2020-2021成都七中初中学校九年级数学上期中一模试卷含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.A
解析:A
【解析】
【分析】
【详解】
解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,
是偶数只有2个,
所以组成的三位数是偶数的概率是 ;
故选A.
二、填空题
13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1
A.①③B.②③C.②④D.②③④
3.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )
A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)
4.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()
解析:
【解析】
【分析】
底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积 列式进行计算即可得解.
【详解】
解:圆锥的侧面积 .
故答案为: .
【点睛】
本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.
16.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径
6.D
解析:D
【解析】
【分析】
【详解】
解:连接AO,并延长交⊙O于点D,连接BD,
∵∠C=45°,∴∠D=45°,
∵AD为⊙O的直径,∴∠ABD=90°,
∴∠DAB=∠D=45°,
∵AB=2,
∴BD=2,
∴AD= ,
∴⊙O的半径AO= .
故选D.
【点睛】
本题考查圆周角定理;勾股定理.
7.B
解析:B
【解析】
解得:a<-2,
∴− <a<-2,
故答案为− <a<-2.
14.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解
解析:20%
【解析】
【分析】
此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.
故选B.
考点:动点问题的函数图象.
5.C
解析:C
【解析】
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:∵点 与点 关于原点对称,
∴ , ,
解得: , ,
则
故选C.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
当点P在点O的位置时,y=90°,
当点P在点C的位置时,
∵OA=OC,
∴y=45°,
∴y由90°逐渐减小到45°;
(2)当点P沿C→D运动时,
根据圆周角定理,可得
y≡90°÷2=45°;
(3)当点P沿D→O运动时,
当点P在点D的位置时,y=45°,
当点P在点0的位置时,y=90°,
∴y由45°逐渐增加到90°.
【详解】
设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.
根据题意,得100(1-x)2=64,
即(1-x)2=0.64,
解得x1=1.8,x2=0.2.
因为x=1.8不合题意,故舍去,
所以x=0.2.
即每次降价的百分率为0.2,即20%.
故答案为20%.
15.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键
当k<0时,
函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,
故选C.
【点睛】
本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
10.B
解析:B
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
(2)求点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.
24.解方程
(1) (2)x(3-2x)= 4x-6
25.已知抛物线y=-x2-2x+c与x轴的一个交点是(1,0).
(1)C的值为_______;
(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;
解:如图,
连接AD、BE,作线段AD、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
故选B..
11.C
解析:C
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
A.任意数的绝对值都是正数是随机事件,错误;
B.两直线被第三条直线所截,内错角相等是随机事件,错误;
17.母线长为2cm,底面圆的半径为1cm的圆锥的侧面积为__________cm².
18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.
19.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
8.在 中, , , ,则 =().
A. B. C. D.
9.将函数y=kx2与y=kx+k的图象画在同一个直角坐标系中,可能的是( )
A. B. C. D.
10.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )
A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)
11.下列事件中,属于必然事件的是()
A.任意数的绝对值都是正数B.两直线被第三条直线所截,同位角相等
C.如果a、b都是实数,那么a+b=b+aD.抛掷1个均匀的骰子,出现6点朝上
12.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( )
A. B. C. D.
二、填空题
13.关于x的一元二次方程 的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是___________
14.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是;
15.若圆锥的底面周长为 ,母线长为6,则圆锥的侧面积等于________.(结果保留π)
16.已知点C在以AB为直径的半圆上,连结AC、BC,AB=10,BC:AC=3:4,阴影部分的面积为_____.
故选D.
考点:二次函数图象与系数的关系.
3.C
解析:C
【解析】
【分析】
【详解】
解: ,∴点M(m,﹣m2﹣4),∴点M′(﹣m,m2+4),∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).
故选C.
【点睛】
本题考查二次函数的性质.
4.B
解析:B
【解析】
试题分析:(1)当点P沿O→C运动时,
2020-2021成都七中初中学校九年级数学上期中一模试卷含答案
一、选择题
1.用配方法解方程 ,配方后的方程是( )
A. B. C. D.
2.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()
故选B.
【点睛】
本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.
9.C
解析:C
【解析】
【分析】
根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.
【详解】
当k>0时,
函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,
20.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.
三、解答题
21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.
A.AB.BC.CD.D
5.若点 与点 关于原点成中心对称,则 的值是( )
A.1B.3C.5D.7
6.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()
A.1B. C.2D.
7.已知函数 的图象与x轴有交点.则 的取值范围是( )
A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3
试题分析:若此函数与x轴有交点,则 ,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
8.B
解析:B
【解析】
【分析】
依题意可设 , ,根据勾股定理列出关于x的方程,解方程求出x的值,进而可得答案.
【详解】
解:如图,设 , ,根据勾股定理,得: ,解得 ,∴ .
(1)李欣选择线路 .“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
23.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
2.D
解析:D
【解析】
【分析】
【详解】
试题分析:①∵二次函数图象的开口向下,
来自百度文库∴a<0,
∵二次函数图象的对称轴在y轴右侧,
∴﹣ >0,
∴b>0,
∵二次函数的图象与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故①错误;
②∵抛物线y=ax2+bx+c经过点(﹣1,0),
∴a﹣b+c=0,故②正确;
(3)根据所画图像,写出y>0时x的取值范围是_____.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据配方法可以解答本题.
【详解】
x2−4x+1=0,
(x−2)2−4+1=0,
(x−2)2=3,
故选:B.
【点睛】
本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.
C.如果a、b都是实数,那么a+b=b+a是必然事件,正确;
D.抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;
故选D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
解析: <a<-2
【解析】
【分析】
【详解】
解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根
∴△=(-3)2-4×a×(-1)>0,
解得:a>−
设f(x)=ax2-3x-1,如图,
∵实数根都在-1和0之间,
∴-1<− <0,
∴a<− ,
且有f(-1)<0,f(0)<0,
即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,
③∵a﹣b+c=0,∴b=a+c.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正确;
④∵a﹣b+c=0,∴c=b﹣a.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2b+b﹣a<0,
∴3a+3b<0,∴a+b<0,故④正确.
(1)当销售单价定为每千克55元,计算月销售量和月销售利润;
(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
22.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是: .“解密世园会”、 .“爱我家,爱园艺”、 .“园艺小清新之旅”和 .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
解析:A
【解析】
【分析】
【详解】
解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,
是偶数只有2个,
所以组成的三位数是偶数的概率是 ;
故选A.
二、填空题
13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1
A.①③B.②③C.②④D.②③④
3.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )
A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)
4.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()
解析:
【解析】
【分析】
底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积 列式进行计算即可得解.
【详解】
解:圆锥的侧面积 .
故答案为: .
【点睛】
本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.
16.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径
6.D
解析:D
【解析】
【分析】
【详解】
解:连接AO,并延长交⊙O于点D,连接BD,
∵∠C=45°,∴∠D=45°,
∵AD为⊙O的直径,∴∠ABD=90°,
∴∠DAB=∠D=45°,
∵AB=2,
∴BD=2,
∴AD= ,
∴⊙O的半径AO= .
故选D.
【点睛】
本题考查圆周角定理;勾股定理.
7.B
解析:B
【解析】
解得:a<-2,
∴− <a<-2,
故答案为− <a<-2.
14.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解
解析:20%
【解析】
【分析】
此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.
故选B.
考点:动点问题的函数图象.
5.C
解析:C
【解析】
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:∵点 与点 关于原点对称,
∴ , ,
解得: , ,
则
故选C.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
当点P在点O的位置时,y=90°,
当点P在点C的位置时,
∵OA=OC,
∴y=45°,
∴y由90°逐渐减小到45°;
(2)当点P沿C→D运动时,
根据圆周角定理,可得
y≡90°÷2=45°;
(3)当点P沿D→O运动时,
当点P在点D的位置时,y=45°,
当点P在点0的位置时,y=90°,
∴y由45°逐渐增加到90°.
【详解】
设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.
根据题意,得100(1-x)2=64,
即(1-x)2=0.64,
解得x1=1.8,x2=0.2.
因为x=1.8不合题意,故舍去,
所以x=0.2.
即每次降价的百分率为0.2,即20%.
故答案为20%.
15.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键
当k<0时,
函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,
故选C.
【点睛】
本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
10.B
解析:B
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
(2)求点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.
24.解方程
(1) (2)x(3-2x)= 4x-6
25.已知抛物线y=-x2-2x+c与x轴的一个交点是(1,0).
(1)C的值为_______;
(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;
解:如图,
连接AD、BE,作线段AD、BE的垂直平分线,
两线的交点即为旋转中心O′.其坐标是(0,1).
故选B..
11.C
解析:C
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
A.任意数的绝对值都是正数是随机事件,错误;
B.两直线被第三条直线所截,内错角相等是随机事件,错误;
17.母线长为2cm,底面圆的半径为1cm的圆锥的侧面积为__________cm².
18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.
19.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
8.在 中, , , ,则 =().
A. B. C. D.
9.将函数y=kx2与y=kx+k的图象画在同一个直角坐标系中,可能的是( )
A. B. C. D.
10.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )
A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)
11.下列事件中,属于必然事件的是()
A.任意数的绝对值都是正数B.两直线被第三条直线所截,同位角相等
C.如果a、b都是实数,那么a+b=b+aD.抛掷1个均匀的骰子,出现6点朝上
12.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( )
A. B. C. D.
二、填空题
13.关于x的一元二次方程 的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是___________
14.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是;
15.若圆锥的底面周长为 ,母线长为6,则圆锥的侧面积等于________.(结果保留π)
16.已知点C在以AB为直径的半圆上,连结AC、BC,AB=10,BC:AC=3:4,阴影部分的面积为_____.
故选D.
考点:二次函数图象与系数的关系.
3.C
解析:C
【解析】
【分析】
【详解】
解: ,∴点M(m,﹣m2﹣4),∴点M′(﹣m,m2+4),∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).
故选C.
【点睛】
本题考查二次函数的性质.
4.B
解析:B
【解析】
试题分析:(1)当点P沿O→C运动时,
2020-2021成都七中初中学校九年级数学上期中一模试卷含答案
一、选择题
1.用配方法解方程 ,配方后的方程是( )
A. B. C. D.
2.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()
故选B.
【点睛】
本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.
9.C
解析:C
【解析】
【分析】
根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.
【详解】
当k>0时,
函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,
20.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.
三、解答题
21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.
A.AB.BC.CD.D
5.若点 与点 关于原点成中心对称,则 的值是( )
A.1B.3C.5D.7
6.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()
A.1B. C.2D.
7.已知函数 的图象与x轴有交点.则 的取值范围是( )
A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠3
试题分析:若此函数与x轴有交点,则 ,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
8.B
解析:B
【解析】
【分析】
依题意可设 , ,根据勾股定理列出关于x的方程,解方程求出x的值,进而可得答案.
【详解】
解:如图,设 , ,根据勾股定理,得: ,解得 ,∴ .
(1)李欣选择线路 .“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
23.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
2.D
解析:D
【解析】
【分析】
【详解】
试题分析:①∵二次函数图象的开口向下,
来自百度文库∴a<0,
∵二次函数图象的对称轴在y轴右侧,
∴﹣ >0,
∴b>0,
∵二次函数的图象与y轴的交点在y轴的正半轴上,
∴c>0,
∴abc<0,故①错误;
②∵抛物线y=ax2+bx+c经过点(﹣1,0),
∴a﹣b+c=0,故②正确;
(3)根据所画图像,写出y>0时x的取值范围是_____.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据配方法可以解答本题.
【详解】
x2−4x+1=0,
(x−2)2−4+1=0,
(x−2)2=3,
故选:B.
【点睛】
本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.
C.如果a、b都是实数,那么a+b=b+a是必然事件,正确;
D.抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;
故选D.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
解析: <a<-2
【解析】
【分析】
【详解】
解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根
∴△=(-3)2-4×a×(-1)>0,
解得:a>−
设f(x)=ax2-3x-1,如图,
∵实数根都在-1和0之间,
∴-1<− <0,
∴a<− ,
且有f(-1)<0,f(0)<0,
即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,
③∵a﹣b+c=0,∴b=a+c.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正确;
④∵a﹣b+c=0,∴c=b﹣a.
由图可知,x=2时,y<0,即4a+2b+c<0,
∴4a+2b+b﹣a<0,
∴3a+3b<0,∴a+b<0,故④正确.
(1)当销售单价定为每千克55元,计算月销售量和月销售利润;
(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
22.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是: .“解密世园会”、 .“爱我家,爱园艺”、 .“园艺小清新之旅”和 .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.