
第十一章 三角形章节复习(教学设计)-八年级数学上册同步备课系列(人教版)
第十一章三角形章节复习教学设计一、教学目标:1.梳理本章的知识结构网络,回顾与复习本章知识.2.结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上进行典型题、热点题的较大量的训练,旨在提高同学们对三角形有关知识、多边形内角和、外角和知识综合运用能力.3.通过初步的几何证明的学习培养学生的推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力,以达到培养学生良好学习习惯的目的.二、教学重点、难点:重点:三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.难点:简单的几何证明及几何知识的简单应用.三、教学过程:知识网络知识梳理1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.△ABC的三边,有时也用a,b,c来表示.顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.2.三角形的分类:3.三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边.已知三角形的两边a、b(a>b),则第三边的范围“a-b<第三边<a+b”4.三角形的高、中线与角平分线:高:顶点与对边垂足间的线段,三条高或其延长线相交于一点,如图.中线:顶点与对边中点间的线段,三条中线相交于一点(重心),如图.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.三条角平分线相交于一点,如图.5.三角形的内角和与外角:(1)三角形的内角和等于180°;(2)直角三角形的两个锐角互余;(3)直角三角形的判定:有两个角互余的三角形是直角三角形;(4)三角形的一个外角等于与它不相邻的两个内角的和;(5)三角形的一个外角大于和它不相邻的任何一个内角.6.多边形及其内角和:(1)在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.正多边形是各个角都相等,各条边都相等的多边形.(2)从n边形的一个顶点出发,能引出(n﹣3)条对角线;(3)经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形;(4)n边形一共有n(n-3)�条对角线.(5)n边形内角和等于(n-2)×180°(n≥3的整数)(6)n边形的外角和等于360°(7)正多边形的每个内角的度数是n n 180)2( 或n360180 (8)正多边形的每个外角的度数是n360考点解析考点一:三角形的三边关系例1.已知a 、b 、c 为△ABC 的三边长,且a 2+b 2=6a +10b ﹣34,其中c 是△ABC 中最长的边长,且c 为整数,求c 的值.解:∵a 2+b 2=6a +10b ﹣34,∴a 2﹣6a +9+b 2﹣10b +25=0,∴(a ﹣3)2+(b ﹣5)2=0,∴a =3,b =5,∴5﹣3<c <5+3,即2<c <8.又∵c 是△AB C 中最长的边长,∴c =5、6、7.例2.已知a,b,c 是△ABC 的三边长.(1)若a ,b ,c 满足,(a -b )2+�−�=0,试判断△ABC 的形状;(2)化简:�−�−�+�−�+�-�−�−�.解:(1)∵(a -b )2+|�−�|=0,∴(a -b )2=0且|�−�|=0,∴a =b =c ,∴△ABC 是等边三角形.(2)∵a ,b ,c 是△ABC 的三边长,∴b -c -a <0,a -b +c >0,a -b -c <0,原式=-(b -c -a )+a -b +c -[-(a -b -c )]=a +c -b +a -b +c -b -c +a=3a -3b +c.例3.已知a ,b ,c 分别为△ABC 三边的长,且满足a +b =3c -2,a -b =2c -6.(1)求c 的取值范围;(2)若△ABC 的周长为18,求c 的值.(1)解:∵a ,b ,c 分别为△ABC 三边的长,a +b =3c -2,a -b =2c -6,3-226c c c c>∴<∴解得2<c <6.(2)∵△ABC 的周长为18,a +b =3c -2,∴a +b +c =4c -2=18.解得c =5.【迁移应用】【1-1】下列长度的三条线段能组成三角形的是()A .3cm 、3cm 、6cmB .3cm 、5cm 、7cmC .2cm 、4cm 、6cmD .2cm 、9cm 、6cm答案:B【1-2】已知三角形的三边长分别为2,a -1,4,则化简|a -3|-|a -7|的结果为___________.答案:2a -10【1-3】已知a ,b ,c 是ABC 的三边长,a 、b 满足2|7|(2)0a b ,且ABC 的周长为偶数,则边长c 的值为多少?解:∵a ,b 满足|a −7|+(b −2)2=0,∴a −7=0,b −2=0,解得a =7,b =2,根据三角形的三边关系,得7−2<c <7+2,即:5<c <9,又∵三角形的周长为偶数,a +b =9,∴c =7.考点二:三角形中的重要线段例4.如图,在△AB C 中,∠ABC =40°,∠C =60°,AD ⊥BC 于D,AE 是∠BAC 的平分线.(1)求∠DAE 的度数;(2)指出AD 是哪几个三角形的高.解:(1)AD ⊥BC 于D,∴∠ADB =∠ADC =90°∵∠ABC =40°,∠C =60°,∴∠BAD =50,∠CAD =30°∴∠BAC =50°+30°=80°∵AE 是∠BAC 的平分线,∴∠BAE =40°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.例5.如图,在△AB C中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长;(2)求BC边的取值范围.解:(1)∵AD是BC边上的中线,∴BD=C D.∵△ABD的周长-△ADC的周长=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,即AB—AC=2①.又AB+AC=10②,①+②得2AB=12,解得AB=6.∴AC=4.(2)∵AB=6,AC=4,∴2<BC<10.例6.如图,在△AB C中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,求S△ADF-S△BEF的值.解:∵点D 是AC 的中点,∴AD =12A C.∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,∴S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.【点睛】三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.【迁移应用】【2-1】如图,在△AB C 中,∠ACB =90°,CD ⊥AB 于D ,图中可以作为△ACD 的高的线段有()A .0条B .1条C .2条D .3条【2-2】如图,在△AB C 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是()A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB【2-3】如图,在△AB C中,点D是BC上的一点,DC=2BD,点E是AC的中点,S△ABC=20cm2,则S△ADE=_____cm2.答案:【2-1】C;【2-2】C;【2-3】� �.考点三:有关三角形内、外角的计算例7.如图,AD平分∠BAC,∠EAD=∠ED A.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD=��∠BA C.∵∠EDA=∠B+∠BAD,∠EAD=∠CAD+∠EAC,∠EDA=∠EAD,∴∠EAC=∠B.(2)解:由(1)可知∠EAC =∠B =50°.设∠CAD =x ,则∠E =3x ,∠EAD =∠ADE =x +50°,∴50°+x +50°+x +3x =180°.∴x =16°.∴∠E =3x =48°.例8.如图,在△AB C 中,三条内角平分线AD ,BE ,CF 相交于点O ,OG ⊥BC于点G .(1)若∠ABC =40°,∠BAC =60°,求∠BOD 和∠COG 的度数;解:∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =50°,∠COG =90°-∠OCG=90°-12(180°-∠ABC -∠BAC )=90°-40°=50°.解:∠BOD =∠COG .理由如下:∵∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =12(180°-∠ACB )=90°-12∠ACB ,∠COG =90°-∠OCG =90°-12∠ACB ,∴∠BOD=∠COG.【迁移应用】【3-1】如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°答案:B【3-2】一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β答案:B【3-3】如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是_______.答案:50°,【3-4】一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的15则这个锐角三角形三个内角的度数为___________________.答案:17°、78°、85°考点4:多边形的内角和与外角和例9.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:∵∠A+∠D+∠F=180°,∠B+∠C+∠E+∠G=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°+360°=540°.例10.一个多边形剪去一个内角后,得到一个内角和为1980°的新多边形,求原多边形的边数.解:设新的多边形的边数为n,∵新的多边形的内角和是1980°,∴180°×(n﹣2)=1980°,解得:n=13,∵一个多边形从某一个顶点出发截去一个角后所形成的新的多边形是十三边形,①若截去一个角后边数增加1,则原多边形边数为12,②若截去一个角后边数不变,则原多边形边数为13,③若截去一个角后边数减少1,则原多边形边数为14,∴原多边形的边数可能是:12或13或14.例11.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为(C)A.80米B.96米C.64米D.48米【迁移应用】【4-1】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是_______________________________.答案:十七边形或十八边形或十九边形【4-2】一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.11答案:D【4-3】如图,已知正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°答案:B考点六:本章中的思想方法:1.方程思想:例13.如图,在△AB C中,∠C=∠ABC,BE⊥AC,△BDE是等边三角形,求∠C的度数.解:设∠C=x°,则∠ABC=x°∵△BDE是等边三角形∴∠ABE=60°∴∠EBC=x°-60°∵BE⊥AC,∴∠BEC=90°在△BCE中,根据三角形内角和定理得90+x+x-60=180,解得x=75∴∠C=75°【点睛】在角的求值问题中,常常利用图形关系或内角、外角之间的关系进行转化,然后通过三角形内角和定理列方程求解.【迁移应用】如图,△AB C中,BD平分∠ABC,∠1=∠2,∠3=∠C,求∠1的度数.解:设∠1=x,根据题意得∠2=x.因为∠3=∠1+∠2,∠4=∠2,所以∠3=2x,∠4=x,又因为∠3=∠C,所以∠C=2x.在△AB C中,根据三角形内角和定理,得x+2x+2x=180°,解得x=36°,所以∠1=36°.2.分类讨论思想:例13.已知等腰三角形的两边长分别为10和6,则三角形的周长是________.【解析】由于没有指明等腰三角形的腰和底,所以要分两种情况讨论:第一种10为腰,则6为底,此时周长为26;第二种10为底,则6为腰,此时周长为22.【点睛】别忘了用三边关系检验能否组成三角形这一重要解题环节.3.化归思想:如图,△AOC与△BOD是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论:∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.例14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:连接CD,由“8字型”模型图可知∠F+∠G=∠FCD+∠GDC,∴∠A+∠B+∠BCF+∠EDG+∠E+∠F+∠G=∠A+∠B+∠BCF+∠EDG+∠E+∠FCD+∠GDC=∠A+∠B+∠BCD+∠CDE+∠E=(5-2)×180°=540°.。
八年级数学上册 第十一章 三角形复习教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案
第十一章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和。
三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。
教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。
接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。
这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。
最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标〔知识与技能〕1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。
4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。
〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平页镶嵌设计是难点。
课时分配11.1与三角形有关的线段……………………………………… 2课时11.2 与三角形有关的角………………………………………… 2课时11.3多边形及其内角和………………………………………… 2课时本章小结………………………………………………………… 2课时三角形的边[教学目标]1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.[重点难点]三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。
人教版数学八年级上册11.10《全等三角形复习》教学设计
人教版数学八年级上册11.10《全等三角形复习》教学设计一. 教材分析人教版数学八年级上册11.10《全等三角形复习》是对全等三角形概念、性质、判定和应用的复习。
通过本节课的学习,学生能够进一步巩固全等三角形的知识,提高解决问题的能力。
本节课的内容包括全等三角形的定义、性质、SSS、SAS、ASA、AAS判定方法以及全等三角形在实际问题中的应用。
二. 学情分析学生在之前的学习中已经掌握了全等三角形的基本概念和判定方法,但部分学生对全等三角形的性质理解不够深入,应用能力有待提高。
此外,学生对于实际问题中全等三角形的运用还存在一定的困难。
三. 教学目标1.知识与技能:回顾全等三角形的定义、性质、判定方法,提高学生运用全等三角形解决实际问题的能力。
2.过程与方法:通过复习全等三角形的相关知识,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和毅力。
四. 教学重难点1.重点:全等三角形的定义、性质、判定方法及应用。
2.难点:全等三角形在实际问题中的运用。
五. 教学方法采用讲练结合、分组讨论、案例分析等教学方法,引导学生主动参与、积极思考,提高学生的数学素养。
六. 教学准备1.教师准备:全等三角形的教案、PPT、练习题、案例分析材料。
2.学生准备:全等三角形的知识回顾、笔记本、笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等三角形的定义、性质、判定方法,激发学生的学习兴趣。
2.呈现(10分钟)教师利用PPT展示全等三角形的判定方法,引导学生总结全等三角形的性质,并通过例题展示全等三角形在实际问题中的应用。
3.操练(10分钟)学生分组讨论,分析案例题,运用全等三角形的知识解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,检验自己对全等三角形知识的掌握程度。
教师选取部分题目进行讲解,总结解题思路。
5.拓展(10分钟)教师提出拓展问题,引导学生运用全等三角形知识解决实际问题。
1.八年级第十一章全等三角形复习教案
1.八年级第十一章全等三角形复习教案第一篇:1.八年级第十一章全等三角形复习教案第十一章全等三角形一、知识点:本章主要内容:全等三角形的性质;三角形全等的判定;角的平分线的性质.本章重点:探究三角形全等的条件和角的平分线的性质.难点:三角形全等的判定方法及应用;角的平分线的性质及应用.基础知识梳理教材知识全扫描1.全等三角形:1.⑴全等形:能够完全重合的两个图形叫全等形。
⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。
表示:△ABC≌△DEF教材P3一句话:2.三角形全等的性质:全等三角形对应边相等,对应角相等。
全等三角形对应边上的中线、高、对应角平分线相等。
全等三角形的周长、面积相等。
3.全等三角形的判定:SAS,ASA,AAS,SSS,HL(直角三角形)特别提醒: “有两个角和一边分别相等的两个三角形全等”这句话正确吗?由于没有“对应”二字,结论不一定正确,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.SSA不能判定两三角形全等的例子在教材P10.4.尺规作图:(1)作一个角等于已知角(教材P7_8):步骤(2)作已知角的平分线(教材P19):步骤3.角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。
⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上。
⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。
3.角的平分线是射线,三角形的角平分线是线段。
4.证明线段相等的方法:(1)中点定义;(2)等式的性质;(3)全等三角形的对应边相等;(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。
随着知识深化,今后还有其它方法。
八年级上册数学人教版教案《第十一章 三角形》章节复习
四、教学过程设计
(一)回顾与思考
引言:在本章中,我们学习了与三角形有关的线段、角,以及多边形的内角和等内容,下面,我们通过一些具体的问题来梳理一下本章所学知识.
问题1如图,在△ABC中
(1)若AB=5,AC=3,则BC的取值范围是.
追问2:三角形的三个内角之间有怎样的关系?如何证明这个结论呢?
追问3:直角三角形的两个锐角之间有怎样的关系?
追问4:三角形的一个外角和它不相邻的两个内角之间有怎样的关系?这些结论能由三角形内角和定理得出吗?
师:三角形是最简单的多边形,也是探究多边形内角关系的基础.
问题2如图所示
三角形ABC的内角和为,外角和为;
基于以上分析,确定本节课的教学重点:复习本章内容并运用它们进行有关的计算与证明,构建本章知识结构.
二、目标和目标解析
1.目标
(1)复习本章内容,整理本章知识,形成知识体系,体会研究几何问题的思路和方法.
(2)进一步发展推理能力,能够有条理地思考、解决问题.
2.目标解析
达成目标(1)的标志:通过复习本章的主要内容,理解三角形的有关线段和角,三角形三边之间的关系,三角形内角和定理,三角形的外角的性质,多边形内、外角和公式,能建立这些性质之间的联系,能结合知识体系的构建过程,体会研究几何问题的一般思路和方法.
(二)建构体系
问题3请同学们整理一下本章所学的主要知识,你能发现它们之间的联系吗?你能画出一个本章的知识结构图吗?
师生活动:教师组织学生在纸上画出本章的知识结构图,然后展示部分学生画的知识结构图,并请这些学生简要说明自己所画知识结构图.最后,教师出示教科书中的知识结构图.
人教版数学八年级上册第十一章三角形全章复习优秀教学案例
(二)问题导向
1.引导学生提出问题,如在复习三角形性质时,让学生思考:“三角形有哪些基本的性质?”、“如何判断两个三角形是否全等?”
2.引导学生通过观察、分析、推理等方法,自主探索问题,如利用三角形的边长和角度关系,推导出三角形的性质。
3.学生能够运用数形结合的思想,将抽象的三角形知识与具体的图形相结合,提高直观想象能力。
4.学生通过解决实际问题,将所学知识与生活实际相结合,提高应用能力和创新意识。
(三)情感态度与价值观
1.学生能够在学习过程中,体验到数学的趣味性和挑战性,激发对数学学科的兴趣和热情。
2.学生在团队合作中,感受到合作的力量和成功的喜悦,培养积极向上的情感态度。
1.教师引导学生回顾本节课所学内容,如三角形的性质、分类和应用等。
2.学生总结自己的学习收获,如对三角形性质的理解、判定方法的掌握等。
3.教师对学生的总结进行点评和指导,强调本节课的重点和难点,并指出后续学习的方向。
(五)作业小结
1.教师布置具有针对性的作业,如解决一些与三角形相关的实际问题,巩固学生对三角形知识的理解和应用能力。
(二)讲授新知
1.教师引导学生回顾三角形的基本性质,如三角形的内角和定理、三角形的边角关系等。
2.教师通过示例和讲解,介绍三角形的全等、相似判定定理,并解释其应用和意义。
3.教师讲解三角形的分类,如锐角三角形、直角三角形、钝角三角形的性质和判定方法。
4.教师通过几何计算实例,讲解利用余弦定理、正弦定理解决三角形边长、角度问题的方法。
人教版数学八年级上册第十一章三角形全章复习优秀教学案例
一、案例背景
本案例背景以人教版数学八年级上册第十一章“三角形”全章复习为主题,旨在通过复习三角形的相关知识,巩固学生对三角形性质、分类、判定及应用的理解。本章内容涉及三角形的边角关系、三角形的全等、相似以及三角形的几何计算等,是学生进一步学习几何知识的基础。
人教版初二数学上册三角形复习教案
第十一章三角形复习教案一、教学目标1、复习本章内容,整理本章知识,形成知识体系,体会研究几何题的思路和方法。
2、进一步发展推理能力,能够有条理地思考、解决问题。
3、培养学生结合知识体系的构建过程,体会研究几何问题的一般思路和方法。
二、教法与学法教法:教师指导学生复习本章知识,以强化记忆、加深理解,把零散的、片断的知识条理化和系统化,形成本章知识的体系结构,培养学生归纳和总结的能力。
学法:学生通过交流、讨论、思考,把本章所学的知识进行回顾和总结,拓展应用所学知识去分析问题并解决问题。
三、教学重点掌握三角形边角关系,三角形“三线”的概念以及多边形的内角各。
四、教学难点本章知识点的内在联系,知识体系的建构,较复杂几何问题的证明与计算。
五、教学过程(一)三角形与三角形有关的线段三角形内角和:180°三角形外角和:360°三角形的边:三边关系定理高线中线:把三角形面积平分角平分线与三角形有关的角内角与外角关系三角形的分类多边形定义多边形的内外角和内角和:(n-2) ×180 °外角和:360 °对角线多边形转化为三角形和四边形的重要辅助线正多边形内角= ;外角=2)180nn-⨯︒(360n︒知识网络知识网络(二)专题复习①专题一三角形的三边关系【例1】已知两条线段的长分别是3cm、8cm ,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多长?【配套训练】以线段3、4、x-5为边组成三角形,那么x的取值范围是 .②专题二三角形内角和及其相关定理【例2】如图,求证:∠A+∠B+∠C=∠ADC.③专题三多边形的内角和与外角和【例3】已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数. 【配套训练】一个正多边形的每一个内角都等于120 °,则其边数是④专题四本章中的思想方法方程思想【例4】如图,在△ABC中,∠C=∠ABC,BE⊥AC, △BDE是等边三角形,求∠C的度数.【配套训练】如图,△ABC中,BD平分∠ABC, ∠1=∠2, ∠3= ∠C,求∠1的度数分类讨论思想【例5】已知等腰三角形的两边长分别为10 和6,则三角形的周长是.化归思想如图,△AOC与△BOD是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论:∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.三、课堂小结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学第十一章三角形总复习教学设计
教学目标知识与
技能
使学生进一步掌握三角形各部分名称与意义、三角形内角和
三角形分类的有关知识。
过程与
方法
引导学生开展自主整理复习,初步掌握复习方法,形成
基本复习技能。
情感态
度与价
值观
提高复习课学习兴趣,培养积极的学习态度,使学生获得成功的情感体验。
教学重点
总复习三角形相关基础知识,初步掌握复习的基本方法。
教学难点
通过复习活动,提高学生上复习课的学习兴趣,培养学生积极的学习态度,并使学生获得成功的情感体验。
教学资源教育网
教学过程:
一、谈话导入,检查反馈
师:《论语》里面有这样一句话:学而时习之不亦说乎。
就是
说学习时经常复习是一件快乐的事。
今天,这节课老师就和
同学们一起再次走进“三角形”,去体验复习的快乐。
1、学生交流,汇报。
师:昨天老师让同学们回家复习学过的有关三角形的知识,
下面谁将自己的复习情况向大家汇报一下?(学生汇报)
二、梳理知识,整理复习
1、知识呈现
①三角形有三条边、三个角、三个顶点。
师:你的三个角多少度?这是三角形的起点知识,也是最重
要的知识。
贴出知识卡片
②三角形两条边的长度的和大于第三边。
师:你三角形三条边的长度分别是多少?能再说出一组可以
备注
围成三角形的三条线段吗?3cm、5cm和9cm的三条线段可以围成三角形吗?)
③三角形中顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
师:一个三角形有多少条高?高一般用什么线来画?你的高和底分别是多少?[三条]贴出知识卡片
④三角形具有稳定性。
师:你会联想到哪个图形正好和他有相反的特性吗?
⑤三角形按角分:锐角三角形、直角三角形、钝角三角形。
师:什么样的三角形是锐角三角形呢?……你的三角形属于哪一类?为什么?判断的简单方法:以最大角判断)
⑥三角形的内角和是180度。
师:已经知道两个角的度数,如何求第三个角的度数呢?
⑦三角形按边分:等腰三角形、等边三角形。
师:老师的三角形属于哪一类?你的呢?为什么很多人的三角形既不是等腰三角形也不是等边三角形呢?揭示第10号知识卡片(非等腰三角形:三边不等),明确像这样的三角形居多。
2、介绍课前准备的三角形。
联系刚刚回顾的所有知识,介绍手中的三角形。
(学生于课前完成作高、量边长度、量角的度数)同桌互相介绍后,全班汇报。
两生汇报,看谁汇报的有条理而且准确。
3、对比联系,系统整理。
复习还需要我们对知识进行系统的整理,使所有的知识形成一个整体,使我们头脑中能清晰的建立起知识的联系。
为了便于大家整理,老师将所有的知识点印制成了这样的知识卡片,并分发到了各个学习小组,下面我们以游戏的形式来对知识进行整理。
游戏:请14位同学上黑板简单介绍自己手中的知识卡片的含义,并将知识卡片贴到合适的位置,最后介绍一下所贴位置的理由。
学生代表上黑板操作,教师与其他学生进行评价。
预设效果如下:
《三角形总复习》
三角形的组成:三个顶点三个角三条边(围成)三条高(虚线)
三角形的性质:具有稳定性内角和180度两条边的长
度的和大于第三边顶点到底的垂直线段
锐角三角形(3锐)等腰三角形(2边相等)
三角形的分类:直角三角形(1直2锐)等边三角形(3边相等)
钝角三角形(1钝2锐)非等腰三角形(三边不等)
(3)总体感悟:学生从整体上看看知识间内在的联系与区别。
师:刚才同学们主要是从竖着的方向来整理的,我们再从横着的方向来看一看。
根据学生的回答,教师依次张贴“三角形的组成”、“三角形的性质”、“三角形的分类”。
补充:不过老师还要告诉大家的是,无论是横方向还是竖方向,其实我们的学习都只是刚刚开始,还有许多的知识等待我们去学习、去发现。
教师板书两个省略号。
通过同学们刚才的整理,所有的知识形成了一个整体,这就是复习与整理的作用了。
这样做有什么好处呢?
三、巩固训练,拓展提升。
(一)复习三角形的特性,出示判断题,错的请说明原因
1.任何三角形都有三条高和三条底边。
()
2.由三条直线围成的图形叫做三角形。
()
3.三角形不容易变形。
()
4.我能画一个边长分别是4厘米、3厘米、5厘米的三角形。
()
5.有一个等腰三角形的腰2分米,底3分米。
()
(二)复习三角形的分类
1. 等边三角形按角分类一定是()。
A.直角三角形 B.锐角三角形 C.钝角三角形
2. 有一个锐角是45°的直角三角形按边分一定是()三
角形
A.等边三角形
B.等腰三角形
C.一般三角形
3. 直角三角形,一个锐角30°,另一个锐角( )°
A. 40°
B. 50°
C. 60°
4. 有一个角是91°的三角形按角分是( )三角形
A .直角三角形 B.锐角三角形 C.钝角三角形
评价第2题:请一个学生说明论证这个三角形按边分是什么三角形?
教师小结:三角形有两种分类标准,“有一个锐角是45°的直角三角形”按角分是直角三角形,按边分是等腰三角形,因此,对于一个三角形的分类,我们要从角和边两个方面考虑。
四、知识应用,能力拓展
A B
C D
3、猜一猜。
(1)下面的三角形都被一张纸遮住了一部分。
你能确定它们各是什么三角形吗?
(2)有一个三角形,其中一个角是20。
,它可能是什么三角形?如果还知道第二个角是65。
,那么你知道它是什么三角形了吗?
5. 智慧角
⑴已知三角形中的两条边分别是4cm、6cm,那么第三条边必须大于()cm,必须小于()cm;如果这是一个等腰三角形,那么第三条边可以是()cm。
⑵在一个等腰三角形中已知一个角是50度,底角可能是()度,这时顶角是()度。
4、解决问题。
(2)一个等腰三角形的底是23厘米,腰是32厘米。
则它的周长是多少厘米?
五、全课总结,质疑评价提升。
总结:今天的复习中你还有什么疑问吗?有新的收获吗?学得高兴吗?
小组汇报,教师小结。
形成知识结构网络
三角形特征、各部分名称及字
母表示
三角形稳定性
三角形特性
三角形任意两边之和大
于第三边
按边分类
三角形的整理和复习三角形分类按角分类
三角形内角和。