光伏逆变器概述(完整版)

合集下载

光伏逆变器发展史_概述及解释说明

光伏逆变器发展史_概述及解释说明

光伏逆变器发展史概述及解释说明1. 引言1.1 概述光伏逆变器是将太阳能电池板产生的直流(DC)电能转换为交流(AC)电能的关键设备。

它在太阳能发电系统中扮演着重要角色,起到将直流电能转化为适合送入电网或供给家庭、企业使用的交流电能的作用。

随着太阳能行业的快速发展和技术进步,光伏逆变器也经历了长足的发展和改进。

1.2 文章结构本文通过对光伏逆变器的发展历史进行概述和解释说明其基本原理,全面分析了光伏逆变器所经历的初期发展阶段、技术突破与进步以及应用领域扩大与影响力增强等方面。

同时,本文还从现有技术应用和市场情况分析、未来发展方向及挑战分析以及预测行业未来趋势和发展空间等角度对光伏逆变器的现状和未来进行了详细探讨。

最后,在结论部分对光伏逆变器发展历史进行总结回顾,并评价相关技术以及提出针对读者的启发和建议。

1.3 目的本文的目的是通过对光伏逆变器的发展历程进行概述,解释其基本原理,分析目前行业现状和未来趋势,以期为读者提供一种全面了解光伏逆变器发展史以及行业前景的视角。

同时,本文还将通过对相关技术的评价和未来发展方向的探讨,为读者提供启发和建议,有助于他们更好地理解光伏逆变器以及太阳能行业,并在实践中进行合理应用。

2. 光伏逆变器发展史2.1 初期发展阶段光伏逆变器作为将直流电转换为交流电的装置,在其初期的发展阶段面临着一系列的挑战和限制。

最早的光伏逆变器采用简单的硬开关结构,效率较低,体积庞大且重量沉重。

这些逆变器主要应用于小规模独立光伏系统,如太阳能灯、计算器等。

2.2 技术突破与进步随着科技的进步和对可再生能源需求的增长,光伏逆变器经历了一系列技术突破和进步。

首先是功率晶体管和IGBT(绝缘栅双极晶体管)等新型元件的应用,使得逆变器具备了更高效率和更小尺寸的特点。

此外,控制策略以及PWM(脉宽调制)技术的引入也大大提升了逆变器性能。

2.3 应用领域扩大与影响力增强随着光伏电站规模不断扩大以及分布式发电的快速发展,光伏逆变器不仅在独立光伏系统中得到广泛应用,还被大规模光伏电站采用。

光伏逆变器详细介绍(完整版)

光伏逆变器详细介绍(完整版)

保护功能
总结词
保护功能是确保光伏逆变器安全运行的重要措施,包括过载保护、短路保护、过压保护 和欠压保护等。
详细描述
过载保护是指在负载超过额定值时,逆变器自动切断输出或降低输出功率,以保护设备 和电网的安全;短路保护则是在发生短路故障时,逆变器能够快速切断输出,防止电流 过大造成设备损坏;过压和欠压保护则是在输入电压过高或过低时,逆变器自动调节或
转换效率
总结词
转换效率是衡量光伏逆变器性能的重 要指标,它表示逆变器将直流电能转 换为交流电能的效率。
详细描述
转换效率越高,意味着逆变器在转换 过程中损失的能量越少,系统整体效 率更高。因此,选择高效率的逆变器 可以降低系统能耗,提高经济效益。
输入电压范围
总结词
输入电压范围表示逆变器能够接受的 直流输入电压的范围。
逆变器无法启动
检查电源是否正常,检查电缆 连接是否紧固。
输出电压异常
检查输入电压是否正常,检查 电缆连接是否紧固。
散热风扇不运转
检查散热风扇是否损坏,需要 更换散热风扇。
显示面板无显示
检查显示面板的连接线是否正 常,需要更换显示面板。
THANKS FOR WATCHING
感谢您的观看
方向。
数字化、智能化技术加速应用 ,提升光伏逆变器的能源管理
和运维水平。
并网、储能、充电等多功能集 成化成为技术发展新趋势。
模块化、定制化设计满足不同 应用场景需求。
未来市场预测
随着全球能源结构转型和可再生能源政策的推动,光伏 逆变器市场前景广阔。
5G通信、物联网等新技术的应用将为光伏逆变器市场 带来新的发展机遇。
要点一
建筑集成光伏(BIPV)
将光伏板与建筑相结合,通过光伏逆变器将太阳能转化为 直流电能,供给建筑内部负载使用或并入电网。

光伏逆变器全面分析ppt课件

光伏逆变器全面分析ppt课件
2
一、什么是逆变器?
Omnik 欧姆尼克 I 3
直流-电压
太阳能逆变器
IGBT
Sinusfilter 交流-电压
380 V 50 Hz
ppt课件.
3
一、光伏逆变器分类 逆变按照功能来分,主要分为并网逆变器及离网逆变器
离网逆变器
并网逆变器
离网逆变器输出的是电压,主要用于储能系统,以及偏远地区电网无法抵达 的地方。 并网逆变器输出的是电流,主要用于并网系统,通过发电给电网获得收益或 者自用。
监控布线复杂
监控布线简单
维护要求
维护简单
维护及其复杂
系统可靠性要求
可靠性高
可靠性低
电池板选择
一个项目可多种电池板
一种电池板
MPPT追踪
非常高
一般
江苏艾索新能源股份有限公司 EverSolar
24 24
四、逆变器的选型
总结(视频)
1.组串型逆变器的功率范围一般会20KW以内,因此能够覆盖的项目一般会在500KW以内,具体需 要视实际的设计而定

▪ 加州效率ŋ cec:在不同功率点按照加洲当地气象条件的加权公式计算
▪ MPPT效率ŋmppt:反应逆变器最大功率点跟踪的精度 ▪ 整机效率ŋtot:在某个直流电压下ŋeuro和ŋmppt 的乘积
15
OM三N、IK逆光变器伏的主逆要参变数和器含义简介 逆变器的主要参数
▪ Internal overvoltage protection ▪ DC Insulation monitoring ▪ Earth fault protection ▪ Grid monitoring ▪ Earth fault current monitoring ▪ Islanding protection

(完整word版)光伏发电系统逆变器结构特点

(完整word版)光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点提出问题:1.光伏发电系统并网时的主要部件是什么?2.光伏逆变器如何分类?其电路如何构成?3.IGBT是什么,有什么特点,主要参数?4.电力MOSFET是什么,主要参数和特性?5.逆变器的常用电路有哪些,各自的接线和特点是什么?6.常用逆变器的形式有哪些,各自特点是什么,主要生产厂家?1・光伏发电系统并网时的主要部件是什么?光伏发电系统并网时的主要部件是逆变器。

无论是太阳能电池、风力发电还是新能源汽车,其系统应用都需要把直流电转换为交流电,承担这一任务的部件为逆变器。

逆变器乂称电源调整器、功率调节器,是光伏系统必不可少的一部分。

通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。

逆变器的名称由此而來。

光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。

逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,逆变器的核心器件是IGBT(绝缘栅双极型晶体管),也是价格最高的部件之一。

2.光伏逆变器如何分类?其电路如何构成?光伏逆变器的分类如下图:逆变器的分类输出波形运行方式输出交流电相数功率流动方向方波逆变器阶梯波逆变器正弦波逆变器离网逆变器并网逆变器单相逆变器三相逆变器单向逆变器双向逆变器功率较小(<4kW)的光伏发电系统一般采用正弦波逆变器。

逆变器的显示功能主要包括:直流输入电斥•和电流的测量值,交流输出电床和电流的测最值,逆变器的工作状态(运行、故障、停机等)。

光伏逆变器的电路构成如下图所示:控制电路:逆变器的控制电路主要是为主逆变电路提供一系列的控制脉冲來控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。

辅助电路:辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。

辅助电路还包含多并网逆变器Sd Conriectca Conveners®.AC ElecincrtyQ电网s><raQ种检测、显示电路。

太阳能发电-光伏逆变器并网控制

太阳能发电-光伏逆变器并网控制

光伏逆变器并网控制的应用有助于优 化能源结构,促进可再生能源的发展, 从而推动能源转型和可持续发展。
光伏逆变器未来的发展方向与趋势
高效化
随着技术的不断进步,光伏逆变器的转换效率和可靠性将得到进一步提升,以满足市场对高效、可靠、安全等性能的 需求。
智能化
随着物联网、云计算、大数据等技术的发展,光伏逆变器的智能化水平将得到提升,能够实现远程监控、智能运维、 故障预警等功能,提高运维效率。
集成化
未来光伏逆变器将更加集成化,能够实现多种能源的整合与优化,如光、风、储能等,形成多能互补的 能源系统,提高能源利用效率。
THANKS FOR WATCHING
感谢您的观看
加强光伏逆变器与智能电网的集成和互联, 实现高效、安全、可靠的能源管理。
05
结论
光伏逆变器并网控制的重要意义
提高能源利用效率
光伏逆变器并网控制能够将太阳能转 化为电能,提高能源的利用效率,减 少对化石燃料的依赖,从而降低碳排 放,保护环境。
优化能源结构
提升电网稳定性
光伏逆变器并网控制能够平滑地接入 电网,提高电网的稳定性和可靠性, 降低因新能源接入带来的电网波动和 故障风险。
分布式发电系统适用于家庭、企业、学校等小型场所,能够满足其日常用电需求, 提高能源利用效率。
光伏逆变器在大型集中式电站中的应用
大型集中式电站是利用大量光伏 组件将太阳能转化为直流电,再 通过集中 的应用,能够提高系统的转换效 率和可靠性,降低建设和维护成
发展趋势
未来光伏逆变器的发展将朝着更高效率、更高可靠性、更低成本、更灵活并网方案等方向发展。同时 ,随着智能电网和分布式能源的兴起,光伏逆变器的智能化和集成化将成为重要趋势。

第6章 逆变器

第6章 逆变器

6.2 光伏逆变器的原理电路
1.三相电压型逆变器 三相电压型逆变器的基本电路如图6-8所示。该电路主要 由6只功率开关器件和6只续流二极管以及带中性点的直流 电源构成。图中负载L和R表示三相负载的各路相电感和相 电阻。
图6-8 三相电压型逆变器电路原理图
6.2 光伏逆变器的原理电路
功率开关器件VTl~VT6在控制电路的作用下,当控制信 号为三相互差120°的脉冲信号时,可以控制每个功率开关 器件导通180或120,相邻两个开关器件的导通时间互差 60°。逆变器三个桥臂中上部和下部开关元件以180°间隔 交替开通和关断,VTl~VT6以60的电位差依次开通和关 断,在逆变器输出端形成a、b、c三相电压。
图6-5 三级逆变器电路原理图
6.2 光伏逆变器的原理电路
逆变器波形变换
图6-6 逆变器波形 变换过程示意图
6.2 光伏逆变器的原理电路
4. 逆变器输出波形 方波:简单、便宜、使用方便,含高次谐波、损耗大, 干扰大、不能上网; 梯形波:高次谐波少,整机效率高;电磁干扰、不能上 网; 正弦波:波形好、性能优、可并网;线路复杂、贵。
6.2 光伏逆变器的原理电路
控制电路输出的开关控制信号:方波、阶梯波、脉宽调 制方波、脉宽调制三角波和锯齿波等;后三种脉宽调制的 波形都是以基础波作为载波,正弦波作为调制波,最后输 出正弦波波形。普通方波和被正弦波调制的方波的区别如 图6-9所示。普通方波信号是连续导通的,而被调制的方波 信号要在正弦波调制的周期内导通和关断N次。
6.2 光伏逆变器的原理电路
6.2.1 单相逆变器电路原理
1.推挽式逆变电路 推挽式逆变电路原理如图6-2所示。该电路由两只共负极 连接的功率开关管和一个初级带有中心抽头的升压变压器 组成。升压变压器的中心抽头接直流电源正极,两只功率 开关管在控制电路的 作用下交替工作,输 出方波或三角波的交 流电力。

光伏逆变器的原理与作用

光伏逆变器的原理与作用

光伏逆变器的原理与作用一、光伏逆变器的原理光伏逆变器是一种将直流电转化为交流电的电力电子设备。

其基本工作原理主要是基于电力半导体开关管的通断作用,通过对开关管的周期性开关控制,将直流电转换为交流电。

光伏逆变器的核心部分是逆变桥路和控制器。

逆变桥路主要由电力半导体开关管组成,负责将直流电转化为交流电,而控制器则负责控制开关管的开关状态,以达到最佳的逆变效果。

此外,光伏逆变器还通常配备有电压、电流、功率等保护功能,以确保设备的正常工作和安全。

二、光伏逆变器的作用1. 光伏发电系统的核心设备:光伏逆变器是光伏发电系统的核心设备,它将光伏板产生的直流电转换为交流电,方便用户的使用。

同时,光伏逆变器还可以根据实际需求进行电压和电流的调节,以提高发电效率和设备安全性。

2. 转换能量形式:光伏逆变器可以将直流电能转换为交流电能,实现了能量的转换和传输。

在光伏发电系统中,太阳光的能量形式转换为电能,通过光伏逆变器将其转换为交流电,可以被各种电器设备使用。

3. 保护功能:光伏逆变器通常配备有各种保护功能,如过压保护、欠压保护、过流保护等,可以有效地保护光伏设备和避免因异常情况导致的损失。

这些保护功能可以通过控制器来实现,通过检测和控制开关管的开关状态,避免过载、过压、短路等异常情况的发生。

4. 智能控制:光伏逆变器可以通过控制器实现智能控制,可以根据实际需求进行发电量的调节和控制。

同时,光伏逆变器还可以与智能电网系统连接,实现双向互动,可以根据实际需求进行电力交换。

5. 提高发电效率:光伏逆变器可以通过优化逆变过程,提高发电效率。

例如,可以通过调节交流电的电压、电流等参数,提高发电效率;还可以通过控制开关管的开关状态,实现最大功率点追踪,提高发电效率。

总之,光伏逆变器在光伏发电系统中起着至关重要的作用。

它可以将光伏板产生的直流电转换为交流电,方便用户使用;同时还可以实现能量的转换和传输,保护设备和提高发电效率。

随着光伏技术的不断发展,光伏逆变器的技术也在不断进步,未来光伏逆变器将在光伏发电系统中发挥更加重要的作用。

光伏逆变器简介(完整版)解读

光伏逆变器简介(完整版)解读

图 3 推挽逆变原理图
半桥逆变拓扑:
图4 所示的半桥逆变电路,其功率开关元器件也比较少,结构简单, 但主电路交流输出的电压幅值仅为ui/2,在同等容量下,其功率开关的额 定电流为全桥逆变电路中的功率元器件额定电流的2 倍,由于分压电容 的作用,该电路还具有较强的抗电压输出不平衡能力。
图 4 半桥逆变原理图
(2)阶梯波逆变器
此类逆变器输出的电压波形为阶梯波。逆变器实现阶梯波输出也 有多种不同的线路。输出波形的阶梯数目差别很大。 阶梯波逆变器的优点是 :输出波形比方波有明显改善 ,高次谐波 含量减少,当阶梯达到17个以上时输出波形可实现准正弦波,当采用 无变压器输出时整机效率很高。 缺点是阶梯波叠加线路使用的功率开关较多,其中还有些线路形 式还要求有多组直流电源输入。这给太阳能电池方阵的分组 与 接线 和蓄电池的均衡充电均带来麻烦 。此外阶梯波电压对收音机和某些通 讯设备仍有一些高频干扰。
• (2)要求具有较高的可靠性
目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就 要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种 保护功能,如 :输入直流极性接反保护、交流输出短路保护、过热、过载保 护等。
• (3)要求输入电压有较宽的适应范围
由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电 池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常 工作。
4、电压电流双闭环瞬时控制
电压单闭环控制在抵抗负载扰动方面的缺点与直流电机的转速单闭环 控制比较类似,具体表现在只有当负载(电流、转矩)扰动的影响最终在 系统输出端(电压、转速)表现出来后,控制器才开始有反应,基于这一 点,可以再电压外环基础上加一个电流内环,利用电流内环快速,及时的 抗扰性来抑制负载波动的影响,同时由于电流内环对被控对象的改造作用, 使得电压外环调节可以大大的简化。

光伏110kv逆变器

光伏110kv逆变器

光伏110kv逆变器1.引言1.1 概述概述部分的内容可以包括光伏110kv逆变器的基本概念、重要性以及在光伏发电系统中的作用。

例如:光伏110kv逆变器是一种用于光伏发电系统的关键设备,它起到将光伏电池板产生的直流电转换成交流电的作用。

光伏逆变器通过将直流电源转换为交流电源,可以实现光伏电站的电能传输和利用。

在光伏发电系统中,逆变器是至关重要的组成部分之一,其稳定可靠的工作对于光伏系统的效率和长期可持续运行至关重要。

光伏110kv逆变器的主要功能是将光伏电池板所产生的直流电转换成电网所需要的交流电。

光伏电池板所产生的直流电无法直接供电到电网中,因此需要经过逆变器的转换处理。

逆变器通过一系列的电子元器件和控制算法,将直流电源转换为交流电源,并将其与电网同步,以满足电网对于电能的需求。

光伏110kv逆变器的设计和性能直接影响光伏发电系统的发电效率和系统的可靠性。

合理的设计能够最大程度地提高逆变器的转换效率,优化电能传输和利用的效果。

同时,保证逆变器在不同光照条件下的稳定工作,具备较高的抗干扰能力,能够有效地保护光伏电池板和电网安全稳定运行。

本文将重点探讨光伏110kv逆变器的基本原理以及设计要点,旨在帮助读者更好地理解光伏发电系统中逆变器的工作原理和关键技术。

同时,通过对目前已有的研究成果和实际应用案例的分析和总结,提出展望和发展趋势,以期为光伏110kv逆变器的进一步研究和应用提供参考和指导。

1.2 文章结构文章结构部分的内容可按照以下方式编写:文章结构:本文主要分为三个部分:引言、正文和结论。

引言部分首先对光伏110kv逆变器进行了概述,介绍了其基本原理和设计要点。

然后,对整篇文章的结构进行了说明,并明确了研究的目的。

正文部分详细阐述了光伏逆变器的基本原理,包括其工作原理、电路结构等方面的内容。

同时,重点介绍了110kv逆变器的设计要点,包括功率因数控制、输出电压调节、电网连接等方面的关键技术。

光伏逆变器_emi原理_概述说明以及概述

光伏逆变器_emi原理_概述说明以及概述

光伏逆变器emi原理概述说明以及概述1. 引言1.1 概述光伏逆变器作为太阳能发电系统中的核心设备,被广泛应用于各种规模的光伏发电项目中。

它负责将太阳能电池板所产生的直流电转换成交流电,并将其输送到实际用电设备中。

然而,在逆变过程中,会产生一种被称为电磁干扰(EMI)的现象。

这种干扰可能对其他电子设备、通信系统和无线网络造成负面影响,因此需要对光伏逆变器的EMI原理进行深入的了解。

1.2 文章结构本文将围绕光伏逆变器EMI原理展开探讨。

首先,将介绍光伏逆变器的基本概念和作用,以及EMI产生的相关背景知识。

随后,详细阐述EMI原理及其重要性,并分析其对设备和系统性能的潜在影响。

接着,将着重讨论光伏逆变器在EMI方面存在的主要问题,并提出解决这些问题的方法和技术。

最后,在结论部分对全文进行总结,并展望未来在该领域的研究方向。

1.3 目的本文旨在为读者提供一个全面和深入理解光伏逆变器EMI原理的指南。

通过对EMI产生机制、影响因素以及解决方法进行详细阐述,读者将能够更好地理解光伏逆变器在实际应用中所面临的问题,并学习到如何有效减少或抑制EMI的技术手段。

同时,本文也将强调光伏逆变器EMI问题的重要性,并展望未来在该领域的研究方向,以期为相关研究和实践提供有价值的参考和借鉴。

2. 光伏逆变器EMI原理概述2.1 光伏逆变器介绍光伏逆变器是将太阳能电池板产生的直流电转换为交流电的设备。

它在光伏发电系统中起着至关重要的作用,将直流电转换为交流电以供给家庭和商业用途。

然而,光伏逆变器在工作过程中会产生电磁干扰,也称为EMI(Electromagnetic Interference),对其他电子设备和通信设备造成干扰。

因此,了解光伏逆变器的EMI原理对我们提高系统性能、减少干扰至关重要。

2.2 EMI概念和影响EMI指的是在一个系统中出现的电磁辐射或者通过传导方式引入到其他系统中的不希望的信号。

光伏逆变器所产生的EMI会对附近的通信设备、无线网络以及其他敏感设备造成干扰,甚至可能导致其正常运行受阻。

光伏逆变器概述(完整版)

光伏逆变器概述(完整版)

光伏逆变器概述(完整版)光伏逆变器概述⼯作原理及特点⼯作原理:逆变装置的核⼼,是逆变开关电路,简称为逆变电路。

该电路通过电⼒电⼦开关的导通与关断,来完成逆变的功能。

特点:(1)要求具有较⾼的效率。

由于⽬前太阳能电池的价格偏⾼,为了最⼤限度的利⽤太阳能电池,提⾼系统效率,必须设法提⾼逆变器的效率。

(2)要求具有较⾼的可靠性。

⽬前光伏电站系统主要⽤于边远地区,许多电站⽆⼈值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输⼊直流极性接反保护、交流输出短路保护、过热、过载保护等。

(3)要求输⼊电压有较宽的适应范围。

由于太阳能电池的端电压随负载和⽇照强度变化⽽变化。

特别是当蓄电池⽼化时其端电压的变化范围很⼤,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较⼤的直流输⼊电压范围内保证正常⼯作。

光伏逆变器分类有关逆变器分类的⽅法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使⽤的半导体器件类型不同,⼜可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。

根据逆变器线路原理的不同,还可分为⾃激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。

根据应⽤在并⽹系统还是离⽹系统中⼜可以分为并⽹逆变器和离⽹逆变器。

为了便于光电⽤户选⽤逆变器,这⾥仅以逆变器适⽤场合的不同进⾏分类。

1、集中型逆变器集中逆变技术是若⼲个并⾏的光伏组串被连到同⼀台集中逆变器的直流输⼊端,⼀般功率⼤的使⽤三相的IGB T功率模块,功率较⼩的使⽤场效应晶体管,同时使⽤DSP转换控制器来改善所产出电能的质量,使它⾮常接近于正弦波电流,⼀般⽤于⼤型光伏发电站(>10kW)的系统中。

最⼤特点是系统的功率⾼,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采⽤集中逆变的⽅式会导致逆变过程的效率降低和电户能的下降。

光伏逆变器设计与优化

光伏逆变器设计与优化

光伏逆变器设计与优化随着环境保护意识的增强和能源危机的严重化,可再生能源引起了人们越来越多的关注,光伏发电作为可再生能源的重要组成部分,受到了广泛的关注。

而光伏逆变器作为光伏系统中的核心部件,也成为了研究的热点。

下文将探讨光伏逆变器的设计和优化。

一、光伏逆变器的概述光伏逆变器是指将光伏发电系统中直流电转换为交流电输出的电器设备,主要由输入端、控制保护模块、直流-直流变换模块、直流-交流变换模块和输出端组成。

其中,控制保护模块主要负责控制逆变器开关的开关状态,控制逆变器的输出电压和输出频率。

直流-直流变化模块主要负责将光伏电池板输出的不稳定直流电转换为稳定的直流电,以保证电流和电压的稳定性。

直流-交流变换模块则将直流电转换为交流电进行输出,满足家庭用电的需要。

二、光伏逆变器设计的基本原则(一)效率原则光伏逆变器的效率是影响光伏发电系统效果的重要因素之一,因此光伏逆变器设计的基本原则之一是提高逆变器的转换效率。

具体方法包括优化直流-直流转换电路的拓扑结构,减少损耗,提高转换效率。

(二)稳定性原则稳定性原则是光伏逆变器设计的重要原则之一,主要包括输出电压和输出电流的稳定性。

在电压和电流输出稳定的前提下,稳定性原则还要考虑逆变器的结构稳定性以及整个光伏系统的稳定性。

(三)估计原则光伏逆变器设计的估计原则是在确定了需求后,按照极限条件、不确定性因素和安全系数等因素对光伏逆变器进行参数选取与设计,以最终保证光伏逆变器的正常运行与使用寿命。

三、光伏逆变器设计的优化策略(一)优化逆变器的输出电压控制方式在现有的光伏逆变器电压控制方式中,常见的方式有频率调制、脉宽调制和模块化控制等。

其中,频率调制的调制频率对于全压深度的影响比较大,脉宽调制则可以提高效率,模块化控制能够优化输出质量。

因此,在光伏逆变器设计中,应根据实际需求选择合适的电压控制方式。

(二)优化逆变器的过零控制技术光伏逆变器的过零控制技术主要是通过提前预测交流电源中的过零点,以实现优化控制效果。

光伏并网逆变器简介

光伏并网逆变器简介

安徽颐和新能源科技股份有限公司
二.光伏并网逆变器的输入输出特性
光伏并网逆变器要实现LVRT功能在以下方面要做适当处理 1.系统供电电源 要具备一定的储能能力,在电压跌落时,保证系统供电正常 2.对输出电流的控制 在电网电压突然跌落时,若控制不得当,会出现输出电流激 增,跳保护的问题。
安徽颐和新能源科技股份有限公司
光伏并网逆变器的输入能量为太阳电池阵列转换的太阳能, 所以,其动态性很强,受日照,天气,季节,温度影响较大。
安徽颐和新能源科技股份有限公司
二.光伏并网逆变器的输入输出特性
从中图(a)中,可以看出 短路电流近乎与日照强度 成正比增加,开路电压随 着日照强度的增大而略微 增加。随着日照强度的降 低,总体效果会造成太阳 能电池的输出功率下降如 图(b);从图(c)中可 以看出,温度上升使太阳 电池开路电压下降,短路 电流Isc则轻微增大。总体 上,温度升高会造成太阳 能电池的输出功率下降, 如图(d)所示。
Driver I`L1,2,3 U`L1,2,3 UL1,2,3
Power supply
DC Filter
Control System
RS485
string1 string2 SPD string8
LCD
RS485
PC
安徽颐和新能源科技股份有限公司
AC Filter
二.光伏并网逆变器的输入输出特性
安徽颐和新能源科技股份有限公司
三.光伏电站中的方阵功率与逆变器功率匹配
在光伏系统中,电池板方阵的配置,还要考虑所 用逆变器的允许直流电压范围,设置合适的组串关系, 使方阵的最大功率点电压在逆变器最优的工作电压附 近,从而提高系统的效率和可靠性。
安徽颐和新能源科技股份有限公司

光伏逆变器简介及原理讲解

光伏逆变器简介及原理讲解

二、光伏逆变器的分类
9
按逆变器输出电压或电流的波形分可分为:
(1)方波逆变器 方波逆变器输出的电压波形为方波,此类逆变器所使用的逆变 电路也不完全相同 ,但共同的特点是线路比较简单,使用的功率 开关数量很少。设计功率一般在百瓦至千瓦之间。 方波逆变器的优点是:线路简单,维修方便,价格便宜。 缺点是:方波电压中含有大量的高次谐波,在带有铁心电感或 变压器的负载用电器中将产生附加损耗,对收音机 和某些通讯设 备有干扰。此外,这类逆变器还有调压范围不够宽,保护功能不够 完善,噪声比较大等缺点。
光伏逆变器简介及
原理讲解
2018年1月
主要内容
一 光伏逆变器概述 二 光伏逆变器分类 三 光伏逆变器的工作原理 四 逆变器的控制方案 五 逆变器对于孤岛效应的检测与控制 六 光伏逆变器的主要技术指标 七 光伏逆变器的应用
一、光伏逆变器概述 1
逆变器的概述
通常,把将交流电能变换成直 流电能的过程称为整流,把完成 整流功能的电路称为整流电路, 把实现整流过程的装置称为整流 设备或整流器。与之相对应,把 将直流电能变换成交流电能的过 程称为逆变,把完成逆变功能的 电路称为逆变电路,把实现逆变 过程的装置称为逆变设备或逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功 能。
逆变器简单原理图
四、逆变器的控制方案:
逆变器的控制方法主要有采用经典控制理论的 控制策略和采用现代控制理论的控制策略两种。
(1)经典控制理论的控制策略 1、电压均值反馈控制 它是给定一个电压均值,反馈采样输出电压的均值,两 者相减得到一个误差,对误差进行PI调节,去控制输出。他 是一个恒值调节系统,优点是输出可以达到无净差,缺点是 快速性不好。 2、电压单闭环瞬时值反馈控制 电压单闭环瞬时值反馈控制采用的电压瞬时值给定,输 出电压瞬时值反馈,对误差进行PI调节,去输出控制。他是 一个随动调节系统,由于积分环节存在相位滞后,系统不可 能达到无净差,所以这种控制方法的稳态误差比较大,但快 速性比较好

光伏逆变器的简介(试题复习)

光伏逆变器的简介(试题复习)

光伏逆变器的简介光科1103班摘要:本文简单介绍了太阳能发电系统结构,叙述了光伏逆变器在光伏发电系统中的重要作用。

具体介绍光伏逆变器的分类和工作原理。

介绍和比较了单相电压型逆变器几种逆变主电路的电路拓扑结构的优缺点,逆变电路开关器件的选择和吸收保护原理。

最后列举了光伏逆变器的主要性能指标。

关键词:光伏发电系统光伏逆变器单相电压型逆变器拓扑结构性能指标一、太阳能发电系统简介21世纪,人类将面临着实现经济和社会可持续发展的重大挑战,在环境污染和资源短缺的双重制约下,能源问题更加突出,而太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。

目前太阳能发电系统主要有独立系统和并网系统两大类,其构成分别如图1和图2图1 独立型光伏发电系统图2 并网型光伏发电系统由图可见,无论是哪种发电系统,逆变器都是太阳能光伏发电系统中除了太阳能电池组件以外的最为重要的部分,是太阳能光伏发电的关键装置,因此对它的研究和开发是太阳能应用推广的必然要求,并存在着巨大的市场前景。

太阳能光伏发电系统用逆变器直接决定了太阳能光伏发电系统的利用效率、系统可靠性、以及适用负载范围等性能。

二、逆变器的作用太阳能光伏发电受日射强度、日射量、日照时间、日射变化以及输出电压等级的限制,并且其输出为直流电,无蓄电功能,不能直接给大部分负载提供电能,因此需要增加逆变器,将直流电变换成稳定可靠、电品质优越的AC220/50Hz交流电供给负载应用。

逆变器不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。

归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。

这里简单介绍自动运行和停机功能及最大功率跟踪控制功能。

1、自动运行和停机功能早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。

光伏逆变器的组成和工作原理

光伏逆变器的组成和工作原理

光伏逆变器的组成和工作原理1. 介绍光伏逆变器是将光伏电池板产生的直流电转换为交流电的关键设备。

它是光伏发电系统中的核心部件,也是将太阳能电能转化为可以接入电网的电能的关键环节。

2. 组成光伏逆变器通常由以下几个主要组成部分构成:2.1 直流输入单元直流输入单元主要由光伏电池板、直流隔离开关和直流接触器组成。

光伏电池板负责将太阳能转化为直流电,直流隔离开关用于控制直流电的连接和断开,而直流接触器则用于控制和保护逆变器的运行。

2.2 逆变单元逆变单元是光伏逆变器的核心部分,负责将直流电转换为交流电。

它通常由直流滤波器、逆变桥、滤波器和输出变压器组成。

直流滤波器用于滤除逆变过程中的谐波,逆变桥将直流电转换为交流电,滤波器用于进一步滤除谐波,输出变压器则将输出电压调整为适合接入电网的电压。

2.3 控制与保护单元控制与保护单元是为了确保逆变器的安全运行而设置的。

它通常包括微处理器、PWM控制器、保护电路和通信接口。

微处理器负责对逆变器进行控制和监测,PWM控制器用于控制逆变桥的开关,保护电路用于监测逆变器的运行状态并进行保护,而通信接口则用于与外部系统进行数据交互。

3. 工作原理光伏逆变器的工作原理可以分为以下几个步骤:3.1 直流电转换光伏电池板将太阳能转化为直流电,并通过直流输入单元传入逆变器。

3.2 逆变过程逆变单元将直流电转换为交流电。

首先,直流滤波器去除直流电中的谐波信号,之后逆变桥将直流电转换为交流电,滤波器进一步滤除谐波信号,最后输出变压器将输出电压调整为适合接入电网的电压。

3.3 控制与保护控制与保护单元对逆变器进行监测和控制。

微处理器监测逆变器的工作状态,根据需求对逆变桥进行PWM控制。

保护电路则负责监测逆变器的电流、电压和温度等参数,一旦发现异常情况,例如过流、过压、过温等,就会立即采取相应的保护措施,保证逆变器的安全运行。

4. 总结光伏逆变器作为光伏发电系统中的核心设备,起到将太阳能转化为可用于接入电网的电能的关键作用。

光伏集中逆变器

光伏集中逆变器

光伏集中逆变器
光伏集中逆变器是应用在太阳能光伏发电领域的专用逆变器,一般用于大型光伏发电站(>10kW)的系统中。

它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量,是光伏系统中不可缺少的核心部件。

集中逆变器通常采用三相的IGBT功率模块,也有使用场效应晶体管的情况,同时使用DSP转换控制器来改善所产出电能的质量,使其接近于正弦波电流。

其最大特点是系统功率高、成本低,但在光伏组串匹配和部分遮影的情况下,会导致整个光伏系统的效率和产能下降,且整个光伏系统的发电可靠性易受某一光伏单元组工作状态不良的影响。

最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏逆变器概述工作原理及特点工作原理:逆变装置的核心,是逆变开关电路,简称为逆变电路。

该电路通过电力电子开关的导通与关断,来完成逆变的功能。

特点:(1)要求具有较高的效率。

由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。

(2)要求具有较高的可靠性。

目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。

(3)要求输入电压有较宽的适应范围。

由于太阳能电池的端电压随负载和日照强度变化而变化。

特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。

光伏逆变器分类有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。

根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。

根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。

为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中型逆变器集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。

最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。

同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。

最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

2、组串型逆变器组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。

许多大型光伏电厂使用组串逆变器。

优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。

技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。

同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。

最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。

目前,无变压器式组串逆变器已占了主导地位。

3、微型逆变器在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。

当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。

若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。

在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。

而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。

其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。

在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。

4、功率优化器太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。

为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。

功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。

功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率点追踪扫描,进而让每一个太阳能电池皆可确实达到最佳功率点追踪,除此之外,还能藉置入通讯晶片随时随地监控电池状态,即时回报问题让相关人员尽速维修。

光伏逆变器的功能逆变器不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。

归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。

这里简单介绍自动运行和停机功能及最大功率跟踪控制功能。

[逆变器在光伏系统中的应用示意图](1)自动运行和停机功能早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。

进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。

当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。

(2)最大功率跟踪控制功能太阳电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。

另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能获取最大功率的最佳工作点。

太阳辐射强度是变化着的,显然最佳工作点也是在变化的。

相对于这些变化,始终让太阳电池组件的工作点处于最大功率点,系统始终从太阳电池组件获取最大功率输出,这种控制就是最大功率跟踪控制。

太阳能发电系统用的逆变器的最大特点就是包括了最大功率点跟踪(MPPT)这一功能。

光伏逆变器的主要技术指标1.输出电压的稳定度在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V或380V的交流电。

但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V 的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。

对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的±5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的±10%。

2.输出电压的波形失真度对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。

通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许l0%)。

由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。

3.额定输出频率对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在±l%以内。

4.负载功率因数表征逆变器带感性负载或容性负载的能力。

正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。

在负载功率一定的情况下,如果逆变器的功率因数较低,则所需逆变器的容量就要增大,一方面造成成本增加,同时光伏系统交流回路的视在功率增大,回路电流增大,损耗必然增加,系统效率也会降低。

5.逆变器效率逆变器的效率是指在规定的工作条件下,其输出功率与输入功率之比,以百分数表示,一般情况下,光伏逆变器的标称效率是指纯阻负载,80%负载情况下的效率。

由于光伏系统总体成本较高,因此应该最大限度地提高光伏逆变器的效率,降低系统成本,提高光伏系统的性价比。

目前主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。

在光伏系统实际设计过程中,不但要选择高效率的逆变器,同时还应通过系统合理配置,尽量使光伏系统负载工作在最佳效率点附近。

6、额定输出电流(或额定输出容量)表示在规定的负载功率因数范围内逆变器的额定输出电流。

有些逆变器产品给出的是额定输出容量,其单位以VA或kVA表示。

逆变器的额定容量是当输出功率因数为1(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。

7、保护措施一款性能优良的逆变器,还应具备完备的保护功能或措施,以应对在实际使用过程中出现的各种异常情况,使逆变器本身及系统其他部件免受损伤。

(1)输入欠压保户:当输入端电压低于额定电压的85%时,逆变器应有保护和显示。

(2)输入过压保户:当输入端电压高于额定电压的130%时,逆变器应有保护和显示。

(3)过电流保护:逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。

当工作电流超过额定的150%时,逆变器应能自动保护。

(4)输出短路保户逆变器短路保护动作时间应不超过0.5s。

(5)输入反接保护:当输入端正、负极接反时,逆变器应有防护功能和显示。

(6)防雷保护:逆变器应有防雷保护。

(7)过温保护等。

另外,对无电压稳定措施的逆变器,逆变器还应有输出过电压防护措施,以使负载免受过电压的损害。

8.起动特性表征逆变器带负载起动的能力和动态工作时的性能。

逆变器应保证在额定负载下可靠起动。

9.噪声电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。

逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。

选型技巧逆变器的选用,首先要考虑具有足够的额定容量,以满足最大负荷下设备对电功率的要求。

对于以单一设备为负载的逆变器,其额定容量的选取较为简单。

当用电设备为纯阻性负载或功率因数大于0.9时,选取逆变器的额定容量为用电设备容量的1.1~1.15倍即可。

同时逆变器还应具有抗容性和感性负载冲击的能力。

对一般电感性负载,如电机、冰箱、空调、洗衣机、大功率水泵等,在起动时,其瞬时功率可能是其额定功率的5~6倍,此时,逆变器将承受很大的瞬时浪涌。

针对此类系统,逆变器的额定容量应留有充分的余量,以保证负载能可靠起动,高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。

小型逆变器为了自身安全,有时需采用软起动或限流起动的方式。

安装注意事项及维护1、在安装前首先应该检查逆变器是否在运输过程中有无损坏。

2、在选择安装场地时,应该保证周围内没有任何其他电力电子设备的干扰。

3、在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断开直流侧断路器。

相关文档
最新文档