1.4 无线电波波段的划分和无线电波的传播 1.4.1 无线电波波段的划分

合集下载

无线电波的发射与接收

无线电波的发射与接收

第一章无线电波的发射与接收我们在物理学的学习中知道,通有交流电的导线,会在它周围产生变化的磁场,变化的磁场又能在它周围引起变化的电场,而变化的电场还将在它周围更远的空间引起变化的磁场。

这种不断交替变化,由近及远传播的电磁场就叫电磁波。

无线电技术中使用的电磁波叫无线电波。

无线电广播、电视广播都是利用无线电波进行传播信号的。

现代通讯离不开无线电波。

本章将介绍无线电波的波长、频率、波段划分,以及它的发射与接收。

第一节无线电波的波长、频率与波段划分一、无线电波波段的划分表1-1无线电波波段的划分理论和实验都可以证明,无线电波在真空中的传播速度跟实验测得的光速相等,即C=3.0×108m/s无线电波在一个振荡周期T内传播的距离叫做波长。

波长、频率和无线电波传播速度c的关系为λ=c/f式中:λ一无线电波的波长,单位m ;c一无线电波的传播速度,单位m/s;f一无线电波的频率,单位HZ无线电波的波长从不到一毫米到几十千米(频率范围由几十千赫到几十万兆赫)。

通常根据波长〔频率)把无线电波划分成几个波段,如表1-1所示。

二、无线电波的传播无线电波是横波,即电场和磁场的方向都跟波的传播方向垂直。

在无线电波中各处的电场强度和磁感应强度的方向也总是互相垂直的,如图1-1所示。

不同波长的电磁波,传播特性不相同;其传播方式大致可分为地波、天波和空间波三种形式。

(一)地波沿地球表面空间向外传播的无线电波叫地波,如图1-2(a)所示。

波具有衍射特性,当无线电波的波长大于或相当于山坡、建筑物等障碍物的尺寸时,它可以绕过障碍物继续向前传播。

地球是导体,地波沿地面传播时,地球表面因电磁感应而产生感应电流,因此要消耗能量,并且能量损耗随频率升高而增大。

考虑到能量损失,只有中、长波才利用地波方式传播。

由于地波传播稳定可靠,在超远程无线电通讯和导航等方面多采用中长波。

图1-1无线电波传播示意图(二)天波依靠电离层的反射作用传播的无线电波叫做天波,如图1-2(b〕所示。

通信电子线路

通信电子线路

j (Cb 'e Cb 'c ) g b 'e
jrb 'e (C b 'e C b 'c ) 1
Y参数均为容性参数,为了今后分析电路方便,我们将Y参数记为:
Yie
Ib U be
U c e 0
g ie jC ie
Ib Yre g re jC re ce U be 0 U Ic Y fe gm U c e 0 be U Ic Yoe goe jC oe ce Ube 0 U
Q(
0 0 0 ) Q( )( ) 0 0 因 为 0 2, 令- 0= , f 则=2Q 2Q , 其 中 是 失 谐 量 0 f0
二、并联谐振回路
二、并联谐振回路
1、基本概念: LC理想,g0 是L和C的损耗之 和。
N 23 接入系数: n N 13
部分的
C1 接入系数: n C1 C 2
折算到全部 增减关系 电压 × 1/n 增大 (因为n<1) 电流 ×n 减小 电阻 × 1/n2 增大 电导 × n2 减小 电容 × n2 减小 其中,电阻、电导、电容的折算关系,可以从阻抗和导纳的角度去理 解。 阻抗 × 1/n2 增大 导纳 × n2 减小
_
(b)
Y参数等效电路
三极管的二端口模型
注意:各Y参数的意义及表达式。
三点结论: 1)Y参数与静态工作点有关,在这点上与H参数一样; 2)Y参数与三极管的工作频率有关。在下一章将要讨论的小信号谐振放大器 中,由于电路的通频带很窄,三极管的工作频率被局限在一个较小的范围内, Y参数在此可以近似看成常数; 3)如果工作频率对三极管来讲不是特别高,即满足:

无线通信基础PPT课件PPT47页

无线通信基础PPT课件PPT47页

1.3.2 语音编码(信源编码)
第 35

语音编码的基本方法:波形编码和参量编码
混合编码: 在混合编码的信号中,既含有若干语音特征参量信息又
含有部分波形编码信息。
规则脉冲激励线性预测编码(RPE-LPC)、矢量和激 励线性预测编码(VSELP)等属于混合编码。在数字移 动通信中得到了广泛应用。
X 第36页,共47页。
X 第25页,共47页。
1.3.1 基本概念
第 25

1、通信系统与通信网
(2)数字通信系统
数字调制和解调:数字调制把数字基带信号的频谱从低
频搬到高频,形成适合在信道中传输的频带信号。数字解 调是在接收端恢复数字基带信号。
同步与数字复接:同步使收、发两端的信号在时间上保持
步调一致。数字复接是依据时分复用基本原理把若干个 低速数字信号合并成一个高速的数字信号,以扩大传输 容量,提高传输效率。
式中, ma=Um为U调cm幅度
X 第16页,共47页。
1.2.1 幅度调制
第 16

1、双边带调幅(AM)
Ucm
1/2ma Ucm
1/2ma Ucm
c
c c
(c)
单音调制的双边带调幅波(AM)的波形与频谱
X 第17页,共47页。
1.2.1 幅度调制
第 17

2、单边带调制(SSB)
(a)话音信号频谱
X 第26页,共47页。
1.3.1 基本概念
第 26

1、通信系统与通信网
(3)通信网
双向、多点通信
X 第27页,共47页。
1.3.1 基本概念
第 27

2、信息速率、信噪比、误码率与信道容量

无线电导航设备讲解

无线电导航设备讲解

3、指点信标系统
过内、中、外台时,相应的灯(白色、琥珀色、蓝 色)燃亮,同时出现对应的音频信号(3000HZ、 1300HZ 、400HZ),以便于飞行员判断着陆飞机离跑道 头预定点(内、中、外指点标台上空)的距离。
为了满足进场和航路两种情况下使用的要求,飞机 上设置有高-低灵敏度控制开关,以控制接收机灵敏度, 便于判断过台时机。一般情况下,指点标灵敏度控制开 关置于低位(L)
有的航向信标台天线发射双向辐射场,既提供跑道 方向的辐射场,又提供跑道反方向的辐射场。若ILS指 示器上无反航道电门,用基本的航道偏离指示器(CDI) 指示,当飞机沿正航道进近时,CDI指示偏右,表示航 向道在飞机右侧;当飞机沿ILS反航道进近时,CDI指 示偏右,表示航向道在飞机的左侧。
2、下滑信标的工作原理
小结
仪表着陆系统的地面设备包括提供横向指引的航向 信标台(LOC)、提供垂直指引的下滑信标台(GS)和 提供距离指引的指点信标台(MB)。HSI和ADI上将显 示偏离情况。
航向信标台工作频率范围为108-112MHZ,且小数 点第一位为奇数。
航向信标台天线产生的辐射场在通过跑道中心延长 线的垂直平面内,形成航向面或称航向道。有的航向信 标台天线发射双向辐射场,既提供跑道方向的辐射场, 又提供跑道反方向的辐射场。
所需的天线比长波要小,发射设备也较 为简单
3.短波
短波传播的主要特点是:地波衰减快,天 波不稳定。但其能以较小功率获得较远的传 播距离 。 主要以天波传播。
4.超短波
它主要以空间波进行传播,其有效传播 距离一般限于视线范围。
传播受天电干扰小,其信号较稳定;频 带很宽,可以容纳大量的电台;容易获 得高增益的方向性天线 。
VOR的机载设备包括天线、控制盒、接收机和指示 器。通过机上的预选航道选择器可选择一条要飞的方位 线,即预选航道。

无线电发送设备的组成及其基本原理

无线电发送设备的组成及其基本原理
采用调制发射方式的原因是多方面的,但至少在以下两 方面是最基本的。其一是与无线电波有效辐射的条件有关, 其二是为了满足“多路复用”的需要。
第1章 绪论
由电磁场理论知,只有当天线的尺寸与被辐射信号的波
长相比拟时(波长l的1/10~1),信号才能被有效地辐射出去。 对于频率f为20 Hz~20 kHz的音频信号,由l =C/f知(C 速,C=3×108* m/s),相应的波长l为15 000~15 km,若采用 l /4天线,则天线长度至少应在3.75 km以上。显然,这是不
3) 振幅调制电路的基本功能是将调制信号对高频载波进行
第1章 绪论 (1) 振幅调制基本原理。 振幅调制通常称为调幅,其原理图如图1-3所示。
图1-3 调幅原理图
第1章 绪论
设输入调幅电路载波信号数学表达式为
uc (t)=Ucmcosωct 其中,Ucm为载波振幅;ωc
通常,调制信号是一个复杂的信号,但为分析问题方便,
第1章 绪论
本章要点 · ·无线电发送、 ·
本章难点 · ·无线电接收设备的构成及原理分析
第1章 绪论
1.1 通信系统的组成及原理
无线电的发明起源于电磁学的发展。19世纪60年代,麦 克斯韦总结库仑、安培、法拉第等人的研究工作之后,提出 了电磁波的概念。1887年,赫兹成功地在导线中激起高频电 流,在导线周围测出电磁场,验证了电磁场的存在。1896年 3月,苏联物理学家波波夫在莫斯科首次进行世界上第一次 无线电电报的发射和接收试验。1901年,意大利科学家马可 尼首次完成了横渡大西洋的无线电通信。此后无线电电子技 术获得迅速发展,其应用领域也不断扩大,但是到现在信息 传输和处理仍是其主要的应用领域。
常用单一频率余弦信号为例,进行讨论。调制信号的数学表

无线电波的划分

无线电波的划分

无线电波的划分段号频带名称频率范围波段名称波长范围1 极低频3-30Hz 极长波 100kkm-10kkm2 超低频30-300Hz 超长波 10kkm-1kkm3 特低频300-3000Hz 特长波 1000km-100km4 甚低频VLF3-30KHz 甚长波 100k-10km5 低频LF 30-300KHz 长波 10k-1km6 中频MF300-3000KHz 中波 1000-100m7 高频HF3-30MHz 短波 100-10m8 甚高频VHF 30-300MHz 米波 10-1m9 特高频UHF 300-3000MHz 分米波 100-10cm(9-12属微波)10 超高频SHF 3-30GHz 厘米波 10-1cm11 极高频EHF 30-300GHz 毫米波 10-1mm12至高频300-3000GHz 丝米波 1-0.1mm广义的电磁波范围波长(cm) 频率(Hz) 波数(1/cm) 无线电波>30 <109<0.03微波 30~0.1 1×109~3×1011 0.03~10远红外 0.1~5×10-3 3×1011~6×1012 10~200中红外 6×10-3~2.5×10-4 6×1012~1.2×1014 200~4000近红外 2.5×10-4~7.8×10-5 1.2×1014~3.8×1014 40000~12800 可见光 7.8×10-5~3.8×10-5 3.8×1014~7.9×1014 12800~26300 近紫外线 3.8×10-5~2×10-5 7.9×1014~1.5×1015 26300~50000 远紫外 2×10-5~10-6 1.5×1015~3×1016 50000~106χ射线 10-6~10-8 3×1017~3×1019 106~108γ射线<10-8>3×1019>108注:可见光的波长范围在0.77~0.39微米之间。

无线电波传播特性与频段的划分

无线电波传播特性与频段的划分
1.3 无线电管理
(3)排他性 当某个频段被人占用以后,同一时间,同一区域 的其他人就不能再使用这个频段,两个通信系统同 时使用相同的频段将造成严重的干扰。因此,从管 理的角度来看,频率资源的使用具有排他性,即一 个部门(个人)使用以后,另一个部门(个人)就 不能同时使用这一资源。这种矛盾也必须通过管理 来解决。
2、介质对无线电波传播的影响 (1)金属对于无线电波的屏蔽作用
金属是良导体,电磁波在金属中传播时会感应 出传导电流,这一电流在金属中流动时发热,电 磁波能量转化为热能,无线电波很快衰减。因此, 无线电波不能在金属等良导体介质中传播。根据 这个道理,用金属板围成一个密闭的房间,外面 的无线电信号就无法进入这个房间,这表明金属 对于无线电波有屏蔽作用。
天 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (4)散射传播 :包括对流层散射传播和电离层散射传播两种模

无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (5)地空传播:穿透电离层的直射传播模式称为地空传播 模式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性
无线电波传播特性与频段的划分
1.3 无线电管理
(2)微功率无线电设备研制 研制微功率无线电设备须按国家无线电管理机构 发布的《研制无线电发射设备的管理规定》办理有 关手续。 (3)微功率无线电设备的生产和进口 生产、进口微功率无线电设备须按国家无线电管 理机构发布的《进口无线电发射设备的管理定》、 《生产无线电发射设备的管理规定》办理有关手 续。所生产的产品性能指标须符合本规定的要求, 不符合要求的产品不得出厂。波传播
地 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (2)空间波传播 :一部分直接由发射天线传向接收天线;另一

无线电知识培训

无线电知识培训

补充说明欧洲同美国对于频段的要求: 1. 在输出到欧洲产品时,尽量使用 ISM 频段,归纳如下: 26.975-27.283MHZ; 40.66-40.7MHZ; 433.05-434.79MHZ; 2.4GHZ-2.4835GHZ; 2.446-2.4835GHZ(法国); 5.725GHZ-5.875GHZ; 24G-24.25GHZ;
GHZ 4.5-5.15 5.35-5.46 7.25-7.75 8.025-8.5 9.0-9.2 9.3-9.5 10.6-12.7 13.25-13.4 14.47-14.5 15.35-16.2 17.7-21.4 22.01-23.12 23.6-24.0 31.2-31.8 36.43-36.5 38.6G以上
• •
2. 除非特殊用途,在美国禁止使用以下频段的产品:

• • • • • • • • • • • • • • • • •
MHZ
0.090-0.110 0.495-0.505 2.1735-2.1905 4.125-4.128 4.17725-4.1775 4.20725-4.20775 6.215-6.218 6.26775-6.26825 6.31175-6.31225 8.291-8.294 8.362-8.336 8.37625-8.38675 8.41425-8.41475 12.29- 12.293 12.51975-12.52025 12.57675-12.57725 12.36-13.41
• •
2.2.3 组成原理: 由64位的工厂代码同28位的编码器序列号经过滚动码密钥生成算法产生一个64 位的密钥,再由此密钥同16位的同步码再经过滚动码 的加密算法产生一个32位的 滚动码数据,连同序列号同按键信息一起发射。如下图:

《高频电子技术(第2版)》电子教案 课程思政PPT 第 1 章 绪 论

《高频电子技术(第2版)》电子教案 课程思政PPT 第 1 章    绪 论
第1章 绪论
通信与通信系统 无线电波段的划分与无线电波的传播 非线性电子线路的基本概念 思政目标:中国精神是兴国强国之魂 本章小结
1.1通信与通信系统
主要要求:
掌握通信系统的基本组成及各组成部分的作用 了解调幅广播通信系统的基本组成及各组成部 分的作用 了解数字通信系统的基本组成及各组成部分的 作用 理解通信系统中为何要采用调制技术
数字调制:用数字基带信号对高频正弦波进行的调制
用数字基带信号去控制高频信号的振幅,称为振幅键控 ASK 频率,称为频率键控 FSK 相位,称为相位键控 PSK
数字通信系统抗干扰、抗噪声能力强,易利用计算机进 行处理。
六、通信系统的基本单元电路
高频小信号放大电路、高频功率放大电路、振荡电路、
调制电路、解调电路、混频器、倍频器、低频放大电路
模拟通信系统 数字通信系统 广播通信系统 电视通信系统
接收者 如电话 接收者 如广播、电视 接收者 如对讲
一、重精神是中华民族的优秀传统
道德理想,也称人格理想,指人们在做人方面所向往和追求 的目标。道德与信念密切相关,它是靠内在的信念和社会舆 论来维系的,人的良心就是一种道德信念的形式。一个人认 为自己应具有什么样的道德品质,形成什么样的人格形象, 学习什么样的理想人格,这是人们在道德修养方面的理想追 求。追求高尚的理想人格,使自己富有人格的魅力,成为一 个为社会所需要、为他人所喜欢的人,既是事业成功的关键, 又是生活幸福的根本。
一、通信系统的基本组成
通信: 发送者与接收者之间的信息传递 通信系统:利用电信号或光信号实现信息传递的系统
信源
已调信号
调制 (高频信号) 解调
输入 发送 变换器 设备
信道
接收 设备

无线电波的波长(频率)与波段

无线电波的波长(频率)与波段

无线电波的波长(频率)与波段无线电波的波长(频率)与波段电磁波的电场(或磁场)随时间变化,具有周期性。

在一个振荡周期中传播的距离叫波长。

振荡周期的倒数,即每秒钟振动(变化)的次数称频率。

很显然,波长与频率的乘积就是每秒钟传播的距离,即波速。

令波长为λ,频率为f,速度为V,得:λ=V/f波长入的单位是米(m),速度的单位是米/秒(m/sec),频率的单位为赫兹(Hertz,Hz)。

整个电磁频谱,包含从电波到宇宙射线的各种波、光、和射线的集合。

不同频率段落分别命名为无线电波(3KHz—3000GHz)、红外线、可见光、紫外线、X 射线、丫射线和宇宙射线。

在19世纪末,意大利人马可尼和俄国人波波夫同在1895年进行了无线电通信试验。

在此后的100年间,从3KHz直到3000GHz频谱被认识、开发和逐步利用。

根据不同的持播特性,不同的使用业务,对整个无线电频谱进行划分,共分9段:甚低频(VLF)、低频(LF)、中频(MF),高频(HF)、甚高频(VHF)\特高频(uHF)\超高频(sHF)\极高频(EHF)和至高频,对应的波段从甚(超)长波、长波、中波、短波、米波、分米波、厘米波、毫米波和丝米波(后4种统称为微波)。

见下表。

段号频段名称频段范围(含上限不含下限)波段名称波长范围(含上限不含下限)1 甚低频(VLF) 3~30千赫(KHz)甚长波 100~10km2 低频(LF) 30~300千赫(KHz)长波 10~1km3 中频(MF) 300~3000千赫(KHz)中波 1000~100m4 高频(HF) 3~30兆赫(MHz)短波 100~10m5 甚高频(VHF) 30~300兆赫(MHz)米波 10~1m6 特高频(UHF) 300~3000兆赫(MHz)分米波微波 100~10cm7 超高频(SHF) 3~30吉赫(GHz)厘米波 10~1cm8 极高频(EHF) 30~300吉赫(GHz)毫米波 10~1mm9 至高频 300~3000吉赫(GHz)丝米波 1~0.1mm无线电频谱和波段划分由于不同的无线电(波段)有不同的传播特性。

无线电波段划分及传播方式

无线电波段划分及传播方式

无线电波段划分及传播式频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱围的电磁波,称为无线电波。

电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。

发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播。

无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段。

根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。

光速÷频率=波长无线电波波段划分波段名称波长围(m)频段名称频率围超长波长波中波短波1,000,000~10,00010,000~1,0001,000~100100~~1010~10.1~0.010.01~0.001甚低频低频中频高频甚高频特高频超高频极高频3~30KHz30~300KHz 300~3,000KHz 3~30MHz30~300MHz 300~3,000MHz 3~30GHz30~300GHz超短波米波分米波厘米波电波主要传播式电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。

任一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。

传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。

根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播式分成下列几种:地表传播对有些电波来说,地球本身就是一个障碍物。

当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。

那些走直线的电波就过不去了。

只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。

无线电波原理

无线电波原理
• 使用绿色手机。 GSM标准的手 机的辐射标准为0.6~2瓦,而 采用CDMA技术的手机其辐射标 准要小得多,所以CDMA手机被 称作绿色手机。
电磁污染
电磁污染 基本上是两大类:一是自然界所固 有的;再就是人在利用电磁能时形成的.
目前在人类的生存环境中,自然界固有的电磁 辐射的影响已相对较小,人为的电磁辐射的影 响却在迅速增大.在我国近十几年来电磁辐射 的影响更是爆炸性的增强,“电气烟雾”弥漫 在我们周围.
作为人造电磁辐射源,它还涉及很多方面,例 如,广播电台、电视台、雷达、导航、通信、 射电天文、气象预测、医疗设备中的电针炙、 核磁共振等,宇航方面的各种飞行器等电子设 备都会辐射电磁波,家庭中使用的微波炉、红 外烤箱等家用电器,也都会产生电磁辐射.
生活环境中充满了电磁波,只要是使用电 的电器用品,都会放出电磁波。墙壁中看 不见的电线,也会使电磁波检测笔哔哔叫。 所以睡觉时不要太靠近装有电线的墙壁, 以免因电磁波影响而无法好好睡一觉。 而现代人人手一手机,它的电磁波其 实是很强的。在电脑前拨通手机,大家往 往会发现电脑萤幕闪铄不已。又在打开的 收音机前拨通手机,收音机也受到很大的 干扰。
四、调制信号源
1.传真 传真是利用无线电波传送图片、书信等静止图像的方法。
原理:画面上不同点反射明暗不同的光,通过光电管, 转化为强弱不同的电流,调制到高频等幅振荡电流上发 送出去。接收处通过辉光管,把强弱不同的电流还原为 明暗不同的光。通过感光纸还原为原来的信号。
2.电视 电视是利用无线电波传送活动的图像。
无线电波的干扰
一.无线电波段的划分
一般将频率低于3×1012Hz的电磁波称为无线电波
f( ) 10018 1020 1022 1024

无线电波的划分

无线电波的划分

无线电波的划分
任何交流电路都能向周围空间放射电磁能,形成有一定强度的电磁场。

交变电磁场以一定速度在空间传播的过程,称为电磁辐射。

当交变电磁场的变化频率达到100kHz以上时,称为射频电磁场。

射频电磁辐射包括1.0×102~3.0×107kHz的宽广的频带。

射频电磁波按其频率大小分为中频、高频、甚高频、特高频、超高频、极高频六个频段。

段号频带名称频率范围波段名称波长范围
1 极低频3-30Hz 极长波100kkm-10kkm
2 超低频30-300Hz 超长波10kkm-1kkm
3 特低频300-3000Hz 特长波1000km-100km
4 甚低频VLF 3-30KHz 甚长波100k-10km
5 低频LF 30-300KHz 长波10k-1km
6 中频MF 300-3000KHz 中波1000-100m
7 高频HF 3-30MHz 短波100-10m
8 甚高频VHF 30-300MHz 米波10-1m
9 特高频UHF 300-3000MHz 分米波100-10cm(9-12属微波) 机场所用800M数字集群通信属于特高频。

10 超高频SHF 3-30GHz 厘米波10-1cm
11 极高频EHF 30-300GHz 毫米波10-1mm
12 至高频300-3000GHz 丝米波1-0.1mm。

超级详细的无线电波段划分表

超级详细的无线电波段划分表

超级详细的无线电波段划分表1.基本波段划分无线电波段一般分为:名称简写简称频率波长长波LW低频30-300KHz10-1 Km中波MW中频300-3000KHz1000-100M短波SW高频3-30MHz100-10M超短波VHF甚高频30-300MHz10-1M微波IUHF特高频300-3000MHz1-0.1M微波IISHF超高频3-30GHz0.1-0.01M2.无线电广播波段划分名称简称频率长波Sw150-200 KHz中波Mw535-1605 KHZ短波 120mSW 120m2300-2490 KHz短波 90mSW 90m3200-3400 KHz短波 75mSW 75m3900-4000 KHz短波 60mSw 60m4750-5060 KHz短波 49mSw 49m5950-6200 KHz短波 41mSw 41m7100-7300 KHz短波 31mSw 31m9500-9775 KHz短波 25mSw 25m11700-11975 KHz短波 19mSw 19m15100-15450 KHz短波 16mSw 16m17700-17900 KHz短波 13mSw 13m21450-21750 KHz短波 11mSw 11m25600-26100 KHz调频广播Fm87-108 MHz3.电视广播波段划分广播电视频段分为无线电视广播和有线电视广播,其有线频段具有增补频道。

VHF -- I波段VHF --I I 波段VHF -- I I I 波段channel 148.5-56.5 MHzFM 87-108 MHzchannel 6167-175 MHzchannel 256.5-64.5 MHzchannel 7175-183 MHzchannel 364.5-72.5 MHzchannel 8183-191 MHzchannel 476-84 MHzchannel 9191-199 MHzchannel 584-92 MHzchannel 10199-207 MHzchannel 11207-215 MHzchannel 12215-223 MHz4.固定通讯业务波段划分波段号频率波段号频率波段号频率Band 114-200 KHzBand 139.04-9.50MHzBand 2523.35-25.07MHzBand 21605-2065KhzBand 149.775-9.995MHzBand 2625.11-25.60MHzBand 32107-2170KhzBand 1510.100-11.175MHzBand 2726.1-28.0MHzBand 42190-2850KHzBand 1611.4-11.7MHzBand 2829.7-50MHzBand 53155-3400KHzBand 1711.975-12.330MHzBand 2954-74.6MHzBand 63500-3900KHzBand 1813.36-14.00MHzBand 30132-144MHzBand 73950-4063KHzBand 1914.35-14.99MHzBand 31148-216MHZBand 84438-4650KHzBand 2015.45-16.46MHzBand 32225-328.6MHzBand 94750-5480KHzBand 2117.36-17.70MHzBand 33335.4-400MHzBand 105730-5950KHzBand 2218.03-21.00MHzBand 34406-420MhzBand 116765-7000KHzBand 2321.75-21.85MHzBand 35450-470MHzBand 127.3-8.195MHzBand 2422.72-23.20MHzBand 365.业余无线电波段划分编号第一区第二区第三区中国11.810-1.8501.800-1.8501.800-2.0001.800-2.000共用1.850-2.00023.500-3.8003.500-3.7503.500-3.9003.500-3.900共用3.750-4.00037.000-7.1007.000-7.1007.000-7.1007.000-7.100专用7.100-7.3007.100-7.3007.100-7.300X410.100-10.15010.100-10.15010.100-10.15010.100-10.150次要514.000-14.25014.000-14.25014.000-14.25014.000-14.250专用614.250-14.35014.250-14.35014.250-14.35014.250-14.350共用718.068-18.16818.068-18.16818.068-18.16818.068-18.168共用821.000-21.45021.000-21.45021.000-21.45021.000-21.450专用924.890-24.99024.890-24.99024.890-24.99024.890-24.990共用1026.000-29.70026.000-29.70026.000-29.70026.000-29.700共用1150.00-54.0050.00-54.0050.00-54.00次要12144.0-146.0144.0-146.0144.0-146.0144.0-146.0专用13146.0-148.0146.0-148.0146.0-148.0共用14220.0-225.0X15430.0-440.0430.0-440.0430.0-440.0430.0-440.0次要雷达波段代表的是发射的电磁波频率(波长)范围,一般情况下,低频(长波)的波段远程性能好,易获得大功率发射机和巨大尺寸的天线;高频(短波长)的波段一般能获得精确的距离和位置,但作用范围短。

无线电波传播基础理论

无线电波传播基础理论

Lp-从基站到移动台的路径损耗(dB) f-载波频率(MHz)
hb-基站天线高度
d-基站到移动台之间的距离(m)
hm-移动台天线高度(1~10m),一般取1.5m,单位为m
AOkummuramh-移动台高度修正,在中等城市取 ( 1 .1 lo f 0 . g 7 ) h m ( 1 .5 l6 o f 0 . g 8 ) 在大城市取值 3.2(lo1g .1 7(h 5 m)2 )4.97
1.3 dB概念的介绍
• Power • Voltages
P dB 10 log
P0 E dB 20 log E0
P ( dB )
[ Plin. ] 10 10
E (dB)
[Elin. ] 10 20
• Conversion factor
E(dBV/m) = P(dBm) + 106,4 + antenna factor
– Okumura – Hata公式中GSM1800M频段的路径损耗比GSM900M频段大
9.79dB
– 功率预算中GSM1800M频段MS发射功率比GSM900M频段小3dB(各自 分别为30dBm和33dBm)
– 50m长 7/8” 电缆损耗差值为0.97dB – GSM1800与GSM900相比较,所有以上各项给出了 13.77 dB差值 • 但实际的场强测量和1800M频段的模型校正发现平均差值并没有这么大 – 通常 Okumura – Hata模型1800M频段的修正因子比900M频段小3~6dB。
Diffuse Reflection. amplitude: A - - > *A ( < 1) phase : - - > random phase polarisation : random

无线电通信波段划分

无线电通信波段划分

波段划分之袁州冬雪创作最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变成22cm. 当波长为10cm 的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波).在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表座标上的某点.为了连系X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C即Compromise,英语“连系”一词的字头).在英国人之后,德国人也开端独立开辟自己的雷达,他们选择1.5cm作为自己雷达的中心波长.这一波长的电磁波就被称为K波段(K = Kurtz,德语中“短”的字头).“不幸”的是,德国人以其日尔曼平易近族特有的“切确性”选择的波长可以被水蒸气强烈吸收.成果这一波段的雷达不克不及在雨中和有雾的天气使用.战后设计的雷达为了防止这一吸收峰,通常使用比K波段波长略长(Ka,即英语K-above的缩写,意为在K波段之上)和略短(Ku,即英语K-under的缩写,意为在K波段之下)的波段.最后,由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头).该系统十分繁琐、而且使用方便.终于被一个以实际波长划分的波分波段系统取代,这两个系统的换算如下.原 P波段 = 现 A/B 波段原 L波段 = 现 C/D 波段原 S波段 = 现 E/F 波段原 C波段 = 现 G/H 波段原 X波段 = 现 I/J 波段原 K波段 = 现 K 波段我国现用微波分波段代号我国的频率划分方法Extremely Low Frequency (ELF) 0 KHz to 3 KHz Very Low Frequency (VLF) 3 KHz to 30 KHz Radio Navigation & Maritime/Aeronautical Mobile 9 KHz to 540 KHz Low Frequency (LF) 30 KHz to 300 KHz Medium Frequency (MF) 300 KHz to 3 MHz AM Radio Broadcast 540 KHz to 1630 KHz High Frequency (HF) 3 MHz to 30 MHz Shortwave Broadcast Radio 5.95 MHz to 26.1 MHz Very High Frequency (VHF) 30 MHz to 300 MHz Low Band: TV Band 1 - Channels 2-6 54 MHz to 88 MHz Mid Band: FM Radio Broadcast 88 MHz to 174 MHz High Band: TV Band 2 - Channels 7-13 174 MHz to 216 MHz Super Band (mobile/fixed radio TV) 216 MHz to 600 MHz Ultra-High Frequency (UHF) 300 MHz to 3000 MHz Channels 14-70 470 MHz to 806 MHz L-band 500 MHz to 1500 MHz Personal Communications Services (PCS) 1850 MHz to 1990 MHz Unlicensed PCS Devices 1910 MHz to 1930 MHz Superhigh Frequencies (SHF) (Microwave) 3 GHz to 30 GHz C-band 3.6 GHz to 7 GHz X-band 7.25 GHz to 8.4 GHz Ku-band 10.7 GHz to 14.5 GHz Ka-band 17.3 GHz to 31 GHz Extremely High Frequencies (EHF) (Millimeter Wave Signals) 30 GHz to 300 GHz Additional Fixed Satellite 38.6 GHz to 275 GHz Infrared Radiation 300 GHz to 810 THz Visible Light 810 THz to 1620 THz Ultraviolet Radiation 1.62 PHz to 30 PHz X-Rays 30 PHz to 30 EHz Gamma Rays 30 EHz to 3000 EHz微波波段极低频短波通信频率功能的划分极低频短波通信实际使用的频率范围:1.6 MHz~30 MHz1600 kHz~1800 kHz:主要是些灯塔和导航信号,用来给鱼船和海上油井勘察的定位信号1800 kHz~2000 kHz:160米的业余无线电波段,在秋冬季节的夜晚有最好的接纳效果.2000 kHz~2300 kHz:此波段用于海事通信,其中2182 kHz保存为告急救难频率.2300 kHz~2498 kHz:120米的广播波段. 2498 kHz~2850 kHz:此波段有很多海事电台.2850 kHz~3150 kHz:主要是航空电台使用.3150 kHz~3200 kHz:分配给固定台. 3200 kHz~3400 kHz:90米的广播波段,主要是一些热带地区的电台使用.3400 kHz~3500 kHz:用于航空通信. 3500 kHz~4000 kHz:80米的业余无线电波段. 4000 kHz~4063 kHz:固定电台波段.4063 kHz~4438 kHz:用于海事通信.4438 kHz~4650 kHz:用于固定台和移动台的通信4750 kHz~4995 kHz:60米的广播波段,主要由热带地区的一些电台使用.最好的接纳时间是秋冬季节的傍晚和夜晚.4995 kHz~5005 kHz:有国际性的尺度时间频率发播台.可在5000 kHz听到.5005 kHz~5450 kHz:此频段非常混乱,低端有些广播电台,还有固定台和移动台.5450 kHz~5730 kHz:航空波段.5730 kHz~5950 kHz:此波段被某些固定台占用,这里也可以找到几个广播电台. 5950 kHz~6200 kHz:49米的广播波段.6200 kHz~6525 kHz:非常拥挤的海事通信波段.6525 kHz~6765 kHz:航空通信波段. 6765 kHz~7000 kHz:由固定台使用.7000 kHz~7300 kHz:全世界的业余无线电波段,偶然有些广播也会在这里出现. 7300 kHz~8195 kHz:主要由固定台使用,也有些广播电台在这里播音. 8195 kHz~8815 kHz:海事通信频段. 8815 kHz~9040 kHz:航空通信波段,还可以听到一些航空气象预报电台. 9040 kHz~9500 kHz:固定电台使用,也有些国际广播电台的信号. 9500 kHz~9900 kHz:31米的国际广播波段.9900 kHz~9995 kHz:有些国际广播电台和固定台使用.9995 kHz~10005 kHz:尺度时间尺度频率发播台.可在10000 kHz听到. 10005 kHz~10100 kHz:用于航空通信.10100 kHz~10150 kHz:30米的业余无线电波段.10150 kHz~11175 kHz:固定台使用这个频段. 11175 kHz~11400 kHz:用于航空通信. 11400 kHz~11650 kHz:主要是固定电台使用,但是也有些国际广播电台的信号.11650 kHz~11975 kHz:25米的国际广播波段,整天可以听到有电台播音.11975 kHz~12330 kHz:主要是由一些固定电台使用,但是也有些国际广播电台的信号.12330 kHz~13200 kHz:繁忙的海事通信波段.13200 kHz~13360 kHz:航空通信波段.13360 kHz~13600 kHz:主要是由一些固定电台使用.13600 kHz~13800 kHz:22米的国际广播波段.13800 kHz~14000 kHz:由固定台使用.14000 kHz~14350 kHz:20米的业余无线电波段.14350 kHz~14490 kHz:主要是由一些固定电台使用.14990 kHz~15010 kHz:尺度时间尺度频率发播台.可在15000 kHz听到.15010 kHz~15100 kHz:用于航空通信,也可以找到一些国际广播电台.15100 kHz~15600 kHz: 19米的国际广播波段,整天可以听到有电台播音.15600 kHz~16460 kHz:主要是由固定电台使用.16460 kHz~17360 kHz:由海事电台和固定电台共享.17360 kHz~17550 kHz:由航空电台和固定电台共享. 17550 kHz~17900 kHz:16米的国际广播波段,最佳的接纳时间是在白日.17900 kHz~18030 kHz:用于航空通信. 18030 kHz~18068 kHz:主要是由固定电台使用.18068 kHz~18168 kHz:17米的业余无线电波段. 18168 kHz~19990 kHz:用于固定电台,也可以找到一些海事电台.19990 kHz~20010 kHz:尺度时间尺度频率发播台,可在20000 kHz听到,接纳的最佳时间在白日. 20010 kHz~21000 kHz:主要用于固定台,也有些航空电台.21000 kHz~21450 kHz:15米的业余无线电波段.21450 kHz~21850 kHz:13米的国际广播波段,最佳的接纳时间是在白日.21850 kHz~22000 kHz:由航空电台和固定电台共享.22000 kHz~22855 kHz:主要是由一些海事电台使用.22855 kHz~23200 kHz:主要是由一些固定电台使用.23200 kHz~23350 kHz:由航空台使用.23350 kHz~24890 kHz:主要是由一些固定电台使用.24890 kHz~24990 kHz:15米的业余无线电波段. 24990 kHz~25010 kHz:用于尺度时间尺度频率发播台,今朝还没有电台在这个频段上操纵.25010 kHz~25550 kHz:用于固定、移动、海事电台.25550 kHz~25670 kHz:此频段保存给天文广播,今朝还没有电台.25670 kHz~26100 kHz:13米的国际广播波段. 26100 kHz~28000 kHz:用于固定、移动、海事电台.28000 kHz~29700 kHz:10米的业余无线电波段. 29700 kHz~30000 kHz:固定和移动台使用此波段.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1-1)
第1章 绪论
其中,Ka为与调幅电路有关的系数; ma
Ka U Ωm U cm
为调幅
系数,通常小于1; Ucm (1+ma cosΩt) 为调幅波的瞬时振幅。 可见uAM (t)的瞬时振幅随uΩ(t) 利用三角函数变换,将(1-1)式展开,得
1 1 uAM (t ) U cmcosct maU cmcos(c )t maU cmcos(c )t 2 2
(1-2)
第1章 绪论
可见,单一频率调幅波由三个频率成分的信号叠加而成, 即载频、上边频、下边频三个频率分量,其频谱如图1-4所示。
第1章 绪论
图1-4 调制信号、载波及调幅波的频谱
第1章 绪论
由图1-4可见,调幅过程的实质就是将调制信号uΩ (t)的 频谱搬移到载频两侧的过程。复杂调制信号的调幅过程也是 如此。
第1章 绪论
用电信号(或光信号)传输信息的系统称为通信系统。 其基本组成如图1-1所示,它由信号源、发送设备、传输信道、 接收设备和终端装置组成。
第1章 绪论
图1-1 通信系统的组成
第1章 绪论
信号源就是信息的来源,它有不同的形式,如语言、音 发送设备将要传输的信号转换为对应的电信号(称为基带 信号),再进行处理并以足够的功率送入传输信道,以实现信 传输信道是信号传输的通道,又称传输媒介,常有无线
常用单一频率余弦信号为例,进行讨论。调制信号的数学表
达式为uΩ (t)=UΩmcosΩt 根据调幅定义,uΩ (t)对uc (t)进行调幅后,输出调幅波的 一般表达式为
U Ωm uAM (t ) U cm K aU Ωmcos Ω t cosct U cm 1 K a U cost cosct cm U cm 1 ma cost cosct
通常,主振器是由石英晶体振荡器构成,优点是能产生 波形好、频率极其稳定的正弦波信号; 缺点是振荡频率不高, 利用高频放大器及倍频器,进行倍频及放大,得到频率较高 的高频正弦波(即载波)。在一些特殊电子系统,载波也采用 其他一些波形,如三角波、方波等。
第1章 绪论
2) 调制信号产生电路由话筒和低频放大器组成。话筒的功 能是将声音转换成微弱的音频电信号,再经低频放大器,产
第1章 绪论
由电磁场理论知,只有当天线的尺寸与被辐射信号的波 长相比拟时(波长l的1/10~1),信号才能被有效地辐射出去。 对于频率f为20 Hz~20 kHz的音频信号,由l =C/f知(C 速,C=3×108* m/s),相应的波长l为15 000~15 km,若采用
l /4天线,则天线长度至少应在3.75 km以上。显然,这是不
成与基本原理。
第1章 绪论
1.2 无线电发送设备的组成及其基本原理
无线电调幅广播发射机的构成框图如图1-2所示,主要由 载波信号产生电路、调制信号产生电路、振幅调制电路及发
第1章 绪论
图1-2 调幅广播发射机的构成框图
第1章 绪论
1)
载波信号产生电路主要由高频振荡器(又称主振器)、高
频放大器及倍频器组成,其基本功能是产生高频大功率的正
fc1上,语言信号调在fc2上,在接收机中,通过选台,分别接
综合上述,基于上述两点使目前所有的无线通信、无线
广播和电视广播均毫无例外地采用调制发射方式。
可能实现的。采用调制就可以把低频调制信号调制在高频载 波上,从而易于实现电信号的有效传输。
第1章 绪论
不同电台可以采用不同频带的高频电磁波,以避免相互
之间的干扰,满足多路复用。例如,有一组音乐信号和一组
语言信号要同时播出,若将这两组信号同时向空间辐射,则 这两组信号的频谱就会发生混叠现象。当接收机收到这类信 号,无法将其彼此分开,在扬声器中同时发出音乐声与讲话 声,显然这不符合实际要求。若采用调制,音乐信号调在
3) 振幅调制电路的基本功能是将调制信号对高频载波进行
第1章 绪论
(1) 振幅调制基本原理。
振幅调制通常称为调幅,其原理图如图1-3所示。
图1-3 调幅原理图
第1章 绪论
设输入调幅电路载波信号数学表达式为
uc (t)=Ucmcosωct
其中,Ucm为载波振幅;ωc 通常,调制信号是一个复杂的信号,但为分析问题方便,
无线电的发明起源于电磁学的发展。19世纪60年代,麦 克斯韦总结库仑、安培、法拉第等人的研究工作之后,提出
了电磁波的概念。1887年,赫兹成功地在导线中激起高频电
流,在导线周围测出电磁场,验证了电磁场的存在。1896年 3月,苏联物理学家波波夫在莫斯科首次进行世界上第一次 无线电电报的发射和接收试验。1901年,意大利科学家马可 尼首次完成了横渡大西洋的无线电通信。此后无线电电子技 术获得迅速发展,其应用领域也不断扩大,但是到现在信息 传输和处理仍是其主要的应用领域。
第1章 绪论
1.1 通信系统的组成及原理
1.2 无线电发送设备的组成及其基本原理
1.3 无线电接收设备的组成及其基本原理 1.4 无线电波波段的划分和无线电波的传播 小结 习题
第1章 绪论
本章要点
·
·无线电发送、
·
本章难点 · ·无线电接收设备的构成及原理分析
第1章 绪论
1.1 通信系统的组成及原理
第1章 绪论
(2) 采用调制发射的原因。
在无线电通信系统中,电信号是通过无线以电磁波的形
式向空间辐射传输的。目前,几乎所有的无线电发射机都采
用调制发射方式,即把调制信号(代表要传输的信息)调制在
高频载波上,然后由天线辐射出去。那么,为什么要采用调
采用调制发射方式的原因是多方面的,但至少在以下两 方面是最基本的。其一是与无线电波有效辐射的条件有关, 其二是为了满足“多路复用”的需要。
信道和有线信道。无线信道常用自由空间,有线信道常用电
缆、光导纤维等。 接收设备把传输信道传过来的已调信号取出并进行处理,
第1章 绪论
总之,经过一个完整的通信系统,最终完成信号的传输。 通信系统有多种,常分为有线通信系统和无线通信系统; 模拟通信系统和数字通信系统。 无线电广播系统是无线通信系统的典型应用之一,我们 以无线电调幅广播为例,简要说明发送设备、接收设备的组
相关文档
最新文档