第一章 纳米材料的基本效应及其物理化学性质
纳米效应1资料
2)矫顽力
常 规 Fe 块 体 矫 顽 力 通 常低于[1×104/4π]A/m 室 温 下 Fe 微 粒 矫 顽 力 保持在[1 × 106/4π]A/m 纳米Co-Fe合金矫顽力 高 [2.06 × 106/4π]A/m
高矫顽力的起源:
一致转动模式 当粒子尺寸小到某一尺寸,每个粒子就是一个单磁
1 结构与形貌
电子显微镜下超细颗粒一般呈球形,但随着制 备条件不同,特别是当粒子尺寸在l~100nm之间 变化时,粒子形貌并非都呈球形或类球形 表面层 晶格的畸变乃至结构发生改变
纳米颗粒表面原子的最近邻近配位数低于体内 而导致非键电子对排斥力降低等,导致颗粒内 部特别是表面层晶格的畸变乃至结构发生改变
常规顺磁材料的磁化率服从居里一外斯
定律
=
C T-TC
纳米颗粒尺寸小到一定临界值时进入超顺磁状态,磁 化率χ不再服从居里—外斯定律,磁化率不会发生突 变,而随温度缓慢变化。
产生超顺磁性原因:
小尺寸下,当各向异性能减小到与热运 动能可相比拟时,磁化方向就不再固定在一 个易磁化方向,而作无规律变化,导致出现 超顺磁性。不同种类的纳米磁性颗粒显现超 顺磁的临界尺寸不同。
2热学性质
1)熔点
Au
表面能高、比表面原子数多
表面原子邻近配位不全
活性大
体积远小于大块材料
结果:熔化所需增加的内能小,熔点急剧下降
T= 2 SLT0 Hr
2)蒸汽压
蒸汽压随粒径减少而上升
式中:PM、—P摩0—尔超质细ln量颗PP0粒=和2R块MTr状物质的蒸汽压
R—气体常数 T—绝对温度
光吸收带位置是由影响峰位的蓝移因素和红 移因素共同作用的结果。
3) 量子限域效应
第1章纳米材料的基本概念与性质
纳米棒
❖ 因为准一维纳米材料在介观领域和纳米器件研制 方面有着重要的应用前景:
✓ 它可用作扫描隧道显微镜(STM)的针尖 ✓ 纳米器件
✓ 超大集成电路(ULSIC)中的连线 ✓ 光导纤维
✓ 微电子学方面的微型钻头
✓ 复合材料的增强剂等
目前关于一维纳米材料(纳米管、纳米丝、纳 米棒等)的制备研究已有大量报道。
1.1.3 纳米粒子薄膜与纳米粒子层系
定义:含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的 薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或 多层膜
复合薄膜中的纳米颗粒
比表面积大
尺寸效应
界面效应
具有特殊的物理性质和化学性质
纳米级第二相粒子沉积镀层举例
(Ni-P)-纳米Si3N4复合层
用具有很好悬浮性能的纳米Si3N4固体微粒作为镀 液的第二相粒子,通过搅拌使其悬浮在镀液中,用电刷 镀的方法使Ni-P合金与纳米Si3N4微粒共沉积于基体 表面.它具有沉积速度快、镀层硬度高和耐磨性好等 优异的性能.
复合纳米固体材料亦是一个重要的应用领域。例如:
➢含有20%超微钴颗粒的金属陶瓷是火箭喷气口的耐高 温材料;
➢金属铝中含进少量的陶瓷超微颗粒,可制成重量轻、 强度高、韧性好、耐热性强的新型结构材料。
➢超微颗粒亦有可能作为渐变(梯度)功能材料的原材 料。例如,材料的耐高温表面为陶瓷,与冷却系统相接 触的一面为导热性好的金属,其间为陶瓷与金属的复合 体,使其间的成分缓慢连续地发生变化,这种材料可用 于温差达1000°C的航天飞机隔热材料、
基本内容 1.1 纳米材料的基本概念 1.2 纳米微粒的基本性质 1.3纳米微粒的物理特性
1.1 纳米材料的基本概念
从尺寸概念分析:纳米材料就是关于原子团簇、 纳米颗粒、纳米薄膜、纳米碳管和纳米固体 材料的总称。
纳米材料的基本效应
纳米材料的四个基本效应转载▼纳米材料由纳米离子组成,纳米离子一般是指尺寸在1-100纳米之间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统也非典型的宏观系统,是一种典型人界观系统,它具有如下四方面效应,并由此派生出传统固体不具有的许多特殊性质。
1、表面效应粒子直径减少到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。
这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。
表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。
2、量子尺寸效应指纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象。
这一效应可使纳米粒子具有高的光学非线性、特异催化性和光催化性质等。
3、体积效应指纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期的边界条件将破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。
如光吸收显著增加并产生吸收峰的等粒子共振频移,由磁有序态向磁无序态,超导相向正常相转变等。
4、宏观量子隧道效应宏观粒子具有贯穿势垒的能力称为隧道效应。
近年来,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,他们可以穿越宏观系统的势垒而产生变化,故称为宏观的量子隧道效应MQT (Macroscopic Quantum Tunneling)。
这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,也限定了采用磁带磁盘进行信息储存的最短时间。
以上四种效应是纳米粒子与纳米固体的基本特性,它使纳米粒子和固体呈现许多奇异的物理性质、化学性质,出现一些反常现象,如金属为导体,但纳米金属微粒在低。
纳米材料的基本概念与性质
对介于原子、分子与大块固体之间的纳米晶体,大块材料 中连续的能带将分裂为分立的能级;能级间的间距随颗粒 尺寸减小而增大。
如导电的金属在纳米颗粒时可以变成绝缘体;当温度为1K, Ag纳米粒子直径小于14nm,Ag纳米粒子变为绝缘体。
合成了一维氮化硅纳米 线体。
氮化硅纳米丝
31
1.2 纳米微粒的基本性质
1.电子能级的不连续性 - kubo理论 2. 量子尺寸效应 3. 小尺寸效应 4. 表面效应 5. 宏观量子隧道效应
1.2.1电子能级的不连续性 - kubo理论
久保(Kubo)理论是关于金属粒子电子性质的理 论.它是由久保及其合作者提出的,以后久保和其他 研究者进一步发展了这个理论.1986年Halperin对这一 理论进行了较全面归纳,用这一理论对金属超微粒子 的量子尺寸效应进行了深入分析。
碳纳米管的发现
❖ 饭岛澄男(Iilijima Sumio)分别在1991 和1993年发表论文
❖ “Helical microtubules of graphitic carbon. Nature 354, 56 - 58 (07 November 1991) ”
❖ “Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 - 605 (17 June 1993) ”。
制备C60常用的方法:
采用两个石墨碳棒在惰性气体(He,Ar)中进行直流 电弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥 发物中除了有C60外,还含有C70,C20等其它碳团簇。可 以采用酸溶去其它团簇,但往往还混有C70。
纳米材料
用途:
高密度磁记录材料、吸波隐身材料、磁流 体材料、防辐射材料、单晶硅和精密光学 器件抛光材料、微芯片导热基与布线材料、 微电子封装材料、光电子材料、电池电极 材料、太阳能电池材料、高效催化剂、高 效助燃剂、敏感元件、高韧性陶瓷材料、 人体修复材料和抗癌制剂等。
2、纳米固体材料
纳米固体材料通常指 由尺寸小于15纳米的超微 颗粒在高压力下压制成型, 或再经一定热处理工序后 所生成的致密型固体材料。
(二)、纳米材料的奇异特性
具有很高的活性 特殊的光学性质 特殊的热学性质 特殊的磁学性质 特殊的力学性质 特殊的电学性质
1、具有很高的活性
随着纳米微粒粒径减小,比表面积增大, 表面原子数增多及表面原子配位不饱和 性导致大量的悬键和不饱和键等,这就 使纳米微粒具有高的表面活性,并且粒 径越小,表面原子数所占比率越大,比 表面积越大,表面光滑程度变差,形成 凹凸不平的原子台阶,增加了化学反应 的接触面,使其具有优良的催化性能。
2.小尺寸效应
随着颗粒尺寸的量变,在一定 条件下会引起颗粒性质的质变。由 于颗粒尺寸变小所引起的宏观物理 性质的变化称为小尺寸效应。对超 微颗粒而言,尺寸变小,其比表面 积亦显著增加,从而产生一系列新 奇的性质。
小尺寸效应的主要影响:
1、金属纳米材料的电阻与临界尺寸 2、宽频带强吸收性质 3、激子增强吸收现象 4、磁有序态向磁无序态的转变 5、超导相向正常相的转变 6、磁性纳米颗粒的高矫顽力
4、特殊的磁学性质
主要表现为:超顺磁性、高矫顽力、低居里温度、 高磁化率 。小尺寸超微颗粒的磁性比大块材料 强许多倍,大块的纯铁矫顽力约为80A/m,而当 颗粒尺寸见效到20nm以下时,其矫顽力可增加 1000倍,若进一步减小尺寸,大约小于6nm时, 其矫顽力反而降低到零,表现出所谓超顺磁性
纳米材料基本效应PPT讲稿
•如:把边长为1cm的立方体逐渐分割减小的立方 体,总表面积将明显增加。
边长
1 cm 10-5 cm (100 nm) 10-6 cm (10 nm) 10-7 cm (1 nm)
立方体数
1 1015 1018 1021
• 这样高的比表面,使处于表面的原子数越来越
多,同时表面能迅速增加。
5
• 2. 表面原子数的增加 • 由于粒子尺寸减小时,表面积增大,使处于表
面的原子数也急剧增加.
6
表面原子数占全部原子数的比例和粒径之间的关系
7
• 3.表面能 • 由于表层原子的状态与本体中不同。 • 表面原子配位不足,因而具有较高的表面能。 • 如果把一个原子或分子从内部移到界面,或者
17
18
19
2. 特殊的热学性质
固态物质在其形态为大尺寸时,其熔点是固定的, 超细微化后却发现其熔点将显著降低,当颗粒小于10 纳米量级时尤为显著。
利用这个特性可以作为高效率的光热、光电等转换材料, 可以高效率地将太阳能转变为热能、电能。此外又有 可能应用于红外敏感元件、红外隐身技术等。
1991年春的海湾战争,美国执行空袭任务的F-117A型隐身战斗 机,其机身外表所包覆的红外与微波隐身材料中就包含有多种 纳米超微颗粒,它们对不同波段的电磁波有强烈的吸收能力, 以欺骗雷达,达到隐形目的。在海湾战争中使用了该项技术, 成功地实现了对伊拉克重要军事目标的打击。
每面面积
1 cm2 10-8 cm2 10-12 cm2 10-14 cm2
总表面 积
6 cm2 6×105cm2 6×106cm2 6×107cm2
4
• 随着粒径减小,表面原子数迅速增加。这是由 于粒径小,总表面积急剧变大所致。
纳米材料的物理和化学性质
纳米材料的物理和化学性质是当今材料科学和纳米技术研究的重要领域,也是新材料开发和科技进步的重要方向。
纳米材料在物理、化学和生物学等多个领域有着广泛的应用,包括电子学、光电子学、能源材料、生物医学、环境治理、汽车、航空等等。
本文将从纳米材料的定义、物理化学性质、制备方法和应用等方面进行论述。
一、纳米材料的定义纳米材料指的是尺寸在纳米级别(1纳米=10^-9米)的材料,其尺寸通常在1-100纳米之间。
由于其尺寸非常小,因此纳米材料具有许多普通材料所不具备的独特性质。
二、纳米材料的物理化学性质1.尺寸效应由于纳米材料具有微小的尺寸,导致其物理化学性质发生了明显的尺寸效应。
例如,相同材料的纳米颗粒比其体积大的颗粒具有更高的比表面积和更短的扩散距离,从而影响其化学反应、光学和磁学等性质。
2.量子效应当尺寸小于或等于一定的大小时,纳米材料就会表现出现量子效应。
量子效应是一种量子物理现象,其最重要的表现之一是材料中只有离散的能级,不同的粒子之间出现量子隧道效应。
在纳米材料中,电子和光子表现出来的量子效应会对光电学、磁学和电学性质产生明显影响。
3.表面效应由于纳米材料具有高于其体积大的材料更大的表面积,使其表面反应速率增加,表面原子费米能级上升,更易于表面和物质之间的反应。
三、纳米材料的制备方法制备纳米材料的方法有很多种,例如:化学合成法、物理气相法、凝胶法、溶胶-凝胶法、电化学沉积法、电子束物理沉积法、熔滴工艺等。
其中,化学合成法是应用最广泛的制备方法之一。
四、纳米材料的应用由于纳米材料具有优异的物理化学性质,因此在科学领域和工业应用中有着广泛的应用前景。
1.电子学和光电子学领域纳米材料在电子学和光电子学领域应用广泛,尤其是在显示技术、半导体和光电器件、光电子计算机、传感器、激光等应用中。
2.生物医学领域纳米材料在生物医学领域中也有广泛的应用,例如用于抗肿瘤、抗癌、功能分子探测和药物递送等等。
3.环境治理领域纳米材料在环境治理领域中的应用更为多样,包括净水、空气净化、污水处理、土壤修复、油污清洗等等。
1.1纳米材料性质
1.1纳⽶材料性质纳⽶材料性质1 纳⽶材料概述纳⽶材料是指三维空间尺⼨中⾄少有⼀维处于纳⽶级别(约1-100nm)的材料,根据其维度的差异通常可分为三类:(1)零维材料,即空间三维尺度都在纳⽶级别,包括量⼦点、纳⽶微球、纳⽶颗粒、原⼦团簇等;(2)⼀维材料,即空间三维尺度中有⼀维处于纳⽶级别,如纳⽶线、纳⽶棒、纳⽶管、纳⽶带等;(3)⼆维材料,即空间三维尺度有两维处于纳⽶级别,包括纳⽶⽚、多层膜、超薄膜⽯墨烯、⼆硫化钼、⼆硒化钼、⼆硫化钨、⼆硒化钨等⽚状纳⽶材料。
纳⽶粒⼦⼀般是⽐原⼦簇⼤,⽽⽐微粉要⼩,这个尺⼨是处于原⼦和微观物质之间很难⽤⾁眼和⼀般的显微镜观察。
图1.1 颗粒尺⼨分布图,单位:⽶(m)因为这些单元往往具有量⼦性质,所以对零维、⼀维和⼆维的基本单元⼜分别称为量⼦点、量⼦线和量⼦阱。
纳⽶材料是介于宏观和微观原⼦簇之间的⼀个新的物质层次,因⽽表现出独特的物理化学性质,具有表⾯效应、⼩尺⼨效应、量⼦尺⼨效应以及宏观量⼦隧道效应、量⼦限域效应等特性,使得纳⽶材料在包括催化、⽣物医学、材料⼯程、环保、能源等众多领域得到了⼴泛的应⽤。
2 纳⽶材料的基本性质由于组成纳⽶材料的基本单元属于纳⽶量级,当材料的尺⼨⼩到接近光的波长或接近电⼦的相⼲长度时,晶体的周期性的边界条件将会被破坏,材料的⽐表⾯积会增⼤,⽽纳⽶材料表层附近的原⼦密度将减⼩,这些改变将造成纳⽶材料相对于宏观物体的多种性质的改变。
这些纳⽶材料的尺⼨越⼩,其表⾯原⼦数所占⽐例就越⼤。
由于表⾯原⼦的配位数较低,导致表⾯原⼦活性较⾼,微电⼦状态相应会发⽣变化,从⽽使得纳⽶材料有很多独特的性质。
2.1 表⾯效应表⾯效应是指纳⽶材料表⾯原⼦的数量与纳⽶材料的总原⼦数的⽐值随着粒径的变⼩⽽快速增⼤后所引起的材料性质的变化。
表1.1中给出了纳⽶粒⼦尺⼨与表⾯原⼦数的关系。
从表1.1中可见随着纳⽶材料尺⼨的减⼩,材料⽐表⾯积和表⾯的原⼦数在迅速增加。
纳米材料的物理与化学特性
纳米材料的物理与化学特性随着科技的发展,人们在材料领域也不断探索创新,其中纳米材料已成为研究的热点。
纳米材料的物理和化学特性与传统的宏观材料有很大的不同,本文将对纳米材料的这些特性进行介绍。
一、纳米材料的物理特性1.尺寸效应纳米材料的尺寸一般在1-100纳米之间,相比传统的宏观材料来说,尺寸更小,因此表现出了很多独特的物理特性。
其中,最重要的一个特性便是尺寸效应。
尺寸效应是指在纳米尺度下,材料的物理性质与其尺寸变化密切相关。
由于其尺寸非常小,纳米颗粒表面原子数目相对较少,而表面原子具有更高的自由能,因此,表面的原子比体内的原子更容易移动或反应。
而导致了纳米材料表面的原子结构、比表面积以及空孔的数量都和其尺寸有关。
2.热力学不稳定性纳米材料热力学不稳定性对其物理特性的影响也非常大。
由于经典热力学和统计力学适用于传统的宏观材料,而在纳米尺度下,统计力学原理的适用性、“基于热力”的化学反应以及传热的微观机制等等,构成了一个非常有趣的热学现象。
例如,纳米颗粒的活化能相对较低,因此具有随着温度的升高呈指数增加的快速催化活性。
由于温度的提高会加速原子或分子的反应,使得纳米材料的热力学不稳定性增强,从而使表现出更多在宏观尺度下不可观察到的化学反应特性。
3.光学性质纳米材料由于其尺寸小的特性,导致了纳米材料的光学性质也与传统材料存在很大的差异。
纳米材料可以通过调节其尺寸、形状、组成以及环境等多种方式来控制其光学特性,产生颜色和与光的交互作用的其他物理效应。
二、纳米材料的化学特性1.反应活性与宏观材料相比,纳米材料的反应活性要高得多。
由于纳米材料表面具有更多的原子或离子,导致表面的能量密度更高,活性更强。
这就是为什么纳米材料能够催化许多反应的原因。
此外,纳米材料也具备更大的表面积和更多的结构缺陷,这些缺陷也会增强其反应活性。
2.氧化还原性纳米材料的氧化还原性也具有很大的特点。
由于纳米颗粒的尺寸很小,电子效应也随之发生变化,致使纳米颗粒发生氧化还原反应时,其反应速率相比宏观物质将大大增强。
纳米材料基本效应
超细银粉制成的导电浆料可以进行低温烧结,此时元件的
基片不必采用耐高温的陶瓷材料,甚至可用塑料。
表(界)面效应的主要影响
熔点降低 烧结温度降低 晶化温度降低 表面化学反应活性
催化活性
纳米材料的(不)稳定性 铁磁质的居里温度降低 纳米材料的超塑性和超延展性 介电材料的高介电常数(界面极化)
1 nm,表面原子~99%
粒径越小,表面原子所占 比例越高
表面原子 26/27 表面原子 98/125
教育部顧問室奈米科技人才培育計畫
表面原子的效应
•原子配位(coordination)不足
•高面能
直径小于100nm的微粒之表面效应不可忽略
1 、熔 点 显 著 降 低
与常规粉体材料相比,纳米粒子的表面能高,表面原子数多, 这些表面原子近邻配位不全,活性大,因此,其熔化时所需增 加的内能小得多,这就使得纳米粒子熔点急剧下降。
当 δ大于热能 kBT、磁能、净磁能、静电能、光子能 量或超导态的凝聚能时,必须要考虑量子尺寸效应
量 子 尺 寸 效 应 影 响
1. 导体向绝缘体的转变 2. 吸收光谱的兰移现象 3. 磁矩的大小和颗粒中电子是奇 数还是偶数有关
4. 纳米颗粒的发光现象
二、表(界)面 效 应
球形颗粒的表面积与直径的平方成正比,其体积与直径的 立方成正比,故其比表面积(表面积/体积)与直径成反比。 随着颗粒直径变小,比表面积将会显著增大,说明表面原子 所占的百分数将会显著地增加。
电、磁、热、力学等特性呈现新的小尺寸效
应。
小尺寸效应的主要影响
金属纳米相材料的电阻增大与临界尺寸现象(电子平均自 由程) 超导相向正常相的转变(超导相干长度?) 宽频带强吸收性质(光波波长) 激子增强吸收现象(激子半径) 磁有序态向磁无序态的转变(超顺磁性)(各向异性能) 超导相向正常相的转变(超导相干长度?) 磁性纳米颗粒的高矫顽力(单畴临界尺寸) 吸收光谱的红移现象
纳米材料物理
纳米材料的基本效应纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。
宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。
随颗粒体积V 的减小而增加。
量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO )和最低未被占据分子轨道能级(LUMO ),能隙变宽的现象,均称为量子尺寸效应。
能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。
对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N →∞)0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N有一定的值,即能级间距发生分裂。
当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。
Ag 的电子数密度n = 6 × 1022/cm3,由公式当T=1K /kB=1,代入上式,求得d=20nm >kB 时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d <20nm ,Ag 纳米微粒变为 非金属绝缘体,如果温度高于1K ,则要求d << 20nm 才有可能变为绝缘体。
这里应当指出,kB >h/明,纳米Ag 的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag 满足上述两个条件。
31222212()2m N E E π⎛⎫= ⎪⎝⎭143F E V N δ-=∝(久保理2223(3)2F E n m π=43F E Nδ=18338.710(K cm )B k d δ-⨯=Shift to higher energy in smaller sizeDiscrete structure of spectraIncreased absorption intensity量子尺寸效应的主要影响:1、导体向绝缘体的转变2、吸收光谱的蓝移现象3 、纳米材料的磁化率4.纳米颗粒的发光现象什么是小尺寸效应当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。
第一章 纳米材料的基本概念和性质
河南理工大学材料学院
纳米材料导论-第一章
表面效应
纳米微粒尺寸小,表面能高,位于表面的原子占相 当大的比例。
表1.3 纳米微粒尺寸与表面原子数的关系
纳米微粒尺寸/nm
包含总原子数 3×104 4×103 2.5×102 30
表面原子所占比例/% 20 40 80 99
10 4 2 1
随着纳米微粒粒径的减小,微粒中总原子数减小,而 表面原子占总原子的比例却显著增加
而λ=h/mv=h/p称为德布罗意波长公式。这种波也叫物质波, 它即不是机械波也不是电磁波而是一种"概率波"。
河南理工大学材料学院
纳米材料导论-第一章
小尺寸效应
纳米粒子的这些小尺寸效应为实用技术开拓了新 领域:
纳米尺度的强磁性颗粒(Fe-Co合金,氧化铁等),当颗粒尺寸为单磁畴 临界尺寸时,具有甚高的矫顽力。可制成磁性信用卡、磁性钥匙、磁 性车票,还可以制成磁性液体,广泛地用于电声器件、阻尼器件和旋 转密封、润滑、选矿等领域。 纳米微粒的熔点可远低于块状金属,例如2nm的金颗粒熔点为600K, 随粒径增加,熔点迅速上升,块状金为1337K;纳米银粉熔点可降低 到373K,此特性为粉末冶金工业提供了新工艺。
作业
1.试列举纳米颗粒的基本性质有 哪些?
2.试用纳米粒子的表面效应解释, 为什么纳米粒子易于团聚?有哪些 方法可以消除这种团聚?
河南理工大学材料学院 纳米材料导论-第二章
3.纳米微粒的物理特性
河南理工大学材料学院
纳米材料导论-第一章
3.1 纳米微粒的结构与形貌
通常情况下,纳米微粒为球形。但随着制备方法 和条件的不同,粒子的形貌并非都呈球形,而是 类球形。 有人曾用高倍超真空电子显微镜观察纳米粒子, 结果在其表面发现了原子台阶。
纳米材料的物理性质与应用
纳米材料的物理性质与应用纳米材料是指在尺寸范围在1-100纳米之间的物质,其所具有的独特物理性质使其在各个领域得到广泛应用。
本文将介绍纳米材料的物理性质以及其在科学研究和技术领域的应用。
一、纳米材料的物理性质1.1 表面效应纳米材料相对于大尺寸的材料来说,具有更高的比表面积。
由于表面原子与内部原子不完全配对,使得纳米材料表面的物理、化学性质与材料内部不同。
这种表面效应导致纳米材料在催化、传感等领域具有独特的应用潜力。
1.2 量子尺寸效应纳米材料的尺寸处于量子级别,具有量子尺寸效应。
对于纳米粒子来说,电子的能量与空间分布受到限制,导致其能级结构发生改变。
这种量子尺寸效应使纳米材料在光学、电子学和磁学等领域表现出不同于传统材料的特性。
1.3 界面效应纳米材料由于具有较高的比表面积,其材料之间的界面在物理性质上也具有重要影响。
纳米材料界面上的缺陷、应变和表面活性使其在催化、电池、光电子器件等领域有着广泛的应用前景。
二、纳米材料的应用2.1 催化剂纳米材料作为高活性催化剂,由于具有较高的比表面积和表面原子的数量,可以提供更多的反应活性位点。
纳米材料在化学反应中表现出更高的反应活性,因此在催化领域被广泛应用于氧化反应、加氢反应和催化剂的载体等方面。
2.2 电子器件纳米材料在电子器件中具有优越的性能。
例如,纳米颗粒能够增强晶体管的导电性能,提高电子器件的性能;同时,纳米线、纳米管和纳米颗粒等结构可以用于制备高性能的显示屏、太阳能电池和传感器等。
2.3 医学应用纳米材料在医学领域有着广泛的应用前景。
纳米颗粒可以用于药物传递系统,通过调控尺寸和形状,提高药物的生物利用度和靶向性,从而减少药物剂量和毒副作用。
此外,纳米材料还可以用于细胞成像、基因治疗和组织修复等领域。
2.4 能源领域纳米材料在能源领域的应用也备受关注。
纳米颗粒可以用于制备高效能源材料,如锂离子电池、燃料电池和太阳能电池等。
纳米结构的设计和构建能够提高电池的循环寿命和能量密度,推动能源存储和转换技术的发展。
材料物理课件5纳米材料与纳米效应
由于表面原子数增多,原子配位不足及高的表 面能,使这些表面原子具有高的活性,极不稳定, 很容易与其他原子结合。例如金属纳米粒子在空气 中会燃烧,无机纳米粒子暴露在空气中会吸附气体, 并与气体进行反应。
2019/8/15
10
4、宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。
近来,人们发现一些宏观量,例如微颗粒的磁 化强度,量子相干器件中的磁通量等也具有隧道效 应,称为宏观的量子隧道效应。
GMR效应 Fe/Cr多层膜的结构 a)零磁场时 b)超过饱和磁场Hs时
Fe/Cr多层膜的GMR效应 4.2K
2019/8/15
32
四、 纳米材料的磁学性能 (5)
3、巨磁电阻效应
GMR效应对于非磁性导体隔离层的厚度十分敏感。
2019/8/15
非磁性导体隔离层对GMR效应 的影响
33
四、 纳米材料的磁学性能 (6)
27
三、 纳米材料的电学性能 (8)
4、纳米材料的介电性能
BaTiO3材料具有非常高的介电常数,被称为电子工业的支柱。
BaTiO3在高于120oC(393K)时属于立方晶系, 为非极性结构的顺电相。当温度降至120oC发生顺电铁电相变,由立方晶变为四方晶,c/a=0.1,具有沿c轴 发生自发极化的强铁电性。
3
一、纳米材料的基本效应
1、尺寸效应
当纳米材料的组成相的尺寸(如晶粒的尺寸、第二相的尺 寸)减小时,纳米材料的性能将发生明显的变化或突变。
纳米材料具有尺寸效应的基础是量子效应和表面(或界 面)效应。
Ni3Al合金的流变应力与沉 淀粒子Ni3Al尺寸的关系
2019/8/15
纳米ZnO光致发光谱 (随着ZnO尺寸的减小 光致发光强度随激发光 的波长减小而增加)
第一章 纳米材料的基本效应及其物理化学性质
库仑阻塞效应
当一个物理体系的尺寸达到纳米量级时,电容也会小到一 定程度,以至于该体系的充电和放电过程是不连续(即 量子化)的,电子不能连续地集体传输,而只能一个一 个单电子地传输,通常把这种在纳米体系中电子的单个 输运的特性称为库仑阻塞效应。
充入一个电子所需的能量称为库仑堵塞能, e2 E 即前一个电子对后一个电子的库仑排斥能: C C e为一个电子的电荷,C为小体系的电容。 此能量在室温时与热能相比非常小,而当导体尺度极小时, C变得很小,能量EC就会变得很大;尤其在低温时,热能 也很小,库仑阻塞能EC>kBT(热扰动能),就可以观察 到单电子输运行为使充放电过程不连续,就可开发作为 单电子开关、单电子数字存储器等器件应用。
表面效应
TiO2的光催化降解苯酚 图为不同晶粒尺寸TiO2的光催化降解苯酚的剩余百分率的 关系。随粒径减小,光催化活性增高。光催化降解苯酚 活性的陡峭变化发生在粒径小于30 nm的范围。晶粒尺寸 从30 nm 减小到10 nm,TiO2光催化降解苯酚的活性提高 了近45%。
量子尺寸效应
量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米 能级附近的电子能级由准连续变为离散能级或者能隙变 宽的现象。当能级的变化程度大于热能、光能、电磁能 的变化时,导致了纳米微粒磁、光、声、热、电及超导 特性与常规材料有显著的不同。
第一章
纳米材料的基本效应及 其物理化学性质
小尺寸效应 表面效应 量子尺寸效应
四大基本效应
库仑阻塞与量子隧穿效应
介电限域效应
小尺寸效应
小尺寸效应: 当颗粒的尺寸与光波波长、德布罗意波长以 及超导态的相干长度或透射深度等物理特征尺寸相当或 更小时,晶体周期性的边界条件将被破坏,非晶态纳米 粒子的颗粒表面层附近的原子密度减少,导致声、光、 电、磁、热、力学等呈现新的物理性质的变化 特殊的光学性质 Au 黄色 Ag 白色 Pt 白色 Cu 紫红 所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜 色愈黑,金属超微颗粒对光的反射率通常低于l%,大约 几微米的厚度就能完全消光。 特殊的应用价值? 利用这个特性可以作为高效率的光热、光电等转换材料, 可以高效率地将太阳能转变为热能、电能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
色愈黑,金属超微颗粒对光的反射率通常低于l%,大约 几微米的厚度就能完全消光。
特殊的应用价值?
利用这个特性可以作为高效率的光热、光电等转换材料, 可以高效率地将太阳能转变为热能、电能。
小尺寸效应
小尺寸效应
特殊的应用价值?
超细银粉制成的导电浆料可以进行低温烧结,此时元件的 基片不必采用耐高温的陶瓷材料,甚至可用塑料;采用 超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又 具高质量。
实例1:日本川崎制铁公司采用0.1~1μm的铜、镍超微颗粒 制成导电浆料可代替钯与银等贵金属。超微颗粒熔点下 降的性质对粉末冶金工业具有一定的吸引力。
特殊的热学性质
金属单质熔点随尺寸的变化
常规
10nm
2nm
Au
1064℃
1037℃
327℃
常规
5~10nm
Ag
670℃
570℃
固态物质为大尺寸时,其熔点是固定的,超细微化后却发 现其熔点将显著降低,当颗粒小于10nm量级时变化尤为 显著,这主要是由于有大量原子处于能量相对较高的界
面中,颗粒融化时所需增加的内能比块体材料熔化时所 需增加的内能要小很多,从而使纳米固体的熔点降低。
粒子中的原子数 250000 35000 4000 250 30
表面原子比例(%) 10 20 40 80 90
由于表面原子周围缺少相邻的原子:有许多悬空键,具有 不饱和性,易与其他原子相结合而稳定下来,故表现出 很高的化学活性。
表面效应
原子位置 顶角 边上 面上 内部
稳定连接 6 6 6 6
实际连接 3 4 5 6
实例2:在钨颗粒中附加0.1%~0.5%重量比的超微镍颗粒 后,可使烧结温度从3000℃降低到1200~1300℃,以致 可在较低的温度下烧制成大功率半导体管的基片。
小尺寸效应
特殊的力学性质
陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制 成的纳米陶瓷材料却具有良好的韧性。
因为纳米材料具有大的界面,界面的原子排列是相当混乱 的,原子在外力变形的条件下很容易迁移,因此表现出 甚佳的韧性与一定的延展性。
方法1:颗粒间团聚。这样可以减小总的表面积、使能量降 低。但同时也降低了其在催化等方面的活性。
方法2:表面吸附。如无机的纳米颗粒暴露在空气中会吸附 气体,并与气体进行反应;由于纳米颗粒易迅速氧化而 燃烧、甚至爆炸。可通过采用表面包覆改性,或使其缓 慢氧化生成一层极薄而致密的氧化层。
表面效应
TiO2的光催化降解苯酚 图为不同晶粒尺寸TiO2的光催化降解苯酚的剩余百分率的
量子尺寸效应
久保(Kubo)采用一电子模型求得 金属纳米晶粒的能级间距δ为:
4EF
3N
公式中:EF为费米势能,N为粒子中的总电子数。
能带理论表明,金属费米能级附近电子能级一般是连续的, 这一点只有在高温或宏观尺寸情况下才成立。对于宏观 物质包含无限个原子(即导电电子数N→∞),由上式可 得能级间距δ→0,即对大粒子或宏观物体能级间距几乎 为零;而对纳米粒子,所包含原子数有限,N值很小,这 就导致δ有一定的值,即能级间距发生分裂。
人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁 细菌等生物体中存在超微的磁性颗粒,使这类生物在地 磁场导航下能辨别方向,具有回归的本领。磁性超微颗 粒实质上是一个生物磁罗盘,生活在水中的趋磁细菌依 靠它游向营养丰富的水底。
小尺寸效应
小尺寸的超微颗粒磁性与块体材料有着显著不同
例如大块的纯铁矫顽力约为80A/m,而粒径20nm(大于单 磁畴临界尺寸)的铁颗粒的矫顽力增加了1000倍,已用 做高密度存储的磁记录粉,大量应用于磁带、磁盘、磁 卡以及磁性钥匙等;但如果进一步减少粒径、小到6nm 的铁颗粒,其矫顽力反而降为零,呈现出超顺磁性,据 此可用来制备磁性液体,广泛应用于旋转密封、润滑等 领域。
实例1:德国萨尔大学格莱德和美国阿贡国家实验室席格先 后研究成功纳米陶瓷氟化钙和二氧化钛,在室温显示良 好的韧性,在180度经受弯曲并不产生裂纹。
实例2:人的牙齿之所以具有很高的强度,是因为由纳米磷 酸钙构成的牙釉具有高强度和高硬度,其硬度仅次于金 刚石。
小尺寸效应
特殊的磁学性质
美国科学家对东海岸佛罗里达的海龟 进行长期研究:海龟通常在佛罗里 达的海边上产卵,幼小的海龟为了 寻找食物通常要到大西洋的另一侧 靠近英国的小岛附近的海域生活, 那么大海龟靠什么导航呢?
纳米微粒呈现超顺磁的临界尺寸
α-Fe 5nm
Fe3O4 16nm
α-Fe2O3 20nm
表面效应
表面效应:又称界面效应,是指随着颗粒直径的变小,比表
面积将会显著地增加,颗粒表面原子数相对增多,从而 使这些表面原子具有很高的活性且极不稳定,致使颗粒 表现出不一样的特性,这就是表面效应。
粒径大小(nm) 20 10 5 2 1
纳米材料中电子能级分布和块体材料中电子能级分布存在 显著的不同。在大块晶体中在热扰动下,金属晶体中电子可以在导带各能级中较自 由地运动,因而金属晶体表现为良好的导电及导热性。 在纳米材料中,由于至少存在一个维度为纳米尺寸,在 这一维度中,电子相当于被限制在一个无限深的势阱中, 电子能级由准连续分布能级转变为分立的束缚态能级。
第一章
纳米材料的基本效应及 其物理化学性质
小尺寸效应 表面效应 量子尺寸效应 库仑阻塞与量子隧穿效应 介电限域效应
四大基本效应
小尺寸效应
小尺寸效应当:颗粒的尺寸与光波波长、德布罗意波长以及 超导态的相干长度或透射深度等物理特征尺寸相当或更 小时,晶体周期性的边界条件将被破坏,非晶态纳米粒 子的颗粒表面层附近的原子密度减少,导致声、光、电、 磁、热、力学等呈现新的物理性质的变化
关系。随粒径减小,光催化活性增高。光催化降解苯酚 活性的陡峭变化发生在粒径小于30 nm的范围。晶粒尺寸 从30 nm 减小到10 nm,TiO2光催化降解苯酚的活性提高 了近45%。
量子尺寸效应
量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米 能级附近的电子能级由准连续变为离散能级或者能隙变 宽的现象。当能级的变化程度大于热能、光能、电磁能 的变化时,导致了纳米微粒磁、光、声、热、电及超导 特性与常规材料有显著的不同。