2017届高三数学-统计及统计案例-专题练习-答案

合集下载

2017年北京市各区高三理科数学试题分类汇编----概率与统计

2017年北京市各区高三理科数学试题分类汇编----概率与统计

2017年北京市各区高三理科数学分类汇编----概率与统计(2017年东城一模)(8)甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是①甲抛出正面次数比乙抛出正面次数多.②甲抛出反面次数比乙抛出正面次数少. ③甲抛出反面次数比甲抛出正面次数多. ④乙抛出正面次数与乙抛出反面次数一样多. (A )①②(B )①③(C )②③(D )②④解答题部分:(2017年朝阳期末)16.(本小题满分13分)甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望E ξ.【解析】(Ⅰ)作出茎叶图如下:…………………………………4分(Ⅱ)派甲参赛比较合适.理由如下:()1x 70280490289124835858=⨯+⨯+⨯++++++++=甲, ()1x 70180490350035025858=⨯+⨯+⨯++++++++=乙,()()()()()2222221s 788579858185828584858⎡=-+-+-+-+-+⎣甲()()()22288859385958535.5⎤-+-+-=⎦,()()()()()2222221s 758580858085838585858⎡=-+-+-+-+-+⎣乙 ()()()22290859285958541.⎤-+-+-=⎦甲乙9884215350035025789因为 x =甲x 乙,22s s <乙甲,所以,甲的成绩较稳定,派甲参赛比较合适. …………………………8分注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如 派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为138f =,乙获得85分以上(含85分)的频率为24182f ==. 因为21f f >,所以派乙参赛比较合适.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A , ()63A 84P ==. ……………………………………………………… 9分随机变量ξ的可能取值为0,1,2,3,且3(3,)4ξB ∼.∴()3331C 44kkk P k ξ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,k 0,1,2,3=.所以变量ξ11分19272790123646464644Eξ=⨯+⨯+⨯+⨯=. (或393.44nP Eξ==⨯=) ………………………………………………13分(2017年海淀期末)16. (本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“ ”. 为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信度数据统计:(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4 个数据中随机抽取1 个数据,设随机变量X 表示取出的3个数据中“水站诚信度”周实际回收水费 周投入成本超过91% 的数据的个数,求随机变量X的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动. 根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.解:(Ⅰ)十二周“水站诚信度”的平均数为x=95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X==⨯⨯=32112112314(1)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分) 情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分. ②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.(2017年西城期末)17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a ,b 是正整数,且a b <.(Ⅰ)该卖场有56台A 型手机,试估计其中待机时间不少于123小时的台数;(Ⅱ)从A 型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X ,求X 的分布列; (Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).解:(Ⅰ)被检测的7台手机中有5台的待机时间不少于123小时,因此,估计56台A 型手机中有556407⨯=台手机的待机时间不少于123小时.[3分] (Ⅱ)X 可能的取值为0,1,2,3.[4分]4711(0)35C P X ===;133447C C 12(1)35C P X ===;223447C C 18(2)35C P X ===;3447C 4(3)35C P X ===.[8分] 所以,X 的分布列为:[10分](Ⅲ)若A ,B 两个型号被测试手机的待机时间的平均值相等,当B 型号被测试手机的待机时间的方差最小时,124a =,125b =.[13分](2017年丰台期末)17.(本小题共14分)数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如下表所示:为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X 表示抽得甲中学的学生人数,求X 的分布列.解:(Ⅰ)由题意知,四所中学报名参加数独比赛的学生总人数为100名, 抽取的样本容量与总体个数的比值为30310010=, 所以甲、乙、丙、丁四所中学各抽取的学生人数分别为9,12,6,3. ………………3分(Ⅱ)设“从30名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件A ,从30名学生中随机抽取两名学生的取法共有230435C =种, ………………5分 来自同一所中学的取法共有222291263120C C C C +++=. ………………7分所以1208()43529P A ==. 答:从30名学生中随机抽取两名学生来自同一所中学的概率为829. ………………8分 (Ⅲ)由(Ⅰ)知,30名学生中,来自甲、丙两所中学的学生人数分别为9,6.依题意得,X 的可能取值为0,1,2, ………………9分262151(0)7C P X C === ,119621518(1)35C C P X C === ,2921512(2)35C P X C ===. ……………12分所以X……………….14分(2017年石景山期末)16.(本小题共13分)2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:(Ⅰ)求a ,b ,c 的值;(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市..大学生...中随机抽取3人,记X 表示抽到的是微信群个数超过15个的人数,求X 的分布列和数学期望EX . 解:(Ⅰ)030305100a ++++=解得35a =,5110020b ==,35710020c ==.…………………3分 (Ⅱ)记“2人中恰有1人微信群个数超过15个”为事件A ,则114060210016()33C C P A C ==. 所以,2人中恰有1人微信群个数超过15个的概率为1633. ……………7分 (Ⅲ)依题意可知,微信群个数超过15个的概率为25P =. X 的所有可能取值0,1,2,3. ……………8分则()0033270()(1)2255125P X C ==-=,()1123541()(1)2255125P X C ==-=, ()2213362()(1)2255125P X C ==-=,()333083()(22551)125P X C ==-=.10198531956775B 班A 班其分布列如下:所以,01231251251251255EX =⨯+⨯+⨯+⨯=.……………13分(2017年昌平期末)(16)(本小题满分13分)A 、B 两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:(I ) 试估计B 班的学生人数;(II ) 从A 班和B 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,B 班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:当甲的测试数据比乙的测试数据低时,记1ξ=-, 当甲的测试数据与乙的测试数据相等时,记0ξ=, 当甲的测试数据比乙的测试数据高时,记1ξ=. 求随机变量ξ的分布列及期望.(III )再.从A 、B 两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记错误!未找到引用源。

2017年高考数学试题分项版—统计概率(解析版)

2017年高考数学试题分项版—统计概率(解析版)

2017年高考数学试题分项版—统计概率(解析版)一、选择题1.(2017·全国Ⅰ文,2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值 D .x 1,x 2,…,x n 的中位数 1.【答案】B【解析】因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差. 故选B.2.(2017·全国Ⅰ文,4)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π42.【答案】B【解析】不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.故选B.3.(2017·全国Ⅱ文,9)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 3.【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 故选D.4.(2017·全国Ⅱ文,11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .254.【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10, ∴所求概率P =1025=25.故选D.5.(2017·全国Ⅲ文,3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 5.【答案】A【解析】对于选项A ,由图易知月接待游客量每年7,8月份明显高于12月份,故A 错; 对于选项B ,观察折线图的变化趋势可知年接待游客量逐年增加,故B 正确; 对于选项C ,D ,由图可知显然正确. 故选A.6.(2017·天津文,3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A .45B .35C .25D .156.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P =410=25. 故选C.7.(2017·山东文,8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7 7.【答案】A【解析】甲组数据的中位数为65,由甲、乙两组数据的中位数相等得y =5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x )=15×(59+61+67+65+78),∴x =3.故选A. 8.(2017·浙江,8)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( ) A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2) B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2) C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 8.【答案】A【解析】由题意可知ξi (i =1,2)服从两点分布,∴E (ξ1)=p 1,E (ξ2)=p 2,D (ξ1)=p 1(1-p 1),D (ξ2)=p 2(1-p 2), 又∵0<p 1<p 2<12,∴E (ξ1)<E (ξ2),把方差看作函数y =x (1-x ),根据0<ξ1<ξ2<12知,D (ξ1)<D (ξ2).故选A.9.(2017·全国Ⅰ理,2)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B .π8 C .12 D .π4 9.【答案】B【解析】不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.10.(2017·全国Ⅰ理,6)⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A .15 B .20 C .30 D .35 10.【答案】C【解析】因为(1+x )6的通项为C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4.因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为30. 故选C.11.(2017·全国Ⅱ理,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种11.【答案】D【解析】由题意可得,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C 13·C 24·A 22=36(种),或列式为C 13·C 24·C 12=3×4×32×2=36(种).故选D. 12.(2017·全国Ⅱ理,7)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 12.【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.13.(2017·全国Ⅲ理,3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 13.【答案】A【解析】对于选项A ,由图易知月接待游客量每年7,8月份明显高于12月份,故A 错误;对于选项B ,观察折线图的变化趋势可知,年接待游客量逐年增加,故B 正确; 对于选项C ,D ,由图可知显然正确. 故选A.14.(2017·全国Ⅲ理,4)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40 D .8014.【答案】C【解析】因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40, x 3y 3=y ·(x 3y 2),其系数为C 25·23=80. 所以x 3y 3的系数为80-40=40. 故选C.15.(2017·山东理,5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑10i =1x i =225,∑10i =1y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( ) A .160 B .163 C .166 D .17015.【答案】C【解析】∵∑10i =1x i =225,∴x =110∑10i =1x i =22.5.∵∑10i =1y i =1 600,∴y =110∑10i =1y i =160.又b ^=4,∴a ^=y -b ^x =160-4×22.5=70.∴回归直线方程为y ^=4x +70.将x =24代入上式,得y ^=4×24+70=166.故选C.16.(2017·山东理,8)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( ) A .518B .49C .59D .7916.【答案】C【解析】方法一 ∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取, ∴P (第一次抽到奇数,第二次抽到偶数)=59×48=518,P (第一次抽到偶数,第二次抽到奇数)=49×58=518,∴P (抽到的2张卡片上的数奇偶性不同)=518+518=59.故选C.方法二 依题意,得P (抽到的2张卡片上的数奇偶性不同)=5×4C 29=59.故选C. 二、填空题1.(2017·北京文,14)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________. ②该小组人数的最小值为________. 1.【答案】6 12【解析】(1)若教师人数为4,则男学生人数小于8,最大值为7,女学生人数最大时应比男学生人数少1人,所以女学生人数的最大值为7-1=6.(2)设男学生人数为x (x ∈N +),要求该小组人数的最小值,则女学生人数为x -1,教师人数为x -2.又2(x -2)>x ,解得x >4,即x =5,该小组人数的最小值为5+4+3=12.2.(2017·浙江,13)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________. 2.【答案】16 4【解析】a 4是x 项的系数,由二项式的展开式得a 4=C 33·C 12·2+C 23·C 22·22=16. a 5是常数项,由二项式的展开式得a 5=C 33·C 22·22=4. 3.(2017·浙江,16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法(用数字作答). 3.【答案】660【解析】方法一 只有1名女生时,先选1名女生,有C 12种方法;再选3名男生,有C 36种方法;然后排队长、副队长位置,有A 24种方法.由分步乘法计数原理,知共有C 12C 36A 24=480(种)选法.有2名女生时,再选2名男生,有C 26种方法;然后排队长、副队长位置,有A 24种方法.由分步乘法计数原理,知共有C 26A 24=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.方法二 不考虑限制条件,共有A 28C 26种不同的选法, 而没有女生的选法有A 26C 24种,故至少有1名女生的选法有A 28C 26-A 26C 24=840-180=660(种).4.(2017·江苏,3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 4.【答案】18【解析】∵样本容量总体个数=60200+400+300+100=350.∴应从丙种型号的产品中抽取350×300=18(件).5.(2017·江苏,7)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 5.【答案】59【解析】设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A , 由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3]. 如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.6.(2017·全国Ⅱ理,13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =________. 6.【答案】1.96【解析】由题意得X ~B (100,0.02), ∴DX =100×0.02×(1-0.02)=1.96.7.(2017·北京理,13)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________. 7.【答案】-2,-4,-5(答案不唯一) 【解析】只要取一组满足条件的整数即可,如-1,-2,-3;-3,-4,-6;-4,-7,-10等.8.(2017·天津理,14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答) 8.【答案】1 080【解析】①当组成四位数的数字中有一个偶数时,四位数的个数为C 35·C 14·A 44=960.②当组成四位数的数字中不含偶数时,四位数的个数为A 45=120. 故符合题意的四位数一共有960+120=1 080(个).9.(2017·山东理,11)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________. 9.【答案】4【解析】(1+3x )n 的展开式的通项为T r +1=C r n (3x )r .令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4. 三、解答题1.(2017·全国Ⅰ文,19)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尽寸:18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(-3s ,+3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. ①从这一天抽检的结果看,是否需对当天的生产过程进行检查?②在(-3s ,+3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数r =,0.008≈0.09.1.解 (1)由样本数据得(x i ,i )(i =1,2,…,16)的相关系数r =≈-2.784×0.212×18.439≈-0.18,由于|r |<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(ⅰ)由于=9.97,s ≈0.212,因此由样本数据可以看出抽取的第13个零件的尺寸在(-3s ,+3s )以外,因此需对当天的生产过程进行检查. (ⅱ)剔除离群值,即第13个数据,剩下数据的平均数为 115(16×9.97-9.22)=10.02, 因此这条生产线当天生产的零件尺寸的均值的估计值为10.02.i =116x 2i ≈16×0.2122+16×9.972≈1 591.134, 剔除第13个数据,剩下数据的样本方差为 115(1 591.134-9.222-15×10.022)≈0.008, 因此这条生产线当天生产的零件尺寸的标准差的估计值为0.008≈0.09.2.(2017·全国Ⅱ文,19)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示时间“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).2.解 (1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2的观测值k =200×(62×66-34×38)100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.3.(2017·全国Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.3.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8.4.(2017·北京文,17)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.4.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6, 所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 分数在区间[40,50)内的人数为100-100×0.9-5=5, 所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60, 所以样本中分数不小于70的男生人数为60×12=30,所以样本中的男生人数为30×2=60, 女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.5.(2017·山东文,16)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 5.解 (1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3},共15个. 所选两个国家都是亚洲国家的事件所包含的基本事件有:{A 1,A 2},{A 1,A 3},{A 2,A 3},共3个,则所求事件的概率为P =315=15.(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},共9个.包括A 1但不包括B 1的事件所包含的基本事件有: {A 1,B 2},{A 1,B 3},共2个, 则所求事件的概率为P =29.6.(2017·江苏,23)已知一个口袋有m 个白球,n 个黑球(m ,n ∈N *,n ≥2),这些球除颜色外完全相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m +n 的抽屉内,其中第k 次取球放入编号为k 的抽屉(k =1,2,3,…,m +n ).(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,E (X )是X 的数学期望,证明:E (X )<n(m +n )(n -1).6.解 (1)编号为2的抽屉内放的是黑球的概率为p =C n -1m +n -1C n m +n =n m +n.(2)随机变量X 的概率分布为随机变量X 的期望为随机变量X 的的期望为:11111(1)!()(1)!()!n m nm n k n nk n k nm nm n C k E X k C C k n k n -++-==++-==--∑∑所以1(2)!1(2)!()(1)!()!(1)(2)!()!m nm nn n k n k n m nm nk k E X C n k n n C n k n ++==++--<=-----∑∑ 222121(1...)(1)n n n n n m n nm nC C C n C ----+-+=++++- 12221121(...)(1)n n n n n n n m n nm nC C C C n C ------+-+=++++- 122221(...)(1)n n n n n n n m n nm nC C C C n C ----+-+=++++- 12221...()(1)n n m n m n nm nC C n C --+-+-+==+- 11(1)()(1)n m n nm n C n n C m n n -+-+==-+-, 即()()(1)nE X m n n <+-7.(2017·全国Ⅰ理,19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得,,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数作为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除( -3 ,+3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).16119.9716i i x x ===∑0.212s =≈附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.7.解 (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6). 因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8. X 的数学期望E (X )=16×0.002 6=0.041 6.(2)(ⅰ)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ⅱ)由x =9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出有一个零件的尺寸在( -3 ,+3 )之外,因此需对当天的生产过程进行检查. 剔除( -3 ,+3 )之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i =16×0.2122+16×9.972≈1 591.134. 剔除( -3 ,+3 )之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.8.(2017·全国Ⅱ理,18)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)8.解(1)记B表示事件“旧养殖法的箱产量低于50 kg”,C表示事件“新养殖法的箱产量不低于50 kg”.由题意知,P(A)=P(BC)=P(B)P(C).旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值为0.62.新养殖法的箱产量不低于50 kg的频率为(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5, 箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35 (kg).9.(2017·全国Ⅲ理,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?9.解 (1)由题意知,X 所有的可能取值为200,300,500, 由表格数据知,P (X =200)=2+1630×3=0.2,P (X =300)=3630×3=0.4,P (X =500)=25+7+430×3=0.4.则X 的分布列为(2),因此只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ; 若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n , 因此EY =2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n . 当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n , 因此EY =2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n .所以当n =300时,Y 的数学期望达到最大值,最大值为520元.10.(2017·北京理,17)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)10.解:(1)由题图可知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图可知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16,所以ξ的分布列为故ξ的期望E (ξ)=0×16+1×23+2×16=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差. 11.(2017·天津理,16)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 11.解 (1)随机变量X 的所有可能取值为0,1,2,3, P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14,P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.12.(2017·山东理,18)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 12.解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则 P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为所以X 的数学期望EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4) =0+1×521+2×1021+3×521+4×142=2.。

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案)1。

(17全国1理19.(12分))为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.2。

(17全国1文19.(12分))为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.3。

2017高考十年高考数学(理科)分项版 专题12 概率和统计(北京专版)(解析版) 含解析

2017高考十年高考数学(理科)分项版 专题12 概率和统计(北京专版)(解析版) 含解析

1. 【2012高考北京理第2题】设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(A )4π (B )22π- (C)6π (D )44π-【答案】D考点:几何概型概率。

2。

【2012高考北京理第8题】某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高m 值为( )A.5B.7C.9 D 。

11 【答案】C 【解析】试题分析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C. 考点:平均数.3。

【2010高考北京理第11题】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =__________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为__________.【答案】0。

030 3[]考点:频率分布直方图.4。

【2005高考北京理第17题】(本小题共13分)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为.32(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (Ⅱ)求乙至多击中目标2次的概率;(Ⅲ)求甲恰好比乙多击中目标2次的概率。

【答案】解:(I)03313(();28P C ξ=0)==13313(1();28P C ξ=)==23313(2();28P C ξ=)==33313(3();28P C ξ=)==ξ的概率分布如下表:13310. 1. 2. 3. 1.5(8888E ξ=+++=或13. 1.5.)2E ξ==5. 【2006高考北京理第18题】(本小题共13分)某公司招聘员工,指定三门考试课程,有两种考试方案。

2017高考数学一轮考点训练统计带答案

2017高考数学一轮考点训练统计带答案

第十一章统计考纲链接1.随机抽样(1)理解随机抽样的必要性和重要性. (2) 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相(1)会做两个有关联变量的数据的散点关性图,并利用散点图认识变量间的相关关系. (2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).4.统计案例 归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.(1)通过典型案例了解回(2) 通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.§11.1 随机抽样1.简单随机抽样(1)简单随机抽样:一般 地,设一个总体含有N 个个体,从中逐个________地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会________,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样方法有两种:________法和________法. 抽签法(抓阄法):一般地,抽签法就是把总体中的N 个个体________,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取______个号签,连续抽取________次,就得到一个容量为n的样本. 随机数法:随机数法就是利用______________、随机数骰子或计算机产生的随机数进行抽样.简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.2.系统抽样 (1)一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:①先将总体的N个个体________.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;②确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn,如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除;③在第1段用______________抽样方法确定第一个个体编号l(l≤k);④按照一定的规则抽取样本.通常是将l加上________得到第2个个体编号________,再________得到第3个个体编号________,依次进行下去,直到获取整个样(2)当总体中元素个数较少时,常采用本.____________,当总体中元素个数较多时,常采用______________.3.分层抽样 (1)分层抽样的概念:一般地,在抽样时,将总体分成________的层,然后按照一定的________,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样. 时,往往选用分层抽样的方法.时,每个个体被抽到的机会是________的.自查自纠:1.(1)不放回 都相等 (2)抽签随机数 编号 随机数表2.(1)①编③简单随机④间隔k (l +k) 加k +2k)(2)简单随机抽样比例 (2)差异明显 (2)当总体是由__________的几个部分组成(3)分层抽样 1 n 号 (l 系统抽样3.(1)互不交 叉 (3)均等(2015•南昌模拟)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A .简 单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解:总体中所要调查的因素受学段影响较大,而受性别影响不大,所以最合理的抽样方法是按学段分层抽样.故选C.从匀速传递的新产品生产流水线上,质检员每10分钟从中抽取一件新产品进行某项指标检测,这样的抽样是( )A.系统抽样B.分解:层抽样C.简单随机抽样D.随机数法根据定义易判断这样的抽样为系统抽样.故选A.(2014•重庆)某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100B.150C.200D.250 解:样本抽取比例为703500=150,该校总人数为3500+1500=5000,由n5000=150得n=100.故选A.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样抽取样本时,每组的容量为____________.解:由于5008不能被200整除,所以须先剔除8人,再由5000÷200=25知每组的容量为25.故填25. 某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号为第1组,6~10号为第2组,…,196~200号为第40组).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37;易知40岁以下年龄段的职工数为200×0.5=100,所以40岁以下年龄段应抽取的人数为40200×100=20.故填37;20.类型一简单随机抽样某大学为了支援我国西部教育事业,决定从应届毕业生报名的18名志愿者中选取6名组成志愿小组.请用抽签解:(抽签法和随机数表法设计抽样方案.法)第一步:将18名志愿者编号,编号为1,2,3,…,18;第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;第三步:将18个号签放入一个不第四步:从盒子透明的盒子里,充分搅匀;中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者就是志愿小组的成员.(随机数表法)第一步:将18名志愿者编号,编号为01,02,03,…,18;第二步:在随机数表中任选一数作为开始,按任意方向读数,比如从第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01~18中的数或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09;第四步:找出以上号码对应的志愿者,即是志愿小组的成员.点拨:考虑到总体中个体数较少,利用抽签法或随机数表法很容易获取样本,但须按这两种抽样方法的操作步骤进行.注意掌握随机数表的使用方法.有一批机器,编号为1,2,3, (112)为调查机器的质量问题,打算抽取10台入样,请写出用简单随机抽样方法获得样本的步骤.解法一:将112个外形完全相同的号签(编号001,002,…,112)放入一个不透明的盒子里,充分搅拌均匀后,每次不放回地从盒子中抽取1个号签,连续抽取10次,就得到1个容量为10的样本.解法二:第一步,将机器第二步,在随编号为001,002,003, (112)机数表中任选一数作为开始,任选一方向作为读数方向.比如选第9行第7个数“3”,向右读;第三步,从“3”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092,第四步,这样就得到一个容量为10的样本;找出以上号码对应的机器,即是要抽取的样本.类型二系统抽样从某厂生产的10002辆汽车中随机抽取100辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程.解:因为总体容量和样本容量都较大,可用系统抽样.抽样步骤如下:第一步,将10002辆汽车用随机方式编号;第二步,从总体中剔除2辆(剔除法可用随机数表法),将剩下的10000辆汽车重新编号(分别为00001,00002,…,10000),并分成100段;第三步,在第一段00001,00002,…,00100这100个编号中用简单随机抽样方法抽出一个作为起始号码(如00006);第四步,把起始号码依次加上间隔100,可获得样本.点拨:①总体容量和样本容量都较大时,选用系统抽样比较合适;②系统抽样的号码成等差数列,公差为每组的容量.(2013•陕西)某单位有840名职工,统抽样方法抽取42人做问卷调查,1,2,…,840随机编号,现采用系将840人按则抽取的42人中,编号落入区间[481,720]的人数为( )A.11 B.12C.13D.14解:从840名职工中抽取42人,按系统抽样分42组,每组20人,每组中抽取1人,在[481,720] 中有720-480=240人,240÷20=12组,编号落入区间[481,720]的人数为12.故选B.类型三分层抽样某企业共有5个分布在不同区域的工厂,职工3万人,其中职工比例为3∶2∶5∶2∶3.现从3万人中抽取一个 300人的样本,分析员工的生产效率.已知生产 效率与不同的地理位置的生活习俗及文化传统 有关,问应采取什么样的方法?并写出具体过 程.解:应采取分层抽样的方法.过程如 (1)将3万人分为五层,其中一个工厂为 (2)按照样本容量的比例随机抽取各工 下:一层. 厂应抽取的样本:300×315=60(人);300×215= 40(人);300×515=100(人);300×215= 40(人);300×315=60(人).因此各工厂应抽 取的人数分别为60人,40人,100人,40人,60 人.(3)将300人组到一起即得到一个样本. 分层抽样的实质为按比例抽取,当总 点拨: 体由差异明显的几部分组成时,多用分层抽 样.应认识到,在各层抽取样本时,又可能会 用到简单随机抽样,系统抽样,甚至分层抽样 来抽取样本.(2014•天津)某大学为了解在校本科生对参加 某项社会实践活动的意向,拟采用分层抽样的 方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取__________名学生.解:应从一年级本科生中抽取300×44+5+5+6=60名学生.故填60.1.简单随机抽样是系统抽样和分层抽样的基(1) 础,是一种等概率的抽样,它的特点是:它要求总体个数较少; (2)它是从总体中逐个抽取的; (3)它是一种不放回抽样.2.系统抽样又称等距抽样,号码序列一旦确定,样本即确定好了.但要注意,如果编号的个体特征随编号的变化呈现一定的周期性,那么样本的代表性是不可靠的,甚至会导致明显的偏向.3.分层抽样一般在总体是由差异明显的几个部分组成时使用.4.抽样方法经常交叉使用,比如系统抽样中均匀分段后的第一段,可采用简单随机抽样;分层抽样中,若每层中个体数量仍很大时,则可辅之以系统抽样等.5.三种抽样方法的比较类别共同点各自特点 抽样 抽样过程中每个个体被抽取的概率相等从总体中逐个抽样 总体中的个体数较少统抽样 将总体均分成几部分,按事先确定的规则在各部分抽取单随机抽样 相互联系 适用范围 简单随 机 系 在起始部分抽样时采用简 总体中的个体数较多 分层抽样将总体分成几层,分层进行抽取 采用简单随机抽样或系统抽样显的几部分组成分层抽样时总体由差异明 1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额,采取如下方法:从某本50张的发票存根中随机抽取一张,如15号,然后按顺序往后将65号、115号、165号……发票上的销售额组成一个调查样本.这种抽取样本的方法是()A .抽签法B .系统抽样 解:易知为系C .分层抽样D .随机数表法统抽样.故选B.2.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样;②系统抽样;③分层抽样B.①简单随机抽样;②分层抽样;③系统抽样C.①系统抽样;②简单随机抽样;③分层抽样D.①分层抽样;②系统抽样;③简单随机抽样解:由各抽样方法的适用范围可知较为合理的抽样方法是:①用简单随机抽样,②用系统抽样,③用分层抽样.故选A.3.(2014•广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50B.40C.25D.20解:由100040=25,可得分段的间隔为25.故选C.4.(2015•河北模拟)用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为( )A.1100B.120C.199D.150解:简单随机抽样中,每个个体被抽到的概率为样本容量总体中的个体数,即个体m被抽到的概率为5100=120.故选B.5.(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3 B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解:根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法中每个个体被抽到的概率相等,均是nN,故p1=p2=p3,故选D.6.(2013•江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )78166572080263140702436997280198320492344935 82003623486969387481A.08B.07C.02D.01解:从选定的两位数字开始向右读,剔除不合题意及与前面重复的编号,得到符合题意的编号分别为08,02,14,07,01,…,因此选出来的第5个个体的编号为01.故选D.7.(2014•河北唐山统考)一支游泳队有男运动员32人,女运动员24人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为14的样本,则抽取男运动员的人数为________.解:设抽取男运动员的人数为x,则由题意得1432+24=x32,解得x=8.故填8.8.(2015•安徽模拟)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是____________.解:∵系统抽样是等距抽样,52÷4=13,间隔为13,且5号,31号,44号学生在样本中,∴5+13=18,即样本中还有一个学生的编号是18.故填18.9.为了考察某校的教学水平,将抽查该校高三年级部分学生本学年的考试成绩进行考察.为了全面地反映实际情况,采用以下三种方式进行抽样(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同):①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;②每个班都抽取1人,共计20人,考察这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用了何种抽取样本的方法?解:(1)这三种抽取方式中,其总体都是指该校高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第三种抽取方式中,样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)第一种采用简单随机抽样法;第二种采用系统抽样法和简单随机抽样法;第三种采用分层抽样法和简单随机抽样法.10.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本.解:田径运动员的总人数是56+42=98(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取56×27=16(人),在女运动员中随机抽取28-16=12(人).这样,就可以得到一个容量为28的样本.11.某大学今年有毕业生1503人,为了了解毕业生择业的意向,打算从中选50人进行询问调查,试用系统抽样法确定出这50个人.解:总体中的每个个体都必须等可能地入样,为了实现系统抽样的平均分组且又等概率抽样,必须先剔除1503被50除的余数3,再“分段”,定起始位置.第一步:将1503名大学生随机编号:0001,0002,…,1503;第二步:因为1503被50除余3,所以应从总体中剔除3人,用随机数表第三步:将余下法确定被剔除的3位学生;的1500名学生重新编号为0001,0002,…,1500;第四步:将上述1500个号码按顺序平均分成50段,每段30人;第五步:在第一段0001,0002,…,0030这30个编号中随机确定一起始号i0;第六步:取出编号为i0,i0+30,i0+60,…,i0+49×30的大学生,即得所需样本.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当怎样进行抽样?解:可以采用分层抽样的方法,按照收入水平分成三层:高收入者、中等收入者、低收入者.从题中数据可以看出,高收入者为50名,占所有员工的比例为501000=5%,为保证样本的代表性,在所抽取的100名员工中,高收入者所占的比例也应为5%,数量为100×5%=5,所以应抽取5名高层管理人员.同理,抽取15名中层管理人员、80名一般员工,再对收入状况分别进行调查.。

湖北省各地2017届高三最新考试数学理试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学理试题分类汇编:统计与概率含答案

湖北省各地2017届高三最新考试数学理试题分类汇编统计与概率 2017。

02一、选择、填空题1、(黄冈市2017届高三上学期期末)有一个电动玩具,它有一个96⨯的长方形(单位:cm )和一个半径为1cm 的小圆盘(盘中娃娃脸),他们的连接点为A,E ,打开电源,小圆盘沿着长方形内壁,从点A 出发不停地滚动(无滑动),如图所示,若此时某人向该长方形盘投掷一枚飞镖,则能射中小圆盘运行区域内的概率为 .2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)有一长、宽分别为50m 、30m 的矩形游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置可能性相同,一人在池中心(对角线交点)处呼唤工作人员,其声音可传出152m ,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是A 。

34B.38C.316π D.12332π+3、(荆门市2017届高三元月调考)某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A 车和B 车,同时进来C ,D 两车,在C,D 不相邻的条件下,C 和D 至少有一辆与A 和B 车相邻的概率是A.1017B.1417C.916D.794、(天门、仙桃、潜江市2017届高三上学期期末联合考试)高考后,4位考生各自在甲、乙两所大学中任选一所参观,则甲、乙两所大学都有考生参观的概率为A.18B.38C.58D.785、(武汉市武昌区2017届高三1月调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则()P A B==()A.29B.13C. 49D.596、(襄阳市优质高中2017届高三1月联考)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示。

若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为。

【高考一本解决方案】2017版高考数学理科新课标版考题训练:专题十八 统计与统计案例.doc

【高考一本解决方案】2017版高考数学理科新课标版考题训练:专题十八 统计与统计案例.doc

1.(2016·山东,3,易)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1401.D[考向2]由频率分布直方图可知,每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,所以每周的自习时间不少于22.5小时的人数是200×0.7=140. 2.(2016·课标Ⅲ,4,易)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个2.D平均最高气温高于20 ℃的为七、八月份,∴D错.3.(2013·安徽,5,易)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数3.C [考向1,3]五名男生成绩的平均数是x -男=86+94+88+92+905=90,五名女生成绩的平均数是x -女=88+93+93+88+935=91,五名男生成绩的方差是s 2男=15(16+16+4+4+0)=8, 五名女生成绩的方差是s 2女=15(9+4+4+9+4)=6, 由s 2男>s 2女知应该选C.4.(2014·山东,7,中)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .184.C [考向2]由题图可知,第一组和第二组的频率之和为(0.24+0.16)×1=0.40,故该试验共选取志愿者200.40=50(人).所以第三组共有50×0.36=18(人),其中有疗效的人数为18-6=12.5.(2014·天津,9,易)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.5.[考向1]【解析】 一年级本科生人数占总人数的比例为44+5+5+6=420=15,所以应从一年级本科生中抽取的学生数为300×15=60.【答案】 606.(2015·湖南,12,易)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.6.[考向1,2]【解析】根据系统抽样原理,应将数据按照顺序分成7组,每组5人.区间[139,151]恰好包含第3组到第6组的数据,所以应该从中抽取4人.【答案】 47.(2014·江苏,6,易)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.7.[考向2]【解析】由频率分布直方图可知,在抽测的60株树木中,底部周长小于100 cm 的频率是(0.015+0.025)×10=0.4,所以底部周长小于100 cm的株数是60×0.4=24.【答案】248.(2016·四川,16,12分,中)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.8.[考向2]解:(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85.而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3,由0.3×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.9.(2015·广东,17,12分,中)某工厂36名工人的年龄数据如下表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的平均值x -和方差s 2;(3)36名工人中年龄在x --s 与x -+s 之间有多少人?所占的百分比是多少(精确到0.01%)? 9.[考向3]解:(1)依题意所抽样本编号是一个首项为2,公差为4的等差数列,故其所有样本编号依次为2,6,10,14,18,22,26,30,34,对应样本的年龄数据依次为44,40,36,43,36,37,44,43,37. (2)由(1)可得其样本的平均值为x -=44+40+36+43+36+37+44+43+379=40,方差为s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=19[42+02+(-4)2+32+(-4)2+(-3)2+42+32+(-3)2]=1009. (3)由(2)知s =103,∴x --s =3623,x -+s =4313,∴年龄在x --s 与x -+s 之间共有23人,所占百分比为2336≈63.89%.10.(2015·课标Ⅱ,18,12分,中)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 8276 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 7665 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.10.[考向2,3]解:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件:“A 地区用户的满意度等级为非常满意”; C B1表示事件:“B 地区用户的满意度等级为不满意”;C B2表示事件:“B 地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C =(C B1C A1)∪(C B2C A2). P(C)=P((C B1C A1)∪(C B2C A2)) =P(C B1C A1)+P(C B2C A2) =P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.高考中以考查分层抽样和系统抽样为主,一般以选择题或填空题的形式出现,难度较小,为容易题,分值为5分.对于分层抽样,主要考查各组中样本数的计算,即样本容量与总体容量成比例的特性;系统抽样则主要考查分组数和由第一组中抽取的样本推算其他各组应抽取的样本,即等距离的特性.1(1)(2012·山东,4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为( ) A .7 B .9 C .10 D .15(2)(2014·广东,6)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10【解析】 (1)由题意,可知系统抽样中每一组的样本数为96032=30,因为第一组抽取的样本号码为9,所以第k 组抽取的号码为9+30×(k -1).由451≤9+30×(k -1)≤750,得16≤k≤25(k ∈Z),所以k =16,17,…,25,共10个,即应该有10人做问卷B.(2)由题意知,该地区中小学生共有10 000名,故样本容量为10 000×2%=200.由分层抽样知应抽取的高中生人数为200×2 00010 000=40,其中近视人数为40×50%=20.【答案】 (1)C (2)A解题(1)的关键是掌握系统抽样的原理及步骤;题(2)在扇形统计图中,根据抽取的比例计算样本容量,根据条形统计图计算抽取的高中生近视人数.1.(2013·陕西,4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .141.B 由系统抽样原理,应分成42组,第一组1-20,第二组21-40,…,第42组821-840.区间[481,720]包含481-500,501-520,…,701-720共12组,所以抽取的42人中,编号在该区间内的共有12人.2.(2016·重庆巴蜀一模,5)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( ) A .12,24,15,9 B .9,12,12,7 C .8,15,12,5 D .8,16,10,62.D 因为40800=120,故各层中依次抽取的人数分别为160×120=8,320×120=16,200×120=10,120×120=6.,分层抽样和系统抽样中的计算(1)系统抽样总体容量为N ,样本容量为n ,则要将总体均分成n 组,每组Nn 个(有零头时要先去掉).若第一组抽到编号为k 的个体,则以后各组中抽取的个体编号依次为k +N n ,…,k +(n -1)Nn .(2)分层抽样按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比.统计图表是高考考查的重点之一,考查频率最高的是频率分布直方图,其次是茎叶图.主要考查形式有:①画出(或补全)频率分布直方图或茎叶图;②利用频率分布直方图或茎叶图中的数据进行某些计算,如求频率、频数、平均值、众数、中位数、概率等.选择题、填空题、解答题各种题型都有可能出现,难度一般不大,属容易题或中档题.2(2014·广东,17,13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【解析】 (1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故n 1=7,n 2=2,所以f 1=725=0.28,f 2=225=0.08.(2)频率分布直方图如图所示:(3)工人们日加工零件数落在区间(30,35]的概率为0.2,设日加工零件数落在区间(30,35]的人数为随机变量ξ,则ξ~B(4,0.2),故4人中,至少有1人的日加工零件数落在区间(30,35]的概率为:1-C 04(0.2)0(0.8)4=1-0.409 6=0.590 4.第(1)问,统计日加工零件数落在区间(40,45]和(45,50]的频数n 1和n 2,f 1,f 2由n 1,n 2计算得出;第(2)问根据频率组距算出频率分布直方图中每一个小长方形的高,完成频率分布直方图;第(3)问,可用独立重复试验公式进行计算,由于情况较多,可先计算其对立事件的概率.1.(2015·重庆,3)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( ) A .19 B .20 C .21.5 D .231.B 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.选B.2.(2016·广东惠州调研,4)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则( )A .m e =m 0=x -B .m e =m 0<x -C .m e <m 0<x -D .m 0<m e <x -2.D 由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数m 0=5.平均数x -=130×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,即m 0<m e <x -,故选D.,提取频率分布直方图中的数据(1)组距、频率:频率分布直方图中每个矩形的宽表示组距,高表示频率组距,面积表示该组数据的频率,各个矩形的面积之和为1; (2)众数:最高小长方形底边中点的横坐标;(3)中位数:平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标; (4)平均数:频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和; (5)参数:若纵轴上存在参数,则根据所有小长方形的面积之和为1,列方程即可求得参数值.用样本的数字特征估计总体涉及到的量有频数、频率、平均数、方差、标准差、众数、中位数、极差等.其中高考考查较多的是频率、平均数和方差,主要形式有: (1)用样本的频率、平均数或方差估计总体的相关特征; (2)计算样本的平均数和方差,对数据做出合理的解释.选择题、填空题、解答题中均有可能出现,难度不大,为中低档题.3(1)(2015·湖北,2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1 365石(2)(2014·陕西,9)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a(a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a ,4 B .1+a ,4+a C .1,4 D .1,4+a【解析】 (1)由条件可知,夹谷所占比例约为28254,所以米内夹谷约为1 534×28254≈169(石).(2)方法一:y -=110(y 1+y 2+…+y 10)=110(x 1+x 2+…+x 10+10a)=110(x 1+x 2+…+x 10)+a =1+a ,s 2=110[(y 1-y -)2+…+(y 10-y -)2]=110[(x 1-1)2+…+(x 10-1)2]=110[(x 1-x -)2+…+(x 10-x -)2]=4.方法二:由数据平移的性质,可知y -=x -+a =1+a , 由D(aX +b)=a 2DX ,可知s 2=12×4=4. 【答案】 (1)B (2)A1.(2015·安徽,6)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( ) A .8 B .15 C .16 D .321.C 若x 1,x 2,…,x n 的标准差为s ,则ax 1+b ,ax 2+b ,…,ax n +b 的标准差为as ,由题意知s =8,则所求标准差为2×8=16.2.(2013·辽宁,16)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.2.【解析】 设y i =x i -7,i =1,2,3,4,5,则y 1+y 2+…+y 5=0,y 21+y 22+…+y 25=20.不妨设x 1<x 2<…<x 5,则y 1<y 2<…<y 5,由此可知-4≤y 1<0<y 5≤4.当y 5=4时,y 21+y 22+y 23+y 24=4,无解;当y 5=3时,y 21+y 22+y 23+y 24=11,y 1=-3,y 2=-1,y 3=0,y 4=1,符合要求,此时x 5=10.所以样本数据中的最大值是10. 【答案】 10,与平均数和方差有关的结论(1)若x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为mx -+a ; (2)数据x 1,x 2,…,x n 与数据x ′1=x 1+a ,x ′2=x 2+a ,…,x ′n =x n +a 的方差相等,即数据经过平移后方差不变;(3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2;(4)s 2=1n ∑n i =1 (x i -x -)2=1n ∑n i =1x 2i-x -2,即各数平方的平均数减去平均数的平方.求s 2时,可根据题目的具体情况,结合题目给出的参考数据,灵活选用公式形式.1.(2016·湖南常德一模,5)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( ) A .25,17,8 B .25,16,9 C .26,16,8 D .24,17,91.A [考向1]总体数为600,样本的容量是50,600÷50=12.因此,每隔12个号码能抽到一名,由于随机抽得第一个号码为003,按照系统抽样的操作步骤在第Ⅰ营区应抽到25人,第Ⅱ营区应抽到17人,第Ⅲ营区应抽到8人.故选A.2.(2015·湖北武汉第二次调研,8)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A .0.04B .0.06C .0.2D .0.32.C [考向2]由频率分布直方图知,年龄在[20,30)的频率为(0.01+0.07)×5=0.4.设年龄在[30,35),[35,40),[40,45)的网民出现的频率为x ,y ,z ,则⎩⎪⎨⎪⎧x +z =2y ,x +y +z =1-0.4,解得y=0.2,即年龄在[35,40)的频率为0.2,故选C.3.(2015·山东滨州一模,13)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).学校要对这三个小组的活动效果进行抽样调查,用分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.3.[考向1]【解析】 三个小组的人数分别是60,40,a +20,总人数为a +120.根据分层抽样的原理,得60a +120=1230,解得a =30. 【答案】 304.(2015·江西南昌一模,13)一所中学共有4 000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有________人.4.[考向2]【解析】 由频率分布直方图知,一天使用零花钱在[6,14)的频率为1-(0.02+2×0.03)×4=0.68.根据用样本估计总体的原理,估计在全校所有学生中,一天使用零钱在6元~14元的学生大约有4 000×0.68=2 720人. 【答案】 2 7205.(2016·北京东城区模拟,17,12分)汽车的碳排放量比较大,某地规定,从2014年开始,将对二氧化碳排放量超过130 g/km 的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为x -乙=120 g/km.(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130 g/km 的概率是多少?(2)求表中x 的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.5.[考向3]解:(1)“至少有一辆二氧化碳排放量超过130 g/km ”的对立事件是“2辆车的二氧化碳排放量都不超过130 g/km ”,所以“至少有一辆二氧化碳排放量超过130 g/km ”的概率是P =1-C 23C 25=1-310=710.(2)由100+120+x +100+1605=120,得x =120.所以s 2乙=15[(100-120)2+(120-120)2+(120-120)2+(100-120)2+(160-120)2]=480. 又x -甲=120,s 2甲=15[(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2]=600. ∵x -甲=x -乙=120,s 2甲>s 2乙,∴乙品牌轻型汽车二氧化碳的排放量稳定.6.(2016·云南昆明二模,18,12分)某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图①②所示,据此解答如下问题: (1)求高三(1)班全体女生的人数;(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)之间的矩形的高; (3)若要从分数在[80,100)之间的试卷中任取两份分析女生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.6.[考向2]解:(1)由茎叶图知,分数在[50,60)之间的频数为2,由频率分布直方图知,分数在[50,60)之间的频率为0.008×10=0.08,所以全班人数为20.08=25(人).(2)茎叶图中可见部分共有21人,所以[80,90)之间的女生人数为25-21=4,∴分数在[80,90)之间的频率为425=0.16,∴频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(3)在[80,100)之间的试卷共有6份,任取两份的取法种数为C 26=15,至少有一份分数在[90,100)之间的取法种数为C 22+C 12C 14=9,所以所求的概率为P =915=35.1.(2015·福建,4,易)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y --b ^x -.据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 1.B 由题意知,x -=8.2+8.6+10.0+11.3+11.95=10,y -=6.2+7.5+8.0+8.5+9.85=8.又∵b ^=0.76,∴a ^=0.4,∴y ^=0.76x +0.4,∴当x =15时,y ^=11.8.2.(2014·湖北,4,易)根据如下样本数据得到的回归方程为y ^=bx +a ,则( ) A .a>0,b>0 B .a>0,b<0 C .a<0,b>0 D .a<0,b<02.B 如图,画出散点图,知a>0,b<0.3.(2014·江西,6,中)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1表2表3表4A.成绩 B .视力 C .智商 D .阅读量 3.D 分别依据表1~表4计算K 2得 ⎝⎛⎭⎫以下式中a =5220×32×16×36. K 21=52×(6×22-10×14)220×32×16×36=82a ,K 22=52×(4×20-12×16)220×32×16×36=1122a ,K 23=52×(8×24-8×12)220×32×16×36=962a ,K 24=52×(14×30-2×6)220×32×16×36=4082a ,其中最大的是K 24,所以根据独立性检验原理可知,阅读量与性别有关联的可能性最大. 4.(2013·福建,11,中)已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y′=b′x +a′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′4.C 计算得x -=3.5,y -=136,画出散点图,并根据各个点和回归中心画出回归直线的大体图形.由图易知b ^<b ′,a ^>a ′,所以选C.5.(2012·湖南,4,中)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.D ∵0.85>0,∴y 与x 正相关,∴A 正确;∵线性回归方程经过样本点的中心(x -,y -),∴B 正确;∵Δy =0.85(x +1)-85.71-(0.85x -85.71)=0.85,∴C 正确;体重58.79 kg 为估计值,故选D.6.(2016·课标Ⅲ,18,12分,中)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1(y i -y -)2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1 (t i -t -)(y i -y -)∑ni =1(t i -t -)2∑ni =1(y i -y -)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑n i =1(t i -t -)(y i -y -)∑n i =1(t i -t -)2,a ^=y --b ^t -.6.解:(1)由折线图中数据和附注中参考数据得t -=4,∑7i =1(t i -t -)2=28,∑7i =1(y i -y -)2=0.55,∑7i =1(t i -t -)(y i -y -)=∑7i =1t i y i -t -∑7i =1y i =40.17-4×9.32=2.89, r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑7i =1(t i -t -)(y i -y -)∑7i =1(t i -t -)2=2.8928≈=0.103, a ^=y --b ^t -≈1.331-0.103×4≈0.92.所以,y 关于t 的回归方程为y ^=0.92+0.10t.所以将2016年对应的t =9代入回归方程得:y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.7.(2015·课标Ⅰ,19,12分,中)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w -=18∑8i =1w i.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x ,根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑n i =1(u i -u -)(v i -v -)∑n i =1(u i -u -)2,α^=v --β^u -.7.解:(1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1(w i -w -)(y i -y -)∑8i =1(w i -w -)2=108.81.6=68, c ^=y --d ^w -=563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x.(3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x)-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.本考向在高考中灵活性不强,主要考查点有:(1)线性回归方程中系数的计算.公式不要求记忆,试卷会给出公式,会用即可; (2)正相关、负相关与系数b(斜率)的关系,有时也会涉及截距;(3)根据线性回归方程进行预测.注意:预测值是估计值,而不是精确值; (4)画散点图或根据散点图判断数据的相关性;(5)回归直线一定经过回归中心(x -,y -).题目难度一般为容易题或中档题,各种题型都会出现.1(2014·课标Ⅱ,19,12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑n i =1(t i -t -)(y i -y -)∑n i =1(t i -t )2,a ^=y --b ^t -.【解析】 (1)由所给数据计算得t -=17(1+2+3+4+5+6+7)=4, y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑7i =1(t i -t -)2=9+4+1+0+1+4+9=28, ∑7i =1(t i -t -)(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑7i =1(t i -t -)(y i -y -)∑7i =1(t i -t -)2=1428=0.5, a ^=y --b ^t -=4.3-0.5×4=2.3.所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元.(1)根据回归方程的定义求出回归方程;(2)将待预测的t 代入(1)中回归方程,得预测结果.求线性回归方程的最大难点是系数计算较为繁琐,计算时要仔细认真,随时做好检查,防止错误数据给后续步骤带来连锁反应.为避免出错,以及出错后便于检查,可将公式分解分别求值.(2016·山东东营一模,3)某商品的销售量y(件)与销售价格x(元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( ) A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元/件时,销售量为100件。

2017高考数学(理)(新课标版)考前冲刺复习:第2部分专题6第3讲统计与统计案例含答案

2017高考数学(理)(新课标版)考前冲刺复习:第2部分专题6第3讲统计与统计案例含答案

课时作业1.(2016·长沙四校联考)高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为( )A .13B .17C .19D .21C [解析] 因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.2.为了判定两个分类变量X 和Y 是否有关系,应用K 2独立性检验法算得K 2的观测值为5,又已知P (K 2≥3.841)=0.05,P (K 2≥6.635)=0.01,则下列说法正确的是( )A .有95%的把握认为“X 和Y 有关系”B .有95%的把握认为“X 和Y 没有关系”C .有99%的把握认为“X 和Y 有关系”D .有99%的把握认为“X 和Y 没有关系”A [解析] 依题意,K 2=5,且P (K 2≥3.841)=0.05,因此有95%的把握认为“X 和Y 有关系”,选A.3.(2016·江西百校联盟模拟)已知对某超市某月(30天)每天顾客使用信用卡的人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .44,45,56B .44,43,57C .44,43,56D .45,43,57B [解析] 由茎叶图可知全部数据为10,11,20,21,22,24,31,33,35,35,37,38,43,43,43,45,46,47,48,49,50,51,52,52,55,56,58,62,66,67,中位数为43+452=44,众数为43,极差为67-10=57.选B.4.某中学高中部有300名学生.为了研究学生的周平均学习时间,从中抽取60名学生,先统计了他们某学期的周平均学习时间(单位:小时),再将学生的周平均学习时间分成5组:[40,50),[50,60),[60,70),[70,80),[80,90],并加以统计,得到如图所示的频率分布直方图.则高中部学生的周平均学习时间为(同一组中的数据用该组区间的中点值作代表)( )A .63.5小时B .62.5小时C .63小时D .60小时A [解析] 在高中部抽取的60名学生中,周平均学习时间分别落在[40,50),[50,60),[60,70),[70,80),[80,90]的人数依次为6,15,24,12,3.所以高中部学生的周平均学习时间为(6×45+15×55+24×65+12×75+3×85)÷60=63.5(小时).故选A.5.(2016·武汉市武昌区调研)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )A .1 193B .1 359C .2 718D .3 413附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4B [解析] 由题意知μ=-1,σ=1,因为P (0<x ≤1)=12[P (-1-2<X ≤-1+2)-P (-1-1<X ≤-1+1)]=12×(0.954 4-0.682 6)=0.135 9,所以落入阴影部分的个数为0.135 9×10 000=1 359,故选B.6.对于下列表格所示的五个散点,已知求得的线性回归方程为y ^=0.8x -155.则实数m 的值为A .8 B .8.2 C .8.4D .8.5A [解析] 依题意得x =15×(196+197+200+203+204)=200,y =15×(1+3+6+7+m )=17+m 5,回归直线必经过样本点的中心,于是有17+m5=0.8×200-155,由此解得m =8.故选A.7.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.[解析] 设抽取的男生人数为x ,男生有500人,根据分层抽样的特点,知45900=x500,所以x =25.[答案] 258.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数相同,则图中的m +n =________.[解析] 根据茎叶图,得乙的中位数是33,所以甲的中位数也是33,即m =3;甲的平均数x 甲=13×(27+39+33)=33,乙的平均数是x 乙=14×(20+n +32+34+38)=33,所以n =8,所以m +n =11.[答案] 119.某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则新生婴儿的体重(单位:kg)在[3.2,4.0)的人数是________.[解析] 频率分布直方图反映样本的频率分布,每个小矩形的面积等于样本数据落在相应区间上的频率,故新生婴儿的体重在[3.2,4.0)的人数为100×(0.4×0.625+0.4×0.375)=40.[答案] 4010.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,得到结果如下:则销量每增加1千箱,单位成本约下降________元(结果保留5位有效数字). 附:回归直线的斜率和截距的最小二乘法公式分别为:[解析] 由题意知b ^=1 481-6×72×7179-6×⎝ ⎛⎭⎪⎫722≈-1.818 2,a ^=71-(-1.818 2)×72≈77.36,所以y ^=-1.818 2x +77.36,所以销量每增加1千箱,则单位成本约下降1.818 2元.[答案] 1.818 211.(2016·河北省“五校联盟”质量检测)为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;(2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?⎝ ⎛⎭⎪⎫K 2=(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d[解] (1)设从睡眠时间不足6小时的女生中抽出3人,其中恰有一人为“严重睡眠不足”为事件A .所以P (A )=C 12·C 24C 6=1220=35.(2)列联表如下:K 2=20×20×26×14=91≈0.440<2.706,所以没有90%的把握认为“睡眠时间与性别有关”. 12.(2016·开封市第一次模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c 表示.(把频率当作概率)(1)假设c =5,现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?(2)假设数字c 的取值是随机的,求乙的平均分高于甲的平均分的概率. [解] (1)若c =5,则派甲参加比较合适,理由如下:x 甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85, x 乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.因为x 甲=x 乙,s 2甲<s 2乙,所以两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适.(2)若x 乙>x 甲,则18(75+80×4+90×3+3+5+2+c )>85,所以c >5,所以c =6,7,8,9,又c 的所有可能取值为0,1,2,3,4,5,6,7,8,9, 所以乙的平均分高于甲的平均分的概率为25.13.(2016·武汉调研)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,测得的数据如下:(1)如果y (2)根据(1)所求回归直线方程,预测此车间加工这种零件70个时,所需要的加工时间.附:所以回归直线方程为y ^=0.67x +54.9.(2)由(1)所求回归直线方程可知,在x =70时, y ^=0.67×70+54.9=101.8(分钟).所以预测此车间加工这种零件70个时,所需要的加工时间为101.8分钟. 14.(2016·石家庄市第一次模考)某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;(2)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X 表示第4次投篮后的总分,将频率视为概率,求X 的分布列和数学期望.[解] (1)设该运动员到篮筐中心的水平距离的中位数为x , 因为0.20×1=0.20<0.5,且(0.40+0.20)×1=0.6>0.5, 所以x ∈(4,5).由0.40×(5-x )+0.20×1=0.5,解得x =4.25, 所以该运动员到篮筐中心的水平距离的中位数是4.25米.(2)由频率分布直方图可知投篮命中时到篮筐中心距离超过4米的概率为P =35,随机变量X 的所有可能取值为-4,-2,0,2,4.P (X =-4)=⎝ ⎛⎭⎪⎫254=16625,P (X =-2)=C 14⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫351=96625,P (X =0)=C 24⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫352=216625,P (X =2)=C 34⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫353=216625,P (X =4)=⎝ ⎛⎭⎪⎫354=81625,X 的分布列为E (X )=(-4)×625+(-2)×625+0×625+2×625+4×625=5.。

备战2017高考数学(精讲+精练+精析)专题11.2统计与统计案例试题(江苏版)(含解析)

备战2017高考数学(精讲+精练+精析)专题11.2统计与统计案例试题(江苏版)(含解析)

专题2 统计与统计案例【三年高考】1. 【2016江苏】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1【考点】方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力.2.【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.【答案】6【解析】46587666x+++++==【考点定位】平均数3.【2016高考新课标3理数改编】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C︒,B点表示四月的平均最低气温约为5C︒.下面叙述不正确的是.①各月的平均最低气温都在0C︒以上②七月的平均温差比一月的平均温差大③三月和十一月的平均最高气温基本相同④平均气温高于20C︒的月份有5个【答案】④考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选②.4.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.5.2016高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】试题分析:①由于前二天都售出的商品有3种,因此第一天售出的有19-3=16种商品第二天未售出;答案为16.②同①第三售出的商品中有14种第二天未售出,有1种商品第一天未售出,三天总商品种数最少时,A B C表示第一、是第三天中14种第二天未售出的商品都是第一天售出过的,此时商品总数为29.分别用,,二、三天售出的商品,如图最少时的情形.故答案为29.C BA139142考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.6.【2015高考重庆,文4改编】重庆市2013年各月的平均气温(°C)数据的茎叶图如下0 8 91 2 5 82 0 03 3 83 1 2则这组数据中的中位数是.【答案】20【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20.7.【2015高考陕西,文2改编】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为.【答案】137【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=.8.【2015高考湖北,文2改编】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为石.【答案】169【解析】设这批米内夹谷的个数为x,则由题意并结合简单随机抽样可知,282541534x=,即281534169254x=⨯≈.9.【2015高考广东,文12】已知样本数据1x,2x,⋅⋅⋅,nx的均值5x=,则样本数据121x+,221x+,⋅⋅⋅,21nx+的均值为.【答案】1110.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【答案】乙;数学7.【2015高考北京,文17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁商品顾客人数100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300√ × √ × 85 √ × × × 98×√××(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?【解析】(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=. (Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.11.【2015高考广东,文17】某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户12.【2015高考新课标1,文19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.x ry u r w u r821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()i ii w w yy =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i w i x ,w u r =1881ii w=∑(I )根据散点图判断,y a bx =+与y c x =+y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:µ121()()=()niii nii u u v v u u β==---∑∑,µµ=v u αβ- 【解析】(Ⅰ)由散点图可以判断,y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w x =y 关于w 的线性回归方程,由于$81821()()()iii ii w w yy dw w ==--=-∑∑=108.8=6816,∴$c y dw =-$=563-68×6.8=100.6.∴y 关于w 的线性回归方程为$100.668y w =+,∴y 关于x 的回归方程为$100.668y x =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值$100.66849y =+,576.60.24966.32z=⨯-=$. (ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.668)13.620.12zx x x x =+-=-+$,∴当x =13.6=6.82,即46.24x =时,z$取得最大值.故宣传费用为46.24千元时,年利润的预报值最大. 13. 【2014高考广东卷文第6题】为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为 . 【答案】25【解析】由题意知,分段间隔为10002540=. 14. 【2014高考湖北卷文第6题】根据如下样本数据:x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则a 0,b 0.【答案】>,<【解析】依题意,画散点图知,两个变量负相关,所以0<b ,0>a .15. 【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则123,,p p p 的大小关系是 . 【答案】123p p p ==【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==.16.【2014高考江西卷文第7题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是 .A.成绩B.视力C.智商女 2 30 32 总计 16 3652D.阅读量 【答案】D17. 【2014高考安徽卷文第17题】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(Ⅰ)应收集多少位女生样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 附:22()()()()()n ad bc K a b c d a c b d -=++++ 20()P K k ≥0.10 0.05 0.010 0.005 0k2.7063.8416.6357.879【解析】(1)45003009015000⨯=,所以应收集90位女生的样本数据.(2)由频率分布直方图得12(0.1000.025)0.75-⨯+=,该校学生每周平均体育运动时间超过4个小时的概率为0.75.(3)由(2)知,300位学生中有3000.75225⨯=人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时45 30 75每周平均体育运动时间超过4小时165 60 225总计210 90 300结合列联表可算得2300(456030165)1004.762 3.841752252109021K⨯⨯-⨯==≈>⨯⨯⨯.有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.18. 【2014高考全国1文第18题】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【解析】(1)【2017年高考命题预测】概率统计试题在试卷中的题型仍是填空题型,纵观近几年高考数学试卷中,概率与统计是必考题,而且是基础题,有时以直方图或茎叶图提供问题的背景信息,预测2017年仍会出现此类题,因此掌握概率与统计的基础知识是学习的关键.【2017年高考考点定位】本知识点主要是:随机抽样常以选择、填空题考查分层抽样,难度较低.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等);重视茎叶图;要重视线性回归方程,不仅会利用公式求,还要能分析其特点(正相关、负相关、回归方程过样本点中心);重视独立性检验( 2×2列联表).【考点1】抽样方法、总体分布的估计【备考知识梳理】1.简单随机抽样:一般地,设一个总体的个体数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.3.总体:在数理统计中,通常把被研究的对象的全体叫做总体.4.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.【规律方法技巧】分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计. 【考点针对训练】1.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 ,平均数为 .1301501701902102300.0020.0030.0050.0150.020频率/组距月用电量【答案】155;156.82.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x++++++⨯=得:0.0075x=,所以直方图中x的值是0.0075.(2)月平均用电量的众数是2202402302+=;因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224.(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户.【考点2】相关性、最小二乘估计与统计案例 【备考知识梳理】1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图. (2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关. 如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2.回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用表达式[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是我们所要求的直线,这种方法称为最小二乘法. (2)回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ,b 是待定参数.∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘法估计分别为:∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a ).其中x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,(x ,y )称为样本点的中心. (3)相关系数①11122221111()()()()()()nniii i i nnnniiiii i i i x x y y x yn x yr x x y y x x y y ----==----====---==----∑∑∑∑∑∑,②当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系. 4.独立性检验(1)设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1. 2×2列联表BA B 1 B 2 总计A 1 a b a +b A 2c d c +d 总计a +cb +da +b +c +d构造一个随机变量2()()()()()n ad bc K a b c d a c b d -=++++其中d c b a n +++=为样本容量.(2)独立性检验:利用随机变量来判断“两个变量有关联”的方法称为独立性检验. (3)当数据量较大时,在统计中,用以下结果对变量的独立性进行判断①当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的; ②当χ2>2.706时,有90%的把握判定变量A ,B 有关联; ③当χ2>3.841时,有95%的把握判定变量A ,B 有关联; ④当χ2>6.635时,有99%的把握判定变量A ,B 有关联.【规律方法技巧】1.“相关关系与函数关系”的区别:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.2.三点提醒: 一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.三是独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3.正确理解计算b ,a 的公式和准确的计算是求线性回归方程的关键.回归直线方程y =bx +a 必过样本点中心(x ,y ).在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.4.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,具体做法是根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算2K 值,2K 值越大,说明“两个变量有关系”的可能性越大.【考点针对训练】1.已知x 、y 的取值如下表所示,若y 与x 线性相关,且yˆ=0.95x +a ˆ,则a ˆ=____________.【答案】6.2 【解析】244310=+++=x ,5.447.68.43.42.2=+++=y ,样本中心点,在回归直线上,所以代入aˆ295.05.4+⨯=,所以6.2ˆ=a 2.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表: 附:22n(ad bc )K (a b )(c d )(a c )(b d )-=++++参照附表, 在如下结论:A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 中正确的是 . 【答案】C【解析】由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,填C .【两年模拟详解析】1. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在h km /9050-的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在h km /70以下的汽车有 辆.频率组距)0.040.030.020.01【答案】75【解析】由频率分布直方图得,速度在h km /70以下的汽车所占频率为(0.020.03)100.5+⨯=,则速度在h km /70以下的汽车有1500.575⨯=辆2.【江苏省清江中学数学模拟试卷】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.【答案】40【解析】(0.0550.0250.015)10040⨯+⨯+⨯⨯=.3.【扬州市2015—2016学年度第一学期期末检测试题】某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 .【答案】144【解析】由图得,身高180cm 以上(含180cm )的频率为()150.0080.0160.0420.060.18-⨯++⨯+=,则人数为8000.18144⨯=4.【南京市、盐城市2016届高三年级第一次模拟考试数学】某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为 . 【答案】17【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人 5.【苏州市2016届高三年级第一次模拟考试】若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为 . 【答案】2【解析】由题意得12x =,因此方差为221(12201)25++++=6.【江苏省扬州中学2015—2016学年第二学期质量检测】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】2000(0.0350.030.02)101700⨯++⨯=7.【南京市、盐城市2016届高三年级第二次模拟考试】如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 .【答案】9【解析】950)002.0004.0(30=⨯+⨯8.【江苏省南京市2016届高三年级第三次学情调研适应性测试】一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则月收入在[2500,3000)范围内的应抽出 人.【答案】25【解析】由题意得:0.000550010025⨯⨯=9.【南京市2016届高三年级第三次模拟考试】甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:选手 第1轮 第2轮 第3轮 第4轮 第5轮 甲 9.8 9.9 10.1 10 10.2 乙9.410.310.89.79.8则甲、乙两位选手中成绩最稳定的选手的方差是 . 【答案】0.02【解析】甲、乙两位选手5轮比赛的成绩的平均数皆为10,方差分别为222221[0.20.10.100.2]0.025S =++++=甲,2222321[0.60.30.80.30.2]0.025S =++++>乙,因此甲、乙两位选手中成绩最稳定的选手为甲,其方差是0.02.10.【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】从某班抽取5名学生测量身高(单位:cm ),得到的数据为160,162,159,160,159,则该组数据的方差2s = . 【答案】65【解析】5名学生平均数为160,因此方差为216(02101).55++++=11.【江苏省苏北三市2016届高三最后一次模拟考试】如图是一次射影大赛上7位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是 .【答案】112.【盐城市2016届高三年级第三次模拟考试】已知一组数据12345,,,,x x x x x 的方差是2,则数据123452,2,2,2,2x x x x x 的标准差为 .【答案】22【解析】由题意得数据123452,2,2,2,2x x x x x 的方差为8222=⨯,因此标准差为2213.【南通市2016届高三下学期第三次调研考试数学试题】如图是甲、乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为 .【答案】2【解析】由于甲、乙两位同学的平均数均为90,所以甲、乙两位同学的方差分别为1122(41014)2,(1010110)2,555++++=++++=>故成绩较稳定(方差较小)的那一位同学的方差为2. 14.【江苏省淮安市2015届高三第五次模拟考试】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员36人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,42,则这四个社区驾驶员的总人数N 为 . 【答案】300【解析】361212212542N =+++,则300N =.15.【江苏省扬州中学2015届高三4月双周测】某射击运动员在四次射击中分别打出了10,x ,10,8环的成绩,已知这组数据的平均数为9,则这组数据的标准差是 . 【答案】1 【解析】由1010894x +++=,得8x =,22221[(109)(89)(109)(89)]4s =-+-+-+-1= 16.【淮安市淮海中学2015届高三冲刺四统测模拟测试】为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及各组的频数如下表:根据以上数表绘制相应的频率分布直方图时,落在[10.95 11.15),范围内的矩形的高应为 .分组 频数 [10.75 10.95), 12 [10.95 11.15), 29 [11.15 11.35), 46 [11.35 11.55), 11 [11.55 11.75],2【答案】1.45【解析】[10.95 11.15),的频率为290.29100=,因此矩形的高应为0.29=1.450.217.【2015年高考模拟(南通市数学学科基地命题)(3)】某单位有,,A B C 三部门,其人数比例为3∶4∶5,现欲用分层抽样方法抽调n 名志愿者支援西部大开发 .若在A 部门恰好选出了6名志愿者,那么n =________. 【答案】24。

2017年高考数学深化温习命题热点提分专题18统计与统计案例理

2017年高考数学深化温习命题热点提分专题18统计与统计案例理
专题18 统计与统计案例
1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人.现采取分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数别离为( )
A.15,5,25B.15,15,15
C.10,5,30D.15,10,20
解析:先确信抽样比为 = ,那么依次抽取的人数别离为 ×300=15, ×200=10和 ×400=20.应选D.
④在回归直线方程 =0.1x+10中,当x每增加1个单位时, 平均增加0.1个单位.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
【答案】C
【解析】 ①中的抽样方式是系统抽样,因此①不正确;依照方差的含义,②正确;③中P(ξ≥1)=p,那么P(ξ≤-1)=p,因此P(-1<ξ<0)= (1-2p)= -p,故③正确;由于x的系数为0.1,因此x每增加一个单位, 平均增加0.1个单位,故④正确.因此真命题的个数是3.
又x= >5.9,因此m0<me<x.
7.给出以下四个命题:
①质检员每隔10分钟从匀速传递的产品生产流水线上抽取一件产品进行某项指标检测,如此的抽样是分层抽样;
②将一组数据中的每一个数据都加上同一个常数后,方差不变;
③设随机变量ξ服从正态散布N(0,1),假设P(ξ≥1)=p,那么P(-1<ξ<0)= -p;
开业天数
10
20
30
40
50
销售额/天(万元)
62
75
81
89
依照上表提供的数据,求得y关于x的线性回归方程为 =0.67x+54.9,由于表中有一个数据模糊看不清,请你推断出该数据的值为( )

2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例

2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例
5
x乙 =
s 乙= 1 28 302 29 302 30 302 31 302 32 302 = 2 . 所以 x甲 < x乙 ,s 甲>s 乙,故选 B.
︱高中总复习︱二轮·文数
(2)(2016· 北京卷,文17)某市居民用水拟实行阶梯水价,每人月用水量中不超 过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收 费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得 到如下频率分布直方图: ①如果w为整数,那么根据此次调查,为使80%以上居 民在该月的用水价格为4元/立方米,w至少定为多少? (2)解:①由用水量的频率分布直方图知, 该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],
4.(2015· 全国Ⅱ卷,文18)某公司为了解用户对其产品的满意度,从A,B两地 区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用
户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频数分布表
满意度评 分分组 频数 [50,60) 2 [60,70) 8 [70,80) 14 [80,90) 10 [90,100] 6
x
46.6
y 563
w 6.8
x x
8 i 1 i
2
w w
8 i 1 i
2
x x y y
8 i 1 i i
w w y y
8 i 1 i i
289.8
1.6
1469
108.8
1 8 表中 wi= xi , w = wi . 8 i 1

2017届高三数学-统计及统计案例-专题练习

2017届高三数学-统计及统计案例-专题练习

i 1
i 1
回归方程 y a bt 中斜率和截距的最小二乘估计公式分别为
n
ti t
b i1 n
yi y , a y bt .
2
ti t
i 1
5/5
的数开始向右读,则得到第 4 个样本个体的编号是________.(下面摘取了随机数表第 7 行至第 9 行)
84421753315724550688770474476721763350 258392120676
63016378591695556719981050 717512867358074439523879
7
7
7
2
参考数据: yi 9.32 , ti yi 40.17 ,
yi y 0.55 , 7 2.646 .
i 1
i 1
i 1
参考公式:相关系数 r
n ti t yi y i1n
2n
2,
ti t yi y
的运动员人数是( )
A.3
B.4
C.5
D.6
4. PM 2.5 是指大气中直径小于或等于 2.5 微米的颗粒物,如图是根据哈尔滨三中学生社团某日早 6 点至晚
9 点在南岗、群力两个校区附近的 PM 2.5 监测点统计的数据(单位:毫克/立方米)列出的茎叶图,南岗、群
力两个校区浓度的方差较小的是( )
B.在犯错误的概率不超过1% 的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有 90% 以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有 90% 以上的把握认为“该市居民能否做到‘光盘’与性别无关”

2017高考十年高考数学分项版 专题11 概率和统计、算法(江苏专版)(解析版) 含解析

2017高考十年高考数学分项版 专题11 概率和统计、算法(江苏专版)(解析版) 含解析

一.基础题组1。

【2005江苏,理7】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9。

4 8.4 9。

4 9。

9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)9。

4, 0.484 (B)9.4, 0。

016 (C)9。

5,0.04 (D)9.5, 0。

016【答案】D2. 【2006江苏,理3】某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9。

已知这组数据的平均数为10,方差为2,则|x-y|的值为(A)1 (B)2 (C)3 (D)4【答案】D【解析】由题意可得:x+y=20,(x—10)2+(y—10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出yx-,设x=10+t,y=10—t, 24-==,选D.x y t3. 【2008江苏,理2】若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ . 【答案】112【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯. 4. 【2008江苏,理6】在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【答案】16π【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯.5. 【2008江苏,理7】某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为序号i分组 (睡眠时间)组中值(iG )频数 (人数) 频率(iF )1 [4,5) 4.56 0.122 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8)7.5 10 0.205[8,9]8.540.08▲=⨯+⨯+⨯+⨯+⨯4.50.125.50.206.50.407.50.28.50.086.42=。

备战2017高考数学(精讲+精练+精析)专题11.2 统计与统计案例试题 文(含解析)

备战2017高考数学(精讲+精练+精析)专题11.2 统计与统计案例试题 文(含解析)

专题2 统计与统计案例(文科)【三年高考】1. 【2016高考新课标3文数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和 平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D .2. 【2016高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140【答案】D⨯++⨯=,选【解析】由频率分布直方图知,自习时间不少于22.5小时的有200(0.160.080.04) 2.5140D.3. 【2016高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛【答案】B【解析】将确定成绩的30秒跳绳成绩的按从大到小的顺寻排,分别是3,6,7,10,(1,5并列),4,其中,3,6,7号进了立定跳远的决赛,10号没进立定跳远的决赛,故9号需进30秒跳绳比赛的前8名,此时确定的30秒跳绳比赛决赛的名单为3,6,7,10,9,还需3个编号为1-8的同学进决赛,而(1,5)与4的成绩仅相隔1,故只能1,5,4进30秒跳绳的决赛,故选B.4.【2016高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”.求()P A 的估计值; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求()P B 的估计值;(III )求续保人本年度的平均保费估计值.【解析】(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=,故P(A)的估计值为0.55.5. 【2016高考新课标Ⅲ文数】]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=,7≈2.646.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a b =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =-.【解析】(Ⅰ)由折线图这数据和附注中参考数据得4=t ,28)(712=-∑=i it t,55.0)(712=-∑=i iy y ,89.232.9417.40))((717171=⨯-=-=--∑∑∑===i i i i i i i i y t y t y y t t ,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb ,92.04103.0331.1ˆˆ≈⨯-≈-=t b y a,所以,y 关于t 的回归方程为:t y 10.092.0ˆ+=.将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y,所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.6. 【2015高考重庆,文4】重庆市2013年各月的平均气温(°C)数据的茎叶图如下则这组数据中的中位数是( )(A) 19 (B) 20 (C ) 21.5 (D )23 【答案】B【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.7.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C . 8.【2015高考湖北,文4】已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是( )A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关【答案】A .【解析】因为变量x 和y 满足关系0.11y x =-+,其中0.10-<,所以x 与y 成负相关;又因为变量y 与z 正相关,不妨设z ky b =+(0)k >,则将0.11y x =-+代入即可得到:(0.11)0.1()z k x b kx k b =-++=-++,所以0.10k -<,所以x 与z 负相关,综上可知,应选A .9.【2015高考广东,文17】某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的 方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户10. 【2014高考广东卷文第6题】为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20 【答案】C【解析】由题意知,分段间隔为10002540=,故选C. 11. 【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D.12. 【2014高考安徽卷文第17题】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(Ⅰ)应收集多少位女生样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 附:22()()()()()n ad bc K a b c d a c b d -=++++【解析】(1)45003009015000⨯=,所以应收集90位女生的样本数据.(2)由频率分布直方图得12(0.1000.025)0.75-⨯+=,该校学生每周平均体育运动时间超过4个小时的概率为0.75.(3)由(2)知,300位学生中有3000.75225⨯=人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表结合列联表可算得2300(456030165)1004.762 3.841752252109021K⨯⨯-⨯==≈>⨯⨯⨯.有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.【三年高考命题回顾】纵观前三年各地高考试题, 考查样本的频率分布(分布表、直方图、茎叶图)中的有关计算,样本特征数(众数、中位数、平均数、标准差)的计算,以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数)主要以选择题、填空题为主;考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来考查一些基本的统计思想,在高考中多为选择、填空题,也有解答题出现.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,频率分布直方图、茎叶图、平均数、方差、,以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数)是高考的热点,题型既有选择题、填空题,又有解答题,客观题考查知识点较单一,解答题常常作为第一问,考查学生应用知识解决问题的能力.独立性检验、回归分析高考对此部分内容考查有加强趋势,主要是以考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来考查一些基本的统计思想,在高考中多为选择、填空题,也有解答题出现.根据这几年高考试题预测2017年高考,频率分布直方图、茎叶图、平均数、方差仍然是考查的热点,同时应注意线性回归方程、独立性检验在实际生活中的应用,有可能涉及一道与独立检验有关的大题.【2017年高考考点定位】本知识点主要是:随机抽样常以选择、填空题考查分层抽样,难度较低.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等);重视茎叶图;要重视线性回归方程,不仅会利用公式求,还要能分析其特点(正相关、负相关、回归方程过样本点中心);重视独立性检验( 2×2列联表).【考点1】抽样方法、总体分布的估计【备考知识梳理】1.简单随机抽样:一般地,设一个总体的个体数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.3.总体:在数理统计中,通常把被研究的对象的全体叫做总体.4.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.【规律方法技巧】分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计. 【考点针对训练】1. 【2016届山西右玉一中高三下学期模拟】在某电视台举行的大型联欢会晚上,需抽调部分观众参加互动,已知全部观众有900人,现需要采用系统抽样方法抽取30人,根据观众的座位号将观众编号为1,2,3,…,900号,分组后在第一组,采用简单随机抽样的方法抽到的号码为3,抽到的30人中,编号落入区间[1,360]的人与主持人A 一组,编号落入区间[361,720]的人与支持人B 一组,其余的人与支持人C 一组,则抽到的人中,在C 组的人数为( ) A .12 B .8 C .7 D .6【答案】D【解析】因180720900=-,而630180=÷,故依据系统抽样的特征可知抽到的人中,在C 组中的人数应是6人,应选D 。

2017年全国卷高考数学复习专题—— 统计与统计案例

2017年全国卷高考数学复习专题—— 统计与统计案例
2017年全国卷高考数学复习专题——
统计与统计案例
考点一抽样方法与总体分布的估计
1.(2014湖南,2,5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3
答案 D
2.(2014广东,6,5分)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
图1
图2
A.200,20B.100,20
C.200,10D.100,10
答案 A
3.(2014山东,7,5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒ቤተ መጻሕፍቲ ባይዱ压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
附:回归直线的斜率和截距的最小二乘估计公式分别为:
= , = - .
解析 (1)由所给数据计算得
= ×(1+2+3+4+5+6+7)=4,
= ×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,
(ti- )2=9+4+1+0+1+4+9=28,

2017高考复习数学(理)(北师大全国)精练十 统计与统计案例 含解析

2017高考复习数学(理)(北师大全国)精练十 统计与统计案例 含解析

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。

3.本次考试时间120分钟,满分150分。

单元检测十统计与统计案例第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为()A.13 B.19 C.20 D.512.从N个编号中抽取n个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为()A。

错误!B.nC.[错误!]D.[错误!]+13.已知一组数据:a1,a2,a3,a4,a5,a6,a7构成公差为d的等差数列,且这组数据的方差等于1,则公差d等于()A.±错误!B.±错误!C.±错误!D.无法求解4.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如下列联表:班级与成绩列联表则随机变量χ2A.0.600 B.0.828C.2。

712 D.6。

0045.从某项综合能力测试中抽取100人的成绩,统计如下表,则这100人成绩的标准差为()分54321数人2010303010数A. 3 B.3 C。

错误! D.错误!6。

如图是一次选秀节目上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为85,则a2+b2的最小值是( )A.24 B.32C.36 D.487.(2014·重庆)已知变量x与y正相关,且由观测数据算得样本平均数错误!=3,错误!=3.5,则由该观测数据算得的线性回归方程可能是()A.y=0.4x+2。

2017高考数学(理)(新课标版)考前冲刺复习讲义:第2部分专题6第3讲统计与统计案例含答案

2017高考数学(理)(新课标版)考前冲刺复习讲义:第2部分专题6第3讲统计与统计案例含答案

第3讲统计与统计案例抽样方法自主练透夯实双基抽样方法主要有简单随机抽样、系统抽样和分层抽样三种,这三种抽样方法各自适用不同特点的总体,但无论哪种抽样方法,每一个个体被抽到的概率都是相等的,都等于样本容量和总体容量的比值.[题组通关]1.某县老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别人数老年教师900中年教师1 800青年 1A.90C.180 D.300C [解析]设该样本中的老年教师人数为x,由题意及分层抽样的特点得错误!=错误!,故x=180。

2.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.[解析] 设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,所以x=6。

[答案] 63.利用随机数表法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),根据下表,读出的第3个数是________.18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71[解析] 最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

((171i i i t b ==-=∑∑ 1.331bt -≈-y 关于t 的回归方程为
2017届高三数学专题练习
统计及统计案例
解析
【重点把关】
1.解析:设样本中的老年教师人数为x,则=,解得x=180.故选C.
2.解析:由题中茎叶图可知,该组数据的中位数为=20,故选B.
3.解析:第一组(130,130,133,134,135),第二组(136,136,138,138,
138),第三组(139,141,141,141,142),第四组(142,142,143,143,
144),第五组(144,145,145,145,146),第六组(146,147,148,150,
151),第七组(152,152,153,153,153),故成绩在[139,151]上恰有4组,故有4人,选B.
4.解析:方差较小即两者比较时数据比较集中,从茎叶图知,南岗校区数据集中,而群力校区数据分散的很明显.故南岗校区浓度的方差较小.故选A.
5.解析:由表计算得:K2=≈3.03,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选C.
6.解析:样本间距为36÷4=9,
则另外一个编号为6+9=15.
答案:15
7.解析:由表中数据求出样本平均数=8.5,=80,代入线性回归方程得,=250,所以线性回归方程为y=-20x+250.经验证,样本点在回归直线左下方的有(8.2,84),(9,68)两个点,由古典概型的概率公式得,P==.
答案:
8.
【能力提升】
9.解析:由统计数据表可得
==10.0,
==8.0,
则=8.0-0.76×10.0=0.4,所以回归直线方程=0.76x+0.4,当x=15时,=0.76×15+0.4=11.8,故估计年收入为15万元家庭的年支出为11.8万元,故选B.
10.解析:找到第7行第8列的数开始向右读,第一个符合条件的数是331,
第二个数是572,
第三个数是455,
第四个数是068.
答案:068。

相关文档
最新文档