中考数学二次函数与四边形综合专题
中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型四
由勾股定理得 BC2=22+32=13,CG2=1+(2-n)2,BG2=4+n2,
①若∠BCG=90°,则 BC2+CG2=BG2,
即
13+1+(2-n)2=4+n2,解得
7 n=2,此时点
G
的坐标为1,27.
②若∠CBG=90°,则 CB2+BG2=CG2,
即 13+4+n2=1+(2-n)2,解得 n=-3,此时点 G 的坐标为(1,-3). ③若∠CGB=90°,则 CG2+BG2=BC2,
即 1+(2-n)2+4+n2=13,解得 n=1+ 3或 n=1- 3, 此时点 G 的坐标为(1,1+ 3)或(1,1- 3).
7 综上所述,点 G 的坐标为1,2或(1,-3)或(1,1+ 3)或(1,1- 3).
【思路点拨】 要使以 B,C,G,H 为顶点的四边形是矩形,只需△BCG 是直角三角形即 可,可分为①∠BCG=90°;②∠CBG=90°;③∠CGB=90°三种情况, 分别利用勾股定理列方程即可求解.
类型四:二次函数与特殊四边形问题
如图,在平面直角坐标系中,已知抛物线 y=ax2+bx+2(a≠0)与 x 轴交于 A(-1,0),B(3,0)两点,与 y 轴交于点 C. (1)求该抛物线的解析式;
解:由题意知抛物线经过 A(-1,0),B(3,0),
a-b+2=0,
a=-23,
∴9a+3b+2=0,解得b=43.
等及勾股定理得:AQ2=CQ2,
∴12+q2=(2-q)2,解得
3 q=4.
由中点坐标公式得-1+0=0+x,0+2=q+y,
∴x=-1,y=54,即 I-1,45.
②若 AC 是菱形的边,由菱形性质得:QI∥AC,QI=AC. ∵当点 A 向右平移 1 个单位,向上平移 2 个单位得到点 C. ∴点 I(或 Q)向右平移 1 个单位,向上平移 2 个单位得到点 Q(或 I), 即 x+1=0,y+2=q 或 0+1=x,q+2=y, ∴x=-1 或 x=1.
中考数学解答题压轴题突破 重难点突破八 二次函数与几何综合题 类型四:二次函数与特殊四边形问题
同Ⅰ)可得 NG=FM=3,OF=t-3,
∵∠OFB=∠FPM,
∴tan ∠OFB=tan ∠FPM,
OB FM 4
3
∴OF=PM,即t-3=-21t2+t+4,
1+ 201 1- 201 解得 t1= 4 ,t2= 4 (舍),
∴F
2014-11,0.
综上,点 F 的坐标为(2,0)或
形问题
[眉山:2022T26;泸州:2022T23;达州:2021T25(3); 凉山州:2021T28;绵阳:2020T24;德阳:2020T25]
4.(2022·眉山第 26 题 12 分)在平面直角坐标系中,抛物线 y=-x2- 4x+c 与 x 轴交于点 A,B(点 A 在点 B 的左侧),与 y 轴交于点 C,且点 A 的坐标为(-5,0). (1)求点 C 的坐标; (2)如图①,若点 P 是第二象限内抛物线上一动点,求点 P 到直线 AC 距 离的最大值;
解:(1)由二次函数 y=x2+bx+c 的图象与 x 轴相交于点 A(-1,0)和
点 B(3,0),得 1-b+c=0, 9+3b+c=0,
b=-2, 解得c=-3.
(2)①∵点 P(m,n)在抛物线 y=x2-2x-3 上, ∴P(m,m2-2m-3), ∵过点 P 作 x 轴的垂线交直线 l:y=x 于点 Q, ∴Q(m,m),∴PQ=-m-232+241,
(2)过点 P 作 PE⊥AC 于点 E,过点 P 作 PF⊥x 轴交 AC 于点 H,如图①. ∵A(-5,0),C(0,5),∴OA=OC, ∴△AOC 是等腰直角三角形,∴∠CAO=45°, ∵PF⊥x 轴,∴∠AHF=45°=∠PHE, ∴△PHE 是等腰直角三角形,
PH ∴PE= 2,∴当 PH 最大时,PE 最大,
2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题(Word版,含答案)
2023年九年级中考数学复习:二次函数(特殊四边形问题)综合题1.已知抛物线()21=++4(0)2y a x m m am -≠过点()0,4A(1)若=2m ,求a 的值;(2)如图,顶点M 在第一象限内,B 、C 是抛物线对称轴l 上的两点,且MB MC =,在直线l 右侧以BC 为边作正方形BCDE ,点E 恰好在抛物线上.①求am 的值;①试判断点E 和点A 是否关于直线l 对称,如果对称,请说明理由,如果不对称,请举出反例.2.如图,抛物线y =ax 2-2x +c (a ≠0)与直线y =x +3交于A ,C 两点,与x 轴交于点B .(1)求抛物线的解析式.(2)点P 是抛物线上一动点,且在直线AC 下方,当①ACP 的面积为6时,求点P 的坐标.(3)D 为抛物线上一点,E 为抛物线的对称轴上一点,请直接写出以A ,C ,D ,E 为顶点的四边形为平行四边形时点D 的坐标.3.如图1,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0)、B (3,0),与y 轴交于点C ,连接AC 和BC ,①OAC =60°.(1)求二次函数的表达式.(2)如图2,线段BC 上有M 、N 两动点(N 在M 上方),且MN 3P 是直线BC 下方抛物线上一动点,连接PC 、PB ,当①PBC 面积最大时,连接PM 、AN ,当MN 运动到某一位置时,PM +MN +NA 的值最小,求出该最小值.(3)如图3,在(2)的条件下,连接AP ,将AP 绕着点A 逆时针旋转60°至AQ .点E 为二次函数对称轴上一动点,点F 为平面内任意一点,是否存在这样的点E 、F ,使得四边形AEFQ 为菱形,若存在,请直接写出点E 的坐标,若不存在,请说明理由.4.直线3y x =-+与x 轴相交于点A ,与y 轴相交于点B ,抛物线2y ax 2x c =++经过点A ,B ,与x 轴的另一个交点为C .(1)求抛物线的解析式;(2)如图1,若点P为直线AB上方的抛物线上的一动点,求四边形APBO的面积的最大值;D为抛物线上的一点,直线CD与AB相交于点M,点H在抛物线上,(3)如图2,(2,3)∥轴,交直线CD于点K.P是平面内一点,当以点M,H,K,P为顶点的四过H作HK y边形是正方形时,请直接写出点P的坐标.5.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值为______.(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①当ANC面积最大时的P点坐标为______;最大面积为______.①点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
二次函数与几何综合压轴题(原卷版)-2024年中考数学
二次函数与几何综合压轴题几乎所有的地方都把二次函数与几何综合压轴题作为中考压轴题。
1.(2023·青海·中考真题)如图,二次函数2y x bx c =−++的图象与x 轴相交于点A 和点()1,0C ,交y 轴于点()0,3B .(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P ,对称轴与x 轴交于点Q ,求四边形AOBP 的面积(请在图1中探索); (3)二次函数图象的对称轴上是否存在点M ,使得△AMB 是以AB 为底边的等腰三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由(请在图2中探索).2.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴的交点分别为A 和()10B ,(点A 在点B 的左侧),与y 轴交于点()0,3C ,点P 是直线AC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P 作x 轴平行线交AC 于点E ,过点P 作y 轴平行线交x 轴于点D ,求PE PD +的最大值及点P 的坐标;(3)如图2,设点M 为抛物线对称轴上一动点,当点P ,点M 运动时,在坐标轴上确定点N ,使四边形PMCN 为矩形,求出所有符合条件的点N 的坐标.3.(2023·海南·中考真题)如图1,抛物线2y x bx c =++交x 轴于A ,()3,0B 两点,交y 轴于点()0,3C −.点P 是抛物线上一动点.(1)求该抛物线的函数表达式;(2)当点P 的坐标为()1,4−时,求四边形BACP 的面积;(3)当动点P 在直线BC 上方时,在平面直角坐标系是否存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形?若存在,请求出点Q 的坐标;若不存在,请说明理由;(4)如图2,点D 是抛物线的顶点,过点D 作直线DH y ∥轴,交x 轴于点H ,当点P 在第二象限时,作直线PA ,PB 分别与直线DH 交于点G 和点I ,求证:点D 是线段IG 的中点.4.(2023·西藏·中考真题)在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于()30A −,,()10B ,两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.5.(2023·四川甘孜·中考真题)已知抛物线2y x bx c =++与x 轴相交于()10A −,,B 两点,与y 轴相交于点()03C −,.(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,PBC 的面积与ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ′,试探究,是否存在满足条件的点E ,使得点P ′恰好落在直线BC 上,如果存在,求出点P ′的坐标;如果不存在,请说明理由.6.(2023·四川达州·中考真题)如图,抛物线2y ax bx c ++过点()()()1,0,3,,00,3A B C −.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.(2023·四川巴中·中考真题)在平面直角坐标系中,抛物线2(0)y ax bx c a ++≠经过点(1,0)A −和(0,3)B ,其顶点的横坐标为1.(1)求抛物线的表达式.(2)若直线x m =与x 轴交于点N ,在第一象限内与抛物线交于点M ,当m 取何值时,使得AN MN +有最大值,并求出最大值.(3)若点P 为抛物线2(0)y ax bx c a ++≠的对称轴上一动点,将抛物线向左平移1个单位长度后,Q 为平移后抛物线上一动点.在(2)的条件下求得的点M ,是否能与A 、P 、Q 构成平行四边形?若能构成,求出Q 点坐标;若不能构成,请说明理由.8.(2023·四川眉山·中考真题)在平面直角坐标系中,已知抛物线2y ax bx c ++与x 轴交于点()()3,0,1,0A B −两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PD DB的值最大时,求点P 的坐标及PD DB 的最大值; (3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将PCM △沿直线PC 翻折,当点M 的对应点'M 恰好落在y 轴上时,请直接写出此时点M 的坐标.9.(2023·四川内江·中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c ++与x 轴交于()4,0B ,()2,0C −两点.与y 轴交于点()0,2A −.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.10.(2023·湖北黄冈·中考真题)已知抛物线212y x bx c =−++与x 轴交于,(4,0)A B 两点,与y 轴交于点(0,2)C ,点P 为第一象限抛物线上的点,连接,,,CA CB PB PC .(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标; (3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=°,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB 的面积为S ,若214S m k =−,请直接写出k 的取值范围.11.(2023·湖北武汉·中考真题)抛物线21:28=−−C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.12.(2023·湖南郴州·中考真题)已知抛物线24y ax bx ++与x 轴相交于点 1,0A ,()4,0B ,与y 轴相交于点C .(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △的周长最小时,求PAPC的值; (3)如图2,取线段OC 的中点D ,在抛物线上是否存在点Q ,使1tan 2QDB ∠=若存在,求出点Q 的坐标;若不存在,请说明理由.且与直线:1l y x =−−交于D E 、两点(点D 在点E 的右侧),点M 为直线l 上的一动点,设点M 的横坐标为t .(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ ∠的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m −=时,直接写出m 的值.15.(2023·青海西宁·中考真题)如图,在平面直角坐标系中,直线l 与x 轴交于点()6,0A ,与y 轴交于点()0,6B −,抛物线经过点A ,B ,且对称轴是直线1x =.(1)求直线l 的解析式; (2)求抛物线的解析式;(3)点P 是直线l 下方抛物线上的一动点,过点P 作PC x ⊥轴,垂足为C ,交直线l 于点D ,过点P 作PM l ⊥,垂足为M .求PM 的最大值及此时P 点的坐标.16.(2023·湖南·中考真题)如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.17.(2023·辽宁营口·中考真题)如图,抛物线()210y ax bx a +−≠与x 轴交于点 1,0A 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点()3,0D ,过点B 作直线l x ⊥轴,过点D 作DE CD ⊥,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P 为第三象限内抛物线上的点,连接CE 和BP 交于点Q ,当57BQ PQ =时.求点P 的坐标; (3)在(2)的条件下,连接AC ,在直线BP 上是否存在点F ,使得DEF ACD BED ∠=∠+∠?若存在,请直接写出点F 的坐标;若不存在,请说明理由.18.(2023·湖南湘西·中考真题)如图(1),二次函数25y ax x c =−+的图像与x 轴交于()4,0A −,(),0B b 两点,与y 轴交于点()0,4C −.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图像上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E ′是圆在x 轴上方圆弧上的动点(点E ′不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ′,线段AE 的对应线段为A E ′′,连接E C ′,A A ′,A A ′的延长线交直线E C ′于点N ,求AA CN′的值.19.(2023·辽宁盘锦·中考真题)如图,抛物线23y ax bx ++与x 轴交于点()10A −,,()30B ,,与y 轴交于点C .(1)求抛物线的解析式.(2)如图1,点Q 是x 轴上方抛物线上一点,射线QM x ⊥轴于点N ,若QM BM =,且4tan 3MBN ∠=,请直接写出点Q 的坐标.(3)如图2,点E 是第一象限内一点,连接AE 交y 轴于点D ,AE 的延长线交抛物线于点P ,点F 在线段CD 上,且CF OD =,连接FA FE BE BP ,,,,若AFE ABE S S =△△,求PAB 面积.20.(2023·重庆·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx ++过点()1,3,且交x 轴于点()1,0A −,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.21.(2023·四川广安·中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.22.(2023·湖北十堰·中考真题)已知抛物线28y ax bx ++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.23.(2023·四川·中考真题)如图1,在平面直角坐标系中,已知二次函数24y ax bx ++的图象与x 轴交于点()2,0A −,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=°,求出点F 的坐标; (3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.24.(2023·黑龙江绥化·中考真题)如图,抛物线21y ax bx c =++的图象经过(6,0)A −,(2,0)B −,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?25.(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x 轴交于点(4,0)A −,(2,0)B ,与y 轴交于点(0,4)C −.(1)求抛物线的解析式;(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线6y kx =+与新图象有三个公共点时,求k 的值; (3)如图2,如果把直线AB 沿y 轴向上平移至经过点D ,与抛物线的交点分别是E ,F ,直线BC 交EF 于点H ,过点F 作FG CH ⊥于点G ,若DF HG=F 的坐标.26.(2023·辽宁锦州·中考真题)如图,抛物线2y bx c ++交x 轴于点()1,0A −和B ,交y 轴于点(C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为E 的坐标;(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且60EFG ∠=°,如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.27.(2023·辽宁鞍山·中考真题)如图1,抛物线253y ax x c =++经过点()3,1,与y 轴交于点()0,5B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =−与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE .当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M .若OE BN =,3tan 4BME ∠=,求点E 的坐标.28.(2023·辽宁丹东·中考真题)抛物线24y ax bx +−与x 轴交于点()4,0A −,()2,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,点D 是抛物线上的一个动点,设点D 的横坐标是()42m m −<<,过点D 作直线DE x ⊥轴,垂足为点E ,交直线AC 于点F .当D ,E ,F 三点中一个点平分另外两点组成的线段时,求线段DF 的长;(3)若点P 是抛物线上的一个动点(点P 不与顶点重合),点M 是抛物线对称轴上的一个点,点N 在坐标平面内,当四边形CMPN 是矩形邻边之比为1:2时,请直接写出点P 的横坐标.。
2020年中考数学压轴专题练习 二次函数与四边形综合(含答案)
2020中考数学 压轴专题 二次函数与四边形综合(含答案)1. 如图,抛物线y =ax 2+bx -3交y 轴于点C ,直线L 为抛物线的对称轴,抛物线的顶点P 位于第三象限,点P 到x 轴的距离为103,到y 轴的距离为1,点C 关于直线L 的对称点为点A ,连接AC 交直线l 于点B ,直线y =34x +m 与抛物线在第一象限内交于点D ,与y 轴交于点F ,连接BD 交y 轴于点E . (1)求抛物线的表达式;(2)若DE ∶BE =4∶1,求直线y =34x +m 的表达式;(3)在(2)的条件下,Q 为抛物线上位于直线y =34x +m 下方的图象上的一点,过点Q 作QK ⊥x 轴,交y =34x +m 于点K ,当线段QK 取得最大值时,求点Q 的横坐标;(4)在(2)的条件下,若N 为平面直角坐标系内的点,在直线y =34x +m 上是否存在点M ,使得四边形OFMN 是以OF 为一边的菱形?若存在,直接写出点M 的坐标;若不存在,请说明理由.第1题图解:(1)∵抛物线y =ax 2+bx -3交y 轴于点C , ∴C (0,-3),则 OC =3;∵P 到x 轴的距离为103,P 到y轴的距离是1,且在第三象限,∴P (-1,-103);∵点C 关于直线l 的对称点为点A , ∴A (-2,-3);将点A (-2,-3),P (-1,-103)代入抛物线y =ax 2+bx -3中,得:⎩⎪⎨⎪⎧-3=4a -2b -3-103=a -b -3,解得⎩⎨⎧a =13b =23,∴抛物线的表达式为y =13x 2+23x -3;(2)如解图①,过点D 作DG ⊥y 轴于点G ,则∠DGE =∠BCE =90°,第1题解图①∵∠DEG =∠BEC , ∴△DEG ∽△BEC ,∴DG ∶BC =DE ∶BE =4∶1; 已知BC =1,则DG =4, ∴点D 的横坐标为4,将x =4代入y =13x 2+23x -3中,得y =5,则 D (4,5),∵直线y =34x +m 过点D (4,5),∴5=34×4+m ,则 m =2,∴所求直线的表达式为y =34x +2;(3)如解图②,设Q (x ,13x 2+23x -3),则K (x ,34x +2),第1题解图②则QK =34x +2-(13x 2+23x -3)=-13x 2+112x +5,∵-13<0,∴当x =-1122×(-13)=18时,QK 取得最大值,即点Q 的横坐标为18;(4)存在,点M 的坐标为(85,165)、(-85,45)、(-4825,1425).【解法提示】由(2)的直线解析式知:F (0,2),则OF =2;设点M (x ,34x +2),则:OM 2=2516x 2+3x +4,FM 2=2516x 2;当OF 为菱形的边时,有:①FM =OF =2,则:2516x 2=4,解得x 1=85,x 2=-85,代入y =34x +2中,得:y 1=165,y 2=45,即点M 的坐标为(85,165)或(-85,45);②OF =OM =2,则:2516x 2+3x +4=4,解得x 1=0(舍),x 2=-4825,代入y =34x +2中,得y =1425;即点M 的坐标为(-4825,1425);综上,存在符合条件的点M ,其坐标为(85,165)、(-85,45)、(-4825,1425). 2. 如图,已知抛物线y =ax 2+32x +4与x 轴交于A 、B 两点,与y 轴交于点C ,若已知点B 的坐标为(8,0). (1)求抛物线的解析式及对称轴;(2)猜想△ABC 是什么样的三角形,并说明理由;(3)是否存在以BC 为边,且一个顶点P 在抛物线的对称轴上的矩形?若存在,求出符合条件的点P 坐标;若不存在,请说明理由.第2题图解:(1)∵抛物线y =ax 2+32x +4的图象经过点B (8,0),∴a ×82+32×8+4=0,解得a =-14,∴抛物线的解析式为y =-14x 2+32x +4,又∵y =-14x 2+32x +4=-14(x -3)2+254,∴对称轴方程为直线x =3; (2)△ABC 为直角三角形.理由:在y =-14x 2+32x +4中,令x =0,得y =4,∴C (0,4);令y =0,即-14x 2+32x +4=0,整理得x 2-6x -16=0,解得x =8或x =-2, ∴A (-2,0),B (8,0).∴AB 2=(8+2)2=100,AC 2=22+42=20,BC 2=82+42=80, ∴AB 2=AC 2+BC 2.∴△ABC 为直角三角形;(3)存在,设直线AC 为y =mx +n ,把A (-2,0),C (0,4)分别代入解析式,得:⎩⎪⎨⎪⎧-2m +n =0n =4,解得⎩⎪⎨⎪⎧m =2n =4, ∴直线AC 的解析式为y =2x +4.①如解图,延长AC 与对称轴x =3交于点P ,过点P 作PQ ∥BC ,过点B 作BQ ∥AC ,PQ 与BQ 交于点Q ,则四边形BCPQ 为平行四边形, 此时点P 的坐标为(3,10), ∵∠PCB =180°-∠BCA =90°, ∴四边形BCPQ 为矩形,∴当点P 坐标为(3,10)时,四边形BCPQ 为矩形;第2题解图②如解图,再延长QB 与对称轴x =3相交于点P ′,过点P ′作P ′Q ′∥BC ,P ′Q ′与CA 的延长线相交于点Q ′,则四边形BCQ ′P ′为矩形,设直线BP′的解析式为y=Kx+B,∵BP′∥AC,∴K=M=2,∴直线BP′的解析式为y=2x+B,把B(8,0)的坐标代入y=2x+B,得:0=16+B,则B=-16,∴直线BP′的解析式为y=2x-16,∴点P′的坐标为(3,-10),即当点P′坐标为(3,-10)时,四边形BCQ′P′为矩形;综上,存在以BC为边,且一个顶点P在抛物线的对称轴上的矩形,点P的坐标为(3,10)或(3,-10).3.如图,抛物线y=x2+bx+c与x轴交于A(-1, 0)、B(3, 0)两点,交y轴于点C.(1)求该抛物线的解析式与顶点D的坐标;(2)将抛物线y=x2+bx+c沿着x轴方向向左平移4个单位,此时C点对应的点为点C′,判定四边形AC′CB的形状;(3)若点Q是y轴上的动点,在抛物线上是否存在点P使得以点A、B、P、Q为顶点的四边形为平行四边形?若存在,求出所有满足条件的点P坐标;若不存在,请说明理由.第3题图解:(1)将A(-1,0),B(3,0)两点代入y=x2+bx+c中得⎩⎪⎨⎪⎧1-b +c =09+3b +c =0,解得⎩⎪⎨⎪⎧b =-2c =-3, ∴抛物线的解析式为y =x 2-2x -3,即y =(x -1)2-4, ∴顶点D 的坐标为(1,-4); (2)由抛物线的解析式可知C (0,-3),∵抛物线沿x 轴方向向左平移4个单位,如解图①,第3题解图①∴C (0,-3)向左平移4个单位,得C ′(-4,-3), 则CC ′=0-(-4)=4, ∵AB =3-(-1)=4, ∴AB =CC ′,根据平移的性质得CC ′∥AB , ∴四边形AC ′CB 为平行四边形;(3)存在,点P 的坐标为(-4,21)、(4,5)、(2,-3). 理由如下:如解图②,第3题解图②①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,∴点P的横坐标为-4或4,当x=-4时,y=21;当x=4时,y=5;∴此时点P1的坐标为(-4,21),P2的坐标为(4,5);②当AB为对角线时,只要线段PQ与线段AB互相平分即可,设线段AB的中点为G,PQ必过G点且与y轴交于Q点,过点P3作x轴的垂线交于点H,可证得△P3HB≌△Q3OA,∴AO=BH,∴GO=GH,∵线段AB的中点G的横坐标为1,∴此时点P3的横坐标为2,当x=2时,y=-3,∴点P3(2,-3).综上所述,符合条件的点为P1(-4,21),P2(4,5),P3(2,-3).4.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a<0)的图象与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),点C的坐标为(0,3),OC=3OA,D与C关于抛物线对称轴对称.(1)求二次函数的解析式;(2)设Q为x轴上任意一点,P是抛物线上的点,且在抛物线对称轴的左侧,满足∠QBP =45°,是否存在这样的点P、Q,使得以P、Q、B为顶点的三角形与△BDC相似?若存在,求出点P、Q的坐标;若不存在,请说明理由;(3)点E是该抛物线的顶点,点M是y轴上一点,N是坐标平面内一点,如果以点A、E、M、N为顶点的四边形是矩形,求该矩形的顶点N的坐标.解:(1)∵点C的坐标为(0,3),OC=3OA,∴OA=1,∴A(-1,0),设二次函数的解析式为y=a(x-3)(x+1),将C(0,3)代入得3=a(0-3)(0+1),解得a=-1,∴二次函数的解析式为y=-(x-3)(x+1),即y=-x2+2x+3;(2)∵C(0,3)、B(3,0)、A(-1,0),∴抛物线的对称轴为直线x=1,由对称性得D(2,3),由两点间的距离公式可知CD=2,BC=32,DB=10.∵∠QBP=45°,∴直线PB与x轴的夹角为45°,∴直线PB的解析式的一次项系数为1或-1.①当直线PB 的解析式的一次项系数为-1时,如解图①所示, 设直线PB 的解析式为y =-x +B , 将点B (3,0)代入得B =3, ∴直线PB 的解析式为y =-x +3,联立⎩⎪⎨⎪⎧y =-x +3y =-x 2+2x +3,解得⎩⎪⎨⎪⎧x 1=0y1=3,⎩⎪⎨⎪⎧x 2=3y 2=0(舍去).∴点P 的坐标为(0,3),此时点P 与点C 重合, 设QB =x ,∵以P 、Q 、B 为顶点的三角形与△BDC 相似,∠DCB =∠CBQ =45°, ∴△BDC ∽△QPB 或△BDC ∽△PQB ,∴CD CB =PB Q 1B 或CD CB =Q 2B PB ,即232=32x 或232=x 32, 解得x =9或x =2, ∴Q 1(-6,0),Q 2(1,0);第4题解图②当直线PB 的解析式的一次项系数为1时,如解图②所示,设直线PB 的解析式为y =x +D ,将点B (3,0)代入得D =-3,∴直线PB 的解析式为y =x -3.联立⎩⎪⎨⎪⎧y =x -3y =-x 2+2x +3,解得⎩⎪⎨⎪⎧x 1=-2y 1=-5,⎩⎪⎨⎪⎧x 2=3y 2=0(舍去).∴点P 的坐标为(-2,-5),此时PB =52+52=52,设BQ =x ,同理可得232=52x 或232=x 52,解得x =15或x =103.∴Q 3(-12,0)或Q 4(-13,0).综上所述,当点P 的坐标为(0,3)时,点Q 的坐标为(-6,0)或(1,0),当点P 的坐标为(-2,-5)时,点Q 的坐标为(-12,0)或(-13,0);(3)∵y =-x 2+2x +3=-(x -1)2+4. ∴E (1,4).①AE 为矩形的对角线时,如解图③所示, 设H 为AE 的中点, ∵A (-1,0),E (1,4), ∴H (0,2).由两点间的距离公式可知 HE =(1-0)2+(4-2)2=5,由矩形的性质知HN 1=HN 2=HE =5, ∴N 1(0,2+5),N 2(0,2-5);第4题解图②当AE 为矩形的一边时,如解图④,过N 3作N 3G ⊥y 轴,垂足为点G ,过N 4作N 4F ⊥y 轴,垂足为点F .∵在△AHO 中,AO =1,OH =2, ∴tan ∠AHO =12,∴tan ∠EHM 4=M 4E EH =12,∴M 4E =12EH =52,HM 4=52EH =52,OM 4=HM 4+OH =92,∴M 4N 3=2M 4E =5, 易证∠M 4N 3G =∠AHO , ∴M 4G =55M 4N 3=1,GN 3=255M 4N 3=2. ∵OG =OM 4-M 4G =92-1=72,∴N 3的坐标为(2,72),由矩形的性质可知点N 3与N 4关于点H 对称, ∴N 4(-2,12),综上所述,点N 的坐标为(0,2+5)或(0,2-5)或(2,72)或(-2,12).5. 如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1,0),C (3,0),D (3,4),以A 为顶点的抛物线y =ax 2+bx +c 过点C ,动点P 从点A 出发,以每秒12个单位的速度沿线段AD向点D运动,运动时间为t秒,过点P作PE⊥x轴交抛物线于点M,交AC于点N.(1)求点A的坐标和抛物线的解析式;(2)当T为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C,Q,N,H为顶点的四边形为菱形?解:(1)∵四边形ABCD是矩形,B(1,0),C(3,0),D(3,4),∴A(1,4).∵点A为抛物线顶点,∴设抛物线的解析式为y=a(x-1)2+4,∵抛物线过点C(3,0),∴0=a(3-1)2+4,解得a=-1,∴抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3;(2)如解图①,连接AM,CM,第5题解图①∵A (1,4),C (3,0),∴直线AC 的解析式为y =-2x +6, ∵点P (1+t2,4),∴将x =1+t2代入y =-2x +6中,可求得点N 的纵坐标为4-t ,∴把x =1+t 2代入抛物线的解析式中,可求得点M 的纵坐标为4-t 24,∴MN =(4-t 24)-(4-t )=t -t 24,∴S △ACM =S △AMN +S △CMN =12MN ·t 2+12MN ·(2-t 2)=12×2(t -t 24)=-14(t -2)2+1,由题可知0≤t ≤4,∴当t =2时,△ACM 的面积最大,最大值为1;(3)当H 在AC 上方时,如解图②,过点N 作NG ⊥AB 于点G , ∵A (1,4),C (3,0),Q (3,t ),N (1+t2,4-t ),AB =4,∴AG =4-(4-t )=t ,BG =4-t ,AC =25, 由四边形CQHN 是菱形,可知CQ =CN =t , 此时,AN =AC -CN =25-t , ∵NG ∥BC ,∴AG BG =AN NC , 即t4-t=25-t t ,解得t =20-85;第5题解图当点H 在AC 下方时,如解图③,过点N 作NG ⊥DC 于点G , 由四边形CQNH 是菱形,可知CH =HN =CQ =t , ∴HE =4-t -t =4-2t ,CE =2-t2,在RT △CHE 中,由勾股定理得CE 2+HE 2=CH 2, ∴(2-t2)2+(4-2t )2=t 2,解得t =2013或t =4(舍去),综上所述,当t =20-85或t =2013时,以C ,Q ,N ,H 为顶点的四边形为菱形. 6. 如图,抛物线y =ax 2+bx -3与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图,直线BC 下方的抛物线上有一点D ,过点D 作DE ⊥BC 于点E ,作DF ∥x 轴交直线BC 于点F ,求△DEF 周长的最大值;(3)已知点M 是抛物线的顶点,点N 是y 轴上一点,点Q 是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P ,M ,N ,Q 为顶点且以PM 为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.第6题图解:(1)把A (-1,0),B (3,0)两点坐标代入抛物线y =ax 2+bx -3中得,⎩⎪⎨⎪⎧a -b -3=09a +3b -3=0,解得⎩⎪⎨⎪⎧a =1b =-2, ∴抛物线的解析式为y =x 2-2x -3; (2)∵C (0,-3),B (3,0), ∴直线BC 的解析式为y =x -3.如解图①,过点D 作DG ∥y 轴,交直线BC 于点G .第6题解图①易证△DEF ≌△DEG , ∴FD =GD .设D (n ,n 2-2n -3)(0<n <3),G (n ,n -3),则GD =n -3-(n 2-2n -3)=-n 2+3n =-(n -32)2+94,∴当n =32时,GD 的最大值为94,故FD 的最大值为94,∵直线BC 的解析式的一次项系数为1, ∴∠ABC =45°, ∵DF ∥x 轴,∴∠EFD =∠ABC =45°, 在Rt △DEF 中,DE =EF =22DF , ∴△DEF 周长的最大值为FD +2×22FD =9+924;(3)存在,点P 的横坐标为2或3+52.【解法提示】∵y =x 2-2x -3=(x -1)2-4, ∴M (1,-4),分两种情况讨论: ①当四边形PMNQ 是正方形时,如解图②,过点M 作MJ ⊥y 轴于点J ,过点P 作P I ⊥JM 交JM 的延长线于点I ,易证△M I P ≌△CJM ,∴点N 与点C 重合,点P 是点N 关于抛物线的对称轴x =1对称的点, 其横坐标为2;第6题解图②如解图③,过点P 作H I ∥y 轴,过点M 作M I ⊥H I 于点I ,过点N 作NH ⊥H I 于点H , 同理△P I M ≌△NHP , ∴P I =NH ,I M =HP , 设点P 的横坐标为m , 则NH =P I =m , ∵点P 在抛物线上,∴点P 的纵坐标为m 2-2m -3, ∴P I =m 2-2m -3-(-4), 即m =m 2-2m -3-(-4), 解得m 1=3+52,m 2=3-52,∵点P 在抛物线对称轴x =1的右侧, ∴m =3+52,综上所述,点P 的横坐标为2或3+52.7. 如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA =4,OC =3.若抛物线经过O ,A 两点,且顶点在BC 边上,点D ,E 的坐标分别为(3,0),(0,1),对称轴交BE 于点F .(1)求抛物线的解析式;(2)猜想△EDB 的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上.请问是否存在以点A ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.第7题图解:(1)在矩形OABC 中,OA =4,OC =3, ∴A (4,0),C (0,3),∵抛物线经过O 、A 两点,且顶点在BC 上, ∴抛物线的顶点坐标为(2,3),∴可设抛物线的解析式为y =a (x -2)2+3,把A 点坐标代入可得0=a (4-2)2+3,解得a =-34,∴抛物线的解析式为y =-34(x -2)2+3,即y =-34x 2+3x ;(2)△EDB 为等腰直角三角形.证明:由题可知B (4,3),D (3,0),E (0,1),∴DE 2=32+12=10,BD 2=(4-3)2+32=10,BE 2=42+(3-1)2=20, ∴DE 2+BD 2=BE 2,且DE =BD , ∴△EDB 为等腰直角三角形;(3)存在.满足条件的点M 的坐标为(6+233,2)或(6+2153,-2).【解法提示】设直线BE 的解析式为y =kx +b ,把B 、E 两点的坐标代入可得3=41k b b +⎧⎨=⎩,解得121k b ⎧=⎪⎨⎪=⎩,∴直线BE 的解析式为y =12x +1,当x =2时,y =2, ∴F (2,2),①当AF 为平行四边形的一边时,M 到x 轴的距离与F 到x 轴的距离相等,即M 到x 轴的距离为2,∴点M 的纵坐标为2或-2,在y =-34x 2+3x 中,令y =2可得2=-34x 2+3x ,解得x =6±233,∵点M 在对称轴右侧的抛物线上, ∴x >2,∴x =6+233,∴点M 的坐标为(6+233,2),在y =-34x 2+3x 中,令y =-2可得-2=-34x 2+3x ,解得x =6±2153,∵点M 在对称轴右侧的抛物线上, ∴x >2, ∴x =6+2153,∴点M 的坐标为(6+2153,-2);②当AF 为平行四边形的对角线时, ∵A (4,0),F (2,2),∴线段AF 的中点为(3,1),即平行四边形的对称中心为(3,1),设M (t ,-34t 2+3t ),则-34t 2+3t =2,解得t =6±233,∵点M 在对称轴右侧的抛物线上, ∴t >2, ∴t =6+233,∴点M 的坐标为(6+233,2);综上可知,存在满足条件的点M ,其坐标为(6+233,2)或(6+2153,-2).8. 如图①,已知抛物线y =ax 2+c 的图象经过C 、D 两点,且C (0,1),D (2,2). (1)求抛物线的解析式;(2)已知E 是抛物线上的点,且△CDE 为等腰三角形(D 为顶角顶点除外),求E 点的坐标;(3)如图②,已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△P AB 是等边三角形,点M 在直线AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.第8题图解:(1)把C (0,1),D (2,2)分别代入y =ax 2+c 中,得 ⎩⎪⎨⎪⎧c =14a +c =2,解得⎩⎪⎨⎪⎧a =14c =1, ∴抛物线的解析式为y =14x 2+1;(2)设E 点的坐标为(e ,14e 2+1),则EC 2=e 2+116e 4,ED 2=(e -2)2+(14e 2+1-2)2=116e 4+12e 2-4e +5,CD 2=4+1=5,当EC =ED 时,有e 2+116e 4=116e 4+12e 2-4e +5,解得r =-4±26,∴E 点坐标为(-4+26,232-226)或(-4-26,232+226);当CD =CE 时,有e 2+116e 4=5,解得e =-2或e =2(与D 的横坐标相同,舍去), ∴E 点坐标为(-2,2),综上所述,E 点的坐标为(-4+26,232-226)或(-4-26,232+226)或(-2,2);(3)存在N 1(3,1),N 2(-3,-1),N 3(-3,1),N 4(3,-1),使四边形OAMN 为菱形.【解法提示】∵△P AB 是等边三角形, ∴∠ABO =90°-60°=30°. ∴AB =2OA =4. ∴PB =4.把y =4代人y =14x 2+1,得x =±2 3.∴P 1(23,4),P 2(-23,4), ∵点A 的坐标为(0,2),∴当P 点在A 点右边时,点P 的坐标为(23,4), 设线段AP 所在直线的解析式为y =Kx +B ,⎩⎨⎧b =223k +b =4,解得⎩⎪⎨⎪⎧k =33b =2, ∴线段AP 所在直线的解析式为y =33x +2, 设存在点N 使得四边形OAMN 是菱形, ∵点M 在直线AP 上, ∴设点M 的坐标为(M ,33M +2), 如解图①,过点M 作MQ ⊥y 轴于点Q ,则MQ =|M |,AQ =OQ -OA =33M +2-2=33M ,第8题解图①∵四边形OAMN 为菱形,∴AM =AO =2,∴在RT △AMQ 中,AQ 2+MQ 2=AM 2, 即m 2+(33m )2=22,解得m =±3, 代入直线AP 的解析式求得y =3或1, 当P 点在第一象限时,分为两种情况: 当N 在如解图②的位置时,第8题解图②∵OA =MN , ∴MN =2,又∵M 点坐标为(3,3), ∴N 点坐标为(3,1),即 N 1坐标为(3,1);当N 在如解图③的位置时,第8题解图③∵MN =OA =2,M 点坐标为(-3,1),∴N 点坐标为(-3,-1),即N 2坐标为(-3,-1), 当P 点在第三象限时,分为两种情况:第一种是当点M 在线段P A 上时,则N 点坐标为(-3,1), 第二种是当M 点在P A 的延长线上时,则N 点坐标为(3,-1),∴存在N 1(3,1),N 2(-3,-1),N 3(-3,1),N 4(3,-1),使四边形OAMN 为菱形.9. 如图,抛物线y =ax 2+bx +2与x 轴交于A (-1,0)、B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D . (1)求抛物线的解析式及点D 的坐标;(2)在抛物线上是否存在点P ,使△CDP 的面积为92?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)点E 是x 轴上一点,在抛物线上是否存在点P ,使以A ,E ,D ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.第9题图解:(1)∵抛物线y =ax 2+bx +2经过A (-1,0),B (4,0)两点, ∴⎩⎪⎨⎪⎧a -b +2=016a +4b +2=0,解得⎩⎨⎧a =-12b =32,∴抛物线的解析式为y =-12x 2+32x +2;当x =0时,y =2,则C (0,2), 又∵CD ∥x 轴,∴点D 的纵坐标为2.当y =2时,-12x 2+32x +2=2,解得x 1=3,x 2=0(舍去),即点D 的坐标为(3,2); (2)由(1)可知C (0,2),D (3,2), ∴CD =3,设点P 到CD 的距离为h , ∴S △CDP =12CD ·h ,∴12×3h =92,解得h =3, 设P 点纵坐标为y ,则h =|y -2|=3, 解得y =5或y =-1,∵y =-12x 2+32x +2=-12(x -32)2+258,∴函数y =-12x 2+32x +2的最大值为258,∴y =5舍去,当y =-1时,则有-12x 2+32x +2=-1,解得x =3±332,此时P 点坐标为(3+332,-1)或(3-332,-1),综上可知存在满足条件的P 点,其坐标为(3+332,-1)或(3-332,-1);(3)存在,点P 的坐标为(0,2)或(3-412,-2)或(3+412,-2).【解法提示】A ,E 两点都在x 轴上,AE 有两种可能: ①当AE 为一边时,AE ∥PD ; ∴P 1(0,2);②当AE 为对角线时,根据平行四边形对顶点到另一条对角线的距离相等, 可知P 点、D 点到直线AE (即x 轴)的距离相等, ∴P 点的纵坐标为-2,代入抛物线的解析式得:-12x 2+32x +2=-2,解得x 1=3+412,x 2=3-412,∴P 点的坐标为(3-412,-2)或(3+412,-2),综上所述存在满足条件的P 点,其坐标为(0,2)或(3-412,-2)或(3+412,-2).10. 如图,抛物线y =ax 2+3ax +c (a >0)与y 轴交于C 点,与x 轴交于A 、B 两点,点A在点B 左侧,且B (1,0),OC =3BO . (1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵B (1,0),∴OB =1.∵OC =3BO ,∴OC =3,即C (0,-3). ∵y =ax 2+3ax +c 过B (1,0)、C (0,-3)两点, ∴ ⎩⎪⎨⎪⎧a +3a +c =0c =-3,解得⎩⎪⎨⎪⎧a =34c =-3, ∴抛物线的解析式为y =34x 2+94x -3;(2)如解图①,连接BC ,过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M 、N ,第10题解图①在y =34x 2+94x -3中,令y =0,得34x 2+94x -3=0,解得x 1=-4,x 2=1, ∴A (-4,0),设直线AC 的解析式为y =kx +b , ∵直线AC 过A (-4,0)、C (0,-3)两点,∴⎩⎪⎨⎪⎧0=-4k +b b =-3,解得⎩⎪⎨⎪⎧k =-34b =-3, ∴直线AC 的解析式为y =-34x -3,∵S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ADM +S △DCM =12AB ·OC +12DM ·(AN +ON ) =152+2DM , 设D (x ,34x 2+94x -3)(-4<x <0),则M (x ,-34x -3),∴DM =-34x -3-(34x 2+94x -3)=-34(x +2)2+3,当x =-2时,DM 有最大值3, 此时四边形ABCD 面积的最大值为272;(3)如解图②,分两种情况讨论:第1题解图②①当平行四边形在AC 的左边时,过点C 作CP ∥x 轴交抛物线于点P ,过点P 作PE ∥AC 交x 轴于点E ,此时四边形ACPE 为平行四边形,∵C (0,-3),∴设P (x ,-3),∴34x 2+94x -3=-3,解得x 1=0,x 2=-3, ∴P 1(-3,-3);②当平行四边形在AC 的右边时,平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P , 当AC =PE 时,四边形ACEP 为平行四边形, ∵C (0,-3),∴设P (x ,3),∴34x 2+94x -3=3,化简得:x 2+3x -8=0, 解得x 1=-3+412,x 2=-3-412,此时存在点P 2(-3+412,3)和P 3(-3-412,3).综上所述,存在3个符合要求的点,坐标分别是P 1(-3,-3),P 2(-3+412,3),P 3(-3-412,3).。
压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全
2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。
2023年九年级数学中考专题训练——二次函数与特殊的四边形
中考专题训练——二次函数与特殊的四边形1.已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.(1)求二次函数的解析式;(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN 为菱形,求直线MN的解析式.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C,对称轴为直线x=12.(1)请用a的代数式表示C点坐标.(2)连接AC,BC,若△ABC的面积为10,求该抛物线的解析式.(3)在(2)的条件下,点P是直线y=x+2上一点(位于x轴下方),点Q是反比例函数y=kx(k>0)图象上一点,若以点A,C,P,Q为顶点的四边形是菱形,则直接写出k的值(不需要写出计算过程).3.如图,在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x﹣3经过B,C两点.(1)求抛物线的解析式;(2)点P是第四象限内抛物线上的动点,过点P作PD⊥x轴于点D,交直线BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t.①求线段MN的长d与t之间的函数关系式(不要求写出自变量t的取值范围);②点Q是平面内一点,是否存在一点P,使以B,C,P,Q为顶点的四边形为矩形?若存在,请直接写出t 的值;若不存在,请说明理由.4.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)M在抛物线上,线段MA绕点M顺时针旋转90°得MD,当点D在抛物线的对称轴上时,求点M的坐标;(3)P在对称轴上,Q在抛物线上,以P,Q,B,C为顶点的四边形为平行四边形,直接写出点P的坐标.5.如图,在平面直角坐标系内,抛物线223=-++与x轴交于点A,C(点A在点C的左侧),与y轴y x x交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).△的周长最(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当MQC △面积的最大值;小时,求CME(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N ,将线段CN 绕点C 顺时针旋转90°得到点N ,再将点N 向上平移16个单位长度.得到点P ,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H ,使点D ,P ,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点(0,6),其对称轴为直线x =32.在x 轴上方作平行于x 轴的直线l 与抛物线交于A 、B 两点(点A 在对称轴的右侧),过点A 、B 作x 轴的垂线,垂足分别为D 、C .设A 点的横坐标为m .(1)求此抛物线所对应的函数关系式.(2)当m 为何值时,矩形ABCD 为正方形.(3)当m 为何值时,矩形ABCD 的周长最大,并求出这个最大值.7.如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点()5,0A -和点()10B ,.(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ∆为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,二次函数y =x 2﹣2x +m (m >0)的对称轴与比例系数为5的反比例函数图象交于点A ,与x 轴交于点B ,抛物线的图象与y 轴交于点C ,且OC =3OB .(1)求点A 的坐标;(2)求直线AC 的表达式;(3)点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A 、B 、E 、F 为顶点的四边形是菱形,直接写出点F 的坐标.9.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索); (3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)10.在平面直角坐标系中,抛物线C 1:y=x²+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3.0),与y 轴交于C (0,-3)(1)求抛物线C 1的表达式;(2)分别写出抛物线C 1关于B 点,关于A 点的对称抛物线C 2, C 3的函数表达式(3)设C 1的顶点为D ,C 2与x 轴的另一个交点为A 1顶点为D 1,C 3与x 轴的另一个交点为B 1,顶点为D 2,在以A 、B 、D 、A 1、B 1、D 1、D 2这七个点中的四个点为顶点的四边形中,求面积最大的四边形的面积.11.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC ,(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.13.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.14.如图①,抛物线2y ax bx a b =+--与x 轴相交于()5,0A -、B 两点,过点A 的直线y x t =+与y 轴和抛物线相交于点C .(1)求抛物线的解析式和点C 的坐标;(2)点P 是抛物线上的一动点,当点P 在直线AC 的上方时,连接OP 、PC ,并把POC ∆沿着OC 翻折得到'P OC ∆,是否存在点P ,使得到四边形'POP C 为菱形,若存在,请求出点P 的坐标;若不存在,请说明理由.(3)如图②,动点E 在线段OA 上,过点E 作x 轴的垂线与AC 交于点M ,与拋物线交于点N ,试问:抛物线上是否存在点Q ,使EQN ∆与BEM ∆的面积相等时,线段NQ 的长度有最小值?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.如图,已知抛物线1M :22y ax x =-与直线y x =的一个交点记为A ,点A 的横坐标是3.将抛物线1M :22y ax x =-向左平移3个单位,再向下平移3个单位,得到抛物线2M ,直线y x =与2M 的一个交点记为B ,点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .(1)求抛物线1M 的表达式及顶点坐标;(2)当点C 的横坐标为2时,直线y x n =+恰好经过正方形CDEF 的顶点F ,求此时n 的值; (3)在点C 的运动过程中,若直线y x n =+与正方形CDEF 始终没有公共点,求n 的取值范围. 16.如图①,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A 、C ,与y 轴交于点B ,抛物线的顶点在直线4y x =-上,且横坐标为0,已知2OA =.(1)求抛物线的解析式;(2)如图②,将抛物线沿直线4y x =-平移得到新抛物线,设新抛物线顶点的横坐标为m ,在平移过程中,若新抛物线与直线AB 有且只有一个公共点,求m 的值;(3)设新抛物线的顶点为P ,在平移的过程中,在y 轴上是否存在一点Q ,使得以点A ,B ,P ,Q 为顶点的四边形为平行四边形,若存在,请求出Q 点的坐标;若不存在,请说明理由.17.如图,已知二次函数()31:430L y ax ax a a =-+>与x 轴交于A ,B 两点,与y 轴交于点C ,过点C 作直线//CD x 轴交抛物线1L 于一点D ,将抛物线1L 沿着直线CD 翻折,并向右平移m 个单位()0m ≥,得到抛物线2L ,抛物线2L 交直线CD 于E ,F 两点(E 在F 的左边),点M ,N 分别是1L ,2L 的顶点,连接CN ,NF ,FM ,MC 得到四边形CNFM.(1)当1a =,0m =时,直接写出抛物线2L 的解析式;(2)若点D ,E 是线段CF 三等分点,求m 的值;(3)在平移过程中,是否存在以点C ,N ,F ,M 为顶点的四边形是矩形的情形,若存在,求出m 应满足的关系式,若不存在,请说明理由.18.如图1,在平面直角坐标系中,抛物线y =﹣12x 2﹣72x ﹣3交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C(1)求直线AC 的解析式;(2)点P 是直线AC 上方抛物线上的一动点(不与点A ,点C 重合),过点P 作PD ⊥x 轴交AC 于点D ,求PD 的最大值;(3)将△BOC 沿直线BC 平移,点B 平移后的对应点为点B ′,点O 平移后的对应点为点O ′,点C 平移后的对应点为点C ′,点S 是坐标平面内一点,若以A ,C ,O ′,S 为顶点的四边形是菱形,求出所有符合条件的点S 的坐标.19.已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB 围成的封闭图形记作G .(1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ △为等腰直角三角形时,求m 的值;(3)点C是直线AB上一点,且点C的横坐标为n,以线段AC为边作正方形ACDE,且使正方形ACDE与图形G在直线AB的同侧,当D,E两点中只有一个点在图形G的内部时,请直接写出n的取值范围.20.如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为______;当二次函数L1,L2的y值同时随着x的增大而增大时,则x的取值范围是______;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点,①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?。
初三数学 二次函数与平行四边形的综合问题教案
教学过程一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,考点分值12分,难度较大。
主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。
此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。
就本节二次函数与平行四边形的点存在性问题,主要考查了学生能否将平行四边形的性质与判定融入到二次函数,在函数图像中构造题意所需图形的能力。
二、复习预习平行四边形的判定与性质1. 定义:两组对边分别平行的四边形叫做平行四边形。
2. 性质:①平行四边形两组对边分别平行;②平行四边形两组对边分别相等;③平行四边形两组对角分别相等;④平行四边形的对角线互相平分;3. 判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形;三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a ,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 探究平行四边形的一般思路在探究平行四边形的存在性问题时,具体方法如下:(1)假设结论成立;(2)探究平行四边形存在问题一般是已知平行四边形的3个顶点,再去求另外一个顶点,具体方法有两种:第一种是:①从给定的3个顶点中任选2个定点确定的线段作为探究平行四边形的边或对角线分别作出平行四边形;②根据题干要求找出符合条件的平行四边形;第二种是:①以给定的3个定点两两组合成3条线段,分别以这3条线段为对角线作出平行四边形;②根据题干要求找出符合条件的平行四边形;(3)建立关系式,并计算;根据以上分类方法画出所有的符合条件的图形后,可以利用平行四边形的性质进行计算,也可以利用全等三角形、相似三角形或直角三角形的性质进行计算,要具体情况具体分析,有时也可以利用直线的解析式联立方程组,由方程组的解为交点坐标的方法求解。
专题二次函数与四边形(动点问题)专题(教学设计)
专题:二次函数与代几综合题专题(二次函数与四边形)首都师范大学附属丽泽中学张庆云教学目标:1.学生经历课上对简单动点问题的君朋讲习,理解特殊四边形的性质和判定,对简单动点问题的解题方法有初步的理解;2.经历较复杂背景下,动点问题的求解方法解题策略的归纳提升;3.在自主解题、君朋讲习和师生探究的学习过程中体会数形结合、分类讨论、方程思想等主要数学思想方法在解题中的应用,体会探索数学的乐趣。
教学重点:经历应用四边形的性质和判定定理解决二次函数与四边形形状问题教学难点:运用图形的性质和判定寻找运动中的特殊位置,利用方程思想解决问题教学过程:一、教师导学:教师将25题代几综合题的常见考点带着学生梳理,提炼解题策略。
本节课目标导学:点动、线动、面动构成的问题称为动态题.近几年来北京中考25题多是二次函数与几何图形相结合的代几综合题。
(一)常见考点:(1)确定二次函数解析式(2)与动点有关的存在性问题(直角、等角、等腰三角形、直角三角形、等腰三角形全等三角形、相似三角形、特殊四边形等)(3)函数类最值问题(4)运动问题中特殊位置的数量和位置关系(大胆猜想)本节课主要解决与动点有关的存在性问题的研究方法和策略(二)解题策略:动点(线、面)→画出符合条件的静态图形→设出关键点坐标→由点坐标表示线段长→建立模型(方程)→解方程求解符合条件的点坐标→验证符合题意二、君朋讲习问题串的(1)——(3)背景问题:如图,抛物线与x轴交A(-1,0)、B(3,0)两点,与y轴交于点C,顶点为D.(1)求抛物线的解析式;(2)抛物线上有一动点M,在抛物线的对称轴上是否存在一点N,使以A,B,M,N 为顶点的四边形是平行四边形,若存在直接写出M点的坐标.解:(2) ,说明:(1)(2)学生基本能在学生层面解决,教师针对学生问题进行归纳提升,分类问题,分类的标准,借助手中的尺子,动中取静。
(3)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m①求直线BC的解析式②用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF是平行四边形?提示工具:平面内任意两点P(a,b),Q(c,d)的距离公式说明:学生君朋讲习,体会解题策略,个别学生梳理,讲解分析,教师归纳动点问题的研究策略:关键点坐标——线段长——构建方程——解方程——验证(学生完成板书)解答略三、一题多变,提升能力提升1:问在刚在的背景下,四边形PEDF可能是菱形吗?如果可能,求m的值;如果不可能,请说明理由。
2023年中考数学专题复习:二次函数综合题训练(含答案)
9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.
2023年中考数学专题《二次函数综合问题》必刷真题考点分类专练含答案解析
备战2023年中考数学必刷真题考点分类专练(全国通用)专题13二次函数综合问题一.解答题(共40小题)1.(2022•孝感)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.(1)直接写出点B和点D的坐标;(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.【分析】(1)令y=x2﹣4x=x,求出x的值即可得出点B的坐标,将函数y=x2﹣4x化作顶点式可得出点D的坐标;(2)过点D作DE⊥y轴于点E,易得tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,易证△ODE≌△ODG,△GDF∽△OGH,则DG=DE=2,OG =OE=4,DG:OG=DF:HG=GF:OH,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,又OH=EF,则8﹣4t=2+t,解得t的值可得出点G的坐标,进而可得直线DG的解析式,令y=0即可得出点P的坐标;(3)分别过点M,Q作y轴的平行线,交直线OB于点N,K,则S1=QK(x B﹣x E),S2=MN(x B﹣x E),由点Q的横坐标为m,可表达,再利用二次函数的性质可得出结论.【解析】(1)令y=x2﹣4x=x,解得x=0或x=5,∴B(5,5);∵y=x2﹣4x=(x﹣2)2﹣4,∴顶点D(2,﹣4).(2)如图,过点D作DE⊥y轴于点E,∴DE=2,OE=4,∴tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,∴△ODE≌△ODG(AAS),∴DG=DE=2,OG=OE=4,∵∠OHG=∠F=90°,∠OGH+∠DGF=90°,∠OGH+∠GOH=90°,∴∠DGF=∠GOH,∴△GDF∽△OGH,∴DG:OG=DF:HG=GF:OH=1:2,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,∵∠DEO=∠F=∠OHG=90°,∴四边形OEFH是矩形,∴OH=EF,∴8﹣4t=2+t,解得t=,∴GH=,OH=2+t=,∴G(,﹣).∴直线DG的解析式为y=x﹣,令y=0,解得x=5,∴P(5,0).(3)∵点B(5,5)与点M关于对称轴x=2对称,∴M(﹣1,5).如图,分别过点M,Q作y轴的平行线,交直线OB于点N,K,∴N(﹣1,﹣1),MN=6,∵点Q横坐标为m,∴Q(m,m2﹣4m),K(m,m),∴KQ=m﹣(m2﹣4m)=﹣m2+5m.∵S1=QK(x B﹣x E),S2=MN(x B﹣x E),∴==﹣(m2﹣5m)=﹣(m﹣)2+,∵﹣<0,∴当m=时,的最大值为.【点评】本题属于二次函数综合题,主要考查二次函数的性质,二次函数上的坐标特征,三角形的面积和三角形相似的判定及性质,解题的关键正确表达两个三角形面积的比.2.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(1)直接写出A,B两点的坐标;(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC 的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).【分析】(1)令y=0,解方程可得结论;(2)分两种情形:①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.构建方程组分别求解即可;(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,推出x A•x C=x B•x E=﹣3﹣b可得n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q推出q=﹣mn﹣3,推出q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,推出OF=b2+b,可得结论.【解析】(1)令y=0,得x2﹣2x﹣3=0,解得x=3或﹣1,∴A(﹣1,0),B(3,0);(2)∵OP=OA=1,∴P(0,1),∴直线AC的解析式为y=x+1.①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.∵B(3,0),BD1∥AC,∴直线BD1的解析式为y=x﹣3,由,解得或,∴D1(0,﹣3),∴D1的横坐标为0.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.直线l的解析式为y=x+5,由,可得x2﹣3x﹣8=0,解得x=或,∴D2,D3的横坐标为,,综上所述,满足条件的点D的横坐标为0,,.(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,∴x A•x C=x B•x E=﹣3﹣b∵x A=﹣1,∴x C=3+b,∴m=3+b,∵x B=3,∴x E=﹣1﹣,∴n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q∴q=﹣mn﹣3,∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,∴OF=b2+b,∴=b+1=(m﹣3)+1=m.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的格线等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.3.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.【分析】(1)将x=0及y=0代入抛物线y=x2﹣2x﹣6的解析式,进而求得结果;(2)连接OP,设点P(m,﹣2m﹣6),分别表示出S△POC,S△BOP,计算出S△BOC,根据S△PBC=S四边形PBOC﹣S△BOC,从而得出△PBC的函数关系式,进一步求得结果;(3)可分为▱ACFE和▱ACEF的情形.当▱ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当▱ACED时,可推出点F的纵坐标为6,进一步求得结果.【解析】(1)当x=0时,y=﹣6,∴C(0,﹣6),当y=0时,x2﹣2x﹣6=0,∴x1=6,x2=﹣2,∴A(﹣2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,﹣2m﹣6),∴S△POC=x P==3m,S△BOP=|y P|=+2m+6),∵S△BOC==18,∴S△PBC=S四边形PBOC﹣S△BOC=(S△POC+S△POB)﹣S△BOC=3m+3(﹣+2m+6)﹣18=﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;方法二:如图2,作PQ⊥AB于Q,交BC于点D,∵B(6,0),C(0,﹣6),∴直线BC的解析式为:y=x﹣6,∴D(m,m﹣6),∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,∴S△PBC===﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;(3)如图3,当▱ACFE时,AE∥CF,∵抛物线对称轴为直线:x==2,∴F1点的坐标:(4,﹣6),如图4,当▱ACEF时,作FG⊥AE于G,∴FG=OC=6,当y=6时,x2﹣2x﹣6=6,∴x1=2+2,x2=2﹣2,∴F2(2+2,6),F3(2﹣2,6),综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).【点评】本题考查了二次函数及其图象性质,平行四边形的分类等知识,解决问题的关键是正确分类,画出图形,转化条件.4.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【分析】(1)在直线y=﹣x﹣2中,令x=0和y=0可得点A和B的坐标,代入抛物线y =ax2+bx+c(a>0)中可解答;(2)连接BC交直线x=1于点P,利用两点之间线段最短可得出此时△PAB的周长最小,从而可以解答;(3)根据a=1时,可得抛物线的解析式y=x2+x﹣2,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),表示QE的长,配方后可解答.【解析】(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)如图1,当a=时,2×﹣b=1,∴b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2=(x﹣1)2﹣,∴抛物线的对称轴是:x=1,由对称性可得C(4,0),要使△ABP的周长最小,只需AP+BP最小即可,如图1,连接BC交直线x=1于点P,因为点A与点B关于直线x=1对称,由对称性可知:AP+BP=PC+BP=BC,此时△ABP的周长最小,所以△ABP的周长为AB+BC,Rt△AOB中,AB===2,Rt△BOC中,BC===2,∴△ABP周长的最小值为2+2;(3)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣1=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【点评】本题是二次函数综合题,考查了利用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,轴对称﹣最短路线问题等知识,综合性较强,难度适中,利用方程思想,数形结合是解题的关键.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【分析】(1)利用交点式可得二次函数的解析式;(2)①根据两角相等可证明两三角形相似;②根据△OCD∽△A′BD,得=,则=,即的最小值就是的最小值,OC为定值,所以当CD最小为2时,有最小值是;(3)根据面积的关系可得:△OCD∽△A′BD时,相似比为2:1,可得A'B=AB=1,作辅助线,构建直角三角形,根据等角的正切可得A'G和BG的长,最后再证明△A'GB ∽△QOB,可得OQ的长,利用待定系数法可得A'B的解析式,最后联立方程可得结论.【解析】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BD=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,由翻折得:AA'⊥CH,∵∠AHB=∠BDC=90°,∠ABH=∠CBD,∴∠BCD=∠BAH,tan∠BCD=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在RtA'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.【点评】本题是二次函数的综合,考查了待定系数法求解析式,对称的性质,三角形相似的性质和判定,配方法的应用,勾股定理的应用,熟练掌握二次函数的图象及性质,数形结合是解本题的关键.6.(2022•湘潭)已知抛物线y=x2+bx+c.(1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.(Ⅰ)求该抛物线所表示的二次函数表达式;(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB 交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.(Ⅱ)求出AB的解析式,设出点P坐标,表示出M点坐标,从而表示出PH和HM的长,分别列出PH=3HM和PH=时的方程,从而求得m的值,进而求得P点坐标;(2)分为b>0和b<0两种情形.当b<0时,抛物线对称轴在y轴左侧,此时求得抛物线与y轴交点,只需交点在点C的上方,就满足抛物线与线段CE没有交点,进一步求得结果,当b<0时,类似的方法求得这种情形b的范围.【解析】(1)解:(Ⅰ)由题意得,,∴,∴y=x2﹣2x﹣3;(Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:∵B(0,﹣3),A(3,0),∴直线AB的解析式为:y=x﹣3,设点P(m,m2﹣2m﹣3),M(m,m﹣3),∴PH=﹣m2+2m+3,HM=3﹣m,当PH=3HM时,﹣m2+2m+3=3(3﹣m),化简得,m2﹣5m+6=0,∴m1=2,m2=3,当m=2时,y=22﹣2×2﹣3=﹣3,∴P(2,﹣3),当m=3时,y=32﹣2×3﹣3=0,此时P(3,0)(舍去),当PH=HM时,﹣m2+2m+3=(3﹣m),化简得,2m2﹣7m+3=0,∴m3=3(舍去),m2=,当m=时,y=()2﹣2×﹣3=﹣,∴P(,﹣),综上所述:P(2,﹣3)或(,﹣);(2)如图1,∵抛物线y=x2+bx+c过点D(﹣3,0),∴(﹣3)2﹣3b+c=0,∴c=3b﹣9,∴y=x2+bx+(3b﹣9),把x=﹣3,y=0代入y=+n得,0=+n,∴n=4,∴OC=4,∵∠COD=90°,OD=3,OC=4,∴CD=5,∵四边形CDFE是菱形,∴CE=CD=5,∴E(5,4),当﹣<0时,即b>0时,当x=0时,y=3b﹣9,∴G(0,3b﹣9),∵该抛物线与线段CE没有交点,∴3b﹣9>4,∴b>,当b<0时,当x=5时,y=25+5b+3b﹣9=8b+16,∴H(5,8b+16),∵抛物线与CE没有交点,∴8b+16<4,∴b<﹣,综上所述:b>或b<﹣.【点评】本题考查了求二次函数的解析式,一次函数解析式,菱形的性质,勾股定理等知识,解决问题的关键一是正确分类,二是数形结合.7.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A 在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【分析】(1)先分别求得点A,点B的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC和△AOB≌△CPD两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P,D′,C三点共线时求得CD′的最小值.【解析】在直线y=2x+2中,当x=2时,y=2,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0),点B的坐标为(0,2),把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)①当△AOB≌△DPC时,AO=DP,又∵四边形OPDE为正方形,∴DP=OP=AO=1,此时点P的坐标为(1,0),②当△AOB≌△CPD时,OB=DP,又∵四边形OPDE为正方形,∴DP=OP=OB=2,此时点P的坐标为(2,0),综上,点P的坐标为(1,0)或(2,0);(3)如图,点D′在以点P为圆心,DP为半径的圆上运动,∴当点D′′,点P,点C三点共线时,CD′′有最小值,由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),∴CD′′的最小值为1.【点评】本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.8.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.【分析】(1)①由顶点A(2,2)得,设y=a(x﹣2)2+2,再根据抛物线过点(0,1.5),可得a的值,从而解决问题;②由对称轴知点(0,1.5)的对称点为(4,1.5),则下边缘抛物线是由上边缘抛物线向左平移4cm得到的,可得点B的坐标;③根据EF=0.5,求出点F的坐标,利用增减性可得d的最大值为最小值,从而得出答案;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),则有﹣[(m+3﹣2)2+h+0.5]﹣[﹣(m+2)2+h+0.5]=1,从而得出答案.【解析】(1)①如图1,由题意得A(2,2)是上边缘抛物线的顶点,设y=a(x﹣2)2+2,又∵抛物线过点(0,1.5),∴1.5=4a+2,∴a=﹣,∴上边缘抛物线的函数解析式为y=﹣(x﹣2)2+2,当y=0时,0=﹣(x﹣2)2+2,解得x1=6,x2=﹣2(舍去),∴喷出水的最大射程OC为6cm;②∵对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4cm得到的,∴点B的坐标为(2,0);③∵EF=0.5,∴点F的纵坐标为0.5,∴0.5=﹣(x﹣2)2+2,解得x=2±2,∵x>0,∴x=2+2,当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5,则x≤2+2,∵当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+2,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+2﹣3=2﹣1,再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB≤d,∴d的最小值为2,综上所述,d的取值范围是2≤d≤2﹣1;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣[(m+3﹣2)2+h+0.5]),则有﹣(m+3﹣2)2+h+0.5﹣[﹣(m+2)2+h+0.5]=1,解得m=2.5,∴点D的纵坐标为h﹣,∴h﹣=0,∴h的最小值为.【点评】本题是二次函数的实际应用,主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数与方程的关系等知识,读懂题意,建立二次函数模型是解题的关键.9.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把点A的坐标代入y=﹣x2﹣4x+c,求出c的值即可;(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,证明△PHE是等腰直角三角形,得,当PH最大时,PE最大,运用待定系数法求直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),求得PH,再根据二次函数的性质求解即可;(3)分三种情况讨论:①当AC为平行四边形的对角线时,②当AM为平行四边形的对角线时,③当AN为平行四边形的对角线时分别求解即可.【解析】(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,∴0=﹣52﹣4×5+c∴c=5,∴点C的坐标为(0,5);(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:∵A(﹣5,0),C(0,5)∴OA=OC,∴△AOC是等腰直角三角形,∴∠CAO=45°,∵PF⊥x轴,∴∠AHF=45°=∠PHE,∴△PHE是等腰直角三角形,∴,∴当PH最大时,PE最大,设直线AC解析式为y=kx+5,将A(﹣5,0)代入得0=5k+5,∴k=1,∴直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),∴,∵a=﹣1<0,∴当时,PH最大为,∴此时PE最大为,即点P到直线AC的距离值最大;(3)存在,理由如下:∵y=﹣x2﹣4x+5=﹣(x+2)2+9,∴抛物线的对称轴为直线x=﹣2,设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),分三种情况:①当AC为平行四边形对角线时,,解得,∴点M的坐标为(﹣3,8);②当AM为平行四边形对角线时,,解得,∴点M的坐标为(3,﹣16);③当AN为平行四边形对角线时,,解得,∴点M的坐标为(﹣7,﹣16);综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).【点评】本题是二次函数综合题,其中涉及到二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的性质,平行四边形的判定与性质.熟知几何图形的性质利用数形结合是解题的关键.10.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y 轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【分析】(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;②求出直线BP的解析式,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),表示出MG的长,可得关于m的二次函数,根据二次函数的最值即可求解;(Ⅱ)由3b=2c得b=﹣2a,c=﹣3a,抛物线的解析式为y=ax2﹣2a﹣3a.可得顶点P 的坐标为(1,﹣4a),点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N 关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).可得点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).利用待定系数法得直线P'N′的解析式为y=x﹣.即可得点E,F的坐标.【解析】(Ⅰ)①若b=﹣2,c=﹣3,则抛物线y=ax2+bx+c=ax2﹣2x﹣3,∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a+2﹣3=0,解得a=1,∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4);②当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),设直线BP的解析式为y=kx+n,∴,解得,∴直线BP的解析式为y=2x﹣6,∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∴当m=2时,MG取得最大值1,此时,点M(2,﹣3),则G(2,﹣2);(Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a﹣b+c=0,又3b=2c,b=﹣2a,c=﹣3a(a>0),∴抛物线的解析式为y=ax2﹣2a﹣3a.∴y=ax2﹣2a﹣3a=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a),∵直线x=2与抛物线相交于点N,∴点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.∴P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).∴直线P'N′的解析式为y=x﹣.∴点E(,0),点F(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,轴对称求最小值问题,勾股定理等,利用待定系数法求出直线解析式是解本题的关键.。
2023年九年级数学中考专题:二次函数综合压轴题(特殊四边形问题)(含简单答案)
(1)求抛物线的函数表达式.
(2)当 的面积等于 的面积的 时,求m的值.
(3)当 时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.
(3)点 的坐标为 , ,
5.(1) ,
(2)2
(3) 或 或
6.(1)
(2)
(3)矩形的周长
7.(1) , ;
(2)存在, 或 ;
(3) 或 或 或 .
8.(1) ,
(2)当 时,
(3)存在, 或 或
9.(1)
(2) 的面积最大值为4
(3)四边形 能构成菱形,点 的坐标为 或
10.(1)
(2)
(3)存在, 或 或
15.如图所示,在矩形 中,把点 沿 对折,使点 落在 上的 点.已知 .
(1)求 点的坐标;
(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过 ,且直线 是该抛物线的切线.求抛物线的解析式.并验证点 是否在该抛物线上.
(3)在(2)的条件下,若点 是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较 与 的大小(不必证明),并写出此时点 的横坐标 的取值范围.
11.(1) ;
(2) ;
(3) 、 、 .
12.(1)
(2)
(3)M的坐标为 或 或 或
13.(1)
(2)13.5
(3)存在, , 或
14.(1)
(2)点 的坐标为 或 或 或
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与四边形综合专题二次函数与四边形的形状例1.如图,抛物线y _2x-3与x 轴交A B 两点(A 点在B 点左侧),直线I 与抛物线交于 A C 两 点,其中C 点的横坐标为2.(1) 求A B 两点的坐标及直线 AC 的函数表达式;(2) P 是线段AC 上的一个动点,过 P 点作y 轴的平行线交抛物线于 E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在 x 轴上是否存在点 F ,使A 、C F 、G 这样的四个点为顶点的四边形是平 行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不存在,请说明理由.得y=-3 ,• C (2, -3 )•••直线AC 的函数解析式是y=-x-1(2) 设P 点的横坐标为x (-1 < x w 2)贝U P 、E 的坐标分别为:P (x , -x-1 ) , E ( (x,x 2 -2x -3)••• P 点在 E 点的上方, PE^^x_1)_(x 2 _2x_3) - _x 2 x 219 •••当x 时,PE 的最大值=—24(3) 存在 4 个这样的点 F ,分别是日(1,0),冃(—3,0),F 3(4+J7,0),F 4(4—J7,0)练习1.如图,对称轴为直线 x = 7的抛物线经过点A ( 6, 0)和B (0, 4).(1) 求抛物线解析式及顶点坐标; (2)设点E( x , y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形. 求 平行四边形 OEAF 勺面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;① 当平行四边形OEAF 的面积为24时,请判断平行四边形 OEAF 是否为菱形?解: (1)令 y=0,解得 X i - -1 或 X 2 =3 ••• A(-1 , 0) B( 3, 0);将 C 点的横坐标2x=2 代入y = x - 2x -3②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.练习1. 解:( “由抛物线的对称轴是x=2,可设解析式为y -(-7)2 k •把AB 两点坐标代入上因为抛物线与X 轴的两个交点是(1, 0)的(6, 0),所以,自变量 X 的取值范围是1 v X v 6. ① 根据题意,当S = 24时,即/(x 一7)2 +25 =24 •化简,得(^ _Z )^2 解之,得X t=3,X 2=4.故所224'求的点E 有两个,分别为 E 1 ( 3,— 4),巳(4, — 4). 点E 1 (3, — 4)满足OE = AE ,所以L OEAF 是菱形; 点E 2 (4, — 4)不满足OE = AE ,所以L OEAF 不是菱形.② 当OAL EF,且OA = EF 时,OEAF 是正方形,此时点 E 的坐标只能是(3,— 3).而坐标为 (3,— 3)的点不在抛物线上,故不存在这样的点E ,使L OEAF 为正方形.练习2.如图,已知与x 轴交于点A(1,0)和B(5,0)的抛物线h 的顶点为C(3,4),抛物线*与h 关于x 轴对 称,顶点为C .(1) 求抛物线*的函数关系式;(2) 已知原点O ,定点D(0,4) , J 上的点P 与h 上的点P •始终关于x 轴对称,则当点P 运动到何处时, 以点D ,O , P , P ■为顶点的四边形是平行四边形?a(6 _7)2 - k =0,[72a(0电)+k =4.解之,得一_25故抛物线解析式为y =2 & _!)2 _竺,顶点为(7 _25)3262'6(2)v 点E(x, y)在抛物线上,位于第四象限,且坐标适合y =2(x 一7)2 3 2—y>0, — y 表示点E 到OA 的距离.•••OA 是L OEAF 的对角线,17二 s =2S °AE =2、> OA y - (y - -4()2 25 .精品文档(3)在J上是否存在点M,使△ ABM是以AB为斜边且一个角为30的直角三角形?若存,求出点M 练习3.如图,已知抛物线C i与坐标轴的交点依次是A(~4,0) , B(-2,0) , E(0,8).(1)求抛物线C i关于原点对称的抛物线C2的解析式;(2)设抛物线C i的顶点为M ,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N , 四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止•求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.精品文档二•二次函数与四边形的面积2例1.如图10,已知抛物线P: y=ax+bx+c(a丰0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG勺一条边DE在线段AB上,顶点F、G分别在线段BC AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x-3-212y 52-4520(1)求A、B、C三点的坐标;⑵若点D的坐标为(m, 0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;⑶当矩形DEFG的面积S取最大值时,连接DF并延长至点M使FM=k・DF, 若点M不在抛物线P上,求k的取值范围.图10精品文档练习1.如图,平面直角坐标系中有一直角梯形OMNH点H的坐标为(一8, 0),点N的坐标为(一6,—4).(1)画出直角梯形OMN H点O旋转180°的图形OABC并写出顶点A, B, C的坐标(点M的对应点为A, 点N 的对应点为B,点H的对应点为C);(2)求出过A, B, C三点的抛物线的表达式;(3)截取CE=OF=AGm 且E, F, G分别在线段CQ OA AB上,求四边形BEFG 的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;练习2.如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子•动点P , Q同时从点A出发,点P沿A > B > C方向以每秒2cm的速度运动,到点C停止,点Q沿A > D方向以每秒1cm的速度运动,到点D停止.P , Q两点用一条可伸缩的细橡皮筋联结,设x秒后橡皮筋扫过的面积为ycm2.(1)当0 < x < 1时,求y与x之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求x值;(3)当K x < 2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时Z POQ的变化范围;(4)当0 < x < 2时,请在给出的直角坐标系中画出y与x之间的函数图象.练习3.如图,已知抛物线l i : y =x 2-4的图象与x 轴相交于 A C 两点,B 是抛物线l 1上的动点(B 不与A C 重合),抛物线l 2与l i 关于x 轴对称,以AC 为对角线的平行四边形 ABC 啲第四个顶点为 D. (1)⑵ ⑶6BCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积只有一个矩形符合条件,则求此矩形的面积 );如果不能为矩形,请说明理由.注:计算结果不取近似值三•二次函数与四边形的动态探究例1.如图1,在平面直角坐标系中,有一张矩形纸片 OABC 已知0(0 , 0), A (4 , 0) , C (0 , 3),点P 是OA 边上的动点(与点0 A 不重合).现将△ PAB 沿PB 翻折,得到△ PDB 再在0C 边上选取适当的点 E,将厶P0E 沿PE 翻折,得到△ PFE 并使直线PD PF 重合.(1) 设Rx , 0) , E (0 , y ),求y 关于x 的函数关系式,并求 y 的最大值;(2) 如图2,若翻折后点 D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;⑶在⑵的情况下,在该抛物线上是否存在点Q 使厶PEC 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点 Q 的坐标.求l 2的解析式;求证:点D 一定在l 2上;图1图2例2.已知抛物线y= ax2+ bx + c与x轴交于A B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB 0C的长(020C是方程x2- 10x+ 16= 0的两个根,且抛物线的对称轴是直线x=- 2.(1)求A B C三点的坐标;(2)求此抛物线的表达式;(3)连接AC BC若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF// AC交BC于点F,连接CE设AE的长为m △ CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时厶BCE的形状;若不存在,请说明理由.-4例3.如图,矩形ABCDK AB= 3, BC= 4,将矩形ABC[沿对角线A平移,平移后的矩形为EFG(A、E、 C G始终在同一条直线上),当点E与C重时停止移动.平移中EF与BC交于点N, GH与BC的延长线交于点M EH与DC交于点P, FG与DC的延长线交于点Q.设S表示矩形PCM的面积,S表示矩形NFQ啲面积.(1)S与S•相等吗?请说明理由.(2)设AE= x,写出S和x之间的函数关系式,并求出x 取何值时S有最大值,最大值是多少?(3)如图11,连结BE,当AE为何值时,- ABE是等腰三角形.HMG练习1.如图12,四边形OABC 为直角梯形,A (4, 0), B( 3, 4), C (0, 4).点M 从0出发以每秒2个单位长度的速度向 A 运动;点N 从B 同时出发,以每秒 1个单位长度的速度向 C 运动•其中一个动 点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于 Q 连结MQ(1) 点 ______ (填M 或N)能到达终点;(2) 求厶AQM 勺面积S 与运动时间t 的函数关系式,并写出自变量 t 的取值范围,当t 为何值时,S 的值 最大; (3)是否存在点 M 使得△ AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.3, 4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形 A BCD 处于直角1, 2, 中哪个位置,当其顶点坐标为A(a, b), B(c , d), C(m, n), D(e, f)(如图4)时,则四个顶坐标系练习2.实验与探究(1) 在图1, 2, 3中,给出平行四边形ABCD 的顶点A, B,D 的坐标(如图所示),写出图中的顶点C 的坐标,它们分别是(5,2) , _________y*(2)在图4中, 给出平行四边形ABCD 的顶点A, B , D 的坐标 (如图所示),求出顶点C 的坐标(C 点坐标用含a , b ,c ,d , e, f 的代数式表示);归纳与发现 (3)通过对图B(c^精品文档点的横坐标a, c, m, e之间的等量关系为_____________________ ;纵坐标b, d, n, f之间的等量关系为(不必证明);运用与推广(4)在同一直角坐标系中有抛物线y =x? _(5c_3)x _c和三个点G -- C,5C , S '1C,9C l',H(2c,0)(其(2 2丿(2 2丿中c 0) •问当c为何值时,该抛物线上存在点P,使得以G, S, H , P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.参考答案:一. 二次函数与四边形的形状例 1.解:(1)令y=0,解得x i - -1 或X2 =3 ••• A (-1 , 0) B (3, 0);将C点的横坐标x=2代入y=x2-2x-3得y=-3 , • C (2, -3 )•••直线AC的函数解析式是y=-x-1(2)设P点的横坐标为x (-1 < x w 2)贝U P、E的坐标分别为:P (x, -x-1 ),E ((x,x2 -2x -3) T P 点在E 点的上方,PE=( -x -1) -(x2-2x -3) = -x2x 21 9•••当x 时,PE的最大值=-2 4(3)存在4 个这样的点F,分别是戸(1,0), F2(—3,0), F3(4 .7,0),F4(4—、,7,0)精品文档练习1.解: (1)7 7 2由抛物线的对称轴是x ,可设解析式为y=a(x ) k .把A B两点坐标代入上2 27、2式,得7 2a(6 -7) k7 2a(0 ——)2+k • 2 -0, =4.故抛物线解析式为解之,得a誇,k」25W号,顶点为6斗).(2)T点E(x, y)在抛物线上,位于第四象限,且坐标适合2.7、2 25y (x )3 2 6• y<0 ,即一y>0, —y表示点E到OA的距离OA是L OEAF的对角线,精品文档1= 2x^xOA |y = —6y = /(—7)2+25.2 2因为抛物线与x轴的两个交点是(1, 0)的(6, 0),所以,自变量x的取值范围是1 v x V 6.S = 24 时,即/(x _7)2• 25 =24 •化简,得(x_<)2=丄.①根据题意,当解之,得X t = 3, x2= 4.2 24故所求的点E有两个,分别为E ( 3,—4),已(4,—4)• 点E i (3, —4)满足OE = AE ,所以L OEAF是菱形;点E2 (4, —4)不满足OE = AE,所以L OEAF不是菱形.②当OAL EF,且OA = EF时,L OEAF是正方形,此时点E的③坐标只能是(3, —3).而坐标为(3, —3)的点不在抛物线上,故不存在这样的点E,使L OEAF为正方形.练习2.解:(1)由题意知点C的坐标为(3, - 4).设12的函数关系式为y=a(x-3)2-4 .2 2又T点A(1,0)在抛物线y=a(x-3) -4上,(1-3)a-4=0,解得a =1 .2 2-抛物线12的函数关系式为y =(x-3)-4 (或y = x-6x • 5 ).(2) 与P始终关于x轴对称,.PP ■与y轴平行.设点P的横坐标为m ,则其纵坐标为m2 -6m +5,,:0D = 4,”•” 2 m2_6m +5 =4 ,即m2-6m+5 =2 .当m^6m 5 2时,解得m=3_、.6 .当m2-6m 5 =2 时,解得m = 3 _三.■当点P运动到(3-「6,2)或(3 .6,2)或(3-「2, - 2)或(3 • ..2, _2)时,P PXOD,以点D, O, P, P •为顶点的四边形是平行四边形.(3)满足条件的点M不存在.理由如下:若存在满足条件的点则ZAMB =90:', 7- BAM =30:'(或• ABM =30:;),1 1■ BM AB 4 =2.2 2过点M作ME _ AB于点E,可得• BME =. BAM =30 ..EB」BM =丄2=1, EM = . 3 , OE =4 .2 2•点M的坐标为(4,-'-3).精品文档1但是,当X = 4 时,y =42-6 4 5 =16 -24 5 =-3 一.-不存在这样的点M构成满足条件的直角三角形.练习3.解(1 )点A(—4,0),点B(—2 0),点E(0,8)关于原点的对称点分别为 D(4,0) , C(2,0),据题意可知0 < t :: 4 •所以,所求关系式是 S = -4t 2 14t 8 , t 的取值范围是0 w t :: 4.『 7、81781 (3)S=V t —— + — ,(0 w tv4) •所以 t =—时,S 有最大值—•I 4丿 444提示:也可用顶点坐标公式来求. (4) 在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形 MDNA 是平行四边形,对角线是AD , MN ,所以当 AD =MN 时四边形 MDNA 是矩形.所以 OD =ON .所以OD 2 =ON 2 =OH 2 NH 2. 所以 t 2 42_2=0 .解之得 1 —、6-2, t ? =7;6-2 (舍).所以在运动过程中四边形 MDNA 可以形成矩形,此时t =痔6 -2 .[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较二. 二次函数与四边形的面积例1.解:(1)解法一:设y = ax 2 bx ■ c(a 厂0),任取x,y 的三组值代入,求出解析式y =丄x 2 + x- 4 , 2令 y=0,求出为=-4,X 2= 2 ;令 x=0,得 y=-4 , A A 、B C 三点的坐标分别是 A(2 , 0) , B(-4 , 0) , C(0, -4)解法二:由抛物线 P 过点(1 , - 5) , (-3 ,--)可知,2 2抛物线P 的对称轴方程为x=-1 ,又•••抛物线P 过(2 , 0)、(-2 , -4),则由抛物线的对称性可知, 点 A 、B C 的坐标分别为 A(2 , 0) , B(-4 , 0) , C(0 , -4).F (0, 8).设抛物线C 2的解析式是y =ax 2 bx c(a *0),贝U16a 4b c =0, 4a2b c =0, c - -8. ! a - —1, 解得b =6,c - _8・所以所求抛物线的解析式是 (2)由(1) 可计算得点M(-3, -1), N(3,.过点N 作NH _ AD ,垂足为H .当运动到时刻 t 时,AD =2OD =8 _2t , NH ^1 2t .根据中心对称的性质 OA = OD, OM =ON ,所以四边形 MDNA 是平行 四边形.所以S =2S A ADN所以,四边形MDNA 的面积2 __S=(8-2t)(1,2t)=-4t14t 8 .因为运动至点 A 与点D 重合为止,S DEFG =DG" FG=6.(2)由题意, AD= D G ,而 AO=2 0C=4 AD=2-m 故 DG=4-2m .................AO OC p BE EF ZR又 = ,EF=DG 得 BE=4-2m /• DE=3m BO OC S DEFG =DG* DE=(4-2m) 3m=12m-6m (0 v ITK 2). 注:也可通过解 Rt △ BOC 及 Rt △ AOC 或依据△ BOC 是等腰直角三角形建立关系求解 ⑶•/ SDEFG=12m-6n(0 < m v 2), A m=1时,矩形的面积最大,且最大面积是 6 . 当矩形面积最大时,其顶点为 D(1 , 0) , G(1 , -2) , F(-2 , -2) , E(-2 , 0), 设直线DF 的解析式为y=kx+b ,易知,k= - , b=--, 3 32y = x- 3又可求得抛物线 P 的解析式为:y = 1 x 2 + X- 4 , 2 2 2 1 2 ■ 1 - - 61 令—x- - = -x + x- 4,可求出X .设射线DF 与抛物线P 相交于点N,3 3 2 3 则N 的横坐标为」 61,过N 作x 轴的垂线交x 轴于H,有 3FN = DF2 -1-76- HE - 2-3 - 5+ 61 DE 点M 不在抛物线P 上,即点M 不与N 重合时,此时 ,-5+ 6- 口,门 k z 且 k > 0. 9k 的取值范围是 说明:若以上两条件错漏一个,本步不得分 若选择另一问题: AD DG AO = OC 而 AD=1, AO=2 OC=4 贝U DG=2 又 TFGAB CP OC而 AB=6, CP=2 OC=4 贝UFG=3练习1.解:利用中心对称性质,画出梯形 ••• A, B, C 三点与M • A ( 0, 4), B (6, (写错一个点的坐标扣N, 4) 1 H 分别关于点 ,C (8, 0) 分)OABC O 中心对称,(2)设过 A , B,4),A (0 , ••• 一 'I .则抛物线关系式为将B (6, 4), C (8, 0)两点坐标代入关系式,得3(3) : OA=4 OC=8 二 AF=4- m OE=8- m................................. 8 分•••勺二:口;、 七皿厂小川口 一宀」—_ 1 _] _] _22OA( AB+OC 2 AF • AG 2 OE ・ OF 2 CE- OA-ix4x(6 + 3) -2 2 2 2(0 v 匸 v 4) .........................................•••当时,S 的取最小值.又••• 0 v m v 4,•不存在 m 值,使S 的取得最小值. ••(4)当 讣二-Uh 时,GB=GF 当时,BE=BG当 0 < x < 1 时,AP=2x , AQ=x即 y =3x -2.练习3.解](1)设12的解析式为y =ax 2+bx +c (0),•/ 11与x 轴的交点为 A (-2 , 0) , C (2 , 0),顶点坐标是(0 , - 4),丨2与l 1关于x 轴对称, •••丨2过 A (-2,0),C (2,0),顶点坐标是(0 , 4),作0E 丄AB , E 为垂足. 4 当一w x < 2 时,BP=2x —2 , AQ 3 OE -1, 1 +2x —2 1y = S 梯形 BEOP S梯形 OEAQ 1 ■- 2 2(4)3x . 90 w/ POQ w 180或 180’ <Z POQ w 270 2 如图所示:36a+6b +4 = 4j+搜E + 4 二0*解得所求抛物线关系式为:45AB ,垂足为 G 贝U sin / FEG= sin / CAB=「分• • 6分.............. 7分10分12分14分练习2.[解](1) (2)当S 四边形ABPQ1=寸S 正方形AD 时,橡皮筋刚好触及钉子,BP = 2x - 2 , AQ = x ,£ 2x —2 x 2=* 22,(3)当 1 <4时,AB =2 , PB 3=2x -2 , AQ 二 x , AQ + BP| y =-^ x 2x -22 =3x —2,2324a -2b c = 0 ,•- 4a 2b c =0,c 4.3••• a=-1, b =0, c =4,即 12 的解析式为 y = - x 2+4 . (还可利用顶点式、对称性关系等方法解答)2 2⑵ 设点B ( m n )为1 1: y =x -4上任意一点,贝U n = m -4 (*).•••四边形ABC [是平行四边形,点 A C 关于原点0对称, •••点D 的坐标为D (- m - n ).222由(*)式可知,-n =-( m-4)= -(- m +4,即点D 的坐标满足y = - x +4, •••点D 在12上.⑶口 ABC [能为矩形.过点B 作BH L x 轴于H,由点B 在1i : y =x 2-4 上,可设点B 的坐标为(X o , X o 2-4),则0H = X o | , BH =| x o 2-4|三. 二次函数与四边形的动态探究 例1.解:(1)由已知 PB 平分/APD PE 平分/GPF 且 PD PF 重合,则 / BPE=9o °GPEF Z APB=9o°.又/ APBF Z ABP 9o °GPE Z PBA PG BAx 31 1 4•- Rt △ PGE° Rt △ BPA • -- = ---- .即一= -------- .•- y =_x(4-x) = — x 2+-x (o v x v 4).GE AP y4-x 3 3 3 且当x =2时,y 有最大值-.3⑵ 由已知,△ PAB △ PGE 均为等腰三角形,可得 R1 , o),E (o , 1), B (4 , 3).-f c ~1,设过此三点的抛物线为 y =ax 2+ bx + c ,贝U q a +b+c=o ,•16a 亠4b 亠c =3.1 2 3 彳 y = x x 1 . 2 2⑶由⑵知Z EP 咅9。