一阶线性微分方程讲解
高数第4章第2节——一阶微分方程
例4 求解
解
分离变量,
并两端积分 得
dy y2
cos
xdx
,
解得
1 y
sin x C1,
即 1 sin x C , y
代入 y x0 1 , 得 C 1 ,
所求特解为 1 sin x 1 . y
说明:
初值问题:
g( y) dy f ( x) dx
y
x
x0
y0
的特解也可用变上限积分确定:
例1 求微分方程
解 分离变量,并两端积分,得 e ydy e2xdx,
解得 e y 1 e2x C , (C 为任意常数) 2
方程通解为 e y 1 e2x C ,(C 为任意常数). 2
例2 求微分方程
解
当
y0
时分离变量
,
得
dy y
2 xdx ,
两端积分
,
dy y
2
xdx,
得 : ln | y | x2 C1,
例8
解
由通解公式得:
y
e
4 dx x
sin x x4
e
4 dx
x dx
C
eln x4
sin x x4
e ln
x 4 dx
C
1 x4
(
sin
xdx
C
)
1 x4
(
cos
x
C
).
故所求通解为:y
1 x4
( cos
x
C ).
例9 解
由通解公式得:
故所求通解为:y cos x (tan x C ).
是线性方程 , 可用常数变易法或公式法求解.
例10 解
一阶微分方程ppt课件
情形2 若λ 是特征方程的单根, 即 2 p q 0 ,
而 2 p 0 , 则令 Q( x) xQm ( x) , 即
y x Qm (x)ex
23
Q ( 2 p )Q ( 2 p q )Q Pm ( x ) ( * ) 情形3 若λ是特征方程的重根,
r1,2 i ,
方程(1)有两个特解 y1 e( i ) x , y2 e( i )x , 由欧拉公式 ei cos i sin 知,
y1 y2
e( i ) x e( i ) x
=e =e
x (cos x (cos
x x
i i
sin sin
x) x)
由叠加原理,
y1 y2
10
1、二阶常系数齐次线性微分方程的解法
y p y q y 0 (1)
方程特点:y, y, y 之间仅相差一个常数. 下面来寻找方程(1)的形如 y er x 的特解.
将 y er x 代入方程(1),得 (r 2 pr q)er x 0 ,
而er x 0 ,于是有
r 2 p r q 0 (2)
的通解.
6
2、二阶非齐次线性微分方程解的结构
y P ( x ) y Q ( x ) y f ( x ) (2) 定理3(非齐次方程通解定理)设 y* 是方程(2)的特解,
Y 是对应齐次方程(1)的通解,那么方程(2)的通解为
y Y y
证 由条件,y * P ( x ) y * Q ( x ) y * f ( x ) , Y P ( x )Y Q ( x )Y 0 ,
x0
x0
解 特征方程为 r2 3r 10 0
一阶齐次线性微分方程的通解
一阶齐次线性微分方程的通解1、对于一阶齐次线性微分方程:
其通解形式为:
其中C为常数,由函数的初始条件决定。
2、对于一阶非齐次线性微分方程:
其对应齐次方程:
解为:
令C=u(x),得:
带入原方程得:
对u’(x)积分得u(x)并带入得其通解形式为:
主要思想:
数学上,分离变量法是一种解析常微分方程或偏微分方程的方法。
使用这方法,可以借代数来将方程式重新编排,让方程式的一部分只含有一个变量,而剩余部分则跟此变量无关。
这样,隔离出的两个部分的值,都分别等于常数,而两个部分的值的代数和等于零。
利用高数知识、级数求解知识,以及其他巧妙的方法,求出各个方程的通解。
最后将这些通解“组装起来”。
分离变量法是求解波动方程初边值问题的一种常用方法。
12.4一阶线性微分方程
2
例6: 用适当的变量代换解下列微分方程:
1.
yy xy2 xe x ;
2 2
x 1 y xy xe y , 解: 将原方程变形为
实际上, 这是一个n=–1的伯努利方程. 令 z=y2, 则 dz dy dz x2 2 y , 所以, 原方程转化为 2 xz 2 xe , dx dx dx dz x2 先求方程 2 xz 0 的通解. 得: z ce . dx 2 2 2 x x x 令 z c( x )e , 则 z c( x )e 2 xc( x )e , 代入得, 2 2 2 2 x x x x c( x )e 2 xc( x )e 2 xc( x )e 2 xe ,
( 此处 mg k v 0 )
1 t 足够大时 利用初始条件, 得 C ln ( mg ) mg k k v k t mg 代入上式后化简, 得特解 v (1 e m ) k
例2 如图所示,平行与 y 轴的动直线被曲 3 线 y f ( x )与 y x ( x 0)截下的线段PQ之 长数值上等于阴影部分的面积, 求曲线 f ( x ).
令 y c( x )( x 1)2 , 则 y c( x )( x 1)2 2c( x )( x 1), 代入线性非齐次方程中, 得: c( x )( x 1)2 2c( x )( x 1) 5 1 2 2c( x )( x 1) ( x 1) 2 x 1 1 3 2 2 化简得: c( x ) ( x 1) , 得 c( x ) ( x 1) 2 c 3 故, 原非齐次方程的通解为: 3 2 y ( x 1)2[ ( x 1) 2 c ] 3 dy y . 例3: 求解微分方程 dx 2(ln y x ) dx 2(ln y x ) 2 2 ln y x . 解: 将方程改写为 dy y y y 这是一个关于函数x=x(y)的一阶线性非齐次方程,
一阶线性微分方程
y x
2
线性非齐次方程
线性齐次方程
y cos y 1
y y 2 xy 3 ,
非线性
2、一阶线性微分方程的解法 引例 考虑一阶线性微分方程
(齐次方程) (非齐次方程) ① ②
求①的通解,并验证
是②的通解. . 代入②,方程成立,
解: 由分离变量得齐次方程的通解为 将
故是解. 又因为含有一个任意常数,故是通解.
例6. 求方程 解: 令 z y
1
的通解.
, 则方程变形为
z x
1
dz dx
a ln x
其通解为
ze
x
dx
(a ln x) e
a 2 ( ln x)
2
dx
x
1
dx C
x C
将 z y 1代入, 得原方程通解:
作 业
P315 1 (3) , (6) , (9) ;2 (5) ; 6 ; 7 (5)
暂态电流
稳态电流
小结 求解一阶线性微分方程的方法:
dy dx P( x) y Q( x)
1、常数变易法求解一阶线性微分方程的步骤:
(1) 将方程化为标准形式,确定 P(x) 和 Q(x); (2) 求对应的齐次方程的通解 y C e
P( x) d x
;
(常数变易)
(3) 设原方程的通解为 y C ( x) e P ( x ) d x ,代回原
xe
P( y)d y
P( y)d y Q( y ) e d y C ,得
xe
y
y e
y
dy C
一阶线性微分方程及其解法
二、一阶线性微分方程的应用
应用微分方程解决实际问题的步骤: 应用微分方程解决实际问题的步骤 1. 分析问题 设出所求未知函数,确定初始条件。 分析问题,设出所求未知函数 确定初始条件 设出所求未知函数 确定初始条件。 2. 建立微分方程。 建立微分方程。 3. 确定方程类型 求其通解. 确定方程类型,求其通解 求其通解 4. 代入初始条件求特解. 代入初始条件求特解
Q( x ) = 3 x
= e x 3 ∫ xe x dx + C
= ex
x
( ( 3∫ xde
∫ dx dx + C ∫ 3x e
) + C)
= e x 3( xe x ∫ e x dx ) + C
= ex =e
x x x
( ( 3( xe ( 3( xe
+ ex ) + C +e
例5 求过原点平且在点 x,y) 处的切线斜率等于 (
3x + y 的曲线方程。 的曲线方程。
解 设所求曲线方程为 y = f ( x ) , 则依题有 y =0, x =0 从而 即 y′ y = 3 x 则通解为 y = e
y′ = 3 x + y
其中 P ( x ) = 1 ,
∫ dx
y = Ce
∫ P( x)dx
例2 解
2 . 求 y′ y = 0 的通解 x
2 P( x) = 则通解 x
y = Ce
=
∫ P( x)dx
2 ∫ dx Ce x
= Ce = Cx
2 ln x 2
(2)一阶线性非齐次微分方程 ) dy + P ( x ) y = Q( x ) 1)一般式 ) dx 2)解法 常数变易法 ) 3)通解公式 )
一阶线性微分方程组解析
第4章 一阶线性微分方程组一 内容提要1. 基本概念一阶微分方程组:形如⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===),,,,( ),,,,(),,,,(2121222111n n n nn y y y x f dxdy y y y x f dxdy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。
若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式),,2,1))((,),(),(,()(21n i x y x y x y x f dxx dy n i i ==成立,则)(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解含有n 任意常数n C C C ,,,21 的解⎪⎪⎩⎪⎪⎨⎧===),,,,( ),,,,(),,,,(21321222111n n nn C C C x y C C C x y C C C x y ϕϕϕ 称为(3.1)通解。
如果通解满方程组⎪⎪⎩⎪⎪⎨⎧=Φ=Φ=Φ0),,,,,,,,(0),,,,,,,,(0),,,,,,,,(21212121221211n n n nn n n C C C y y y x C C C y y y x C C C y y y x则称这个方程组为(3.1)的通积分。
满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。
令n 维向量函数Y )(x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡)( )()(21x y x y x y n ,F (x ,Y )=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡),,,,( ),,,,(),,,,(21212211n nn n y y y x f y y y x f y y y x f⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=dx dy dx dy dx dy dx x dY n )(21,⎰⎰⎰⎰⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=x x x x n x x x x dx x f dx x f dx x f x F 0000)( )()()(21 则(3.1)可记成向量形式),,(Y x F dxdY= (3.2) 初始条件可记为Y (0x )=0Y ,其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=no y y y Y 20100 则初值问题为:⎪⎩⎪⎨⎧==00)(),(Y x Y Y x F dxdY(3.3) 一阶线性微分方程组:形如⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++++=++++=++++=)()()()( )()()()()()()()(21211222221212112121111x f x a y x a y x a dxdy x f x a y x a y x a dx dy x f x a y x a y x a dx dy n nn n n n n n (3.4)的一阶微分方程组,叫做一阶线性微分方程组.令A (x )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(a )(a )(a )(nn n11n 11x x x x a 及F ()x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡)( )()(21x f x f x f n 则(3.4)的向量形式:)()(x F Y x A dx dY+= (3.5) F (0)≡x 时 Y x A dxdY)(= (3.6) 称为一阶线性齐次方程组,(3.5)式称为一阶线性非齐次方程组。
第四节 一阶线性微分方程
ln | x + y + 1 |= y + ln | C |,
通解为
x = Ce − y − 1.
y
小结
1.一阶线性齐次微分方程 一阶线性齐次微分方程 2.一阶线性非齐次微分方程 2.一阶线性非齐次微分方程 3.伯努利方程 伯努利方程
令 y1−n = z;
思考与练习
判别下列方程类型: 判别下列方程类型 dy dy (1) x + y = xy dx dx dy (2) x =y (ln y − ln x) dx 提示: 提示 y −1 dx 可分离 dy = 变量方程 y x dy y y = ln 齐次方程 dx x x dy 1 x2 一阶线性非 − y =− dx 2x 2 齐次方程 2 dx 1 y 一阶线性非 − x = − 齐次方程 dy 2 y 2 dy 2 ln x 2 伯努利 + y= y 方程 dx x x
∫ P ( x ) dx + y(e ∫ P ( x )dx )′ = 0, y′e
∫ P ( x )dx )′ = 0, ( ye
故通解为
∫ P ( x ) dx = C , ye
− P( x )dx
∫ y = Ce
.
dy + P(x) y = Q(x) 2. 解非齐次方程 dx −∫ P( x) d x 常数变易法: 用常数变易法 作变换 y(x) = u(x) e ,则 −∫ P( x) d x −∫ P( x) d x −∫ P( x) d x + P(x) u e = Q(x) u′ e − P(x) u e
所求通解为
ye
x y
=C
可化为一阶线性的微分方程 -------伯努利方程 伯努利方程
42一阶微分方程——一阶线性
1 2x x2
1 x2
2x x2
,
通解为:
y
Ce P ( x )dx
Ce
(
2x x2
1 x2
)dx
ln x2 1
Ce x
,
1
即 y Cx2 e x 。
将初始条件 y x1 e 代入通解,得C 1 ,
1
故所求特解为 y x2 e x 。
4
4.2 一阶微分方程
14
4.2 一阶微分方程
例 2.求方程 dy 4 y x y 的通解。
dx x
解:把方程 dy 4 y x y 改写为 dy 4 y x y ,
dx x
dx x
令 z y 或 y z2 ,则有 dy 2z dz , dx dx
代入原方程,得 2z dz 4z2 zx , dx x
8
4.2 一阶微分方程
方 法 2 ( 用 通 解 公 式 法 )
y 1 y sin x , P( x) 1 , Q( x) sin x ,
x
x
x
x
ye1 xdx[ sinxe1 xdxdxC] x
1 x[sin xxxdxC]1 x[cosxC].
9
C1e
1 x
dx
C1 x
C x
(C
C1 )
,
令
y
C(x) x
,则得
y
C( x) x
C(x) x2
,代入原方程得
C( x) x
高数下册第七章第五节一阶线性方程全微分方程
通过适当的变量代换,一阶线性微 分方程可化为标准形式 $y' + p(x)y = q(x)$,其中 $p(x)$ 和 $q(x)$ 是 已知函数。
一阶线性方程全微分方程的解的存在性与唯一性定理
1 2
解的存在性
如果一阶线性微分方程中的 $P(x)$ 和 $Q(x)$ 在某区间上连续,那么在该区间内必定存在原方 程的解。
解的唯一性
如果一阶线性微分方程满足初始条件 $y(x_0) = y_0$,那么在给定区间内,原方程的解是唯一的。
3
解的连续性与可微性
一阶线性微分方程的解在其定义域内是连续且可 微的。
一阶线性方程全微分方程的通解与特解
通解
一阶线性微分方程的通解是包含 任意常数的解,它表示了原方程
所有可能的解。
特解
满足特定初始条件 $y(x_0) = y_0$ 的解称为特解,它是通解
次方程 $y' + P(x)y = 0$ 的通解,然后将通解中的常数变为函数,通过
求导和代入原方程求解。
02
常数变易法的步骤
设齐次方程的通解为 $y = Ce^{-int P(x)dx}$,其中 $C$ 为常数。将
$C$ 变为 $x$ 的函数 $u(x)$,得到 $y = u(x)e^{-int P(x)dx}$,求导
高阶线性微分方程的解法
高阶线性微分方程的解法包括降阶法、特征根法、常数变易法等,其中降阶法是通过变量 代换将高阶方程化为低阶方程来求解。
高阶线性微分方程的性质
高阶线性微分方程具有线性性、叠加性、齐次性等性质,这些性质在求解过程中起着重要 作用。
非线性微分方程简介
非线性微分方程的定义
非线性微分方程是指微分方程中未知函数或其导数出现高次幂、 乘积、分式等非线性形式的方程。
一阶线性微分方程
一阶线性非齐次微分方程的求解步骤如下:
1.先求 dy P(x) y 0 (2) 的通解: dx
分离变量后得
dy P(x)dx y
任意常数写成ln C的形式,得
ln y P(x)dx ln C,
化简后,方程(2)的通解为
y Ce P(x)dx,
dx x y3 1 x y2, 即 dy y y
dx 1 x y2 , dy y
(7)
对于未知函数x(y为自变量)来说,所给方程就是
一阶线性非齐次方程,对未知函数x的一阶线性
非齐次方程
dx P( y)x Q( y)
(8)
dy
的通解公式为
x e P( y)dy[ Q( y)e P( y)dydy C]
P(t
) dt dt
C
e
k dt
m[
g ge
k dt
m dt
C
k t
e m (g
kt
em dt
C)
e
kt m
(
mg
kt
em
C)
mg
kt
Ce m .
k
k
故得通解为
v
mg
kt
Ce m .
k
注意方程(10)也可分离变量为
dv = dt , mg kv m
1 cos
x
sec
x
cos
xdx
C
1 cos
x
dx
C
一阶线性微分方程及其解法
这是一个关于变量u与x的可分离变量的方程; 然后,利用分离变量法求得
1 1 du dx (u ) u x
dy dy xy 例1 求方程 y x 的通解 dx dx
2 2
dy y 解 原方程化为 dx xy x 2
2
y dy x ,即 y dx 1 x
dM 解 v dt kM , (k 0) dM kdt 变量分离 M
两端积分 即 又
dM 0) (这里显然有 dt
ln M kt lnt
M Ce
kt
M |t 0 M 0
故
M0 C
kt
故,衰变规律为
M M 0e
练习
12.1第3题,增加一个条件:曲线过(2,3)点,求曲线方程
(3) y y 2 x 2
(5) y y y x
dy 1 2 ( 4) y sin x (是) dx x
2 (6) y x sin y x 1
2.
一阶线性微分方程的一般式 dy P ( x ) y Q( x ) dx
(1)
(2)
dx P ( y ) x Q( y ) 或 dy 3. 一阶线性微分方程的分类
代入整理后,有 分离变量,则有
du 1 u 2 dx 2 xu
u 1 du dx 2 1 u 2x
1 2 1 2 1 2
两边积分,得 ( ) ln(1 u 2 ) ( ) ln x ( ) ln c 即
cx(1 u 2 ) 1
c( x2 y 2 ) x2
代入上式,于是所求方程的通解为
的通解为:
ye
一阶线性微分方程
齐次方程通解
高等数学(ZYH)
非齐次方程特解
例1. 解方程
d y 2d x d y 2y 0, 即 解: 先解 y x 1 dx x 1 积分得 即 y C ( x 1) 2 2 则 用常数变易法求特解. 令 y u ( x) ( x 1) ,
y u ( x 1) 2 2 u ( x 1)
ln y P( x)d x ln C
故通解为
高等数学(ZYH)
y C e P ( x )d x
dy P( x) y Q( x) 2. 解非齐次方程 dx
P( x) d x 则 用常数变易法: 作变换 y ( x) u ( x) e ,
u e
即
P( x) d x
代入非齐次方程得 解得 故原方程通解为
高等数学(ZYH)
3 2 u ( x 1) 2 C 3
d y 0 的通解 . dx 解: 注意 x, y 同号, 当 x 0 时, 2 d x , 故方程可 x 变形为 这是以 x 为因变量, y为
由一阶线性方程通解公式 , 得
§12.4 一阶线性微分方程
一、一阶线性微分方程 二、伯努利方程
一、一阶线性微分方程 dy P( x) y Q( x) 一阶线性微分方程标准形式: dx 若 Q(x) 0, 称为齐次方程 ; 0, 称为非齐次方程 . dy P( x) y 0 1. 解齐次方程 dx 分离变量 两边积分得 若 Q(x)
P( x) u e
P( x) d x
P( x) u e
P( x) d x
Q( x)
P ( x )d x 对应齐次方程通解 y C e P( x) d x 两端积分得 u Q( x) e dx C
一阶线性微分方程及其解法
一阶线性微分方程及其解法在数学的领域中,一阶线性微分方程是一类非常重要的方程,它在物理学、工程学、经济学等众多学科中都有着广泛的应用。
接下来,让我们一起深入了解一下一阶线性微分方程及其解法。
首先,我们来明确一下一阶线性微分方程的定义。
一阶线性微分方程的一般形式是:\y' + P(x)y = Q(x)\其中,\(P(x)\)和\(Q(x)\)是已知的关于\(x\)的函数,\(y'\)表示\(y\)对\(x\)的导数。
为了求解一阶线性微分方程,我们需要用到一个重要的工具——积分因子。
积分因子的作用就像是一把神奇的钥匙,能够帮助我们打开求解方程的大门。
那么,什么是积分因子呢?积分因子\(\mu(x)\)是一个函数,使得方程两边同乘以\(\mu(x)\)后,方程左边可以化为某个函数的全导数。
对于一阶线性微分方程\(y' + P(x)y = Q(x)\),其积分因子为\(\mu(x) = e^{\int P(x)dx}\)。
接下来,我们看看具体的求解步骤。
第一步,先计算出积分因子\(\mu(x)\)。
第二步,将原方程两边同时乘以积分因子\(\mu(x)\),得到:\e^{\int P(x)dx}y' + e^{\int P(x)dx}P(x)y = e^{\intP(x)dx}Q(x)\这时,方程左边可以化为\((e^{\int P(x)dx}y)'\)。
第三步,对等式两边进行积分,得到:\e^{\int P(x)dx}y =\int e^{\int P(x)dx}Q(x)dx + C\第四步,最后解出\(y\):\y = e^{\int P(x)dx}(\int e^{\int P(x)dx}Q(x)dx + C)\为了更好地理解这个求解过程,我们通过一个具体的例子来演示一下。
假设我们要求解方程\(y' + 2xy = 2x\)。
首先,\(P(x) = 2x\),所以积分因子\(\mu(x) = e^{\int2xdx} = e^{x^2}\)。
一阶线性微分方程
y u ( x 1) 2 2 u ( x 1)
代入非齐次方程得 解得 故原方程通解为
3 2 u ( x 1) 2 C 3
例6 求一阶线性方程通解 dy sin x y cos x e dx cos xdx 解:齐次方程通解: y Ce
注:
当n 0,1时, 方程为线性微分方程. 当n 0,1时,方程为非线性微分方程.
例 求方程
dy 4 y x y ( y 0, x 0) 的通解。 dx x
解:这是伯努利方程 ,其中
则
课堂练习题:求
解:由标准形式知
的特解
则 通解 由
得
所求特解为:
内容小结
一阶线性方程 方法1 先解齐次方程 , 再用常数变易法. 方法2 用通解公式
1 dx e x dx
1 dx x
dy 1 2 y x 的通解 例2 求一阶线性方程 dx x
解:
1 P( x) , Q( x) x 2 x
P( x)d x P( x)d x [ Q( x)e dx C ]
则通解为
ye
即:
1 2 x xdx C x( x C ) 2
例如
dy y x 2 , dx x sin t t 2 , dx dt
线性的;
yy 2 xy 3,
y cos y 1,
非线性的.
1. 解齐次方程 分离变量 两边积分得 故通解为
dy P( x) y 0 dx
(使用分离变量法)
ln y P( x)d x ln C
三、一阶线性微分方程
定义3 如果方程中未知函数的导数(微分) 的最高阶数是一阶的,且所含未知函数及导 数(微分)都是一次幂的,则称这种方程为 一阶线性微分方程。
高数下册 第七章 第四、五节 一阶线性方程全微分方程
2) 再解定解问题
y′ + y = 0 , x > 1
y x =1 = y(1) = 2 − 2e−1
此齐次线性方程的通解为 y = C2e−x ( x ≥ 1) 利用衔接条件得 C2 = 2(e − 1) y = 2(e − 1) e−x ( x ≥ 1) 因此有 3) 原问题的解为 2(1 −e−x ), 0 ≤ x ≤ 1 y= −x 2(e − 1) e , x ≥ 1
4.求微分方程 x ln xdy + ( y − ln x)dx = 0 满足条件 求微分方程 1 1 y = (ln x + ) y x=e = 1 的解。 2 ln x 19
= 0 的解。 x 1 y= − 2 x
2
x y′ + y = xex 满足条件 y x=1 = 1的特解。 5.求微分方程 1 1 x −1 x 1 6. y = x ln x − x y= e + x x 3 9 1 6.求微分方程 xy′ + 2 y = xln x , y x=1 = − 求微分方程 的特解。 的特解。 9 y 1 7.过点 ( , 0 ) 且满足关系式 y′ arcsin x + 1 − x2 = 1 过点 1− 2 1 yarcsin x = x − 的曲线方程为 2 的一个解, y = ex 是微分方程 x y′ + p( x) y = x 的一个解,则 8.设 设
1 2y + − 3x = 0 y
21
练 习 题
一、求下列微分方程的通解: 求下列微分方程的通解: 1、 1、 y ′ + y cos x = e − sin x ; 2、 2、 y ln ydx + ( x − ln y )dy = 0 ; dy 2 3、 3、( y − 6 x ) + 2 y = 0 . dx 二、求下列微分方程满足所给初始条件的特解: 求下列微分方程满足所给初始条件的特解: dy 1、 1、 + y cot x = 5e cos x , y π = −4 ; x= dx 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x)
i
d t
x 0
Q0(
x)得e
P(
x)
d
x
dx
C
目录 上页 下页 返回 结束
因此所求电流函数为
R
i
(t)
LEm R2 2L2
e
Rt L
LE Q
∼
R2
Em
2 L2
(R
sin
t
L
cos
t)
解的意义: 令 arctan L ,则
R
i(t)
ex ( 2 ex C1) 2 C1ex
利用 y x 0 0 得 C1 2
故有
y 2 2ex (0 x 1)
目录 上页 下页 返回 结束
y y 0 , x 1 2) 再解定解问题 y x 1 y(1) 2 2e1
此齐次线性方程的通解为 y C2 ex (x 1)
思考与练习
判别下列方程类型:
(1) x dy y xy dy
dx
dx
(2) x dy y (ln y ln x) dx
(3) ( y x3) dx 2x dy 0
(4) 2 y dx ( y3 x) dy 0
(5) ( y ln x 2) y dx x dy
例如, 解方程 dy 1 dx x y
法1. 取 y 作自变量: dx x y dy
线性方程
法2. 作变换 u x y, 则 y u x, d y d u 1 dx dx
代入原方程得 d u 1 1 , dx u
du u 1 dx u
可分离变量方程
目录 上页 下页 返回 结束
伯努利 目录 上页 下页 返回 结束
例4. 求方程
的通解.
解: 令 z y1, 则方程变形为
dz z a ln x dx x
其通解为
z
e
1 x
dx
(a
ln
x)
e
1 x
dx
dx
C
x C a ( ln x)2
2 将 z y1代入, 得原方程通解:
第四节
第七章
一阶线性微分方程
一、一阶线性微分方程 *二、伯努利方程
目录 上页 下页 返回 结束
一、一阶线性微分方程
一阶线性微分方程标准形式: dy P(x) y Q(x) dx
若 Q(x) 0, 称为齐次方程 ;
若 Q(x) 0, 称为非齐次方程 .
1. 解齐次方程 dy P(x) y 0 dx
分离变量
两边积分得 ln y P(x)dx ln C
故通解为
y C e P(x)dx
目录 上页 下页 返回 结束
2. 解非齐次方程 dy P(x) y Q(x) dx
用常数变易法: 作变换 y(x) u(x) e P(x)d x , 则
ue P(x)d x P(x) u e P(x)d x P(x) u e P(x)d x Q(x)
利用衔接条件得 C2 2(e 1)
因此有
y 2(e1) ex (x 1)
3) 原问题的解为
y
2(1ex ), 2(e 1) ex
,
0
x
x
1
1
y 2 2ex (0 x 1)
目录 上页 下页 返回 结束
LEm R2 2L2
e
Rt L
Em sin( t ) R2 2L2
暂态电流
稳态电流
目录 上页 下页 返回 结束
例3. 求方程
dx xy
2 y
x y3
dy
0
的通解
.
解: 注意 x, y 同号, 不妨设 x , y 0, 此时 dx 2d x , x
线性方程
目录 上页 下页 返回 结束
2. 设有微分方程 y y f (x), 其中
2, 0 x 1 f (x) 0 , x 1
试求此方程满足初始条件
的连续解.
解: 1) 先解定解问题 利用通解公式, 得
y y 2, 0 x 1 y x0 0
y ed x 2 edxdx C1
伯努利方程的标准形式:
解法:
除方程两边 , 得
yn d y P(x)y1n Q(x) dx
令 z y1n , 则 dz (1 n)yn dy
dx
dx
dz (1 n) P(x) z (1 n)Q(x) (线性方程) dx
求出此方程通解后, 换回原变量即得伯努利方程的通解.
2 (5) ; 6 ;
习题课1 第五节 目录 上页 下页 返回 结束
备用题
1. 求一连续可导函数
使其满足下列方程:
令 u xt
提示:
x
f (x) sin x 0 f (u)d u
f (x) f (x) cos x
则有
f (0) 0
利 x sin x ex ) 2
故方程可变形为
这是以 x 为因变量
由一阶线性方程通解公式 , 得
y 为自变量的一阶 线性方程
xe
(
1 y
e
1 y
dy ln C
x
所求通解为 y e y C (C 0)
P(y) 1 2y
Q(y) 1 y
目录 上页 下页 返回 结束
*二、伯努利 ( Bernoulli )方程
dt 因此有 E L di R i 0 , 即
di R i Em sin t
dt
dt L
L
初始条件: i t 0 0
目录 上页 下页 返回 结束
d i R i Em sin t
dt L
L
i t0 0
解方程:
利用一阶线性方程解的公式可得
R
LE Q
∼
C
由初始y 条e件:P(
提示:
y 1dy dx
y
x
可分离 变量方程
dy y ln y
齐次方程
dx x x
dy 1 y x2 线性方程
dx 2x
2
dx 1 x y2 线性方程
dy 2y
2
dy 2 y ln x y2 dx x x
伯努利 方程
目录 上页 下页 返回 结束
作业
P315 1 (3) , (6) , (9) ; *8 (1) , (3) , (5)
即
两端积分得对应齐u 次 方Q程(x通) e解 P(xy)dxdCxeCP(x)d x
故原方程的通解
y
e
P(
x)
d
x
Q(x)e P(x)d xdx
C
即
y C e P(x)d x e P(x)d x Q(x) e P(x)d xdx
齐次方程通解
代入非齐次方程得 解得
u
2
(x
3
1) 2
C
3
故原方程通解为
目录 上页 下页 返回 结束
例2. 有一电路如图所示, 其中电源
R
电阻 R 和电
感 L 都是常量, 求电流
LE Q
解: 列方程 . 由回路电压定律:
∼
在闭合回路中, 所有支路上的电压降为 0
已知经过电阻 R 的电压降为R i
经过 L的电压降为 L di
非齐次方程特解
目录 上页 下页 返回 结束
例1. 解方程
解:
先解
dy 2y 0 , 即 dx x 1
dy 2dx y x 1
积分得
即 y C(x 1)2
用常数变易法求特解. 令 y u (x) (x 1)2 , 则
y u (x 1)2 2u (x 1)
目录 上页 下页 返回 结束
内容小结
1. 一阶线性方程 方法1 先解齐次方程 , 再用常数变易法. 方法2 用通解公式
y e P(x)dx Q(x) e P(x)dxdx C
2. 伯努利方程
令 u y1n , 化为线性方程求解.
目录 上页 下页 返回 结束
3. 注意用变量代换将方程化为已知类型的方程