中考数学练习试题 图形的旋转

合集下载

中考数学《旋转》专题练习含答案解析

中考数学《旋转》专题练习含答案解析

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。

中考数学图形的旋转选择题专项(4)含解析答案

中考数学图形的旋转选择题专项(4)含解析答案

中考数学图形的旋转选择题专项(4)1.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转 次,每次旋转 度形成的.2.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°,得到正方形AB ′C ′D ′,则图中阴影部分的面积为 .3.在等腰Rt △ABC 中,已知∠ABC =90°,P 是△ABC 内一点,使PA =11,PB =6,PC =7,则边AC 的长为 .4.如图,△COD 是△AOB 绕点O 顺时针方向旋转40°后所得的图形,点C 恰好在AB 上,则∠A 的度数是 .5.如图,在△ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 绕点C 顺时针旋转至△A 1B 1C 的位置,其中B 1C ⊥AB ,B 1C 、A 1B 1交AB 于M 、N 两点,则线段MN 的长为 .6.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC = °.7.若一个正六边形旋转一定的角度后,与原图形完全重合,则旋转的度数至少是°.8.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.9.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是度.10.在△ABC中,AB=AC,∠A=80°,将△ABC绕着点B旋转,使点A落在直线BC上,点C落在点C′,则∠BCC′=.11.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.12.在平面直角坐标系中,点A(﹣3,4),将线段OA绕原点O顺时针旋转90°,得到线段OA′,则点A′的坐标为.13.如图,在△ABC中,tan∠ABC=,BC=5,∠CAB<90°,D为边AB上一动点,以CD=时,则BD的长度为.为一边作等腰Rt△CDE,且∠EDC=90°,连接BE,当S△BDE14.如图,在△AOB中,∠AOB=90°,∠ABO=30°,将△AOB绕顶点O顺时针旋转,旋转角为θ(0°<θ<180°),得到△COD.设AO的中点为E,CD中点为P,AO=a,连接EP,当θ=°时,EP长度最大,最大值为.15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.16.如图所示,在△ABC纸片中,∠BAC=50°,将△ABC纸片绕点A按逆时针方向旋转50°,得到△ADE,此时AD边经过点C,连接BD,若∠DBC的度数为40°,则∠ACB的度数为.17.如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD的大小为度.18.将点A (4,0)绕原点顺时针旋转30°得A 1,再将点A 1绕原点顺时针旋转30°得A 2,再将点A 2绕原点顺时针旋转30°得A 3,每次都将得到的点绕原点顺时针旋转30°,得到的点依次记为A 1、A 2、A 3…、A n ,则A 100的坐标是 .19.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (4,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是 .20.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .21.如图,点D 是等边△ABC 内一点,将△BDC 以点C 为中心顺时针旋转60°,得到△ACE ,连接BE ,若∠AEB =45°,则∠DBE 的度数为 .22.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC =60°,则∠EFD 的度数为 度.23.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是度.24.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=度.25.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60°到△CBQ,已知∠AQB=150°,QA:QC=a:b(b>a),则PB:QA=(用含a,b的代数式表示)参考答案1.解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.2.解:设B ′C ′与CD 交于点E ,连接AE .在△AB ′E 与△ADE 中,∠AB ′E =∠ADE =90°,∵,∴△AB ′E ≌△ADE (HL ),∴∠B ′AE =∠DAE .∵∠BAB ′=30°,∠BAD =90°,∴∠B ′AE =∠DAE =30°,∴DE =AD •tan ∠DAE =. ∴S 四边形AB ′ED =2S △ADE =2××=.∴阴影部分的面积=S 正方形ABCD ﹣S 四边形AB ′ED =1﹣=.3.解:如图,将△CPB 绕点B 逆时针旋转90°得△AEB ,连接PE ,∴△CPB ≌△AEB ,∴AE =CP =7,BE =BP =6,∠EBP =90°,∴∠BEP =∠BPE =45°,在Rt △PBE 中,由勾股定理可得,PE =6,在△PEA 中,PE 2=(6)2=72, AE 2=72=49,PA 2=112=121,∴AE 2+PE 2=AP 2,∴△PEA 是直角三角形∴∠PEA=90°,∴∠BEA=135°,过点A作AQ⊥BE,角BE的延长线于Q.则∠QEA=∠QAE=45°,∴QA=QE==,QB=BE+QE=6+,∴AB2=AQ2+BQ2=()2+(6)2=85+42,∴AB=,∴AC=,故答案为.4.解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.5.解:Rt△ABC中,AC=4,BC=3,由勾股定理得:AB=5,由于△ABC的面积:S=AC•BC=AB•CM,得:CM==,由旋转的性质知:BC=B1C=3,则B1M=,∵B1C⊥AB,B 1C⊥A1C,∴△B1CA1∽△B1MN,∴=,即:=即:MN=×=0.8.故答案为:0.8.6.解:∵将△ABC绕点A旋转到△AEF的位置,∴AB=AE,∠B=70°,∴∠BAE=180°﹣70°×2=40°,∴∠FAG=∠BAE=40°.∵将△ABC绕点A旋转到△AEF的位置,∴△ABC≌△AEF,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°.故答案为:65.7.解:正六边形旋转最小的度数为360°÷6=60°.故答案为:60.8.解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.9.解:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°,∴这四次旋转中,旋转角度最小是72°.10.解:如图:△ABC中,AB=AC,∠A=80°,则∠ABC=∠ACB=50°;由旋转的性质知:∠A′BC′=∠A′BC=50°;①当点A′在CB的延长线上时;由旋转的性质知:BC′=BC,故∠BCC′=∠A′BC′=25°;②当点A′在线段BC上时;由旋转的性质知:BC′=BC,故∠BCC′=(180°﹣∠A′BC′)=65°;综上可得:∠BCC′=65°或25°.故答案为:65°或25°.11.解:根据关于原点对称的点的坐标的特点,∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故答案为:(﹣1,2).12.解:如图:画出点A,把它绕点O顺时针旋转90°可得A′的坐标为(4,3).13.解:如图,过点E作EH⊥BA,交BA的延长线于H,过点C作CG⊥BA于G,交BA的延长线于G,∵∠EDC=90°,∴∠EDH+∠CDG=90°,∵EH⊥BA,CG⊥BA,∴∠EHD=∠CGD=90°,∴∠EDH+∠DEH=90°,∴∠CDG=∠DEH,又∵DE=DC,∴△EDH≌△DCG(AAS),∴EH=DG,=BD×EH=,∵S△BDE∴EH==DG,∵tan∠ABC==,∴BG=2CG,∵BG2+CG2=BC2=25,∴CG=,BG=2,∵BD+DG=BG,∴BD+=2,∴BD=,故答案为:.14.解:∵∠AOB=90°,∠ABO=30°,∴AB=2OA=2a,∵△AOB绕顶点O顺时针旋转,旋转角为θ(0°<<180°)得到△COD,连结OP,∵CD中点为P,∴OP=CD=a,如图1,PE<OE+OP,点P、O、E共线时,如图2,Q为AB的中点,∵PE=OE+OP,∴PE的最大值为0.5a+a=1.5a.∵QA=QO,∴∠AOQ=∠A=60°,∴∠POQ=120°∴旋转角θ=120°.故答案为120,1.5a.15.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.16.解:∵△ABC纸片绕点A按逆时针方向旋转50°,得到△ADE,∴AB=AD,∴∠ADB=∠ABD=(180﹣∠BAD)=(180°﹣50°)=65°,∵∠DBC=40°,∴∠ACB=∠CDB+∠DBC=65°+40°=105°.故答案为:105°.17.解:∵将△OAB绕点O逆时针旋转70°到△OCD,∴∠DOB=70°,∵∠AOB=40°,∴∠AOD=∠BOD﹣∠AOB=30°,故答案为:30.18.解:由100×30°=8×360°+120°可得,点A在第三象限,100OB=120°.此时∠A100过点A作AH⊥x轴于H,在Rt△AHO中,∠HAO=120°﹣90°=30°,∴HO=AO=×4=2,∴AH===2,的坐标是(﹣2,﹣2).∴A100故答案为(﹣2,﹣2).19.解:分逆时针旋转和顺时针旋转两种情况(如图所示):①顺时针旋转时,点B′与点O重合,∵点D(4,3),四边形OABC为正方形,∴OA=BC=4,BD=1,∴点D′的坐标为(﹣1,0);②逆时针旋转时,点B′落在y轴正半轴上,∵OC=BC=4,BD=1,∴点B′的坐标为(0,8),点D′的坐标为(1,8).故答案为:(﹣1,0)或(1,8).20.解:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,=AD×EG=3,AD=2,∵S△ADE∴EG=3,则CF=EG=3,依题意得四边形ABFD为矩形,∴BF=AD=2,∴BC=BF+CF=2+3=5.故答案为:5.21.解:∵△ABC为等边三角形,∴∠ACB=60°,∵△BDC以点C为中心顺时针旋转60°,得到△ACE,∴∠CBD=∠CAE,∵∠CAE+∠AEB=∠CBE+∠BCA,即∠CBD+45°=∠CBE+60°,∴∠CBD﹣∠CBE=60°﹣45°=15°,即∠DBE=15°.故答案为:15°.22.解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°23.解:设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故答案为:3624.解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.25.解:如图,连接PQ,∵把△ABP绕点B顺时针旋转60°到△CBQ,∴△ABP≌△CBQ,∠PBQ=60°,∴PA=CQ,PB=BQ,∴△BPQ是等边三角形,∴PQ=PB,∠BQP=60°,∵∠AQB=150°,∴∠PQA=90°,∵QA:QC=a:b,∴设QA=ak,QC=bk=PA,∴PQ==k•=PB∴PB:QA=:a,故答案为::a.。

中考数学总复习《旋转》专项测试题-附参考答案

中考数学总复习《旋转》专项测试题-附参考答案

中考数学总复习《旋转》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A.菱形B.等边三角形C.平行四边形D.直角三角形2.如图,将△ABC绕顶点A顺时针旋转60∘后,得到△ABʹCʹ,且Cʹ为BC的中点,则CʹD:DBʹ=( )A.1:2B.1:2√2C.1:√3D.1:33.如图所示,将一个含30∘角的直角三角板ABC绕点A逆时针旋转,点B的对应点是点Bʹ,若点Bʹ,A,C在同一条直线上,则三角板ABC旋转的度数是( )A.60∘B.90∘C.120∘D.150∘4.如图,在Rt△ABC中∠ACB=90∘,∠ABC=30∘,将△ABC绕点C顺时针旋转至△AʹBʹC,使得点Aʹ恰好落在AB上,则旋转角度为( )A.30∘B.60∘C.90∘D.150∘5.如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△AʹBʹC,连接AAʹ,若∠1=25∘,则∠BAAʹ的度数是( )A.55∘B.60∘C.65∘D.70∘6.如图,O是正△ABC内一点OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60∘得到线段BOʹ,下列结论:①△BOʹA可以由△BOC绕点B逆时针旋转60∘得到;②点O与Oʹ的距离为4;③∠AOB=150∘;=6+3√3;④S四边形AOBOʹ√3.⑤S△AOC+S△AOB=6+94其中正确的结论是( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤7.如图,边长为8a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )a A.4a B.2a C.a D.138.如图,在Rt△ABC中AC=BC=2,将△ABC绕点A逆时针旋转60∘,连接BD,则图中阴影部分的面积是( )A.2√3−2B.2√3C.√3−1D.4√3二、填空题(共5题,共15分)9.如图所示,△ABC中∠BAC=33∘,将△ABC绕点A按顺时针方向旋转50∘,对应得到△ABʹCʹ,则∠BʹAC的度数为.10.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30∘后,得到正方形EFCG,EF交AD于点H.则DH=.11.如图,将边长为2的正方形ABCD绕点A按逆时针方向旋转,得到正方形ABʹCʹDʹ,连接BBʹ,BCʹ,在旋转角从0∘到180∘的整个旋转过程中,当BBʹ=BCʹ时,△BBʹCʹ的面积为.12.如图,在等腰△ABC中AB=AC,∠B=30∘.以点B为旋转中心,旋转30∘,点A,C分别落在点Aʹ,Cʹ处,直线AC,AʹCʹ交于点D,那么AD的值为.AC13.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180∘得到△AʹOBʹ,则点Bʹ的坐标是.三、解答题(共3题,共45分)14.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按照顺时针方向旋转m度后得到△DEC,点D刚好落在AB边上,求m的值.15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;(2)请在网格中画出一个格点△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.16.如图是10×8的网格,网格中每个小正方形的边长均为1,A、B、C三点在小正方形的顶点上,请在图①、②中各画一个凸四边形,使其满足以下要求:(1)请在图①中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是中心对称图形,但不是轴对称图形;(2)请在图形②中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是轴对称图形,但不是中心对称图形.参考答案1. 【答案】A2. 【答案】D3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】C9. 【答案】17°10. 【答案】√311. 【答案】2+√3或2−√312. 【答案】√3−1或2−√313. 【答案】(−2,−2√3)14.【答案】解:∵∠ACB=90°,∠B=30°∴AB=2AC;∠A=60°;由题意得:AC=DC∴△DAC 为等边三角形∴∠ACD=60°∴m=60°.15.【答案】解;(1)如图所示:△A ′BC ′即为所求 ∵AB=√32+22=√13∴BA 边旋转到BA ″位置时所扫过图形的面积为:90π×(√13)2360=13π4(2)如图所示:△A ″B ″C ″∽△ABC ,且相似比为2.16.【答案】解:(1)如图所示:四边形ABCD 即为所求;(2)如图所示:四边形ABCD 即为所求.。

中考数学几何图形旋转试题

中考数学几何图形旋转试题

中考数学几何图形旋转试题一、填空题1.(日照市)如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于.2.(成都市)如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.3.(连云港市)正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转(如图3所示),直至点P第一次回到原来的位置,则点P运动路径的长为cm.4.(泰州市)如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D 为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是.二、解答题5.(资阳市)如图5-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD 于点F.(1) 求证:BP=DP;(2) 如图5-2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.(武汉市)如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗按下列步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC 绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答下列问题:(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少7.如图7,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数).(1)求点P6的坐标;(2)求△P5OP6的面积;(3)我们规定:把点P n(x n,y n)(n=0,1,2,3,…)的横坐标x n、纵坐标y n都取绝对值后得到的新坐标(|x n|,|y n|)称之为点P n的“绝对坐标”.根据图中点P n的分布规律,请你猜想点P n的“绝对坐标”,并写出来.8.(台州市)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图8).试问线段HG与线段HB相等吗请先观察猜想,然后再证明你的猜想.9.(浙江省)如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图9-2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合(在图9-3至图9-6中统一用F表示)图9-1 图9-2 图9-3 小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1交DE于点H,请证明:AH﹦DH.图9-4 图9-5 图9-6参考答案一、1. 2. 6-2 π二、5. 解:(1)解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.(2)不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立.(3)连接BE、DF,则BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:(1)B(6,1)(2)图略(3)线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由(1)知B点坐标为(6,1),∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:(1)根据旋转规律,点P6落在y轴的负半轴,而点P n到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).(2)由已知可得,△P0OP1∽△P1OP2∽…∽△P n-1OP n,设P1(x1,y1),则y1=2sin45°=,∴.又∵,∴.(3)由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点P n分别落在坐标象限的平分线上或x 轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点P n的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时(其中k为自然数),点P n落在x轴上,此时,点P n的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时(其中k为自然数),点P n落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时(其中k为自然数),点P n落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH(如图10).∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH(HL).∴HG=HB.证法2:连结GB(如图11).∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:(1)图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.(2分)(2)∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.(3)在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠A HE=∠DHB1,∴△AHE≌△DHB1(AAS).∴AH=DH.。

2020年全国中考数学试题分类(13)——图形的旋转(含答案)

2020年全国中考数学试题分类(13)——图形的旋转(含答案)

2020年全国中考数学试题分类(13)——图形的旋转一.旋转的性质(共20小题)1.(2020•陕西)如图,在5×5的网格中,每个小正方形的边长均为1,点A 、B 、O 都在格点上.若将△OAB 绕点O 逆时针旋转90°,得到△OA ′B ′,A 、B 的对应点分别为A ′、B ′,则A 、B ′之间的距离为( )A .2√5B .5C .√13D .√102.(2020•德阳)如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC '.此时恰好点C 在A 'C '上,A 'B 交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .34 3.(2020•大连)如图,△ABC 中,∠ACB =90°,∠ABC =40°.将△ABC 绕点B 逆时针旋转得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,则∠CAA ′的度数是( )A .50°B .70°C .110°D .120°4.(2020•绵阳)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =7,AD =4,将△ABC 绕点C 顺时针方向旋转后得△A ′B ′C ,当A ′B ′恰好经过点D 时,△B ′CD 为等腰三角形,则AA ′=( )A .25√185B .2√3C .√13D .√145.(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92 6.(2020•河北)如图,将△ABC 绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形…”之间作补充,下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB =CDC .应补充:且AB ∥CDD .应补充:且OA =OC7.(2020•天津)如图,在△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC =DEB .BC =EF C .∠AEF =∠D D .AB ⊥DF8.(2020•齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为( )A .15°B .30°C .45°D .60°9.(2020•苏州)如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB 'C '.若点B '恰好落在BC 边上,且AB '=CB ',则∠C '的度数为( )A .18°B .20°C .24°D .28°10.(2020•聊城)如图,在Rt △ABC 中,AB =2,∠C =30°,将Rt △ABC 绕点A 旋转得到Rt △AB ′C ′,使点B 的对应点B ′落在AC 上,在B ′C ′上取点D ,使B ′D =2,那么点D 到BC 的距离等于( )A .2(√33+1) B .√33+1 C .√3−1 D .√3+111.(2020•绍兴)如图,等腰直角三角形ABC 中,∠ABC =90°,BA =BC ,将BC 绕点B 顺时针旋转θ(0°<θ<90°),得到BP ,连结CP ,过点A 作AH ⊥CP 交CP 的延长线于点H ,连结AP ,则∠P AH 的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小12.(2020•海南)如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AC =1cm ,将Rt △ABC 绕点A 逆时针旋转得到Rt △AB 'C ',使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmC .√3cmD .2√3cm13.(2020•菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α14.(2020•阜新)如图,在△ABC 中,∠ABC =90°,AB =BC =2.将△ABC 绕点B 逆时针旋转60°,得到△A 1BC 1,则AC 边的中点D 与其对应点D 1的距离是 .15.(2020•眉山)如图,在Rt △ABC 中,∠BAC =90°,AB =2.将△ABC 绕点A 按顺时针方向旋转至△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,则CC 1的长为 .16.(2020•天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为 .17.(2020•滨州)如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2√3、√2、4,则正方形ABCD 的面积为 .18.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.19.(2020•广州)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD 于点E,F,若AE=4,则EF•ED的值为.20.(2020•玉林)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=√22AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.二.旋转对称图形(共1小题)21.(2020•镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.三.中心对称(共3小题)22.(2020•绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形23.(2020•泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.24.(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为.(用含a,b的代数式表示)四.中心对称图形(共3小题)25.(2020•黄石)下列图形中,既是中心对称又是轴对称图形的是()A.B.C.D.26.(2020•天水)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.27.(2020•呼伦贝尔)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.五.关于原点对称的点的坐标(共1小题)28.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)六.坐标与图形变化-旋转(共6小题)29.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)30.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(−√3,3)B.(﹣3,√3)C.(−√3,2+√3)D.(﹣1,2+√3)31.(2020•黄石)在平面直角坐标系中,点G的坐标是(﹣2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG',则点G'的坐标为()A.(2,﹣1)B.(2,1)C.(1,﹣2)D.(﹣2,﹣1)32.(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C (1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C 的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.33.(2020•烟台)如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为 .34.(2020•衡阳)如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 .七.作图-旋转变换(共6小题)35.(2020•广西)如图,在平面直角坐标系中,△ABC 的三个顶点分别是A (1,1),B (4,1),C (5,3).(1)将△ABC 向左平移6个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1,并写出点A 1,C 1的坐标.(2)请画出△ABC 关于原点O 成中心对称的△A 2B 2C 2.36.(2020•巴中)如图所示,△ABC在边长为1cm的小正方形组成的网格中.(1)将△ABC沿y轴正方向向上平移5个单位长度后,得到△A1B1C1,请作出△A1B1C1,并求出A1B1的长度;(2)再将△A1B1C1绕坐标原点O顺时针旋转180°,得到△A2B2C2,请作出△A2B2C2,并直接写出点B2的坐标;(3)在(1)(2)的条件下,求线段AB在变换过程中扫过图形的面积和.37.(2020•贵港)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(1,4),B(4,1),C(4,3).(1)画出将△ABC向左平移5个单位得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针旋转90°得到的△A2B2C2.38.(2020•阜新)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(4,4),B(1,1),C(4,1).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,弧AA2是点A所经过的路径,则旋转中心O1的坐标为;(3)求图中阴影部分的面积(结果保留π).39.(2020•桂林)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.40.(2020•常州)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.八.利用旋转设计图案(共1小题)41.(2020•枣庄)如图的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )A .B .C .D .九.几何变换综合题(共9小题) 42.(2020•锦州)已知△AOB 和△MON 都是等腰直角三角形(√22OA <OM =ON ),∠AOB =∠MON =90°.(1)如图1:连AM ,BN ,求证:△AOM ≌△BON ;(2)若将△MON 绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,求证:BN 2+AN 2=2ON 2;②当点A ,M ,N 在同一条直线上时,若OB =4,ON =3,请直接写出线段BN 的长.43.(2020•葫芦岛)在等腰△ADC 和等腰△BEC 中,∠ADC =∠BEC =90°,BC <CD ,将△BEC 绕点C 逆时针旋转,连接AB ,点O 为线段AB 的中点,连接DO ,EO .(1)如图1,当点B 旋转到CD 边上时,请直接写出线段DO 与EO 的位置关系和数量关系;(2)如图2,当点B 旋转到AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC =4,CD =2√6,在△BEC 绕点C 逆时针旋转的过程中,当∠ACB =60°时,请直接写出线段OD 的长.44.(2020•沈阳)在△ABC 中,AB =AC ,∠BAC =α,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接DB ,DC .(1)如图1,当α=60°时,①求证:P A =DC ;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出P A和DC的数量关系.(3)当α=120°时,若AB=6,BP=√31,请直接写出点D到CP的距离为.45.(2020•长春)如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.46.(2020•鄂尔多斯)(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k 为常数),求BD的长(用含k的式子表示).47.(2020•十堰)如图1,已知△ABC≌△EBD,∠ACB=∠EDB=90°,点D在AB上,连接CD并延长交AE于点F.(1)猜想:线段AF与EF的数量关系为;(2)探究:若将图1的△EBD绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E 作EG ⊥CB ,垂足为点G .当∠ABC 的大小发生变化,其它条件不变时,若∠EBG =∠BAE ,BC =6,直接写出AB 的长.48.(2020•包头)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =2,Rt △ABC 绕点C 按顺时针方向旋转得到Rt △A ′B ′C ,A ′C 与AB 交于点D .(1)如图1,当A ′B ′∥AC 时,过点B 作BE ⊥A ′C ,垂足为E ,连接AE .①求证:AD =BD ;②求α△αααα△ααα的值; (2)如图2,当A ′C ⊥AB 时,过点D 作DM ∥A ′B ′,交B ′C 于点N ,交AC 的延长线于点M ,求αααα的值.49.(2020•东营)如图1,在等腰三角形ABC 中,∠A =120°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接BE ,点M 、N 、P 分别为DE 、BE 、BC 的中点.(1)观察猜想.图1中,线段NM 、NP 的数量关系是 ,∠MNP 的大小为 .(2)探究证明把△ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接MP 、BD 、CE ,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =1,AB =3,请求出△MNP 面积的最大值.50.(2020•威海)发现规律(1)如图①,△ABC 与△ADE 都是等边三角形,直线BD ,CE 交于点F .直线BD ,AC 交于点H .求∠BFC 的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.2020年全国中考数学试题分类(13)——图形的旋转参考答案与试题解析一.旋转的性质(共20小题)1.【解答】解:如图,由旋转的性质作出△A 'OB ',连接AB ',∵每个小正方形的边长均为1,∴AB '=√22+32=√13,故选:C .2.【解答】解:∵∠A =30°,∠ABC =90°,∴∠ACB =60°,∵将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC ',∴BC =BC ',∠ACB =∠A 'C 'B =60°,∴△BCC '是等边三角形,∴∠CBC '=60°,∴∠ABA '=60°,∴∠BEA =90°,设CE =a ,则BE =√3a ,AE =3a ,∴αααα=13, ∴αααα=34, ∴△ABE 与△ABC 的面积之比为34.故选:D .3.【解答】解:∵∠ACB =90°,∠ABC =40°,∴∠CAB =90°﹣∠ABC =90°﹣40°=50°,∵将△ABC 绕点B 逆时针旋转得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,∴∠A ′BA =∠ABC =40°,A ′B =AB ,∴∠BAA ′=∠BA ′A =12(180°﹣40°)=70°,∴∠CAA '=∠CAB +∠BAA ′=50°+70°=120°.故选:D .4.【解答】解:过D 作DE ⊥BC 于E ,则BE =AD =4,DE =7,设B ′C =BC =x ,则DC =√2x ,∴DC 2=DE 2+EC 2,即2x 2=49+(x ﹣4)2,解得:x =5(负值舍去),∴BC =5,AC =√74,在AB 上取一点F ,使得BF =BC =5,连接DF ,则△DFC ∽△CB ′B ,且相似比为√2:1,∴AF =7﹣5=2,∵AD =4,∴DF =2√5,∴BB ′=√2=√10, ∵将△ABC 绕点C 顺时针方向旋转后得△A ′B ′C ,∴∠DB ′C =∠ABC =90°,B ′C =BC ,A ′C =AC ,∠A ′CA =∠B ′CB ,∴△A ′CA ∽△B ′CB ,∴α′αα′α=αααα,∴AA ′=√745×√10=25√185, 故选:A .5.【解答】解:如图所示,连接EG ,由旋转可得,△ADE ≌△ABF ,∴AE =AF ,DE =BF ,又∵AG ⊥EF ,∴H 为EF 的中点,∴AG 垂直平分EF ,∴EG =FG ,设CE =x ,则DE =5﹣x =BF ,FG =8﹣x ,∴EG =8﹣x ,∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8﹣x )2,解得x =154, ∴CE 的长为154,故选:B .6.【解答】解:∵CB =AD ,AB =CD ,∴四边形ABCD 是平行四边形,故应补充“AB =CD ”,故选:B .7.【解答】解:由旋转可得,△ABC ≌△DEC ,∴AC =DC ,故A 选项错误,BC =EC ,故B 选项错误,∠AEF =∠DEC =∠B ,故C 选项错误,∠A =∠D ,又∵∠ACB =90°,∴∠A +∠B =90°,∴∠D +∠B =90°,∴∠BFD =90°,即DF ⊥AB ,故D 选项正确,故选:D .8.【解答】解:如图,设AD与BC交于点F,∵BC∥DE,∴∠CF A=∠D=90°,∵∠CF A=∠B+∠BAD=60°+∠BAD,∴∠BAD=30°故选:B.9.【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.10.【解答】解:方法一:∵在Rt△ABC中,AB=2,∠C=30°,∴BC=2√3,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2√3,∴B′C=2,延长C′B′交BC于F,∴∠CB′F=∠AB′C′=90°,∵∠C=30°,∴∠CFB′=60°,B′F=√33B′C=2√33,∵B′D=2,∴DF=2+2√3 3,过D作DE⊥BC于E,∴DE=√32DF=√32×(2+2√33)=√3+1,方法二:过B′作B′F⊥BC于F,B′H⊥DE于H,则B′F=HE,B′H=EF,在Rt△ABC中,AB=2,∠C=30°,∴BC=2√3,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2√3,∴B′C=2,∴B′F=12AB=1,∴HE=1,∵∠B′HD=∠HEC=90°,∴∠HB′C=∠C=30°,∴∠DB′H=60°,∴∠B′DH=30°,∴B′H=1,DH=√3,∴DE=√3+1,故选:D.11.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.12.【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,∴AC=12AB,则AB=2AC=2cm.又由旋转的性质知,AC′=AC=12AB,B′C′⊥AB,∴B′C′是△ABB′的中垂线,∴AB′=BB′.根据旋转的性质知AB =AB ′=BB ′=2cm .故选:B .13.【解答】解:∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.故选:D .14.【解答】解:连接BD 、BD 1,如图,∵∠ABC =90°,AB =BC =2,∴AC =√22+22=2√2,∵D 点为AC 的中点,∴BD =12AC =√2,∵△ABC 绕点B 逆时针旋转60°,得到△A 1BC 1,∴BD 1=BD ,∠DBD 1=60°,∴△BDD 1为等边三角形,∴DD 1=BD =√2.故答案为√2.15.【解答】解:∵在Rt △ABC 中,∠BAC =90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=12BC ,BB 1=B 1C ,AB =AB 1,∴BB 1=AB =AB 1,∴△ABB 1是等边三角形,∴∠BAB 1=∠B =60°,∴∠CAC 1=60°,∵将△ABC 绕点A 按顺时针方向旋转至△AB 1C 1的位置,∴CA =C 1A ,∴△AC 1C 是等边三角形,∴CC 1=CA ,∵AB =2,∴CA =2√3,∴CC 1=2√3.故答案为:2√3.16.【解答】解:法一:由题意可得,△ADF ≌△ABG ,∴DF =BG ,∠DAF =∠BAG ,∵∠DAB =90°,∠EAF =45°,∴∠DAF +∠EAB =45°,∴∠BAG +∠EAB =45°,∴∠EAF =∠EAG ,在△EAG 和△EAF 中,{αα=αααααα=αααααα=αα,∴△EAG ≌△EAF (SAS ),∴GE =FE ,设BE =x ,则GE =BG +BE =3+x ,CE =6﹣x ,∴EF =3+x ,∵CD =6,DF =3,∴CF =3,∵∠C =90°,∴(6﹣x )2+32=(3+x )2,解得,x =2,即BE =2,法二:设BE =x ,连接GF ,如下图所示,∵四边形ABCD 为正方形,∴∠ABE =∠GCF =90°,∵△ADF 绕点A 顺时针旋转90°得到△ABG ,∴∠CAF =90°,GA =F A ,∴△GAF 为等腰直角三角形,∵∠EAF =45°,∴AE 垂直平分GF ,∴∠AEB +∠CGF =90°,∵在Rt △AEB 中,∠AEB +∠BAE =90°,∴∠BAE =∠CGF ,∴△BAE ∽△CGF ,∴αααα=αααα, ∵CF =CD ﹣DF =6﹣3=3,GC =BC +BG =BC +DF =6+3=9, ∴α3=69,∴x =2,即BE =2,故答案为:2.17.【解答】解:如图,将△ABP 绕点B 顺时针旋转90°得到△CBM ,连接PM ,过点B 作BH ⊥PM 于H .∵BP =BM =√2,∠PBM =90°,∴PM =√2PB =2,∵PC =4,P A =CM =2√3,∴PC 2=CM 2+PM 2,∴∠PMC =90°,∵∠BPM =∠BMP =45°,∴∠CMB =∠APB =135°,∴∠APB +∠BPM =180°,∴A ,P ,M 共线,∵BH ⊥PM ,∴PH =HM ,∴BH =PH =HM =1,∴AH =2√3+1,∴AB 2=AH 2+BH 2=(2√3+1)2+12=14+4√3,∴正方形ABCD 的面积为14+4√3.解法二:连接AC ,利用勾股定理求出AC 即可.故答案为14+4√3.18.【解答】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, ∵OE =OF =1cm ,∴EF =2cm ,∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm ),故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm ), ∵OE =OF =1cm ,∴CO 垂直平分线段EF ,∵OC =√αα2+αα2=√(125)2+12=135(cm ), ∵12•OE •EC =12•CO •EH , ∴EH =1×125135=1213(cm ),∴EF =2EH =2413(cm )∵EF ∥AB ,∴αααα=αααα=25, ∴AB =52×2413=6013(cm ).故答案为6013. 19.【解答】解:∵四边形ABCD 是正方形,∴∠BAC =∠ADB =45°,∵把△ABC 绕点A 逆时针旋转到△AB 'C ',∴∠EAF =∠BAC =45°,∵∠AEF =∠DEA ,∴△AEF ∽△DEA ,∴αααα=αααα,∴EF •ED =AE 2,∵AE =4,∴EF •ED 的值为16,故答案为:16.20.【解答】(1)证明:∵OA =OB =OC =OD ,∴四边形ABCD 是平行四边形,∴AC =BD ,∴平行四边形ABCD 是矩形,∵OA =OB =OC =OD =√22AB ,∴OA 2+OB 2=AB 2,∴∠AOB =90°,即AC ⊥BD ,∴四边形ABCD 是正方形;(2)解:∵EF ⊥BC ,EG ⊥AG ,∴∠G =∠EFB =∠FBG =90°,∴四边形BGEF 是矩形,∵将线段DH 绕点H 顺时针旋转90°,得到线段HE ,∴∠DHE =90°,DH =HE ,∴∠ADH +∠AHD =∠AHD +∠EHG =90°,∴∠ADH =∠EHG ,∵∠DAH =∠G =90°,∴△ADH ≌△GHE (AAS ),∴AD =HG ,AH =EG ,∵AB =AD ,∴AB =HG ,∴AH =BG ,∴BG =EG ,∴矩形BGEF 是正方形,设AH =x ,则BG =EG =x ,∵s 1=s 2.∴x 2=2(2﹣x ),解得:x =√5−1(负值舍去),∴AH =√5−1.二.旋转对称图形(共1小题)21.【解答】解:连接OA ,OE ,则这个图形至少旋转∠AOE 才能与原图象重合,∠AOE =360°5=72°.故答案为:72.三.中心对称(共3小题)22.【解答】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.23.【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).24.【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=14a,∴正方形ABCD的面积=4×14a+b=a+b.故答案为(a+b).四.中心对称图形(共3小题)25.【解答】解:A、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B、是中心对称图形,但不是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意;故选:D.26.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.27.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.五.关于原点对称的点的坐标(共1小题)28.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.六.坐标与图形变化-旋转(共6小题)29.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.30.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.31.【解答】解:由题意G与G′关于原点对称,∵G(﹣2,1),∴G′(2,﹣1),故选:A.32.【解答】解:由题意得,作出如下图形:N 点坐标为(﹣1,0),N 点关于A 点对称的N 1点的坐标为(﹣3,0),N 1点关于B 点对称的N 2点的坐标为(5,4),N 2点关于C 点对称的N 3点的坐标为(﹣3,﹣8),N 3点关于A 点对称的N 4点的坐标为(﹣1,8),N 4点关于B 点对称的N 5点的坐标为(3,﹣4),N 5点关于C 点对称的N 6点的坐标为(﹣1,0),此时刚好回到最开始的点N 处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N 2020的坐标与N 4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).33.【解答】解:平面直角坐标系如图所示,旋转中心是P 点,P (4,2).故答案为(4,2).34.【解答】解:∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…,∴OP n =2n ﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).七.作图-旋转变换(共6小题)35.【解答】解:(1)如图,△A1B1C1即为所求,∴A1(﹣5,1)C1(﹣1,3);(2)如图,△A2B2C2即为所求.36.【解答】解:(1)如图所示,△A1B1C1即为所求,α1α1=3√2αα;(2)如图,△A2B2C2即为所求,B2(4,﹣4);(3)在(1)(2)的条件下,线段AB在变换过程中扫过图形的面积和为:5×3+12π×(4√2)2−12π×(√2)2=(15+15π)cm2.37.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.38.【解答】解:(1)如图,△A1B1C1为所作;(2)旋转中心O1的坐标为(2,0),故答案为(2,0);(3)设旋转半径为r,则r2=22+42=20,∴阴影部分的图形面积为:α阴影=14⋅αα2−12×2×4−12×2×2+12×1×1=5π−112.39.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.故答案为:﹣2,0.40.【解答】解:(1)如图1中,作FD⊥AC于D,∵Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1.∴∠ACB =60°,∠FCE =∠BAC =30°,AC =CF ,∴∠ACF =30°,∴∠BAC =∠FCD ,在△ABC 和△CDF 中,{∠ααα=∠ααααααα=αααααα=αα,∴△ABC ≌△CDF (AAS ),∴FD =BC =1,法二:∵∠ECF =∠FCD =30°,FD ⊥CD ,FE ⊥CE ,∴DF =EF ,∵EF =BC =1,∴DF =1.故答案为1;(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.S 阴=S △EFC +S 扇形ACF ﹣S 扇形CEH ﹣S △AHC =S 扇形ACF ﹣S 扇形ECH =30⋅α⋅22360−30⋅α⋅(√3)2360=α12. 故答案为α12.(3)如图2中,过点E 作EH ⊥CF 于H .设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF ,∴EC =√3EF =√3,EH =√32,CH =√3EH =32, 在Rt △BOC 中,OC =√αα2+αα2=√1+α2, ∴OH =CH ﹣OC =32−√1+α2,在Rt △EOH 中,则有x 2=(√32)2+(32−√1+α2)2,解得x =√73或−√73(不合题意舍弃),∴OC =1+(√73)2=43, ∵CF =2EF =2,∴OF =CF ﹣OC =2−43=23. 八.利用旋转设计图案(共1小题)41.【解答】解:由题意,选项A ,C ,D 可以通过平移,旋转得到,选项B 可以通过翻折得到. 故选:B .九.几何变换综合题(共9小题)42.【解答】(1)证明:如图1中,∵∠AOB =∠MON =90°,∴∠AOM =∠BON ,∵AO =BO ,OM =ON ,∴△AOM ≌△BON (SAS ).(2)①证明:如图2中,连接AM .同法可证△AOM≌△BON,∴AM=BN,∠OAM=∠B=45°,∵∠OAB=∠B=45°,∴∠MAN=∠OAM+∠OAB=90°,∴MN2=AN2+AM2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴NB2+AN2=2ON2.②如图3﹣1中,设OA交BN于J,过点O作OH⊥MN于H.∵△AOM≌△BON,∴AM=BN,∠OAM=∠OBN,∵∠AJN=∠BJO,∴∠ANJ=∠JOB=90°,∵OM=ON=3,∠MON=90°,OH⊥MN,∴MN=3√2,MH=HN═OH=3√2 2,∴AH=√αα2−αα2=42−(3√22)2=√462,∴BN=AM=MH+AH=√46+3√22.如图3﹣2中,同法可证AM=BN=√46−3√22.43.【解答】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,∴OE=OA=12AB,∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,∴OD=OA=12AB,∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+∠DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图2,延长EO到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°﹣∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO﹣∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,∴αα=12αα,OD⊥ME,∵αα=12αα,∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长EO到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°﹣90°﹣90°﹣∠OBE﹣∠BAD=360°﹣∠OBE=360°﹣∠OAM﹣∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°﹣∠OAM﹣∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=12ME,∠DOE=90°,在Rt△BCE中,CE=√22BC=2√2,过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°﹣∠ACD﹣∠ACB﹣∠BCE=180°﹣45°﹣60°﹣45°=30°,∴EH=12CE=√2,根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√αα2+αα2=2√14,∴OD=√22DE=2√7,②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°∴EH=12CE=√2,根据勾股定理得,CH=√6,∴DH=CD﹣CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.44.【解答】(1)①证明:如图1中,∵将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,∴PB=PD,∵AB=AC,PB=PD,∠BAC=∠BPD=60°,∴△ABC,△PBD是等边三角形,∴∠ABC=∠PBD=60°,∴∠PBA=∠DBC,∵BP=BD,BA=BC,∴△PBA≌△DBC(SAS),∴P A=DC.②解:如图1中,设BD交PC于点O.∵△PBA≌△DBC,∴∠BP A=∠BDC,∵∠BOP=∠COD,∴∠OBP=∠OCD=60°,即∠DCP=60°.(2)解:结论:CD=√3P A.理由:如图2中,∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°=√3BA ,BD ═2BP •cos30°=√3BP ,∴αααα=αααα=√3,∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP ,∴αααα=αααα=√3,∴CD =√3P A .(3)过点D 作DM ⊥PC 于M ,过点B 作BN ⊥CP 交CP 的延长线于N . 如图3﹣1中,当△PBA 是钝角三角形时,在Rt △ABN 中,∵∠N =90°,AB =6,∠BAN =60°,∴AN =AB •cos60°=3,BN =AB •sin60°=3√3,∵PN =√αα2−αα2=√31−27=2,∴P A =3﹣2=1,由(2)可知,CD =√3P A =√3,∵∠BP A =∠BDC ,∴∠DCA =∠PBD =30°,∵DM ⊥PC ,∴DM =12CD =√32如图3﹣2中,当△ABP 是锐角三角形时,同法可得P A =2+3=5,CD =5√3,DM =12CD =5√32,综上所述,满足条件的DM 的值为√32或5√32. 故答案为√32或5√32.45.【解答】解:(1)当点P 与B 重合时,5t =4,解得t =45.(2)在Rt △ABC 中,∵∠B =90°,AB =4,BC =3,∴AC =√αα2+αα2=√42+32=5,∴sin A =35,cos A =45, 如图①中,当点P 在线段AB 上时,在Rt △APE 中,AE =AP •cos A =4t ,∴EC =5﹣4t .如图③中,当点P 在线段BC 上时,在Rt △PEC 中,PC =7﹣5t ,cos C =35, ∴EC =PC •cos C =35(7﹣5t )=215−3t . (3)当△PDQ 是等腰直角三角形时,则PE =DE ,如图④中,当点P 在线段AB 上时,在Rt △APE 中,PE =P A •sin A =3t ,∵DE =AC ﹣AE ﹣CD =5﹣4t ﹣2t =5﹣6t ,∵PE =DE ,∴3t =5﹣6t ,∴t =59.如图⑤中,当点P 在线段BC 上时, 在Rt △PCE 中,PE =PC •sin C =45(7﹣5t )=285−4t ,∵DE =CD ﹣CE =2t −35(7﹣5t )=5t −215,∴285−4t =5t −215, 解得t =4945.∵△PDQ 是锐角三角形,∴观察图象可知满足条件的t 的值为0<t <59或4945<t <75.(4)如图⑥中,当点P 在线段AB 上,QM ∥AB 时,过点Q 作QG ⊥AB 于G ,延长QM 交BC 于N ,过点D 作DH ⊥BC 于H .∵PB ∥MN ∥DH ,PM =DM ,∴BN =NH ,在Rt △PQG 中,PQ =2PE =6t ,∴QG =45PQ =245t ,在Rt △DCH 中,HC =35DC =65t ,∵BC =BH +CH =245t +245t +65t =3,解得t =518.如图⑦中,当点P 在线段BC 上,QM ∥BC 时,过点D 作DH ⊥BC 于H ,过点P 作PK ⊥QM 于K .∵QM ∥BC ,DM =PM ,∴DH =2PK ,在Rt △PQK 中,PQ =2PE =85(7﹣5t ),∴PK =35PQ =2425(7﹣5t ),在Rt △DCH 中,DH =45DC =85t ,∵DH =2PK ,∴85t =2×2425(7﹣5t ), 解得t =65, 综上所述,满足条件的t 的值为518或65.46.【解答】解:(1)①如图1中,△AB ′C ′即为所求.②由作图可知,△ABB ′是等腰直角三角形,∴∠AB ′B =45°,故答案为45.(2)如图2中,过点E 作EH ⊥CD 交CD 的延长线于H .∵∠C =∠BAE =∠H =90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,∴∠B=∠EAH,∵AB=AE,∴△ABC≌△EAH(AAS),∴BC=AH,EH=AC,∵BC=CD,∴CD=AH,∴DH=AC=EH,∴∠EDH=45°,∴∠ADE=135°.(3)如图3中,连接AC,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=2k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=√αα2+αα2=√4α2+9.∴BD=CG=√4α2+9.47.【解答】解:(1)延长DF到K点,并使FK=DC,连接KE,如图1所示,∵△ABC≌△EBD,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,∵FK+DF=DC+DF,∴DK=CF,在△ACF 和△EDK 中,{αα=αααααα=αααααα=αα,∴△ACF ≌△EDK (SAS ),∴KE =AF ,∠K =∠AFC ,又∠AFC =∠KFE ,∴∠K =∠KFE∴KE =EF∴AF =EF ,故AF 与EF 的数量关系为:AF =EF .故答案为:AF =EF ;(2)仍然成立,理由如下:延长DF 到K 点,并使FK =DC ,连接KE ,如图2所示,设BD 延长线DM 交AE 于M 点,∵△ABC ≌△EBD ,∴DE =AC ,BD =BC ,∴∠CDB =∠DCB ,且∠CDB =∠MDF ,∴∠MDF =∠DCB ,∵∠ACB =90°,∴∠ACD +∠DCB =90°,∵∠EDB =90°,∴∠MDF +∠FDE =90°,∴∠ACD =∠FDE ,∵FK +DF =DC +DF ,∴DK =CF ,在△ACF 和△EDK 中,{αα=αααααα=αααααα=αα,∴△ACF ≌△EDK (SAS ),∴KE =AF ,∠K =∠AFC ,又∠AFC =∠KFE ,∴∠K =∠KFE ,∴KE =EF ,∴AF =EF ,故AF 与EF 的数量关系为:AF =EF .(3)当点G 在点B 右侧时,如图3所示,过点E 作EG ⊥BC 交CB 的延长线于G , ∵BA =BE ,∴∠BAE =∠BEA ,∵∠BAE =∠EBG ,∴∠BEA =∠EBG ,∴AE ∥CG ,∴∠AEG +∠G =180°,∴∠AEG =90°,∴∠ACG =∠G =∠AEG =90°,∴四边形AEGC 为矩形,∴AC =EG ,且AB =BE ,∴Rt △ACB ≌Rt △EGB (HL ),∴BG =BC =6,∠ABC =∠EBG ,又∵ED =AC =EG ,且EB =EB ,∴Rt △EDB ≌Rt △EGB (HL ),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,在Rt△ABC中,由30°所对的直角边等于斜边的一半可知:AB=2BC=12.当点G在点B左侧时,如图4所示,由旋转知,∠ABC=∠ABE,AB=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG=2∠ABC=2∠ABE,∴∠BAE=∠AEB=2∠ABE,∵∠AEB+∠BAE+∠ABE=180°,∴2∠ABE+2∠ABE+∠ABE=180°,∴∠BAE=36°,∴∠ABC=36°,在Rt△ABC中,cos36°=αααα,∴AB=ααααα36°=6ααα36°,即满足条件的AB=12或6ααα36°.48.【解答】解:(1)①∵A ′B ′∥AC ,∴∠B ′A ′C =∠A ′CA ,∵∠B ′A ′C =∠BAC ,∴∠A ′CA =∠BAC ,∴AD =CD ,∵∠ACB =90°,∴∠BCD =90°﹣∠ACD ,∵∠ABC =90°﹣∠BAC ,∴∠CBD =∠BCD ,∴BD =CD ,∴AD =BD ;②∵∠ACB =90°,BC =2,AC =4,∴AB =√22+42=2√5,∵BE ⊥CD ,∴∠BEC =∠ACB =90°,∵∠BCE =∠ABC ,∴△BEC ∽△ACB ,∴αααα=αααα,即αα2=2√5, ∴CE =25√5,∵∠ACB =90°,AD =BD , ∴CD =12AB =√5, ∴CE =25CD ,∴S △ACE =23S △ADE ,∵AD =BD ,∴S △ABE =2S △ADE ,∴α△αααα△ααα=13;(2)∵CD ⊥AB ,∴∠ADC =90°=∠A ′CB ′,∴AB ∥CN ,∴△MCN ∽△MAD ,∴αααα=αααα,∵α△ααα=12αα⋅αα=12αα⋅αα,∴αα=αα⋅αααα=4×22√5=45√5,∴AD =√αα2−αα2=85√5,∵DM ∥A ′B ′,。

中考数学专题 旋转练习题(8套)含答案

中考数学专题 旋转练习题(8套)含答案

旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=21AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转 旋转中心 旋转角 2.A 45° 3.点A 60° 等边 三、1.(1)通过旋转,即以点A 为旋转中心,将△ABE 逆时针旋转90°.(2)BE=DF ,BE ⊥DF2.翻滚一次滚120° 翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC 绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于( ) A .50° B .210° C .50°或210° D .130° 2.在图形旋转中,下列说法错误的是( )A .在图形上的每一点到旋转中心的距离相等B .图形上每一点转动的角度相同C .图形上可能存在不动的点D .图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A3.D二、1.相等2.△ACE 图形全等= 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=21. 3.重合:证明:∵EG ⊥AF ∴∠2+∠3=90° ∵∠3+∠1+90°=180° ∵∠1+∠3=90° ∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC ∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB ∴△OBE 绕O 点旋转90°便可和△OAF 重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( ) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围 成的,如图是看到的万花筒的一个图案,图中所有三角形均 是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以 A 为中心( )A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是 ( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:21085(1)以顶点A 为对称中心,(2)以BC 边的中点K 为对称中心.2.如图,已知一个圆和点O ,画一个圆,使它与已知圆关于点O 成中心对称.3.如图,A 、B 、C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M ,现计划修建居民小区D ,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D 的位置.答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.FG DECA B1A 1B 1C 1D3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB 又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , ∴∠EFB=90°-21∠C 1FB ,∠FBG=90°-21∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG ∴四边形BEFG 是平行四边形. (2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG 同理可得:∠B 1BF=∠FB 1B . ∴∠B 1BG=90°,∴△B 1BG 是直角三角形 3.解:(1)如右图所示(2)由题意知A 、A 1、B 1三点的坐标分别是(-1,0),(0,1),(2,0)∴⎩=++⎪⎨=⎪⎧=-+a b cc a b c 04210 解这个方程组得⎩⎪⎪=⎪⎨=⎪⎪⎪=-⎧c b a 12121∴所求五数解析式为y=-21x 2+21x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是( ) A .y=x1B .y=2x+1C .y=-2x+1D .以上三种都不可能2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( )A .8cmB .22cmC .24cmD .11cm 二、填空题1.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P′的坐标是P′_______. 2.写出函数y=-x 3与y=x3具有的一个共同性质________(用对称的观点写). DCAB O三、解答题1.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC 关于x 轴对称的△A′B′C′,再画出△A′B′C′关于y 轴对称的△A″B″C″,那么△A″B″C″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1中点的反比例函数解析式; (3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B 二、1.(3,-1) 2.答案不唯一 参考答案:关于原点的中心对称图形. 三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称. 2.(1)如右图所示,连结A 1B 1; (2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=x k ,则y=-x2.25.(3)A 1B 1:设y=k 1x+b 1 ⎩=-⎨⎧=-k b 033311⎩=-⎨⎧=b k 3111∴y=x+3∵与A 1B 1直线平行且与y=x2.25相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-x2.25相切, ⎩⎪=-⎨⎪⎧=+x y y x 2.253 ⇒x 2+3x+2.25=0,b 2-4ac=9-4×1×2.25=0,∴y=x+3与y=-x2.25相切.旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )2.将三角形绕直线L 旋转一周,可以得到如图所示的立体图形的是( )二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题 1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?答案:一、1.D 2.B二、1.形状大小2.旋转三、1.(1)用同一块模块设计出的两个图案之间可能是由平移、旋转、•轴对称变化得到的,或者是由这三种变化的组合而成的;(2)略2.略。

中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。

中考数学专题练习旋转50题

中考数学专题练习旋转50题

旋转50题一、选择题:1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°3.下列图形既是轴对称图形又是中心对称图形的是( )4.下列图案中,可以看做是中心对称图形的有()A.1个B.2个C.3个D.4个5.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.6.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.﹣33C.﹣7D.77.下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5)B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)8.如图,在△ABC中,∠CAB=90°,将△ABC绕点A顺时针旋转60°得△ADE,则∠EAB的度数为()A.20° B.25° C.28° D.30°9.下列图形中,既是轴对称图形又是中心对称图形的是()10.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°11.下面的图形中,既是轴对称图形又是中心对称图形的是()12.下列图形中,是中心对称图形的是()A. B. C. D.13.下列四个说法,其中说法正确的个数是()①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个14.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕C点顺时针方向旋转90°后,A点的坐标为()A.(,0)B.(0,7)C.(,1)D.(7,0)15.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6 C.2 D.316.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C. D.π17.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是918.如图,边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )A. B. C.-1D.19.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为()A. B. +1 C. +1 D. +120.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为( )A.2B.3C.D.二、填空题:21.请写出一个既是轴对称图形又是中心对称图形的平面图形,你所写的平面图形名称是.(写一个即可)22.如图所示,在平面直角坐标系中,△OAB三个顶点的坐标O(0,0)、A(3,4)、B(5,2).将△OAB绕原点O按逆时针方向旋转90°后得到△OA1B1,则点A1的坐标是.23.在图形的平移、旋转、轴对称变换中,其相同的性质是.24..如图,直线y=-x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO/B/,则点B′的坐标是.25.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连接AA′,若∠AA′B′=20°,则∠B的度数为__ __.(导学号 02052551)26.如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得的图形,则旋转中心P的坐标是________.27.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′= .28.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b= .29.P 是等边△ABC 内部一点,∠APB 、∠BPC 、∠CPA 的大小之比是5:6:7,将△ABP 逆时针旋转,使得AB 与AC 重合,则以PA 、PB 、PC 的长为边的三角形的三个角∠PCQ :∠QPC :∠PQC= .30.△ABC 绕着A 点旋转后得到△AB ′C ′,若∠BAC ′=130°,∠BAC=80°,则旋转角等于31.如图,已知Rt △ABC 中,∠ACB=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC.若点F 是DE 的中点,连接AF ,则AF= .32.如图,△ABC 中,已知∠C=90°,∠B=55°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m<180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m= .33.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为 .34.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K.若正方形ABCD 边长为,则AK=__ __.A DEPBC35.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC,连接BM ,则BM 的长是 .36.如图,在△ABC 中,AB=AC=5,BC=6,将△ABC 绕点C 顺时针方向旋转一定角度后得到△A ′B ′C .若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为 .37.如图,四边形ABCD 中,AB=3,BC=2,若AC=AD 且∠ACD=60°,则对角线BD 的长最大值为 .38.如图,O 是等边△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④四边形AOBO ′的面积为6+3;⑤S △AOC +S △AOB =6+43.其中正确的结论是_ _.39.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.40.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(1.5,0),B(0,2),则点B2016的坐标为.三、解答题:41.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.42.△ABC在直角坐标系中的位置如图所示,直线l经过点(-1,0),并且与y轴平行.(1)①将△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,在图中画出△A1B1C1;②求出由点C运动到点C1所经过的路径的长.(2)①△A2B2C2与△ABC关于直线l对称,画出△A2B2C2,并写出△A2B2C2三个顶点的坐标;②观察△ABC与△A2B2C2对应点坐标之间的关系,写出直角坐标系中任意一点P(a,b)关于直线l的对称点的坐标:.43.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上.(1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.44.(1)如图1,点P 是正方形ABCD 内的一点,把△ABP 绕点B 顺时针方向旋转,使点A 与点C 重合,点P 的对应点是Q .若PA=3,PB=2,PC=5,求∠BQC 的度数.(2)点P 是等边三角形ABC 内的一点,若PA=12,PB=5,PC=13,求∠BPA 的度数.DC FB E A45.探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD 重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE长.46.在△ABC中,AB=AC,∠BAC=ɑ(0°<ɑ<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求ɑ的值.47.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO绕点B逆时针旋转60°得到线段BO′.(1)求点O与O′的距离;(2)证明:∠AOB=150°;(3)求四边形AOBO′的面积.(4)直接写出△AOC与△AOB的面积和48.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,AE:BD= ;②当α=180°时,AE:BD= .(2)拓展探究:试判断:当0°≤α<360°时,AE:BD的大小有无变化?请仅就图2的情形给出证明.(3)问题解决:当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.49.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)50.给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为.(填写序号即可)①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.①求证:△BCE是等边三角形;②求证:四边形ABCD是勾股四边形.参考答案1.D2.A3.C4.B5.A6.D7.D8.D9.B10B11.C12.A13.C14.D15.D16.B17.B18.D19.B.20.A21.答案为:圆.22.答案为:(-4,3).23.解:在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.24.答案为: (7,3)25.答案为:65°26.答案为:(0,1)27.答案为:22°28.答案为:a+b=1.29.答案为:3:4:2.30.答案为:50°或210°.31.答案为:_5_32.答案为:70°或120°.33.答案为:34.答案为:2-35.答案为:1+.36.答案为:4.8.37.解:如图,在AB的右侧作等边三角形△ABK,连接DK.∵AD=AC,AK=AB,∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB,∴DK=BC=2,∵DK+KB≥BD,DK=2,KB=AB=3,∴当D、K、B共线时,BD的值最大,最大值为DK+KB=5.38.正确的结论为:①②③⑤.39.解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.故答案为24+9.40.答案为:(6048,2).41.解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.42.(1)①画图正确②OC=点C运动到点C1所经过的路径的长==(2)①画图正确△A2B2C2三个顶点的坐标为A2(-5,6),B2(-3,1),C2(-6,3)②P(a,b)关于直线l的对称点的坐标为(-a-2,b)43.44.解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.45.【解答】(1)①解:如图1,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;②解:∠B+∠D=180°,理由是:把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,和①知求法类似,∠EAF=∠GAF=45°,在△EAF和△GAF中∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC===4,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF.则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中∴△FAD≌△EAD,∴DF=DE,设DE=x,则DF=x,∵BC=1,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.46.(1)30°-0.5α.(2)△ABE为等边三角形.证明:连接AD、CD、ED.∵线段BC绕点B逆时针旋转60°得到线段BD,∴BC=BD,∠DBC=60°. ∵∠ABE=60°,∴∠ABD=60°-∠DBE=∠EBC=30°-0.5α.又∵BD=CD,∠DBC=60°,∴△BCD为等边三角形,∴BD=CD.又∵AB=AC,AD=AD,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD=0.5∠BAC=0.5α.∵∠BCE=150°,∴∠BEC=180°-(30°-0.5α)-150°=0.5α.∴∠BAD=∠BEC.在△ABD与△EBC中,△ABD≌△EBC(AAS).∴AB=BE.又∵∠ABE=60°,∴△ABE为等边三角形.(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°-60°=90°.∵∠DEC=45°,∴△DCE为等腰直角三角形.∴CD=CE=BC.∵∠BCE=150°,∴∠EBC=15°.又∵∠EBC=30°-0.5α=15°,∴α=30°47.解:(1)∵等边△ABC,∴AB=CB,∠ABC=600。

中考数学复习考点专题练习---图形的旋转综合(含答案)

中考数学复习考点专题练习---图形的旋转综合(含答案)

中考数学复习考点专题练习---图形的旋转综合一.选择题1.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数为()A.55°B.75°C.85°D.90°2.下列图形:①平行四边形;②矩形;③菱形;④等边三角形中,是中心对称图形的有()A.①②③B.②③④C.①②④D.①②③④3.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是()A.60°B.70°C.80°D.90°4.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4 B.3 C.2 D.15.如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=10°,则∠ABE是()A.75°B.78°C.80°D.92°6.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC 的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是()A.8 B.6 C.4 D.57.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,),C(﹣2,0).将△OAB 绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是()A.B.C.2 D.8.如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A.B.C.D.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=116°,则∠α的大小是()A.64°B.36°C.26°D.22°10.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的()A.B.C.D.二.填空题11.如图,△ABC为等边三角形,D是△ABC内一点,将△ABD绕点A按逆时针方向旋转到△ACP位置,则∠P AD=°.12.如图,在△ABC中,∠C=90°,AC=3cm,AB=5cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是cm.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.14.如图,将矩形ABCD绕点B顺时针旋转90°至EBGF的位置,连接AC,EG,取AC,EG的中点M,N连接MN,若AB=8,BC=6,则MN=.15.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′,当α+β=60°时,我们称△AB′C′是△ABC 的“双旋三角形”,如果等边△ABC的边长为a,那么它所得的“双旋三角形”中B′C′=(用含a的代数式表示).16.如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE绕着点C 顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.17.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD=.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2019的坐标为.19.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC,连接B′C′,当α+β=60°时,我们称△AB′C’是△ABC 的“双展三角形”,已知一直角边长为2的等腰直角三角形,那么它的“双展三角形”的面积为.20.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是.三.解答题21.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为;(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.22.在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.(1)如图1,求△BCD的面积;(2)如图2,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)23.如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B(3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标及点D到直线RQ的距离;②连接BP,BQ,且∠PBQ=45°,现将△OAB沿AB翻折得到△EAB(点E为点O的对应点),再将∠PBQ绕点B顺时针旋转,旋转过程中,射线BP,BQ交直线AE分别为点M,N,最后将△BMN沿BN翻折得到△BGN(点G为点M的对应点),连接EG,若,求点M的坐标(直接写出结果即可).24.如图,把直角三角形ABC按逆时针方向旋转到△EBD的位置,使得A、B、D三点在一直线上.(1)旋转中心是哪一点?旋转角是多少度?(2)AC与DE的位置关系怎样?请说明理由.25.将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE 与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM 与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.26.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)判断A E、BE、BC之间的数量关系(直接写出结果,不必证明);(2)如图2,过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角a(0°<a <<144°)得到△AE'F',连结CE',BF′,求证:CE'=BF':(3)在(2)的旋转过程中,当a=时,CE'∥AB?(请直接写出结果).27.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CF A度数;(2)求证:AD∥BC.28.如图1,在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针旋转,得到△ADE,旋转角为α(0°<α<90°),连接BD交CE于点F.(1)如图2,当α=45°时,求证:CF=EF;(2)在旋转过程中,①问(1)中的结论是否仍然成立?证明你的结论;②连接CD,当△CDF为等腰直角三角形时,求tan的值.29.综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE展开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为;③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长.(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)30.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD、CE的交点.(1)判断线段BD与CE的关系,并证明你的结论;(2)若AB=8,AD=4,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②求旋转过程中线段PB长的最大值.参考答案一.选择题1.解:根据旋转的性质可知:∠C=∠A=110°,在△COD中,∠COD=180°﹣110°﹣40°=30°.旋转角∠AOC=85°,所以∠α=85°﹣30°=55°.故选:A.2.解:平行四边形,矩形,菱形是中心对称图形.故选:A.3.解:∵△ABC绕点A顺时针旋转60°得△ADE,∴∠CAE=60°,∵∠C=20°,∴∠AFC=100°,∴∠AFB=80°.故选:C.4.解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.5.解:∵△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.∴∠DAC=45°﹣10°=35°.在△BEC和△ADC中∴△BCE≌△ACD(SAS).∴∠EBC=∠DAC=35°.∴∠ABE=∠EBC+∠DAC=80°.故选:C.6.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=4,∴AB=8,根据旋转不变性可知,A′B′=AB=8,∴A′P=PB′,∴PC=A′B′=4,∵CM=BM=2,又∵PM≤PC+CM,即PM≤6,∴PM的最大值为3(此时P、C、M共线).故选:B.7.解:∵△OAB是直角三角形,点P在以AB为直径的圆上运动,∵A(2,0),B(0,),∴AB=4,AB的中点为(1,),∵C(﹣2,0),∴CP的最小值为2﹣2;故选:B.8.解:如图,连接BE,CE,过E作EG⊥BC于G,由旋转可得,AB=AE=1=AD,AC=AF,∠BAC=∠EAF=45°=∠DAC,∴∠CAE=∠F AD,∴△ADF≌△AEC(SAS),∴DF=CE,由旋转可得,AB=AE=1,∠BAE=60°,∴△ABE是等边三角形,∴BE=1,∠ABE=60°,∴∠EBG=30°,∴EG=BE=,BG=,∴CG=1﹣,∴Rt△CEG中,CE======,∴DF=,故选:A.9.解:如图设BC交C′D′于K.在四边形ABKD ′中,∵∠B =∠D ′=90°,∠BKD ′=∠1=116°,∴∠BAD ′=180°﹣116°=64°,∵∠BAD =90°,∴∠DAD ′=90°﹣64°=26°,故选:C .10.解:设正方形B 对角线的交点为O ,如图1,设正方过点O 作边的垂线,则OE =OM ,∠EOM =90°,∵∠EOF +∠EON =90°,∠MON +∠EON =90°,∴∠EOF =∠MON ,在△OEF 和△OMN 中,∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S 四边形NOEP +S △OEF =S 四边形NOEP +S △OMN =S 四边形MOEP =S 正方形CTKW ,即图1中阴影部分的面积=正方形B 的面积的四分之一,同理图2中阴影部分烦人面积=正方形A 的面积的四分之一,∵图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的,∴正方形B 的面积=正方形A 的面积的2倍,∴图2中重叠部分面积是正方形B面积的,故选:D.二.填空题(共10小题)11.解:∵△ABC为等边三角形,∴∠BAC=60°,∵将△ABD绕点A按逆时针方向旋转到△ACP,∴∠DAP=∠BAC=60°,故答案为:60.12.解:连接EC,即线段EC的长是点E与点C之间的距离,在Rt△ACB中,由勾股定理得:BC===4(cm),∵将△ABC绕点B顺时针旋转60°得到△FBE,∴BC=BE,∠CBE=60°,∴△BEC是等边三角形,∴EC=BE=BC=4cm,故答案为:4.13.解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,14.解:连接BM、BN,在Rt△ABC中,利用勾股定理可得AC=10,∵M为AC中点,∴BM=AC=5.∵矩形ABCD绕点B顺时针旋转90°至EBGF的位置,∴BM=BN,且∠MBN=90°,∴MN=BM=5.故答案为5.15.解:∵△ABC为等边三角形,∴AB=AC=a,∠BAC=60°,∵△AB′C′是△ABC的“双旋三角形”,∴α+β=60°,AB′=AB=a,AC′=AC=a,∴∠B′AC=120°,∴∠B′=∠C′=30°,作AH⊥B′C′于H,如图,则B′H=C′H,在Rt△AB′H中,AH=AB′=a,∴B′H=AH=a,∴B′C′=2A′H=a.16.解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.17.解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,DE=,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴BD===.故答案为.18.解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(﹣3,3),点P4的坐标为(﹣2,﹣1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(﹣3,3).故答案为(﹣3,3).19.解:如图1中,当△AB′C′是△ABC的“双展三角形”时,作C′D⊥B′A交B′A的延长线于D,在C′D上取一点F,使得F A=FC,连接AF.∵B∠B′AC′=60°+45°=105°,∴∠DAC′=75°,∵∠D=90°,∴∠DC′A=15°,∵F A=FC′,∴∠F AC=∠FC′A=15°,∴∠AFD=∠F AC+∠FC′A=30°,设AD=x,则AF=FC′=2x.DF=x,∵AB=BC=2,∠B=90°,∴AC=AC′=2,在Rt△ADC′中,则有x2+(x+2x)2=(2)2,解得x=﹣1(负根已经舍弃),∴DC′=2x+x=+1,∴S△AB′C′=•AB′•C′D=+1.如图2中,当△A′BC′是△ABC的“双展三角形”时,作C′D⊥B′A交A′B的延长线于D.由题意:∠A′BC′=60°+90°=150°,∴∠C′BD=30°,∴C′D=BC′=1,∴S△A′BC′=•BA′•C′D=1,综上所述,满足条件的+1或1.故答案为+1或1.20.解:由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.三.解答题(共10小题)21.解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,∴∠BEC=∠C+∠CAE=45°+120°=165°,故答案为:165°.(2)①∵OD∥AB,∴∠BOD=∠B=30°,又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,∴∠AOC=∠BOD=30°.′②存在,如图1,当AB∥OC时,则∠COB=∠B=30°,∴∠AOC=90°+30°=120°;如图2,当AB∥CD时,延长DO交AB于D′,∴∠AD′O=∠D=45°,∴∠AOD′=75°,∴∠AOC=∠AOD′+90°=165°;如图3,当AB∥OD时,∠DOB=∠B=30°,∴∠AOC=∠DOB=30°;如图4,当AB∥OD时,∠AOD=∠A=60°,∴∠AOC=90°+60°=150°;如图5,当AB∥OC时,∴∠AOC=∠A=60°;如图6,当AB∥CD时,∠1=∠A=60°,∴∠AOC=60°﹣45°=15°;综上所述,∠AOC的度数为:15°,30°,60°,120°,150°,165°.22.解:(1)过点D作DE⊥BC,则∠DEB=90°.∵AB∥CD,∴∠ABC=∠DCE=60°.∴在Rt△CDE中,∠CDE=30°.∴CE=CD=.∴DE==.∴△BCD的面积为BC•DE=×4×=(2)方法一:连接AN,∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=MB,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA(SAS).∴∠NAB=∠BCM=120°.连接AC,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴∠BAC=∠ACB=60°.∴∠NAB+∠BAC=180°.∴N,A,C三点在一条直线上.∵NQ=n,BQ=m,∴CQ=4﹣m.∵NQ⊥BC,∴∠NQC=90°.∴在Rt△NQC中,NQ=CQ•tan∠NCQ.∴n=(4﹣m).即n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).方法二:∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=BM,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA.∴∠NAB=∠BCM=120°.设AB与NQ交于H点,∵NQ⊥BC,∴∠HQB=90°.∵∠ABC=60°,∴∠BHQ=∠NHA=30°.∴∠HNA=180°﹣30°﹣120°=30°.∴NA=AH.∴在Rt△BHQ中,HQ=BQ•tan∠HBQ=m.又∵BH=2m,∴AH=4﹣2m.过点A作AG⊥NH,∴NG=GH.在Rt△AGH中,GH=AH•cos∠AHN=(4﹣2m)=2﹣m,∴NH=2GH=4﹣2m.∵NQ=N H+HQ,∴n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).23.解:(Ⅰ)如图1中,∵A(3,3),B(3,0),∴AB=OB=3,∠ABO=90°,∴∠BOA=45°,∵将△AOB沿OA翻折得到△AOD,∴∠AOD=∠AOB=45°,∴∠BOD=90°,∴点D在y轴的正半轴上,∴D(0,3).(Ⅱ)①如图1中,作点P关于点O的对称点K,连接KQ交OB于R′,此时PR′+QR′的值最小.作DH⊥QK于H.由题意:K(0,﹣1),Q(,3).∴直线KQ的解析式为y=x﹣1,令y=0,得到x=,∵DH⊥KQ,∴直线KQ的解析式为y=﹣x+3,由,解得,∴H(,),∴DH==∴R′(,0),点D到直线KQ的距离为.②如图2中,易证△ABM≌△EBG(SAS),∴∠BAM=∠BEC=45°,∵∠AEB=45°,∴∠GEN=90°,∵,∴可以假设EN=12k,EG=5k,则NG=MN=13k,∵AM=EG=5k,∴5k+13k+12k=3,∴k=,作MH⊥AB于H,∵∠MAH=45°,AM=,∴AH=MH=,可得M(,).24.解:(1)直角三角形ABC按逆时针方向旋转到△EBD的位置,∴旋转中心是点B,旋转角是90°;(2)AC⊥DE,理由:延长DE交AC于F,∵把直角三角形ABC按逆时针方向旋转到△EBD的位置,∴∠C=∠D,∠DBE=∠ABC=90°,∴∠C+∠A=∠D+∠A=90°,∴∠DF A=90°,∴AC⊥DE.25.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,BC=4,∠CAB=30°∴AB=2BC=8,∵DF垂直平分线段AB,∴AD=DB=4,在Rt△ADG中,DG=AD•tan30°=4×=4.(2)结论:CN=HM.理由:如图2中,∵∠ACB=90°,AD=DB,∴CD=DA=DB,∵∠B=60°,∴△BDC是等边三角形,∴∠DCB=∠CDB=60°,∵∠ACB=∠CDH=90°,∴∠MDH=∠HCD=30°,∴CD=DH,∵∠DHM=∠DCN=60°,∠DMH=∠DNC=90°,∴△DMH∽△DNC,∴==,∴CN=HM.(3)如图3中,连接CD.∵∠KCT=∠KDT=90°,∴∠KCT+∠KDT=180°,∴K,D,T,C四点共圆,∴KT是该圆的直径,当CD是该圆的直径时,KT的长最短,此时KT=CD=AB=4.26.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=×72°=36°,∴∠BEC=∠A+∠ABE=36°+36°=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BE=BC,故答案为:AE=BE=BC;(2)证明:∵AB=AC,EF∥BC,∴AE=AF,由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′;(3)解:由(1)可知AE=BC,由旋转知,AE'=AE,∴AE'=BC,如图,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB 平行的直线l相交于点M、N,①当点E'与点M重合时,∵CM∥AB,∴四边形ABCM是等腰梯形,∴∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角为36°或72°时,CE′∥AB.故答案为:36°或72°.27.解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC ∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CF A=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC28.(1)证明:如图2中,∵∠EAC=∠DAB,AE=AC,AD=AB,∴∠AEC=∠ACE=∠ADB=∠ABD,∵∠ADB=∠CDF,∴∠FDC=∠FCD,∴FD=FC,∵∠EDC=90°,∴∠DEF+∠ECD=90°,∠FDE+∠FDC=90°,∴∠FED=∠FDE,∴FE=FD,∴EF=FC.(2)①解:如图1中,结论仍然成立.理由:连接AF.∵∠FCA=∠ABF,∴A,B,C,F四点共圆,∴∠AFC+∠ABC=180°,∵∠ABC=90°,∴∠AFC=90°,∴AF⊥EC,∵AE=AC,∴EF=CF.②如图3﹣1中,当CF=CD,∠FCD=90°时,连接AF,作CH⊥BF于H.设CF=CD =a.则DE==a,DF=a,∵CF=CD,CH⊥DF,∴HF=HD,∴CH=DF=a,∴BC=DE=a,∴BH==a,∵AE=AC,EF=CF,∴AF平分∠EAC,∵A,B,C,F四点共圆,∴∠CAF=∠CBH=α,∴tanα===.如图3﹣2中,当DF=DC,∠CDF=90°时,作DH⊥CF于H,连接AF.设CD=DF=m.则CF=EF=a,DH=CF=a,∴DE=BC==a,∴BD==2a,∴tanα==.29.解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC===10,∴CD=BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH==,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH﹣KH=,∵KM∥CH,∴=,∴=,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C,∴∠MBC=∠C,∴BM=MC,设BM=MC=x,在Rt△ABM中,∵BM2=AB2+AM2,∴62+(8﹣x)2=x2,∴x=,∴AM=AC﹣CM=8﹣=.故答案为.③尺规作图如图4﹣1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G 为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4﹣1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH 于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.∵TE⊥DE,TH⊥DC,DG平分∠CDE,∴TE=TH,设TE=TH=x,在Rt△TCH中,x2+22=(4﹣x)2,∴x=,∴DT==,∵DK平分∠CDT,KJ⊥DT,KH⊥CD,∴KJ=KH,设KJ=KH=y,在Rt△KTJ中,y2+(﹣3)2=(﹣y)2,∴y=3﹣6,∴EM=3﹣6,∴AM=AE﹣EM=4﹣(3﹣6)=10﹣3.30.解:(1)结论:BD=CE,BD⊥CE.理由如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE.∠ACE=∠ABD设CP与AB交于点O,∵∠AOC=∠BOP∴∠BPC=∠OAC=90°∴BD⊥CE;(2)解:a:如图2中,当点E在AB上时,BE=AB﹣AE=4.∵∠EAC=90°,∴CE===4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=,b:如图3中,当点E在BA延长线上时,BE=AB+AE=12.∵∠EAC=90°,∴CE==4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB =,∴PB 的长为或.(3)a 、如图4中,以A 为圆心AD 为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PB 的值最小.理由:此时∠BCE 最小,因此PB 最小,(△PBC 是直角三角形,斜边BC 为定值,∠BCE 最小,因此PB 最小)∵AE ⊥EC ,∴EC ==4,由(1)可知,△ABD ≌△ACE ,∴∠ADB =∠AEC =90°,BD =CE =4,∴∠ADP =∠DAE =∠AEP =90°,∴四边形AEPD 是矩形,∴PD =AE =4,∴PB =BD ﹣PD =4﹣4.b 、如图5中,以A 为圆心,AD 为半径画圆,当CE 在⊙A 上方与⊙A 相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE 最大,因此PB最大)∵AE⊥EC,∴EC===4,同(1)可证△ADB≌△AEC∴∠ADB=∠AEC=90°,BE=CE=4,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴P D=AE=4,∴PB=BD+PD=4+4.∴PB最大值是4+4;。

初三数学中考复习 图形的旋转 专题综合练习题 含答案

初三数学中考复习  图形的旋转  专题综合练习题 含答案

2021 初三数学中考复习图形的旋转专题综合练习题1. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( C )A.① B.② C.③ D.④2.以下图案中,中心对称图形是( D )A.①② B.②③ C.②④ D.③④3.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,假设∠1=25°,那么∠BAA′的度数是( D )A.55° B.60° C.65° D.70°4.如图,用一个半径为5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升了( C ) A.π cm B.2π cm C.3π cm D.5π cm5.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连结AD.以下结论一定正确的选项是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC6.假设点M(3,a-2),N(b,a)关于原点对称,那么a+b=__-2__.7.如图,直线a,b垂直相交于点O,曲线c关于点O成中心对称,点A的对称点是点A′,A B⊥a于点B,A′D⊥b于点D,假设OB=3,OD=2,那么阴影局部的面积之和为__6__.8.:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,那么线段B1D=__1.5__cm.9. 如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进展无滑动滚动,使半圆的直径与直线b重合为止,那么圆心O运动途径的长度等于__5π__.10.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,那么正方形铁片连续旋转2 017次后,点P的坐标为__(6_053,2)__.11.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,假设把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.解:(1)如下图,△A1B1C1即为所求.(2)∵点A′坐标为(-2,2),∴假设要使向右平移后的A′落在△A1B1C1的内部,a的取值范围为4<a<6.12.如图,AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连结DC,DB.(1)线段DC=__4__;(2)求线段DB的长度.解:作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°.又∵AC⊥BC,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,∴Rt △CDE 中,DE =12DC =2,CE =DC·cos30°=4×32=23,∴BE =BC -CE =33-23=3.∴Rt △BDE 中,BD =DE 2+BE 2=22+〔3〕2=7.13.△ABC 是等腰三角形,AB =AC.(1)特殊情形:如图①,当DE∥BC 时,有DB___=__EC.(填“>〞“<〞或“=〞)(2)发现探究:假设将图①中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图②位置,那么(1)中的结论还成立吗?假设成立,请给予证明;假设不成立,请说明理由.(3)拓展运用:如图③,P 是等腰直角三角形ABC 内一点,∠ACB =90°,且PB =1,PC =2,PA =3,求∠BPC 的度数.解:(2)成立.证明:由(1)易知AD =AE ,∴由旋转性质可知∠DAB=∠EAC.在△DAB和△EAC 中,⎩⎪⎨⎪⎧AD =AE ,∠DAB =∠EAC,AB =AC ,∴△DAB ≌△EAC(SAS),∴DB =EC.(3)如图,将△CPB 绕点C 顺时针旋转90°得△CEA,连结PE ,∴△CPB ≌△CEA ,∴CE =CP =2,AE =BP =1,∠PCE =90°,∴∠CEP =∠CPE=45°.在Rt △PCE 中,由勾股定理可得,PE =22,在△PEA 中,PE 2=(22)2=8,AE 2=12=1,PA 2=32=9.∵PE 2+AE 2=AP 2,∴△PEA 是直角三角形,∴∠PEA =90°,∴∠CEA =135°.又∵△CPB≌△CEA,∴∠BPC =∠CEA=135°.14. 如图,将等腰△ABC 绕顶点B 逆时针方向旋转α到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.①求证:△BCF ≌△BA 1D ;②当∠C =α时,断定四边形A 1BCE 的形状并说明理由.解:①证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C.由旋转性质得A1B =AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,∴△BCF≌△BA1D(ASA).②四边形A1BCE是菱形.理由:∵∠A1=∠A,∠ADE=∠A1DB,∴∠AED=∠A1BD =α,∴∠DEC=180°-α.∵∠C=α,∴∠A1=α,∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,∴∠A1=∠C,∠A1BC=∠A1EC.∴四边形A1BCE是平行四边形.∵A1B=BC,∴四边形A1BCE是菱形.。

2021年中考数学真题 图形的旋转(共50题)-(原卷版)

2021年中考数学真题 图形的旋转(共50题)-(原卷版)

21图形的旋转(共50题)一、单选题1.(2021·湖南永州市·中考真题)如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是()A.B.C.D.2.(2021·四川广安市·中考真题)如图,将ABC绕点A逆时针旋转55︒得到ADE,若70∠=︒且AD BCE⊥于点F,则BAC∠的度数为()A.65︒B.70︒C.75︒D.80︒3.(2021·江苏苏州市·中考真题)如图,在方格纸中,将Rt AOB△绕点B按顺时针方向旋转90°后得到Rt A O B''△,则下列四个图形中正确的是()A.B.C.D.4.(2021·天津中考真题)如图,在ABC中,120BAC∠=︒,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.ABC ADC+==C.DE DC BC ∠=∠B.CB CDD.AB CD∥5.(2021·湖南邵阳市·中考真题)如图,在AOB 中,1AO =,32BO AB ==.将AOB 绕点O 逆时针方向旋转90︒,得到A OB ''△,连接AA '.则线段AA '的长为( )A .1 BC .32D 6.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2-B .()202120212,2C .()202020202,2D .()201120212,2-7.(2021·浙江衢州市·中考真题)如图.将菱形ABCD 绕点A 逆时针旋转α∠得到菱形'''ABC D ,B β∠=∠.当AC 平分''B AC ∠时,α∠与β∠满足的数量关系是( )A .2αβ∠=∠B .23αβ∠=∠C .4180αβ∠+∠=︒D .32180αβ∠+∠=︒8.(2021·山东聊城市·中考真题)如图,在直角坐标系中,点A ,B 的坐标为A (0,2),B (﹣1,0),将△ABO 绕点O 按顺时针旋转得到△A 1B 1O ,若AB △OB 1,则点A 1的坐标为( )A .(55)B .(55) C .(24,33)D .(48,55)9.(2021·河南中考真题)如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x轴的正半轴上,延长BA 交y 轴于点D .将ODA 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D 落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .0) B . C .1,0)+ D .1,0)+10.(2021·黑龙江大庆市·中考真题)如图,F 是线段CD 上除端点外的一点,将ADF 绕正方形ABCD 的顶点A 顺时针旋转90︒,得到ABE △.连接EF 交AB 于点H .下列结论正确的是( )A .120EAF ∠=︒B .:AE EF =C .2AF EH EF =⋅D .::EB AD EH HF =11.(2021·湖北黄石市·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C的坐标是( )A .()2,3-B .()2,3-C .()2,2-D .()3,2-12.(2021·山东泰安市·中考真题)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .C .3D .313.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABCS =;△当点D 与点C重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A .△△△B .△△△C .△△△△D .△△△二、填空题14.(2021·贵州铜仁市·中考真题)如图,将边长为1的正方形ABCD 绕点A 顺时针旋转30到111AB C D 的位置,则阴影部分的面积是______________;15.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.16.(2021·湖南中考真题)如图,RtABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB '△的面积之比等于_______.17.(2021·江苏苏州市·中考真题)如图,射线OM、ON互相垂直,8OA=,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,5AB=.将线段AB绕点O按逆时针方向旋转得到对应线段A B'',若点B'恰好落在射线ON上,则点A'到射线ON的距离d≈______.18.(2021·广西玉林市·中考真题)如图、在正六边形ABCDEF中,连接线AD,AE,AC,DF,DB,AC与BD交于点M,AE与DF交于点为N,MN与AD交于点O,分别延长△AB,DC于点G,设3AB=.有以下结论:△MN AD⊥;△MN=△DAG 的重心、内心及外心均是点M;△四边形FACD绕点O逆时针旋转30与四边形ABDE重合.则所有正确结论的序号是______.19.(2021·上海中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O ,在正方形外有一点,2P OP =,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的取值范围为__________.20.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.21.(2021·新疆中考真题)如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE △按逆时针方向旋转得DCF ,连接EF ,分別交BD ,CD于点M ,N .若25AE DN =,则sin EDM ∠=__________.22.(2021·湖北随州市·中考真题)如图,在RtABC 中,90C ∠=︒,30ABC ∠=︒,BC =将ABC 绕点A 逆时针旋转角α(0180α︒<<︒)得到AB C ''△,并使点C '落在AB 边上,则点B 所经过的路径长为______.(结果保留π)23.(2021·湖南怀化市·中考真题)如图,在平面直角坐标系中,已知(2,1)A -,(1,4)B -,(1,1)C -,将ABC 先向右平移3个单位长度得到111A B C △,再绕1C 顺时针方向旋转90︒得到221A B C △,则2A 的坐标是____________.24.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.25.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐..标.为______.26.(2021·青海中考真题)如图所示的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合,若每个叶片的面积为4cm 2,△AOB =120°,则图中阴影部分的面积为__________.27.(2021·山东枣庄市·中考真题)如图,在平面直角坐标系xOy 中,△A′B′C′由△ABC 绕点P 旋转得到,则点P 的坐标为_______.三、解答题28.(2021·四川成都市·中考真题)在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.29.(2021·广西贵港市·中考真题)已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.30.(2021·黑龙江鹤岗市·中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点坐标分别为()()()1,3,4,3,00,0A B --.(1)画出ABO 关于x 轴对称的11A B O ,并写出点1A 的坐标; (2)画出ABO 绕点O 顺时针旋转90︒后得到的22A B O ,并写出点2A 的坐标; (3)在(2)的条件下,求点A 旋转到点2A 所经过的路径长(结果保留π).31.(2021·内蒙古通辽市·中考真题)已知AOB和MON△都是等腰直角三角形2OA OM OA⎛⎫<<⎪ ⎪⎝⎭,90AOB MON∠=∠=︒.(1)如图1,连接AM,BN,求证:AM BN=;(2)将MON△绕点O顺时针旋转.△如图2,当点M恰好在AB边上时,求证:2222AM BM OM+=;△当点A,M,N在同一条直线上时,若4OA=,3OM=,请直接写出线段AM的长.32.(2021·辽宁本溪市·中考真题)在△ABCD中,=BADα,DE平分ADC∠,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转12α得线段EP.(1)如图1,当=120α︒时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当=90α︒时,过点B作BF EP⊥于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当=120α︒时,连接AP,若1=2BE AB,请直接写出APE与CDG面积的比值.33.(2021·黑龙江齐齐哈尔市·中考真题)综合与实践数学实践活动,是一种非常有效的学习方式.通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思推空间,丰富数学体验.让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)EAF∠=_________︒,写出图中两个等腰三角形:_________(不需要添加字母);转一转:将图1中的EAF∠绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为_________;(3)连接正方形对角线BD ,若图2中的PAQ ∠的边AP 、AQ 分别交对角线BD 于点M 、点N .如图3,则CQ BM=________; 剪一剪:将图3中的正方形纸片沿对角线BD 剪开,如图4.(4)求证:222BM DN MN +=.34.(2021·湖北宜昌市·中考真题)如图,在矩形ABCD 中,E 是边AB 上一点,BE BC =,EF CD ⊥,垂足为F .将四边形CBEF 绕点C 顺时针旋转()090αα︒<<︒,得到四边形CB E F '''.B E ''所在的直线分别交直线BC 于点G ,交直线AD 于点P ,交CD 于点K .E F ''所在的直线分别交直线BC 于点H ,交直线AD 于点Q ,连接B F ''交CD 于点O .(1)如图1,求证:四边形BEFC 是正方形;(2)如图2,当点Q 和点D 重合时.△求证:GC DC =;△若1OK =,2CO =,求线段GP 的长;(3)如图3,若//BM F B ''交GP 于点M ,1tan 2G ∠=,求'GMB CF H S S △△的值.35.(2021·湖南娄底市·中考真题)如图△,E F 、是等腰Rt ABC 的斜边BC 上的两动点,45,EAF CD BC ∠=︒⊥且CD BE =.(1)求证:ABE ACD △≌△;(2)求证:222EF BE CF =+;(3)如图△,作AH BC ⊥,垂足为H ,设,EAH FAH αβ∠=∠=,不妨设AB =,请利用(2)的结论证明:当45αβ+=︒时,tan tan tan()1tan tan αβαβαβ++=-⋅成立. 36.(2021·江苏盐城市·中考真题)学习了图形的旋转之后,小明知道,将点P 绕着某定点A 顺时针旋转一定的角度α,能得到一个新的点P '.经过进一步探究,小明发现,当上述点P 在某函数图像上运动时,点P '也随之运动,并且点P '的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A 的坐标和角度α的大小来解决相关问题.(初步感知)如图1,设(1,1)A ,90α=︒,点P 是一次函数y kx b =+图像上的动点,已知该一次函数的图像经过点1(1,1)P -.(1)点1P 旋转后,得到的点1P '的坐标为________;(2)若点P '的运动轨迹经过点2(2,1)P ',求原一次函数的表达式.(深入感悟)(3)如图2,设(0,0)A ,45α=︒,点P 反比例函数1(0)y x x =-<的图像上的动点,过点P '作二、四象限角平分线的垂线,垂足为M ,求OMP '的面积.(灵活运用)(4)如图3,设A (1,,60α=︒,点P 是二次函数2172y x =++图像上的动点,已知点(2,0)B 、(3,0)C ,试探究BCP '△的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.37.(2021·江苏常州市·中考真题)在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M -、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)△如图,在点()2,0B 、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”);△若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______; (2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围; (3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.38.(2021·黑龙江中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO ∆的三个顶点分别为()()1,3,4,3,A B O --()0,0.(1)画出ABO ∆关于x 轴对称的11A B O ∆,并写出点1B 的坐标;(2)画出ABO ∆绕点O 顺时针旋转90︒后得到的22B O ∆A ,并写出点2B 的坐标; (3)在(2)的条件下,求点B 旋转到点2B 所经过的路径长(结果保留π). 39.(2021·黑龙江绥化市·中考真题)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系的原点,矩形OABC 的4个顶点均在格点上,连接对角线OB .(1)在平面直角坐标系内,以原点O 为位似中心,把OAB 缩小,作出它的位似图形,并且使所作的位似图形与OAB 的相似比等于12; (2)将OAB 以O 为旋转中心,逆时针旋转90 ,得到11OA B ,作出11OA B ,并求出线段OB 旋转过程中所形成扇形的周长.40.(2021·江苏宿迁市·中考真题)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)如图△,连接BG 、CF ,求CFBG 的值;(2)当正方形AEFG 旋转至图△位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.41.(2021·湖南中考真题)如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .△证明:在点H 的运动过程中,总有90HFG ∠=︒;△若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?42.(2021·湖南岳阳市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转()60120αα︒<<︒得到线段ED ,且ED 交线段BC 于点G ,CDE ∠的平分线DM 交BC 于点H .(1)如图1,若90α=︒,则线段ED 与BD 的数量关系是________,GD CD=________; (2)如图2,在(1)的条件下,过点C 作//CF DE 交DM 于点F ,连接EF ,BE .△试判断四边形CDEF 的形状,并说明理由;△求证:3BE FH =; (3)如图3,若2AC =,()tan 60m α-︒=,过点C 作//CF DE 交DM 于点F ,连接EF ,BE ,请直接写出BEFH 的值(用含m 的式子表示).43.(2021·湖南衡阳市·中考真题)如图,点E 为正方形ABCD 外一点,90AEB =︒∠,将Rt ABE △绕A 点逆时针方向旋转90︒得到,ADF DF 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由;(2)已知7,13BH BC ==,求DH 的长.44.(2021·四川达州市·中考真题)如图,在平面直角坐标中,ABC ∆的顶点坐标分别是()0,4A ,()0,2B ,()3,2C .(1)将ABC ∆以О为旋转中心旋转180︒,画出旋转后对应的111A B C ∆; (2)将ABC ∆平移后得到222A B C ∆,若点A 的对应点2A 的坐标为()2,2,求112AC C ∆的面积45.(2021·北京中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明;(2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明.46.(2021·北京中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于点A和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.47.(2021·四川资阳市·中考真题)已知,在ABC 中,90,BAC AB AC ∠=︒=.(1)如图1,已知点D 在BC 边上,90,DAE AD AE ∠=︒=,连结CE .试探究BD 与CE 的关系;(2)如图2,已知点D 在BC 下方,90,DAE AD AE ∠=︒=,连结CE .若BD AD ⊥,AB =,2CE =,AD 交BC 于点F ,求AF 的长;(3)如图3,已知点D 在BC 下方,连结AD 、BD 、CD .若30CBD ∠=︒,15BAD ∠>︒,26AB =,24AD =+sin BCD ∠的值.48.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.49.(2021·四川眉山市·中考真题)如图,在等腰直角三角形ABC中,90∠=︒,ACB==边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.AC BC(1)求证:≌ACD BCE;(2)当点D在ABC内部,且90∠=︒时,设AC与DG相交于点M,求AM的ADC长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.50.(2021·重庆中考真题)在ABC中,AB AC=,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得180∠+∠=︒.DAE BAC(1)如图1,当90BAC∠=︒时,连接BE,交AC于点F.若BE平分ABC∠,2BD=,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若120BAC∠=︒,当BD CD>,150AEC∠=︒时,请直接写出BD DGCE-的值.。

旋转专题训练(中考数学)

旋转专题训练(中考数学)

旋转一.选择题(共10小题)1.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.42.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半3.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.4.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1B.2C.3D.45.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.6.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.7.如图所示的各组图形中,表示平移关系的是()A.B.C.D.8.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.9.下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪10.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OF A 的度数是()A.20°B.25°C.30°D.35°二.填空题(共10小题)11.如图,在棋盘中建立直角坐标系xOy,三颗棋子A,O,B的位置分别是(0,1),(0,0)和(1,﹣1).如果在其它格点位置添加一颗棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请写出所有满足条件的棋子C的位置的坐标:.12.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.13.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.14.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.15.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.16.从3点整开始,分针至少顺时针旋转度才能与时针重合.17.如图,在矩形ABCD中,AB=8,BC=6,E为AD上一点,将△BAE绕点B顺时针旋转得到△BA′E′,当点A′,E′分别落在BD,CD上时,则DE的长为.18.把一个正五边形绕着它的中心旋转,至少旋转度,才能与原来的图形重合.19.在平面直角坐标系xOy中,若点B与点A(﹣2,3)关于点O中心对称,则点B的坐标为.20.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.三.解答题(共10小题)21.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)22.如图是由5个同样的小正方形所组成的,请再补上一个同样的小正方形,使6个小正方形组成的图形成为一个轴对称图形,请至少画出三种方法.23.在4×4的方格中有五个同样大小的正方形如图1摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,请在下面网格中(图2至图5)画出四种互不全等的新图形.24.图1,图2,图3是在4×4的网格中有七个小正方形被涂黑,请你用三种不同的方法,在图1,图2,图3中分别涂黑三个小正方形,使整个图形成为轴对称图形(涂黑后的三个阴影部分图形不全等)25.如图,经过平移,小船上的A点到了点B.(1)请画出平移后的小船.(2)该小船向平移了格,向平移了格.26.按要求画图:(1)如图(1)所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.(2)如图(2)过点P分别画直线m、n的垂线.27.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.28.如图是由边长为1的小正方形构成的格点图形,A、B、C在格点上,将三角形ABC向右平移3个单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1;(2)求线段AB在变换到A1B1过程中扫过的区域面积(重叠部分不重复计算).29.如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC 与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.30.如图,正方形ABCD边长为2cm,以各边中心为圆心,1cm为半径依次作圆,将正方形分成四部分.(1)这个图形旋转对称图形(填“是”或“不是”);若是,则旋转中心是点,最小旋转角是度.(2)求图形OBC的周长和面积.旋转参考答案与试题解析一.选择题(共10小题)1.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.2.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.3.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.4.【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.5.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是D.【解答】解:可看作图案的某一部分经过平移所形成的是D选项所示图形,故选:D.6.【分析】根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.【解答】解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.7.【分析】根据平移、旋转、对称的定义即可判断【解答】解:A、表示对称关系.B、表示旋转关系.C、表示旋转关系.D、表示平移关系.故选:D.8.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.9.【分析】根据旋转的定义分别判断得出即可.【解答】解:A、在空中上升的氢气球是平移,故此选项错误;B、飞驰的火车投是平移,故此选项错误;C、时钟上钟摆的摆动,属于旋转,故此选项正确;D、运动员掷出的标枪传是平移,故此选项错误.故选:C.10.【分析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC =90°,再根据等腰三角形的性质可求∠OF A的度数.【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OF A=25°故选:B.二.填空题(共10小题)11.【分析】根据轴对称的概念求解可得.【解答】解:如图所示,棋子C的位置为(﹣1,﹣1)或(2,﹣1)或(1,2)或(﹣1,0),故答案为:(﹣1,﹣1)或(2,﹣1)或(1,2)或(﹣1,0).12.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故答案为:513.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.14.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.15.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.16.【分析】设分针顺时针旋转xmin才能与时针重合,根据分针和时针间角度关系得出方程6x=90+0.5x,解之可得.【解答】解:设分针顺时针旋转xmin才能与时针重合,∵分针旋转速度为6°/min,时针旋转的速度为0.5°/min,∴6x=90+0.5x,解得:x=,则分针旋转的度数为6×=度,故答案为:.17.【分析】根据勾股定理可求BD=10,由旋转的性质可得AE=A'E,AB=A'B=8,∠BA'E'=90°,由△BCD∽△E'A'D,可得,可得A'E'=AE=,即可求DE的长.【解答】解:∵四边形ABCD是矩形∴∠DAB=∠C=90°,AD=BC=6,AB=CD=8,∴BD==10,∵将△BAE绕点B顺时针旋转得到△BA′E′,∴AE=A'E,AB=A'B=8,∠BA'E'=90°∴A'D=BD﹣BA'=2,∵∠BDC=∠BDC,∠DA'E'=∠C=90°,∴△BCD∽△E'A'D∴即∴A'E'==AE∴DE=AD﹣AE=故答案为18.【分析】根据旋转的性质,最小旋转角即为正五边形的中心角.【解答】解:∵正五边形被半径分为5个全等的三角形,且每个三角形的顶角为72°,正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是72°.故答案为:72.19.【分析】直接利用关于原点对称点的特点得出答案.【解答】解:∵点A(﹣2,3)与点A关于原点O中心对称,∴点B的坐标为:(2,﹣3).故答案为:(2,﹣3).20.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故答案为:③.三.解答题(共10小题)21.【分析】根据轴对称定义及特点拼图即可.【解答】解:如图所示.22.【分析】利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.23.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示:.24.【分析】根据轴对称的定义添加合适的小正方体即可得.【解答】解:如图所示.25.【分析】(1)将所给图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可数出.【解答】解:(1)如图所示,(2)由图形可知,该小船向下平移了4格、向左平移了3格,故答案为:下、4、左、3.26.【分析】(1)根据平移的性质作图;(2)利用尺规作图作出直线m、n的垂线.【解答】解:(1)如图(1):(2)如图(2):a⊥n,b⊥m.27.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格结合火炬形状进而得出答案.【解答】解:(1)如图所示:(2)一个火炬图案的面积为:9+×3+(4﹣1﹣×1×2﹣×1×2)=11.5.28.【分析】(1)将点A、B、C分别向右平移3个单位,再向上平移2个单位得到对应点,再顺次连接可得;(2)根据扫过的区域面积=+,据此列式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)线段AB在变换到A 1B1过程中扫过的区域面积=+=3×2+×1×2=7.29.【分析】(1)由旋转的性质可得AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC =30°,由等腰三角形的性质可求解;(2)由旋转的性质和等腰三角形的性质可得∠ABC'=,∠ACB'=,由三角形的外角性质可得∠AEF==∠ACB',即可得BC'∥CB'.【解答】解:(1)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC=30°,∴∠BAC'=100°,且AB=AC',∴∠ABC'=40°,∵∠CAB'=∠CAC'﹣∠B'AC'=40°,且AC=AB'∴∠ACB'=70°故答案为40,70(2)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=α,∠B'AC'=∠BAC=30°,∴∠BAC'=30°+α,∠CAB'=α﹣30°,且AB=AC=AB'=AC',∴∠ABC'=,∠ACB'=∵∠AEF=∠ABE+∠BAC∴∠AEF=∴∠AEF=∠ACB',∴BC'∥B'C30.【分析】(1)旋转对称图形的定义,结合图形即可作出判断;(2)图形OBC的周长为BC+圆的周长,面积=S正方形ABCD.【解答】解:(1)这个图形是旋转对称图形,旋转中心是点O,最小旋转角为90°.(2)图形OBC的周长=BC+圆的周长=2+π;面积=S正方形ABCD=×4=1cm2.。

中考数学专题训练:图形的对称、平移与旋转(附参考答案)

中考数学专题训练:图形的对称、平移与旋转(附参考答案)

中考数学专题训练:图形的对称、平移与旋转(附参考答案)1.下列图形:其中轴对称图形的个数是( )A.4 B.3C.2 D.12.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y 轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( )A.(6,2) B.(-6,-2)C.(2,6) D.(2,-6)3.如图是用七巧板拼成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左、下、右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2 B.3C.4 D.54.在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步:将图1中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图2.根据以上的操作,若AB=8,AD=12,则线段BM的长是( )A.3 B.√5C.2 D.15.如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图1将纸片对折,使AB与DC重合,折痕为EF,展开后如图2;第二步,再将图2中的纸片沿对角线BD折叠,展开后如图3;第三步,将图3中的纸片沿过点E的直线折叠,使点C落在对角线上的点H处,如图4.则DH的长为( )A.32B.85C.53D.956.在平面直角坐标系中,把点P(-3,2)向右平移2个单位长度后,得到对应点的坐标是( )A.(-5,2) B.(-1,4)C.(-3,4) D.(-1,2)7.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移,平移后点A′的横坐标为4√3,则点B′的坐标为( )A.(-6√3,2) B.(6√3,-2√3)C.(6,-2) D.(6√3,-2)8.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移的距离为6,则阴影部分的面积为( )A.24 B.40C.42 D.4810.如图,△ABC沿BC方向平移后的图形为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2C.3 D.411.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D12.如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为( )A.αB.α-45°C.45°-αD.90°-α13.如图,将直角三角尺ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′的度数为( )A.90°B.60°C.45°D.30°14.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,∠BCD的度数为________.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为____________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为______________.18.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______________________.参考答案1.B2.A3.B4.C5.D6.D7.D8.B9.D 10.C 11.B 12.C 13.B 14.C15.33° 16.(7,0) 17.(7,4) 18.90°或180°或270°。

中考数学总复习之图形的旋转综合训练(30题)

中考数学总复习之图形的旋转综合训练(30题)

中考数学总复习之图形的旋转综合训练(30题)1.如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.2.如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接F A,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.3.如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.4.如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.(1)求证:四边形MEB1N是平行四边形;(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E 是否全等,并说明理由.5.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.(1)求证:BD=CE,BD⊥CE;(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.6.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G,G关于y轴的对称图形为G1,关于x轴的对称图形为G2.则将图形G1绕点顺时针旋转度,可以得到图形G2.(2)在图2中分别画出G关于y轴和直线y=x+1的对称图形G1,G2.将图形G1绕点(用坐标表示)顺时针旋转度,可以得到图形G2.(3)综上,如图3,直线l1:y=﹣2x+2和l2:y=x所夹锐角为α,如果图形G关于直线l1的对称图形为G1,关于直线l2的对称图形为G2,那么将图形G1绕点(用坐标表示)顺时针旋转度(用α表示),可以得到图形G2.7.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.8.如图,是边长为1的小正方形组成的8×8方格,线段AB的端点在格点上.建立平面直角坐标系,使点A、B的坐标分别为(2,1)和(﹣1,3).(1)画出该平面直角坐标系xOy;(2)画出线段AB关于原点O成中心对称的线段A1B1;(3)画出以点A、B、O为其中三个顶点的平行四边形.(画出一个即可)9.如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.10.如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).11.如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.12.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.13.如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的.14.如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.15.数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形)16.如图,在△ABC中,,D,E,F分别为AC,AB,BC的中点,连接DE,DF.(1)如图1,求证:;(2)如图2,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;(3)如图3,在(2)的条件下,当DP⊥AB时,求DN的长.17.在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC 重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.(1)如图①,当α=20°时,∠AEB的度数是;(2)如图②,当0°<α<90°时,求证:BD+2CE=AE;(3)当0°<α<180°,AE=2CE时,请直接写出的值.18.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.19.【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA 上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.20.在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.21.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.22.在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.23.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点O在线段AB上(点O不与点A,B重合),且OB=kOA,点M是AC延长线上的一点,作射线OM,将射线OM绕点O 逆时针旋转90°,交射线CB于点N.(1)如图1,当k=1时,判断线段OM与ON的数量关系,并说明理由;(2)如图2,当k>1时,判断线段OM与ON的数量关系(用含k的式子表示),并证明;(3)点P在射线BC上,若∠BON=15°,PN=kAM(k≠1),且<,请直接写出的值(用含k的式子表示).24.如图,在△ABC中,AB=AC,∠BAC=120°,点D在直线AC上,连接BD,将DB 绕点D逆时针旋转120°,得到线段DE,连接BE,CE.(1)求证:BC=AB;(2)当点D在线段AC上(点D不与点A,C重合)时,求的值;(3)过点A作AN∥DE交BD于点N,若AD=2CD,请直接写出的值.25.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.26.如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D 重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).27.如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE 交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.28.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC =150°时,请直接写出的值.29.在△ABC中,AB=AC,△CDE中,CE=CD(CE≥CA),BC=CD,∠D=α,∠ACB+∠ECD=180°,点B,C,E不共线,点P为直线DE上一点,且PB=PD.(1)如图1,点D在线段BC延长线上,则∠ECD=,∠ABP=(用含α的代数式表示);(2)如图2,点A,E在直线BC同侧,求证:BP平分∠ABC;(3)若∠ABC=60°,BC=+1,将图3中的△CDE绕点C按顺时针方向旋转,当BP⊥DE时,直线PC交BD于点G,点M是PD中点,请直接写出GM的长.30.如图,在△ABC中,AB=AC,∠BAC=α(0°<α<180°),过点A作射线AM交射线BC于点D,将AM绕点A逆时针旋转α得到AN,过点C作CF∥AM交直线AN于点F,在AM上取点E,使∠AEB=∠ACB.(1)当AM与线段BC相交时,①如图1,当α=60°时,线段AE,CE和CF之间的数量关系为.②如图2,当α=90°时,写出线段AE,CE和CF之间的数量关系,并说明理由.(2)当tanα=,AB=5时,若△CDE是直角三角形,直接写出AF的长.。

中考数学 旋转综合试题含详细答案

中考数学 旋转综合试题含详细答案

一、旋转真题与模拟题分类汇编(难题易错题)1.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.2.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S△BCE=12EC•BE=12(4﹣12t)(t+2)=﹣14t2+32t+4;S△ABC=12•AB•AC=12216t+21162t+14t2+4,∴S=S△BEC+S△ABC=32t+8.当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即1 2t=4,t=8,∴S与t之间的函数关系式为:S=32t+8(0≤t≤8);(III)如图1,易得△ABO∽△CAF,∴ABAC=OBAF=OAFC=2,∴AF=2,CF=12t,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.3.如图1,ABCD 和AEFG 是两个能完全重合的平行四边形,现从AB 与AE 重合时开始,将ABCD 固定不动,AEFG 绕点A 逆时针旋转,旋转角为α(0°<α<360°),AB=a,BC=2a ;并发现:如图2,当AEFG 旋转到点E 落在AD 上时,FE 的延长线恰好通过点C .探究一:(1)在图2的情形下,求旋转角α的度数;探究二:(2)如图3,当AEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM,DF,请你判断四边形CDFM的形状,并给予证明;探究三:(3)如图1,连接CF,BF,在旋转过程中△BCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1)α=120°;(2)四边形CDFM是菱形,证明见解析;(3)存在△BCF的面积a2.最大的情形,S△BCF =2【解析】试题分析:(1)由平行四边形的性质知∠D=∠B,AB=CD=a,可得∠D=∠DEC,由等角对等边知CD=CE,由AE=AB=a,AD=BC=2a,可得DE=CE,即可证得△CDE是等边三角形,∠D=60°,由两直线平行,同位角相等可得∠DAB=120°,即可求得α;(2)由旋转的性质以及∠B=60°,可得△ABE是等边三角形,由平行线的判定以及两组对边分别平行的四边形是平行四边形可证四边形ABEM是平行四边形,再由由一组邻边相等的平行四边形是菱形即可得证;(3)当点F到BC的距离最大时,△BCF的面积最大,由于点F始终在以A为圆心AF为半径的圆上运动,故当FG与⊙A相切时,点F到BC的距离最大,过点A作AH⊥BC于点H,连接AF,由题意知∠AFG=90°.由∠ABH=∠G=60°,AB=a,AG=2a,可得AH、AF的值.可求得点F到BC的最大距离.进而求得S△BCF的值.试题解析:(1)∵四边形ABCD是平行四边形,∴∠D=∠B,AB=CD=a,∵∠AEF=∠B,∠AEF=∠DEC,∴∠D=∠DEC,∴CD=CE,∵AE=AB=a,AD=BC=2a,∴DE=CE.,∴CD=CE=DE,∴△CDE是等边三角形,∴∠D=60°,∵CD∥AB,∴∠D+∠DAB=180°,∴∠DAB=120°,∴α=120°.;(2)四边形CDFM是菱形.证明:由旋转可得AB=AE,∵∠B=60°,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAG=∠BAE+∠GAE=60°+120°=180°,∴点G,A,B在同一条直线上,∴ME ∥AB,BE∥AM,∴四边形ABEM是平行四边形,∴AM=AB=ME,∴CD=DM=MF,∵CD ∥AB∥MF,∴四边形CDFM是平行四边形,∵∠D= 60°,CD=DM,∴△CDM是等边三角形,∴CD=DM,∴四边形CDFM是菱形;(3)存在△BCF的面积最大的情形.∵CB的长度不变,∴当点F到BC的距离最大时,△BCF的面积最大.∵点F始终在以A为圆心AF为半径的圆上运动,∴当FG与⊙A相切时,点F到BC的距离最大,如图,过点A作AH⊥BC于点H,连接AF,则∠AFG=90°.∵∠ABH=∠G=60°,AB=a,AG=2a,∴AH=AB×sin60°=32a,AF=AG×sin60°3 a.∴点F到BC3333∴S△BCF=123333a2.点睛:此题考查了旋转的洗澡那个会、平行四边形的判定和性质、菱形的判定和性质,三角形的面积的求法,关键是运用旋转前后,图形的对应边相等、对应角相等的性质解题.4.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.【解析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=12x2-3x+9,根据△GKH的面积恰好等于△ABC面积的512,代入得出方程12x2-3x+9=512×12×6×6,求出即可.解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的512的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,∴S△CHK=12CH×CK=3x﹣12x2,∴S△GHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣12x2)=12x2﹣3x+9,∵△GKH的面积恰好等于△ABC面积的512,∴12x2﹣3x+9=512×12×6×6,解得136x=+,236x=-(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的512的位置,此时x的值为36±.“点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.6.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC2=10332.【解析】【分析】(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB =CD,即可解题.(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC == 【详解】(1)解:∵CD ∥AB ,∴∠C =∠B ,在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABP ≌△DCP (SAS ),∴DC =AB .∵AB =200米.∴CD =200米,故答案为:200.(2)①P C 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图1,延长EP 交BC 于F ,同(1)理,可知∴△FBP ≌△EDP (SAS ),∴PF =PE ,BF =DE ,又∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵EP =FP ,∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE ,∴BF =AE ,∵当α=90°时,∠EAC =90°,∴ED ∥AC ,EA ∥BC∵FB ∥AC ,∠FBC =90,∴∠CBF =∠CAE ,在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△EAC (SAS ),∴CF =CE ,∠FCB =∠ECA ,∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形,∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =22CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1,∴HE =12,AH =3, 又∵AC =AB =3, ∴CH =3+3, ∴EC 2=CH 2+HE 2=1033+∴PC 2=2110332EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.7.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ3033430334S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ3033430334S -+≤≤ 详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC 中,有222AD AC DC =+, ∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB ≌.②由ADB AOB ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC 中,有222AH AC HC =+,∴()22235t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17,35⎛⎫ ⎪⎝⎭.(Ⅲ3033430334S -+≤≤ 点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.8.如图1,直线DE 上有一点O ,过点O 在直线DE 上方作射线OC ,∠COE =140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)【答案】(1)∠BOC=70°;(2)存在,t=2,t=8或32;(3)12或372.【解析】【分析】(1)由图可知∠BOC=∠AOB﹣∠AOC,∠AOC可利用角平分线及平角的定义求出.(2)分OA平分∠COD,OC平分∠AOD,OD平分∠AOC三种情况分别进行讨论,建立关于t的方程,解方程即可.(3)分别用含t的代数式表示出∠COD和∠BOD,再根据OC平分∠BOD建立方程解方程即可,注意分情况讨论.【详解】(1)解:∵∠COE=140°,∴∠COD=180°﹣∠COE=40°,又∵OA平分∠COD,∴∠AOC=12∠COD=20°,∵∠AOB=90°,∴∠BOC=90°﹣∠AOC=70°;(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;(3)12或372,理由如下:设运动时间为t,则有①当90+10t=2(40+15t)时,t=1 2②当270﹣10t=2(320﹣15t)时,t=37 2所以t的值为12或372.【点睛】本题主要考查角平分线的定义以及图形的旋转,根据题意,找到两个角之间的等量关系建立方程并分情况讨论是解题的关键.。

中考数学 复习 《图形的旋转》练习题(含答案)

中考数学 复习 《图形的旋转》练习题(含答案)

中考复习每日一练第三十讲《图形的旋转》一.选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,四边形AOBC绕点O顺时针方向旋转得到四边形DOEF,下列说法正确的是()A.旋转角是∠BODB.AO=EOC.若连接CO,FO,则CO=FOD.四边形AOBC和四边形DOEF可能不全等3.若点M(2,b﹣3)关于原点对称点N的坐标是(﹣3﹣a,2),则a,b的值为()A.a=﹣1,b=1 B.a=1,b=﹣1 C.a=1,b=1 D.a=﹣1,b=﹣14.已知点A(﹣1,),O为坐标原点,连结OA.将线段OA绕点O按逆时针方向旋转30°得到线段OA′,则点A′的坐标为()A.(1,﹣)B.(﹣2,)C.(﹣,2)D.(﹣,1)5.如图,将△ABC绕点A顺时针旋转,得到△ADE,且点D在AC上,下列说法错误的是()A.AC平分∠BAE B.AB=AD C.BC∥AE D.BC=DE6.如图,将△ABC绕点C(0,)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣) C.(﹣a,﹣b+) D.(﹣a,﹣b+2)7.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.18.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BD C的度数为()A.15°B.20°C.25°D.30°9.已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为()A.(6,8)B.(﹣6,8)C.(﹣6,﹣8)D.(6,﹣8)10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,其中有:①AC=AD;②AB⊥EB;③BC=DE;④∠A=∠EBC,四个结论,则结论一定正确的有()个.A.1个B.2个C.3个D.4个二.填空题11.如图,将Rt△ABC绕着直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠CA'B'=25°,则∠BAA'=度.12.如图,在△ADE中,∠DAE=80°,将△ADE绕点A顺时针旋转α得△ABC,若AC平分∠DAE,则α=;若AC平分∠BAE,则α=.13.如图,A点的坐标为(0,4),B点的坐标为(4,2),C点的坐标为(6,2),D点的坐标为(4,﹣2),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是.14.在△ABC中∠ACB=45°,,BC=12,以AB为直角边、A为直角顶点作等腰直角三角形ABD,则CD=.15.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是度.16.如图,△AOB中,∠AOB=90°,AO=6,BO=8,将△AOB绕顶点O逆时针旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则△OBB1的面积为.17.如图,在直角坐标系中,点A(0,4),B(﹣3,0),C是线段AB的中点,D为x轴上一个动点,以AD 为直角边作等腰直角△ADE(点A,D,E以顺时针方向排列),其中∠DAE=90°,则点E的横坐标等于,连结CE,当CE达到最小值时,DE的长为.18.如图,△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),将△ABC关于y轴轴对称变换得到△A1B1C1,再将△A1B1C1关于直线x=2(即过(2,0)垂直于x轴的直线)轴对称变换得到△A2B2C2,再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4…,按此规律继续变换下去,则点A10的坐标为.三.解答题19.在正方形网格图中,若每个小正方形的边长是1,△A 1B 1C 1与△ABC 关于点O 对称.(1)画出△A 1B 1C 1.(2)A 1B 1与AB 的位置关系是 .(3)点P 在直线CO 上,BP +AP 的最小值是 .20.如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D 1第二步:点D 1绕点B 顺时针旋转90°得到点D 2;第三步:点D 2绕点C 顺时针旋转90°回到点D ;(1)请用圆规画出点D →D 1→D 2→D 经过的路径;(2)所画图形是 对称图形;(3)写出所画图形的周长和所画图形围成的面积.(结果保留π)周长:面积:21.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(﹣6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N 是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.22.实验探究:如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,交于BD、CE点P.【问题发现】(1)把△ABC绕点A旋转到图1,BD、CE的关系是(“相等”或“不相等”),请直接写出答案;【类比探究】(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图中作出旋转后的图形,并求出此时PD的长;【拓展延伸】(3)在(2)的条件下,请直接写出旋转过程中线段PD的最小值为.23.【材料阅读】我们曾解决过课本中的这样一道题目:如图1,四边形ABCD是正方形,E为BC边上一点,延长BA至F,使AF=CE,连接DE,DF.……提炼1:△ECD绕点D顺时针旋转90°得到△FAD;提炼2:△ECD≌△FAD;提炼3:旋转、平移、轴对称是图形全等变换的三种方式.【问题解决】(1)如图2,四边形ABCD是正方形,E为BC边上一点,连接DE,将△CDE沿DE折叠,点C落在G处,EG交AB于点F,连接DF.可得:∠EDF=°;AF,FE,EC三者间的数量关系是.(2)如图3,四边形ABCD的面积为8,AB=AD,∠DAB=∠BCD=90°,连接AC.求AC的长度.(3)如图4,在△ABC中,∠ACB=90°,CA=CB,点D,E在边AB上,∠DCE=45°.写出AD,DE,EB 间的数量关系,并证明.24.阅读材料:如图1,△ABC中,点D,F在边AB上,点E在BC上,BD=BE,∠ADC=α,∠BEF=180°﹣2α,延长CA,EF交于点G,GA=GF,求证AD=EF.分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.①小明的想法是:将BE放到△BEF中,沿等腰△BDE的对称轴进行翻折,即作∠BDH=∠BEF交BC于H (如图2).②小白的想法是:将BD放到△BDC中,沿等腰△BDE的对称轴进行翻折,即作∠BEH=∠BDC交BD的延长线于H(如图3).请你从上述俩种方法中一种或按照自己的方法解决问题;经验拓展:如图4,等边△ABC中,D是AC上一点,连接BD,E为BD上一点,AE=AD,过点C作CF⊥BD 交BD的延长线于点F,∠ECF=60°,若BE=a,DF=b,求DE的长(用含a,b的式子表示).参考答案一.选择题1.解:A、既是中心对称图形,又是轴对称图形.故本选项正确;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:A.2.解:∵四边形AOBC绕点O顺时针方向旋转得到四边形DOEF,∴旋转角是∠AOD,OA=OD,四边形AOBC和四边形DOEF全等,故A、B、D选项错误;若连接CO,FO,则CO=FO,故C选项正确,故选:C.3.解:∵点M(2,b﹣3)关于原点对称点N的坐标是(﹣3﹣a,2),∴2=3+a,b﹣3=﹣2,解得:a=﹣1,b=1.故选:A.4.解:如图,作AH⊥x轴于H,作A′E⊥x轴于E.∵A(﹣1,),∴OH=1,AH=,∴tan∠AOH==,∴∠AOH=60°,∠OAH=30°,∴OA=OA′=2OH=2,∵∠AOA′=30°,∴∠A′OE=30°,∴A′E=OA′=1,OE=A′E=,∴A′(﹣,1),故选:D.5.解:将△ABC绕点A顺时针旋转,得到△ADE,∴∠BAC=∠DAE,AB=AD,BC=DE,故A、B、D选项正确;∵∠C=∠E,但∠C不一定等于∠DAE,∴BC不一定平行于AE,故C选项,错误;故选:C.6.解:设A′(m,n),∵CA=CA′,C(0,),A(a,b),∴∴m=﹣a,n=2﹣b,∴A′(﹣a,2﹣b),故选:D.7.解:∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:.故选:C.8.解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故选:A.9.解:∵|x|=6,|y|=8,∴x=±6,y=±8,∵x<0,y>0,∴x=﹣6,y=8,即点P的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D.10.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①、③错误;∴∠ACD=∠BCE,∴∠A=∠ADC=(180°﹣∠ACD),∠CBE=(180°﹣∠BCE),∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误;故选:A.二.填空题(共8小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=∠BAC=25°,∴∠BAA′=180°﹣65°﹣45°=70°,故答案为:70.12.解:由旋转的性质得:∠BAC=∠DAE=80°,∴∠1=∠2=α,若AC平分∠DAE,则α=∠2=∠DAE=40°;若AC平分∠BAE,则AC与AD重合,α=∠DAE=80°;故答案为:40°;80°.13.解:如图,旋转中心为P(2,0)或(5,5).故答案为(2,0)或(5,5).14.解:将△ACD绕着点A逆时针旋转90°得到△AEB,连接BE,则AE=AC=,∠CAE=∠BAD=90°,BE=CD,∴△ACE是等腰直角三角形,∴∠ACE=45°,EE=AC=5,∵∠ACB=45°,∴∠BCE=90°,∴BE===13,∴BE=CD=13.故答案为:13.15.解:∵三角板是两块大小且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.16.解:∵在△AOB中,∠AOB=90°,AO=6,BO=8,∴AB ==10,∵点D 为AB 的中点,∴OD =AB =2.5cm .∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =8,∴B 1D =OB 1﹣OD =3,过D 作DH ⊥OB 于H ,过B 1A 作B 1G ⊥BC 于G ,∴DH ∥B 1G ,∴△ODH ∽△OB 1G , ∴=, ∵DH ===3, ∴, ∴B 1G =,∴△OBB 1的面积=×8=, 故答案为:.17.解:如图,把线段AC 绕点A 逆时针旋转90°,得到AC ′,连接C ′D ,则C ′为定点(2,),在△ACE 和△AC ′D 中∴△ACE ≌△AC ′D (SAS )∴C ′D =CE .当C′D⊥OD时,C′D最小,CE最小值为,∴OD=2,过E作EG⊥OA于G,EH⊥x轴于H,则四边形EHOG是矩形,∴EG=OH,∵∠AGE=∠AOD=∠EAD=90°,∴∠AEG+∠EAO=∠EAO+∠OAD=90°,∴∠AEG=∠OAD,∵AE=AD,∴△AEG≌△DAO(AAS),∴AG=OD=2,EG=OA=4,∴点E的横坐标等于﹣4,∴EH=OG=2,DH=2+4=6,∴DE==2,故答案为:﹣4,2.18.解:△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),∴BC=5∴A(﹣1.5,2.5)将△ABC关于y轴轴对称变换得到△A1B1C1,∴A1(1.5,2.5)再将△A1B1C1关于直线x=2轴对称变换得到△A2B2C2,∴A2(2.5,2.5)再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,∴A3(5.5,2.5)再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4,∴A4(6.5,2.5)…按此规律继续变换下去,A5(8.5,2.5),A6(9.5,2.5),A7(11.5,2.5)则点A10的坐标为(15.5,2.5),故答案为:(15.5,2.5).三.解答题(共6小题)19.解:(1)如图,△A1B1C1即为所求;(2)观察图形可知:A 1B1∥AB,故答案为:A1B1∥AB;(3)如图,连接A1B,交OC于点P,∵点A与A1关于点O对称,∴PA=PA1∴BP+AP=BP+A1P=BA1==BP+AP的最小值是BA1的长为.故答案为.20.解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.(3)周长=π•4+π•4=8π.面积=4(﹣×4×4)=16π﹣32.故答案为8π,16π﹣32.21.解:(1)∵A(﹣6,0),∴OA=6,∵∠ABO=45°,∠AOB=90°,∴∠OAB=∠OBA=45°,∴OA=OB=6,∵AB,AC关于y轴对称,∴OA=OC=6,∴△ABC的面积=×AC×OB=×12×6.(2)过E作EF⊥x轴于F,延长EA交y轴于H.∵△BDE为等腰直角三角形∴DE=DB,∠BDE=90°∵∠BDE=90°∴∠EDF+∠BDO=90°∵∠BOD=90°∴∠BDO+∠DBO=90°∴∠EDF=∠DBO(同角的余角相等)∵EF⊥X轴∴∠BOF=∠EFD=90°,在△DEF与△BDO中∠EDF=∠DBO∠BOF=∠EFDDE=DB∴△DEF≌△BDO(AAS),∴DF=BO=AO,EF=OD;∴AF=EF,∴∠EAF=45°,∴△AOH为等腰直角三角形.∴OA=OH,∴H(0,﹣6)∴直线EA的解析式为:y=﹣x﹣6;(3)如图3中,作点N关于AF的对称点N′(N′在射线AE上),连接ON′交AF于M.∵OM+MN=OM+MN′=ON′当点N运动时,ON′最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,∵∠OAE=30°,OA=6,∴当ON′⊥AE时,ON′=OA=3,所以OM+NM的值为3.22.解:(1)BD、CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE(SAS)∴BD=CE.故答案为:相等.(2)如图2,3即为旋转后的图形.①如图2,当C在AD上时,由(1)知△ABD≌△ACE,∴∠ADB=∠AEC又∵∠PCD=∠ACE,∴△PCD~△ACE,∴又∵CE===CD=AD﹣AC=5﹣3=2∴,解得;如图3,当C在AD反向延长线上时,同理△PEB~△ABD=∵BD=BE=AE﹣AB=5﹣3=2∴=解得PB=∴PD=DB+PB=+=.答:此时PD的长为或.(3)如图4所示,以点A为圆心,AC长为半径画圆,当CE在圆A下方与圆A相切时,PD的值最小.在Rt△ACE中,CE===4 在Rt△ADE中,DE===5∵四边形ABPC是正方形,∴PC=AB=3∴PE=PC+CE=3+4=7在Rt△DEP中,PD===1 ∴线段PD的最小值为1.故答案为:1.23.【问题解决】解:(1)由折叠的性质可得△CDE≌△GDE,∴CD=DG,∠CDE=∠GDE,∠DCE=∠DGE=90°,在Rt△DAF和Rt△DGF中,,∴Rt△DAF≌Rt△DGF(HL),∴∠ADF=∠GDF,AF=FG.∴∠EDF=∠EDG+∠FDG==45°,EF=FG+EG=AF+EC;故答案为:45°,AF+EC=FE.(2)如图,延长CD到E,使DE=BC,连接AE.∵AB=AD,∠DAB=∠BCD=90°,∴△ADE≌△ABC(SAS),∴AE=AC,∠EAD=∠CAB.∴∠EAC=90°.∵四边形ABCD的面积为8,可得△ACE的面积为8.∴.解得,AC=4.(3)AD2+BE2=DE2.证明如下:如图2:将△ACD绕点C逆时针旋转90°得到△BCH,连接EH.∴DC=HC,∠DCE=∠ECH=45°,∠CAD=∠CBH=45°,∵CE=CE,∴△CEH≌△CED(SAS).∴EH=ED.∴∠ABC+∠CBH=∠EBH=90°.∴HB2+BE2=EH2.∵AD=BH,∴AD2+BE2=DE2.24.阅读材料:证明:①小明的想法:如图2中:将BE放到△BEF中,沿等腰△BDE的对称轴进行翻折,即作∠BDH=∠BEF交BC于H.∵∠BDH=∠BEF,∠B=∠B,BD=BE,∴△BDH≌△BEF(ASA)∴∠BFE=∠BHD,EF=DH,∵∠BEF=180°﹣2α,∴∠BDH=180°﹣2α,且∠BDH+∠CDH+∠ADC=180°,∠ADC=α,∴∠ADC=∠CDH,∵GA=GF,∴∠GAF=∠GFA,且∠GFA=∠BFE=∠BHD,∴∠GAF=∠BHD,∴∠DAC=∠DHC,且∠ADC=∠CDH,DC=DC,∴△ADC≌△HDC(AAS)∴AD=DH,∴AD=EF;②小白的想法:如图3中:将BD放到△BDC中,沿等腰△BDE的对称轴进行翻折,即作∠BEH=∠BDC交BD的延长线于H.∵∠BEH=∠BDC,BE=BD,∠B=∠B,∴△BEH≌△BDC(ASA),∴∠H=∠C,EH=CH,∠BEH=∠BDC,∴∠ADC=∠CEH=α,∵∠BEF=180°﹣2α=180°﹣∠GEC,∴∠FEH=∠HEC=∠ADC=α,∴△ADC≌△FEH(ASA),∴AD=EF.经验拓展:如图4中,延长AE到M,使得AM=AC,连接DM交CE于O,作MN⊥BF于N.连接AO,BM,CM.∵AD=AE,AM=AC,∴EM=CD,∠AMC=∠ACM,∵CM=MC,∴△ECM≌△DMC(SAS),∴∠ECM=∠DMC,∴OM=OC,∵AE=AD,∴AO垂直平分线段EF,∠AEO=∠DAO,∵MN⊥BF,CF⊥BF,∴MN∥CF∥OA,∴∠NME=∠EAO,∠DCF=∠DAO,∴∠NME=∠DCF,∵∠MNE=∠F=90°,∴△MNE≌△CFD(AAS),∴DF=EN=b,MN=CF,∵∠FBC+∠FCB=∠FBC+60°+∠FCD=90°,∴∠FBC+∠FCD=30°,∵AB=AM=AC,∴∠CBM=∠CAM=∠FCD,∴∠FBC+∠CBM=30°,∴MN=BN•tan30°=(a﹣b),∴CF=MN=(a﹣b),∵∠ECF=60°,∴EF=CF•tan60°=a﹣b,∴DE=EF﹣DF=a﹣2b.。

全国181套中考数学试题分类汇编54图形的旋转变换

全国181套中考数学试题分类汇编54图形的旋转变换

54:图形的旋转变换一、选择题1.(浙江湖州3分)如图,△AOB 是正三角形,OC ⊥OB ,OC =OB ,将△AOB绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD,则旋转角度是A .150ºB .120ºC .90ºD .60º【答案】A 。

【考点】旋转的性质,等边三角形的性质,等腰直角三角形的性质。

【分析】由题意,∠AOC 就是旋转角,根据等边三角形每个角都是60°的性质和OC ⊥OB ,即可求得旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°。

故选A 。

2.(浙江宁波3分)如图,Rt△ABC 中,∠ACB=90°,AC=BC=Rt△绕边AB 所在直线旋转一周,则所得几何体的表面积为(A)4π (B) (C)8π (D) 【答案】D 。

【考点】圆锥的计算,勾股定理,【分析】所得几何体的表面积为2个底面半径为2,母线长为∵Rt△ABC 中,∠ACB=90°,AC=BC=4=。

∴所得圆锥底面半径为2,∴几何体的表面积=2³π³2³。

故选D 。

3.(黑龙江哈尔滨3分)如罔,在Rt△ABC 中,∠BAC=900,∠B=600,△A 11C B 可以由△ABC 绕点 A 顺时针旋转900得到(点B 1与点B 是对应点,点C 1与点C 是对应点),连接CC’,则∠CC’B’的度数是。

(A) 450 (B) 300 (C) 250 (D) 150 【答案】D 。

【考点】旋转的性质,等腰直角三角形的性质,三角形内角和定理。

【分析】由∠BAC=900,∠B=600可知,∠ACB=300。

由旋转的性质可知,AC=AC ′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,∴∠CC′A=45°。

也由旋转的性质可知,∠A C′ B′=∠ACB=300。

2023年中考数学【图形的旋转】真题汇编(共30题,解析版)

2023年中考数学【图形的旋转】真题汇编(共30题,解析版)

图形的旋转(30题)一、单选题江苏无锡·统考中考真题)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α< 55°),得到△ADE,DE交AC于F.当α=40°时,点D恰好落在BC上,此时∠AFE等于()A.80°B.85°C.90°D.95°【答案】B【分析】根据旋转可得∠B=∠ADB=∠ADE,再结合旋转角α=40°即可求解.【详解】解:由旋转性质可得:∠BAC=∠DAE=55°,AB=AD,∵α=40°,∴∠DAF=15°,∠B=∠ADB=∠ADE=70°,∴∠AFE=∠DAF+∠ADE=85°,故选:B.【点睛】本题考查了几何-旋转问题,掌握旋转的性质是关键.天津·统考中考真题)如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论一定正确的是()A.∠CAE=∠BEDB.AB=AEC.∠ACE=∠ADED.CE=BD【答案】A【分析】根据旋转的性质即可解答.【详解】根据题意,由旋转的性质,可得AB=AD,AC=AE,BC=DE,故B选项和D选项不符合题意,∠ABC=∠ADE∵∠ACE=∠ABC+∠BAC∴∠ACE=∠ADE+∠BAC,故C选项不符合题意,∠ACB=∠AED∵∠ACB=∠CAE+∠CEA∵∠AED=∠CEA+∠BED∴∠CAE=∠BED,故A选项符合题意,故选:A .【点睛】本题考查了旋转的性质,熟练掌握旋转的性质和三角形外角运用是解题的关键.3(2023·四川宜宾·统考中考真题)如图,△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,把△ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若AB =3,AD =1.以下结论:①BD =CE ;②BD ⊥CE ;③当点E 在BA 的延长线上时,MC =3-32;④在旋转过程中,当线段MB 最短时,△MBC 的面积为12.其中正确结论有()A.1个B.2个C.3个D.4个【答案】D 【分析】证明△BAD ≌△CAE 即可判断①,根据三角形的外角的性质得出②,证明∠DCM ∽∠ECA 得出MC 3=3-12,即可判断③;以A 为圆心,AD 为半径画圆,当CE 在⊙A 的下方与⊙A 相切时,MB 的值最小,可得四边形AEMD 是正方形,在Rt △MBC 中MC =BC 2-MB 2=2+1,然后根据三角形的面积公式即可判断④.【详解】解:∵△ABC 和△ADE 是以点A 为直角顶点的等腰直角三角形,∴BA =CA ,DA =EA ,∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴∠ABD =∠ACE ,BD =CE ,故①正确;设∠ABD =∠ACE =α,∴∠DBC =45°-α,∴∠EMB =∠DBC +∠BCM =∠DBC +∠BCA +∠ACE =45°-α+45°+α=90°,∴BD ⊥CE ,故②正确;当点E 在BA 的延长线上时,如图所示∵∠DCM =∠ECA ,∠DMC =∠EAC =90°,∴∠DCM ∽∠ECA∴MC AC =CD EC ∵AB =3,AD =1.∴CD =AC -AD =3-1,CE =AE 2+AC 2=2∴MC 3=3-12∴MC =3-32,故③正确;④如图所示,以A 为圆心,AD 为半径画圆,∵∠BMC =90°,∴当CE 在⊙A 的下方与⊙A 相切时,MB 的值最小,∠ADM =∠DAE =∠AEM =90°∴四边形AEMD 是矩形,又AE =AD ,∴四边形AEMD 是正方形,∴MD =AE =1,∵BD =EC =AC 2-AE 2=2,∴MB =BD -MD =2-1,在Rt △MBC 中,MC =BC 2-MB 2∴PB 取得最小值时,MC =AB 2+AC 2-MB 2=3+3-2-1 2=2+1∴S △BMC =12MB ×MC =122-1 2+1 =12故④正确,故选:D .【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.4(2023·山东聊城·统考中考真题)如图,已知等腰直角△ABC ,∠ACB =90°,AB =2,点C 是矩形ECGF 与△ABC 的公共顶点,且CE =1,CG =3;点D 是CB 延长线上一点,且CD =2.连接BG ,DF ,在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中,当线段BG 达到最长和最短时,线段DF 对应的长度分别为m 和n ,则m n的值为()A.2B.3C.10D.13【答案】D【分析】根据锐角三角函数可求得AC=BC=1,当线段BG达到最长时,此时点G在点C的下方,且B,C,G三点共线,求得BG=4,DG=5,根据勾股定理求得DF=26,即m=26,当线段BG达到最短时,此时点G在点C的上方,且B,C,G三点共线,则BG=2,DG=1,根据勾股定理求得DF=2,即n =2,即可求得mn=13.【详解】∵△ABC为等腰直角三角形,AB=2,∴AC=BC=AB⋅sin45°=2×22=1,当线段BG达到最长时,此时点G在点C的下方,且B,C,G三点共线,如图:则BG=BC+CG=4,DG=DB+BG=5,在Rt△DGF中,DF=DG2+GF2=52+12=26,即m=26,当线段BG达到最短时,此时点G在点C的上方,且B,C,G三点共线,如图:则BG=CG-BC=2,DG=BG-DB=1,在Rt△DGF中,DF=DG2+GF2=12+12=2,即n=2,故mn=262=13,故选:D.【点睛】本题考查了锐角三角函数,勾股定理等,根据旋转推出线段BG最长和最短时的位置是解题的关键.二、填空题5(2023·江苏连云港·统考中考真题)以正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A B CD E 的顶点D 落在直线BC上,则正五边ABCDE旋转的度数至少为°.【答案】72【分析】依据正五边形的外角性质,即可得到∠DCF的度数,进而得出旋转的角度.【详解】解:∵五边形ABCDE是正五边形,∴∠DCF=360°÷5=72°,∴新五边形A B CD E 的顶点D 落在直线BC上,则旋转的最小角度是72°,故答案为:72.【点睛】本题主要考查了正多边形、旋转性质,关键是掌握正多边形的外角和公式的运用.6(2023·湖南张家界·统考中考真题)如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC 绕点A逆时针方向旋转后,得到四边形AB O C ,且∠OAC =100°,则四边形ABOC旋转的角度是.【答案】75°【分析】根据角平分线的性质可得∠BAO=∠OAC=25°,根据旋转的性质可得∠BAC=∠B AC =50°,∠B AO =∠O AC =25°,求得∠OAO =75°,即可求得旋转的角度.【详解】∵AO为∠BAC的平分线,∠BAC=50°,∴∠BAO=∠OAC=25°,∵将四边形ABOC绕点A逆时针方向旋转后,得到四边形AB O C ,∴∠BAC=∠B AC =50°,∠B AO =∠O AC =25°,∴∠OAO =∠OAC -∠O AC =100°-25°=75°,故答案为:75°.【点睛】本题考查了角平分线的性质,旋转的性质,熟练掌握以上性质是解题的关键.7(2023·湖南常德·统考中考真题)如图1,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,D是AB上一点,且AD=2,过点D作DE∥BC交AC于E,将△ADE绕A点顺时针旋转到图2的位置.则图2中BDCE的值为.【答案】45【分析】首先根据勾股定理得到AC =AB 2+BC 2=10,然后证明出△ADE ∽△ABC ,得到AD AB =AE AC ,进而得到AD AE =AB AC ,然后证明出△ABD ∽△ACE ,利用相似三角形的性质求解即可.【详解】∵在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,∴AC =AB 2+BC 2=10∵DE ∥BC ∴∠ADE =∠ABC =90°,∠AED =∠ACB∴△ADE ∽△ABC∴AD AB =AE AC ∴AD AE =AB AC∵∠BAC =∠DAE∴∠BAC +∠CAD =∠DAE +∠CAD∴∠BAD =∠CAE∴△ABD ∽△ACE∴BD CD =AB AC =810=45.故答案为:45.【点睛】此题考查了相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.8(2023·江苏无锡·统考中考真题)已知曲线C 1、C 2分别是函数y =-2x (x <0),y =k x(k >0,x >0)的图像,边长为6的正△ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将△ABC 绕原点O 顺时针旋转,当点B 在曲线C 1上时,点A 恰好在曲线C 2上,则k 的值为.【答案】6【分析】画出变换后的图像即可(画△AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据△ABC 为等边三角形且AO ⊥BC ,可得OB OA =13,过点A 、B 分别作x 轴垂线构造相似,则△BFO ∽OEA ,根据相似三角形的性质得出S △AOE =3,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,∵△ABC 为等边三角形且AO ⊥BC ,则∠BAO =30°,∴tan ∠BAO =tan30°=OB OA=33,如图所示,过点A ,B 分别作x 轴的垂线,交x 轴分别于点E ,F ,∵AO ⊥BO ,∠BFO =∠AEO =∠AOB =90°,∴∠BOF=90°-∠AOE=∠EAO,∴△BFO∽OEA,∴S△BFOS△AOE=OBOA2=13,∴S△BFO=-22=1,∴S△AOE=3,∴k=6.【点睛】本题考查了反比例函数的性质,k的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.9(2023·辽宁·统考中考真题)如图,线段AB=8,点C是线段AB上的动点,将线段BC绕点B顺时针旋转120°得到线段BD,连接CD,在AB的上方作RtΔDCE,使∠DCE=90°,∠E=30°,点F为DE的中点,连接AF,当AF最小时,ΔBCD的面积为.【答案】3【分析】连接CF,BF,BF,CD交于点P,由直角三角形的性质及等腰三角形的性质可得BF垂直平分CF,∠ABF=60°为定角,可得点F在射线BF上运动,当AF⊥BF时,AF最小,由含30度角直角三角形的性质即可求解.【详解】解:连接CF,BF,BF,CD交于点P,如图,∵∠DCE=90°,点F为DE的中点,∴FC=FD,∵∠E=30°,∴∠FDC=60°,∴△FCD是等边三角形,∴∠DFC=∠FCD=60°;∵线段BC绕点B顺时针旋转120°得到线段BD,∴BC=BD,∵FC=FD,∴BF垂直平分CF,∠ABF=60°,∴点F在射线BF上运动,∴当AF⊥BF时,AF最小,此时∠FAB=90°-∠ABF=30°,∴BF=12AB=4;∵∠BFC=12∠DFC=30°,∴∠FCB=∠BFC+∠ABF=90°,∴BC=12BF=2,∵PB=12BC=1,∴由勾股定理得PC=BC2-PB2=3,∴CD=2PC=23,∴S△BCD=12CD⋅PB=12×23×1=3;故答案为:3.【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.10(2023·江西·统考中考真题)如图,在▱ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.【答案】90°或270°或180°【分析】连接AC,根据已知条件可得∠BAC=90°,进而分类讨论即可求解.【详解】解:连接AC,取BC的中点E,连接AE,如图所示,∵在▱ABCD中,∠B=60°,BC=2AB,∴BE=CE=12BC=AB,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE,∴AE=EC∠AEB=30°,∴∠EAC=∠ECA=12∴∠BAC=90°∴AC⊥CD,如图所示,当点P在AC上时,此时∠BAP=∠BAC=90°,则旋转角α的度数为90°,当点P在CA的延长线上时,如图所示,则α=360°-90°=270°当P在BA的延长线上时,则旋转角α的度数为180°,如图所示,∵PA=PB=CD,PB∥CD,∴四边形PACD是平行四边形,∵AC⊥AB∴四边形PACD是矩形,∴∠PDC=90°即△PDC是直角三角形,综上所述,旋转角α的度数为90°或270°或180°故答案为:90°或270°或180°.【点睛】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.11(2023·上海·统考中考真题)如图,在△ABC中,∠C=35°,将△ABC绕着点A旋转α(0°<α< 180°),旋转后的点B落在BC上,点B的对应点为D,连接AD,AD是∠BAC的角平分线,则α=.【答案】110 3°【分析】如图,AB=AD,∠BAD=α,根据角平分线的定义可得∠CAD=∠BAD=α,根据三角形的外角性质可得∠ADB=35°+α,即得∠B=∠ADB=35°+α,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB=AD,∠BAD=α,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=α,∵∠ADB=∠C+∠CAD=35°+α,AB=AD,∴∠B=∠ADB=35°+α,则在△ABC中,∵∠C+∠CAB+∠B=180°,∴35°+2α+35°+α=180°,解得:α=1103°;故答案为:110 3°【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.12(2023·湖南郴州·统考中考真题)如图,在Rt△ABC中,∠BAC=90°,AB=3cm,∠B=60°.将△ABC绕点A逆时针旋转,得到△AB C ,若点B的对应点B 恰好落在线段BC上,则点C的运动路径长是cm(结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ,故C 的运动路径长是CC 的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ,如图所示.在直角△ABC 中,∠B =60°,则∠C =30°,则BC =2AB =2×3=6cm .∴AC =BC 2-AB 2=62-32=33cm .由旋转性质可知,AB =AB ,又∠B =60°,∴△ABB 是等边三角形.∴∠BAB =60°.由旋转性质知,∠CAC =60°.故弧CC 的长度为:60360×2×π×AC =π3×33=3πcm ;故答案为:3π【点睛】本题考查了含30°角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.13(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则ADDC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB 是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD=52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB=AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF⊥AB,∴∠FDB=45°,∴△DFB是等腰直角三角形,∴DF=BF,∵S△ADB=12×BC×AD=12×DF×AB,即AD=10DF,∵∠C=∠AFD=90°,∠CAB=∠FAD,∴△AFD∼△ACB,∴DF BC =AFAC,即AF=3DF,又∵AF=10-DF,∴DF=104,∴AD=10×104=52,CD=3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.14(2023·黑龙江绥化·统考中考真题)已知等腰△ABC,∠A=120°,AB=2.现将△ABC以点B为旋转中心旋转45°,得到△A BC ,延长C A 交直线BC于点D.则A D的长度为.【答案】4+23或4-23【分析】根据题意,先求得BC=23,当△ABC以点B为旋转中心逆时针旋转45°,过点B作BE⊥A B交A D于点E,当△ABC以点B为旋转中心顺时针旋转45°,过点D作DF⊥BC 交BC 于点F,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A作AM⊥BC于点M,∵等腰△ABC,∠BAC=120°,AB=2.∴∠ABC=∠ACB=30°,∴AM=1AB=1,BM=CM=AB2-AM2=3,2∴BC=23,如图所示,当△ABC以点B为旋转中心逆时针旋转45°,过点B作BE⊥A B交A D于点E,∵∠BAC=120°,∴∠DA B=60°,∠A EB=30°,在Rt△A BE中,A E=2A B=4,BE=A E2-A B2=23,∵等腰△ABC,∠BAC=120°,AB=2.∴∠ABC=∠ACB=30°,∵△ABC以点B为旋转中心逆时针旋转45°,∴∠ABA =45°,∴∠DBE=180°-90°-45°-30°=15°,∠A BD=180°-45°-30°=105°在△A BD中,∠D=180°-∠DA B-∠A BD=180°-60°-105°=15°,∴∠D=∠EBD,∴EB=ED=23,∴A D=A E+DE=4+23,如图所示,当△ABC以点B为旋转中心顺时针旋转45°,过点D作DF⊥BC 交BC 于点F,在△BFD中,∠BDF=∠CBC =45°,∴DF=BF在Rt△DC F中,∠C =30°FC'∴DF=33∴BC=BF+3BF=23∴DF=BF=3-3∴DC =2DF=6-23∴A D=C D-A C =6-23-2=4-23,综上所述,A D的长度为4-23或4+23,故答案为:4-23或4+23.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.15(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中,∠C =∠D =90°,∠B =30°,∠E =45°,BC =EF =12.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是,现将△DEF 绕点C (F )按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0°到60°的过程中,线段DH 扫过的面积是.【答案】66-62;12π-183+18【分析】如图1,过点G 作GH ⊥BC 于H ,根据含30°直角三角形的性质和等腰直角三角形的性质得出BH =3GH ,GH =CH ,然后由BC =12可求出GH 的长,进而可得线段CG 的长;如图2,将△DEF 绕点C 顺时针旋转60°得到△D 1E 1F ,FE 1与AB 交于G 1,连接D 1D ,AD 1,△D 2E 2F 是△DEF 旋转0°到60°的过程中任意位置,作DN ⊥CD 1于N ,过点B 作BM ⊥D 1D 交D 1D 的延长线于M ,首先证明△CDD 1是等边三角形,点D 1在直线AB 上,然后可得线段DH 扫过的面积是弓形D 1D 2D 的面积加上△D 1DB 的面积,求出DN 和BM ,然后根据线段DH 扫过的面积=S 弓形D 1D 2D +S △D 1DB =S 扇形CD 1D -S △CD 1D +S △D 1DB 列式计算即可.【详解】解:如图1,过点G 作GH ⊥BC 于H ,∵∠ABC =30°,∠DEF =∠DFE =45°,∠GHB =∠GHC =90°,∴BH =3GH ,GH =CH ,∵BC =BH +CH =3GH +GH =12,∴GH =63-6,∴CG =2GH =2×63-6 =66-62;如图2,将△DEF 绕点C 顺时针旋转60°得到△D 1E 1F ,FE 1与AB 交于G 1,连接D 1D ,由旋转的性质得:∠E 1CB =∠DCD 1=60°,CD =CD 1,∴△CDD 1是等边三角形,∵∠ABC =30°,∴∠CG 1B =90°,∴CG 1=12BC ,∵CE1=BC,∴CG1=12CE1,即AB垂直平分CE1,∵△CD1E1是等腰直角三角形,∴点D1在直线AB上,连接AD1,△D2E2F是△DEF旋转0°到60°的过程中任意位置,则线段DH扫过的面积是弓形D1D2D的面积加上△D1DB的面积,∵BC=EF=12,∴DC=DB=22BC=62,∴D1C=D1D=62,作DN⊥CD1于N,则ND1=NC=32,∴DN=D1D2-ND12=622-322=36,过点B作BM⊥D1D交D1D的延长线于M,则∠M=90°,∵∠D1DC=60°,∠CDB=90°,∴∠BDM=180°-∠D1DC-∠CDB=30°,∴BM=12BD=32,∴线段DH扫过的面积=S弓形D1D2D +S△D1DB,=S扇形CD1D -S△CD1D+S△D1DB,=60π⋅622360-12×62×36+12×62×32,=12π-183+18,故答案为:66-62,12π-183+18.【点睛】本题主要考查了旋转的性质,含30°直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点D1在直线AB上是本题的突破点,灵活运用各知识点是解题的关键.三、解答题16(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.【答案】(1)见解析(2)∠AEF=90°,证明见解析【分析】(1)由旋转的性质得DM=DE,∠MDE=2α,利用三角形外角的性质求出∠DEC=α=∠C,可得DE=DC,等量代换得到DM=DC即可;(2)延长FE到H使FE=EH,连接CH,AH,可得DE是△FCH的中位线,然后求出∠B=∠ACH,设DM=DE=m,CD=n,求出BF=2m=CH,证明△ABF≅△ACH SAS,得到AF=AH,再根据等腰三角形三线合一证明AE⊥FH即可.【详解】(1)证明:由旋转的性质得:DM=DE,∠MDE=2α,∵∠C=α,∴∠DEC=∠MDE-∠C=α,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°;证明:如图2,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是△FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2α,∴∠FCH=2α,∵∠B=∠C=α,∴∠ACH=α,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC,设DM=DE=m,CD=n,则CH=2m,CM=m+n,∴DF=CD=n,∴FM=DF-DM=n-m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM-FM=m+n-n-m=2m,∴CH=BF,在△ABF和△ACH中,AB=AC∠B=∠ACH BF=CH,∴△ABF≅△ACH SAS,∴AF =AH ,∵FE =EH ,∴AE ⊥FH ,即∠AEF =90°.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.17(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点,DE =2,AB =4.(1)将△CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将△CDE 绕顶点C 逆时针旋转120°(如图2),求MN 的长.【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出CM ,CN 的值,进而根据题意求得最大值与最小值即可求解;(2)过点N 作NP ⊥MC ,交MC 的延长线于点P ,根据旋转的性质求得∠MCN =120°,进而得出∠NCP =60°,进而可得CP =1,勾股定理解Rt △NCP ,Rt △MCP ,即可求解.【详解】(1)解:依题意,CM =12DE =1,CN =12AB =2,当M 在NC 的延长线上时,M ,N 的距离最大,最大值为CM +CN =1+2=3,当M 在线段CN 上时,M ,N 的距离最小,最小值为CN -CN =2-1=1;(2)解:如图所示,过点N 作NP ⊥MC ,交MC 的延长线于点P ,∵△CDE 绕顶点C 逆时针旋转120°,∴∠BCE =120°,∵∠BCN =∠ECM =45°,∴∠MCN =∠BCM -∠ECM =∠BCE =120°,∴∠NCP =60°,∴∠CNP =30°,∴CP =12CN =1,在Rt △CNP 中,NP =NC 2-CP 2=3,在Rt △MNP 中,MP =MC +CP =1+1=2,∴MN =NP 2+MP 2=3+4=7.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.18(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.【答案】(1)见解析(2)见解析(3)5+5π2【分析】(1)先作出点A 、B 、C 平移后的对应点A 1,B 1、C 1,然后顺次连接即可;(2)先作出点A 、B 绕点C 顺时针旋转90度的对应点A 2,B 2,然后顺次连接即可;(3)证明△ABC 为等腰直角三角形,求出S △ABC =12AB ×BC =52,S 扇形CAA 2=90π×10 2360=5π2,根据旋转过程中△ABC 扫过的面积等于△ABC 的面积加扇形CAA 1的面积即可得出答案.【详解】(1)解:作出点A 、B 、C 平移后的对应点A 1,B 1、C 1,顺次连接,则△A 1B 1C 1即为所求,如图所示:(2)解:作出点A 、B 绕点C 顺时针旋转90度的对应点A 2,B 2,顺次连接,则△A 2B 2C 2即为所求,如图所示:(3)解:∵AB =12+22=5,AC =32+12=10,BC =12+22=5,∴AB =BC ,∵5 2+5 2=10=10 2,∴AB 2+BC 2=AC 2,∴△ABC 为等腰直角三角形,∴S △ABC =12AB ×BC =52,根据旋转可知,∠ACA 2=90°,∴S 扇形CAA 2=90π×10 2360=5π2,∴在旋转过程中△ABC 扫过的面积为S =S △ABC +S 扇形CAA 2=5+5π2.【点睛】本题主要考查了平移、旋转作图,勾股定理逆定理,扇形面积计算,解题的关键是作出平移或旋转后的对应点.19(2023·辽宁·统考中考真题)在Rt ΔABC 中,∠ACB =90°,CA =CB ,点O 为AB 的中点,点D 在直线AB 上(不与点A ,B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l ⊥BC ,过点E 作EF ⊥l ,垂足为点F ,直线EF 交直线OC 于点G .(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.【答案】(1)EF=22AD(2)见解析(3)59或17 9【分析】(1)可先证△BCD≌△BCE,得到BD=BE,根据锐角三角函数,可得到BE和EF的数量关系,进而得到线段AD与线段EF的数量关系.(2)可先证△ACD≌△GEC,得到DA=CG,进而得到CG+BD=DA+BD=AB,问题即可得证.(3)分两种情况:①点D在线段AB上,过点C作CN垂直于FG,交FG于点N,过点E作EM垂直于BC,交BC于点M,设EF=a,利用勾股定理,可用含a的代数式表示EC,根据三角形面积公式,即可得到答案.②点D在线段BA的延长线上,过点E作EJ垂直于BC,交BC延长线于点J,令EF交AC于点I,连接BE,设EF=b,可证△CDA≌△CEB,进一步证得△EBJ是等腰直角三角形,EJ=BJ,利用勾股定理,可用含b的代数式表示EC,根据三角形面积公式,即可得到答案【详解】(1)解:EF=22 AD.理由如下:如图,连接BE.根据图形旋转的性质可知CD=CE.由题意可知,△ABC为等腰直角三角形,∵CD为等腰直角三角形△ABC斜边AB上的中线,∴∠BCD=45°,AD=BD.又∠DCE=90°,∴∠BCE=45°.在△BCD和△BCE中,CD =CE∠BCD =∠BCEBC =BC∴△BCD ≌△BCE .∴BD =BE ,∠CBE =∠CBD =45°.∴∠EBF =45°.∴EF =BE ·sin ∠EBF =22BE .∴EF =22AD .(2)解:∵CO 为等腰直角三角形△ABC 斜边AB 上的中线,∴AO =BO .∵∠ACD +∠DCB =∠BCE +∠DCB =90°,∴∠ACD =∠BCE .∵BC ⊥l ,EF ⊥l ,∴BC ∥EF .∴∠G =∠OCB =45°,∠GEC =∠BCE .∴∠G =∠A ,∠ACD =∠GEC .在△ACD 和△GEC 中,∠ACD =∠GEC∠A =∠GCD =CE∴△ACD ≌△GEC .∴DA =CG .∴CG +BD =DA +BD =AB =2BC .(3)解:当点D 在线段AB 延长线上时,不满足条件EF :BC =1:3,故分两种情况:①点D 在线段AB 上,如图,过点C 作CN 垂直于FG ,交FG 于点N ;过点E 作EM 垂直于BC ,交BC 于点M .设EF =a ,则BC =AC =3a .根据题意可知,四边形BFEM 和CMEN 为矩形,△GCN 为等腰直角三角形.∴EF =BM =a ,CM =NE =2a .由(2)证明可知△ACD ≌△GEC ,∴AC =GE =3a .∴NG =NC =a .∴NC =EM =a .根据勾股定理可知CE =EM 2+CM 2=2a 2+a 2=5a ,△CDE 的面积S 1与△ABC 的面积S 2之比S 1S 2=12CE 212BC 2=125a 2123a2=59②点D 在线段BA 的延长线上,过点E 作EJ 垂直于BC ,交BC 延长线于点J ,令EF 交AC 于点I ,连接BE ,由题意知,四边形FBJE ,FBCI 是矩形,∵∠DCE =∠ACB =90°∴∠DCE -∠ACE =∠ACB -∠ACE即∠DCA =∠ECB又∵CD =CE ,CA =CB∴△CDA ≌△CEB∴∠DAC =∠EBC而∠DAC =180°-∠CAB =180°-45°=135°∴∠EBC =135°∠EBJ =180°-∠EBC =45°∴△EBJ 是等腰直角三角形,EJ =BJ设EF =b ,则BC =IF =3b ,EJ =BJ =CI =b∴EI =EF +IF =4b Rt △CIE 中,CE =CI 2+EI 2=b 2+(4b )2=17b△CDE 的面积S 1与△ABC 的面积S 2之比S 1S 2=12CE 212BC 2=1217b 2123b2=179【点睛】本题主要考查全等三角形的判定及性质、勾股定理以及图形旋转的性质,灵活利用全等三角形的判定及性质是解题的关键.20(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等(2)①见解析;②322πcm 问题拓展:83π-833cm 2【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;(2)①分别作BB 和AA 的垂直平分线,两垂直平分线的交点即为所求点O ;②根据弧长公式求解即可;问题拓展,连接PA ,交AC 于M ,连接PA ,PD ,AA ,由旋转得∠PA B =30°,PA =PA =4,在Rt △PAM 和Rt △A DM 中求出A M 和DM 的长,可以求出S 阴影部分B DP =S 扇形B A P -S △ADP ,再证明△ADP ≌△A DP ,即可求出最后结果.【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等(2)①下图中,点O 为所求②连接OB ,OB ,∵扇形纸板ABC 绕点O 逆时针旋转90°到达扇形纸板A B C 的位置,∴∠BOB =90°,OB =OB ,∵BB =6cm ,设OB =OB =xcm ,∴x 2+x 2=62,∴OB =OB =32cm ,在旋转过程中,点B 经过的路径长为以点O 为圆心,圆心角为90°,OB 为半径的所对应的弧长,∴点B 经过的路径长=90×π×32180=322πcm ;【问题拓展】解:连接PA ,交AC 于M ,连接PA ,PD ,AA 如图所示∴∠PAC =12∠BAC =30°.由旋转得∠PA B =30°,PA =PA =4. 在Rt △PAM 中,A M =PM =PA ⋅sin ∠PAM =4×sin30°=2.在Rt △A DM 中,∵∠DA M =12∠B A C =30°,∴A D =A M cos ∠DA M =2cos30°=433,DM =12A D =12×433=233. ∴S △A DP =12DM ⋅A P =12×233×4=433.S 扇形B A P =30×π×42360=43π.∴S 阴影部分B DP =S 扇形B A P -S △ADP =43π-433, 在△ADP 和△A DP 中,∵AD =AM -DM =23-233=433=A D ,又∵∠PAD =∠PA D =30°,PA =PA ,∴△ADP ≌△A DP .又∵S 扇形PAC =S 扇形B AP ,∴S 阴影部分BDP =S 阴影部分CDP ,∴S 阴影部分=2S 阴影部分BDP =2×43π-433 =83π-833 cm 2.【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.21(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点A ,B ,C ,D 按逆时针方向排列),AB =12,AD =10,∠B 为锐角,且sin B =45.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点C ,D 同时绕点P 按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA 上时,求BP 的长.②当△AC D 是直角三角形时,求BP 的长.【答案】(1)8(2)①BP =347;②BP =6或8±2【分析】(1)利用正弦的定义即可求得答案;(2)①先证明△PQC ≌△CHP ,再证明△AQC ∽△AHC ,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C 为直角顶点;第二种:A 为直角顶点;第三种,D 为直角顶点,但此种情况不成立,故最终有两个答案.【详解】(1)在▱ABCD 中,BC =AD =10,在Rt △BCH 中,CH =BC sin B =10×45=8.(2)①如图1,作CH ⊥BA 于点H ,由(1)得,BH =BC 2-CH 2=6,则AH =12-6=6,作C Q ⊥BA 交BA 延长线于点Q ,则∠CHP =∠PQC =90°,∴∠C PQ +∠PC Q =90°.∵∠C PQ +∠CPH =90°∴∠PC Q =∠CPH .由旋转知PC =PC ,∴△PQC ≌△CHP .设BP =x ,则PQ =CH =8,C Q =PH =6-x ,QA =PQ -PA =x -4.∵C Q ⊥AB ,CH ⊥AB ,∴C Q ∥CH ,∴△AQC ∽△AHC ,∴C Q CH =QA HA ,即6-x 8=x -46,∴x =347,∴BP =347.②由旋转得△PCD ≌△PC D ,CD =C D ,CD ⊥C D ,又因为AB ∥CD ,所以C D ⊥AB .情况一:当以C 为直角顶点时,如图2.∵C D ⊥AB ,∴C 落在线段BA 延长线上.∵PC ⊥PC ,∴PC ⊥AB ,由(1)知,PC =8,∴BP =6.情况二:当以A 为直角顶点时,如图3.设C D 与射线BA 的交点为T ,作CH ⊥AB 于点H .∵PC ⊥PC ,∴∠CPH +∠TPC =90°,∵C D ⊥AT ,∴∠PC T +∠TPC =90°,∴∠CPH =∠PC T .又∵∠CHP =∠PTC =90°,PC =C P ,∴△CPH ≌△PC T ,∴C T =PH ,PT =CH =8.设C T =PH =t ,则AP =6-t ,∴AT =PT -PA =2+t∵∠C AD =90°,C D ⊥AB ,∴△ATD ∽△C TA ,∴AT TD =CT TA ,∴AT 2=C T ⋅TD ,∴(2+t )2=ι12-t ,化简得t 2-4t +2=0,解得t =2±2,∴BP =BH +HP =8±2.情况三:当以D 为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,BP =6或8±2.【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.22(2023·四川南充·统考中考真题)如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED =EC ;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B 落在AC 上,连接MB ′.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断△CMB ′的形状,并说明理由.(3)在(2)的条件下,已知AB =1,当∠DEB ′=45°时,求BM 的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)BM =2-3【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出△EAD ≌△EBC ,即可证得结论;(2)由旋转的性质得EB =EB =AE =EM ,从而利用等腰三角形的性质推出∠MB C =90°,再结合正方形对角线的性质推出B M =B C ,即可证得结论;(3)结合已知信息推出△CME ∽△AMC ,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【详解】(1)证:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,AD =BC ,∵点E 是AM 的中点,∴EA =EB ,∴∠EAB =∠EBA ,∴∠BAD -∠EAB =∠ABC -∠EBA ,即:∠EAD =∠EBC ,在△EAD 与△EBC 中,EA =EB∠EAD =∠EBCAD =BC∴△EAD ≌△EBC SAS ,∴ED =EC ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义务教育基础课程初中教学资料课后强化训练31图形的旋转一、选择题1.下列所述图形中,是中心对称图形的是(B)A.直角三角形B.平行四边形C.正五边形D.正三角形【解析】直角三角形不是中心对称图形,正五边形和正三角形只是轴对称图形,平行四边形是中心对称图形.2.下列图形中,是中心对称图形的是(C)A. B. C. D.【解析】选项A,B,D中的图形旋转180°后都不能与原图形重合,都不是中心对称图形,故选C.3.如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四边形OABC绕点O进行3次旋转变换后形成的,测得AB=BC,OA=OC,∠ABC=40°,则∠OAB的度数是(A)A. 115°B. 116°C. 117°D. 137.5°【解析】∵AB=BC,OA=OC,OB=OB,∴△AOB≌△COB(SSS).∴∠OAB=∠OCB=(360°-90°-40°)÷2=115°.(第3题)(第4题)4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当点A1落在AB边上时,连结B1B,取BB1的中点D,连结A1D,则A1D的长度是(A)A.7B.2 2C.3D.2 3【解析】∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°-∠ABC=60°,AB=4,BC=2 3.由旋转的性质知,CA=CA1,∴△ACA1是等边三角形,AA1=AC=2,∴A1B=AB-AA1=2,∠BCB1=∠ACA1=60°.由旋转的性质知,CB=CB1,∴△BCB1是等边三角形,∴BB 1=BC =23,∠A 1BB 1=90°. ∵D 为BB 1的中点, ∴BD =DB 1=3,∴在Rt △A 1BD 中,A 1D =A 1B 2+BD 2=7. 二、填空题(第5题)5.如图,Rt △ABC 的斜边AB =16,将Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,则Rt △A ′B ′C ′的斜边A ′B ′上的中线C ′D 的长度为__8__.【解析】 ∵将Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′, ∴A ′B ′=AB =16.∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线,∴C ′D =12A ′B ′=8.6.如图,将等边三角形CBA 绕点C 顺时针旋转α得到△CB ′A ′,使得B ,C ,A ′三点在同一直线上,则α的度数是__120°__.【解析】 ∵△ABC 是等边三角形, ∴∠ACB =60°.∵等边三角形CBA 绕点C 顺时针旋转α得到△CB ′A ′,使得B ,C ,A ′三点在同一直线上,∴∠BCA ′=180°,∠B ′CA ′=60°, ∴∠ACB ′=60°, ∴α=60°+60°=120°.(第6题) (第7题)7.如图,在△ABC 中,AC =BC =8,∠C =90°,D 为BC 的中点,将△ABC 绕点D 逆时针旋转45°,得到△A ′B ′C ′,B ′C ′与AB 相交于点E ,则S 四边形ACDE =__28__.【解析】 易知∠B =∠BDE =45°,BD =12BC =4,∴∠DEB =90°,∴BE =DE =22,∴S △BDE =12×22×22=4.∵S △ACB =12AC ·BC =32,∴S 四边形ACDE =S △ACB -S △BDE =28.8.如图,在Rt △ABC 中,∠ACB =90°,AC =5 cm ,BC =12 cm ,将△ABC 绕点B 顺时针旋转60°得到△EBD ,连结DC ,交AB 于点F ,则△ACF 与△BDF 的周长之和为__42__cm.【解析】 ∵将△ABC 绕点B 顺时针旋转60°得到△BDE ,∴BD =BC ,∠CBD =60°,∴△BCD 为等边三角形, ∴CD =BD =BC =12.在Rt △ACB 中,∵AC =5,BC =12, ∴AB =AC 2+BC 2=13.∴△ACF 与△BDF 的周长之和=AC +AF +CF +BF +DF +BD =AC +AB +CD +BD =5+13+12+12=42(cm).(第8题) (第9题)9.如图,正方形ABCD 的边长为1,AC ,BD 是对角线.将△DCB 绕点D 顺时针旋转45°得到△DGH ,HG 交AB 于点E ,连结DE 交AC 于点F ,连结FG .有下列结论:①四边形AEGF 是菱形;②△AED ≌△GED ;③∠DFG =112.5°;④BC +FG =1.5.其中正确的结论是①②③(填序号).【解析】 ∵四边形ABCD 是正方形,∴AD =DC =BC =AB ,∠DAB =∠ADC =∠DCB =∠ABC =90°,∠ADB =∠BDC =∠CAD =∠CAB =45°.∵△DHG 是由△DBC 旋转得到的,∴DG =DC =AD ,∠DGE =∠DCB =∠DAE =90°. 在Rt △ADE 和Rt △GDE 中, ∵⎩⎪⎨⎪⎧DE =DE ,DA =DG , ∴Rt △AED ≌Rt △GED (HL ),故②正确; ∴∠ADE =∠GDE =22.5°,AE =GE , ∴∠AED =∠GED =67.5°, ∴∠AFE =180°-∠AED -∠BAC =180°-67.5°-45°=67.5°, ∴∠AED =∠AFE ,∴AE =AF . 同理,EG =GF ,∴AE =EG =GF =F A ,∴四边形AEGF 是菱形,故①正确; ∵∠EFG =∠GEF =67.5°,∴∠DFG =180°-∠EFG =180°-67.5°=112.5°,故③正确; ∵∠BGE =90°,∠ABG =45°, ∴△BEG 是等腰直角三角形, ∴BG =EG ,BE =2EG . ∵AE =FG =EG ,∴BE >AE ,∴AE <0.5,∴BC +FG =1+AE <1.5,故④错误. 三、解答题10.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC 的三个顶点A ,B ,C 都在格点上,将△ABC 绕点A 顺时针旋转90°得到△AB ′C ′.(第10题)(1)在正方形网格中画出△AB ′C ′.(2)计算线段AB 在变换到AB ′的过程中扫过区域的面积. 【解析】 (1)△AB ′C ′即为所求.(第10题解)(2)∵AB =42+33=5,∴线段AB 在变换到AB ′的过程中扫过区域的面积为90π×52360=25π4.(第11题)11.如图,在△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 逆时针旋转100°得到△ADE ,连结BD ,CE 交于点F .(1)求证:△ABD ≌△ACE . (2)求∠ACE 的度数.(3)求证:四边形ABFE 是菱形.【解析】 (1)∵将△ABC 绕点A 按逆时针方向旋转100°得到△ADE , ∴∠DAE =∠BAC =40°,∠CAE =∠BAD =100°. 又∵AB =AC ,∴AB =AC =AD =AE . 在△ABD 与△ACE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD≌△ACE(SAS).(2)∵∠CAE=100°,AC=AE,∴∠ACE=12(180°-∠CAE)=12(180°-100°)=40°.(3)∵∠BAD=∠CAE=100°,AB=AD,∴∠ABD=40°,∠BAE=∠BAD+∠DAE=140°,∴AE∥BF.同理,AB∥EF.∴四边形ABFE是平行四边形.∵AB=AE,∴平行四边形ABFE是菱形.12.如图①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD 拼在一起,构成一个大的矩形ABEF.现将小矩形CEFD绕点C顺时针旋转至矩形CE′F′D′的位置,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值.(2)如图②,G为BC的中点,且0°<α<90°,求证:GD′=E′D.(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.(第12题)【解析】(1)∵DC∥EF,∴∠CD′E=∠DCD′=α,∴sinα=CECD′=CECD=12,∴α=30°.(2)∵G为BC的中点,∴GC=CE′=CE=1.∵∠D′CG=∠DCG+∠DCD′=90°+α,∠DCE′=∠D′CE′+∠DCD′=90°+α,∴∠D′CG=∠DCE′.又∵CD′=CD,∴△GCD′≌△E′CD(SAS),∴GD′=E′D.(3)能.α=135°或315°.13.如图①,在△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(第13题)(1)求证:BD=AC.(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连结AE.①如图②,当点F落在AC上时(点F不与点C重合),若BC=4,tan C=3,求AE的长.②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连结GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【解析】(1)∵AH⊥BC,∠ABC=45°,∴∠BHD=∠AHC=90°,AH=BH.在△BHD和△AHC中,∵⎩⎪⎨⎪⎧BH =AH ,∠BHD =∠AHC ,DH =CH ,∴△BHD ≌△AHC (SAS ),∴BD =AC . (2)①如解图,过点H 作HP ⊥AE 于点P .在Rt △AHC 中,∵tan C =3,∴AHCH=3.设CH =x ,则BH =AH =3x .∵BC =4,∴3x +x =4,∴x =1, ∴AH =3,CH =1.由旋转的性质知,∠EHF =∠BHD =∠AHC =90°,EH =BH =AH =3,FH =DH =CH =1,∴易得∠EHA =∠FHC ,EH AH =FHCH=1,∴△EHA ∽△FHC ,∴∠EAH =∠C , ∴tan ∠EAH =tan C =3,(第13题解)∴HP =3AP ,AE =2AP .在Rt △AHP 中,∵AP 2+HP 2=AH 2, ∴AP 2+(3AP )2=9,∴AP =31010,∴AE =3105.②EF =2GH .理由如下:设AH 交CG 于点Q .由①及旋转的性质,得EH =AH ,FH =CH . ∵旋转角为30°,∴∠FHD =∠BHE =30°, ∴∠EHA =∠FHC =120°. ∴∠FCH =∠GAH =30°. 又∵∠AQG =∠CQH , ∴△AGQ ∽△CHQ ,∴∠AGQ =∠CHQ =90°,AQ CQ =GQ HQ ,即AQ GQ =CQHQ.又∵∠AQC =∠GQH , ∴△AQC ∽△GQH , ∴GH AC =GQ AQ =sin30°=12, ∴EF GH =BD GH =ACGH =2. ∴EF =2GH .。

相关文档
最新文档