2013高考数学(理)一轮复习教案:第一篇 集合与常用逻辑用语第1讲 集合的概念与运算

合集下载

高考数学统考一轮复习 第一章 集合与常用逻辑用语 第一节 集合的概念及其运算(教师文档)教案 文

高考数学统考一轮复习 第一章 集合与常用逻辑用语 第一节 集合的概念及其运算(教师文档)教案 文

学习资料第一节集合的概念及其运算授课提示:对应学生用书第1页[基础梳理]1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈,不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:集合自然数集正整数集整数集有理数集实数集符号N N+或N*Z Q R 2。

集合间的基本关系表示关系文字语言符号语言相等集合A与集合B中的所有元素相同A⊆B且B⊆A⇔A=B 子集A中任意一个元素均为B中的元素A⊆B或B⊇A真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B或B A空集空集是任何集合的子集,是任何非空集合的真子集∅⊆A∅B(B≠∅)3.集合的基本运算并集交集补集图形表示符号表示A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁U A={x|x∈U且x∉A}1.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B).2.集合的子集个数若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n-1个.3.两个防范(1)空集是任何集合的子集,是任何非空集合的真子集,应时刻关注对空集的讨论,防止漏解.(2)在解决含参数的集合问题时,要检验集合中元素的互异性.[四基自测]1.(基础点:元素与集合的关系)若集合A={x∈N|x≤错误!},a=2错误!,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案:D2.(基础点:补集运算)已知集合A={x|x2-16<0},则∁R A=()A.{x|x≥±4} B.{x|-4<x<4}C.{x|-4≤x≤4}D.{x|x≥4}∪{x|x≤-4}答案:D3.(易错点:定义不透)已知集合A={0,1,2},集合B满足A∪B={0,1,2},则集合B 有________个.答案:84.(易错点:交集运算)已知集合M={x∈N|-4<x<2},N={x|x2-x-6<0},则M∩N=________.答案:{0,1}授课提示:对应学生用书第2页考点一集合的概念挖掘1求集合元素的个数/ 自主练透[例1](1)(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9B.8C.5 D.4[解析]将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.[答案] A(2)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3 B.4C.5 D.6[解析]a∈{1,2,3},b∈{4,5},则M={5,6,7,8},即M中元素的个数为4,故选B.[答案] B[破题技法]与集合中的元素有关的问题的求解策略(1)确定集合中的元素是什么.(2)看这些元素满足什么限制条件.(3)注意元素的三个特性,特别是互异性.挖掘2利用元素特性求参数/ 互动探究[例2]设集合A={x|(x-a)2〈1},且2∈A,3∉A,则实数a的取值范围为________.[解析]由题意得错误!解得错误!结合数轴得1〈a≤2。

高考数学一轮复习 第一章集合与常用逻辑用语1.1集合的概念与运算教学案 理

高考数学一轮复习 第一章集合与常用逻辑用语1.1集合的概念与运算教学案 理

第一章集合与常用逻辑用语1.1 集合的概念与运算考纲要求1.集合的含义与表示(1)了解集合的含义,元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合间的关系及运算.1.集合元素的三个特征:______、______、______.2.元素与集合的关系是____或______关系,用符号____或____表示.3.集合的表示法:______、______、图示法.4.常用数集:自然数集______;正整数集______(或______);整数集______;有理数集________;实数集____.5.集合的分类:按集合中元素的个数划分,集合可以分为______、______.6.子集、真子集及其性质:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A);若集合A⊆B,但存在元素x∈B,且x∉A,则A B(或B A);∅⊆A;A⊆A;A⊆B,B⊆C⇒A⊆C.若集合A含有n个元素,则A的子集有____个,A的非空子集有____个,A的非空真子集有____个.7.集合相等:若A⊆B,且____,则A=B.8.集合的并、交、补运算:并集:A∪B=____________;交集:A∩B=__________;补集:∁U A=__________;U为全集,∁U A表示集合A相对于全集U的补集.9.集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B).1.设M={x|x≤211},a=2 014,则下列关系中正确的是( ).A.a⊆M B.a∉MC.{a}∉M D.{a}⊆M2.(2012山东高考)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为( ).A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}3.若集合A={x|x<1},B={x|x≥a},且A∩B≠∅,则实数a的取值范围为( ).A.a≤1 B.a<1C.a≥1 D.a>14.(2012湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B ={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( ).A.1 B.2C.3 D.45.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a的值为__________.一、集合的概念【例1-1】若集合A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B的元素个数为( ).A.2 B.3 C.4 D.5【例1-2】已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,则2 014a的值为__________.方法提炼1.研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.集合 {x |f (x )=0}{x |f (x )>0}{x |y =f (x )} {y |y =f (x )} {(x ,y )|y =f (x )} 集合的 意义方程f (x )= 0的解集 不等式f (x ) >0的解集函数y =f (x ) 的定义域函数y =f (x ) 的值域函数y =f (x ) 图象上的点集2.对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性.3.空集是一个特殊的集合,要注意正确区分∅,{0},{∅}三个符号的含义.∅是不含任何元素的集合,即空集.{0}是含有一个元素0的集合,它不是空集,因为它有一个元素,这个元素是0.{∅}是含有一个元素∅的集合.请做演练巩固提升1二、集合间的基本关系【例2-1】已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a2 014+b 2 014=__________.【例2-2】已知集合A ={x |(x -2)(x -3a -1)<0},函数y=lg 2a -xx -a 2+1的定义域为集合B .求满足B ⊆A 的实数a 的取值范围.方法提炼1.解决有关集合相等的问题,应利用集合相等的定义,首先分析已知元素在另一个集合中与哪一个元素相等,有几种情况等,然后列方程(组),求解,还要注意检验.2.集合A 中元素的个数记为n ,则它的子集的个数为2n,真子集的个数为2n -1,非空真子集的个数为2n-2.3.通过集合之间的关系,求参数的取值范围,最终是要通过比较区间端点的大小来实现,因此确定两个集合内的元素,成为解决该类问题的关键.由于元素的属性中含有参数,所以分类讨论成为必然,分类讨论时要注意不重不漏.请做演练巩固提升2三、集合的基本运算【例3-1】(2012广东粤西北九校高三联考)设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( ).A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)【例3-2】设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围. 方法提炼1.集合运算的常用方法(1)集合元素离散时借助Venn 图运算;(2)集合元素连续时借助数轴运算,借助数轴运算时应注意端点值的取舍.2.常用重要结论(1)A ∩B =A ⇔A ⊆B ; (2)A ∪B =A ⇔A ⊇B .3.A ∩B =A ∪B ⇔A =B .请做演练巩固提升3,4忽视集合为空集的情况而失误【典例1】已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a =( ).A .-12或1 B .2或-1C .-2或1或0D .-12或1或0解析:依题意可得A ∩B =B ⇔B ⊆A .因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D . 答案:D【典例2】若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可取值组成的集合为__________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ; 若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}答题指导:1.典例1易出现忽略a =0的情况,典例2易出现不讨论B =∅的情况.2.在解决有关A ∩B =∅,A ∪B =∅,A ⊆B 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.1.已知集合A ={2,3,4},B ={2,4,6,8},C ={(x ,y )|x ∈A ,y ∈B ,且log x y ∈N *},则集合C 中的元素个数是( ).A .9B .8C .3D .42.(2012课标全国高考)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( ).A .AB B .B AC .A =BD .A ∩B =∅3.(2012广东高考)设集合U ={1,2,3,4,5,6},M ={1,3,5},则∁U M =( ).A .{2,4,6}B .{1,3,5}C .{1,2,4}D .U4.(2012北京高考)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ).A .(-∞,-1)B .⎝⎛⎭⎪⎫-1,-23C .⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞)5.(2012山东济宁模拟)设集合P ={x |sin x =1,x ∈R },Q ={x |cos x =-1,x ∈R },S ={x |sin x +cos x =0,x ∈R },则( ).A .P ∩Q =SB .P ∪Q =SC .P ∪Q ∪S =RD .(P ∩Q )⊆S参考答案基础梳理自测知识梳理1.确定性互异性无序性2.属于不属于∈∉3.列举法描述法4.N N*N+Z Q R5.有限集无限集6.2n2n-1 2n-27.B⊆A8.{x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}基础自测1.D 解析:∵2 014<211=2 048,∴{2 014}⊆M,故选D.2.C 解析:易知∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.3.B 解析:在数轴上表示出两个集合,可以看到,当a<1时,A∩B≠∅.故选B.4.D 解析:由题意可得,A={1,2},B={1,2,3,4}.又∵A ⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D.5.1 解析:∵A={-1,1,3},B={a+2,a2+4},A∩B={3},a2+4>3,∴a+2=3,a=1.考点探究突破【例1-1】B 解析:由题意知,B中的元素有:2×3=6,2×4=8,3×4=12,因此B={6,8,12},故选B.【例1-2】1 解析:当a+2=1,即a=-1时,(a+1)2=0,a2+3a+3=1与a+2相同,∴不符合题意.当(a+1)2=1,即a=0或a=-2时,①a=0符合要求.②a=-2时,a2+3a+3=1与(a+1)2相同,不符合题意.当a2+3a+3=1,即a=-2或a=-1.①当a=-2时,a2+3a+3=(a+1)2=1,不符合题意.②当a=-1时,a2+3a+3=a+2=1,不符合题意.综上所述,a=0.∴2 014a=1. 【例2-1】1 解析:由题意知b =0,因此集合化简为{a,0,1}={a 2,a,0},因此a 2=1,解得a =±1.经检验a =1不符合集合元素的互异性,故a =-1.故a 2 014+b 2 014=1.【例2-2】解:由于2a ≤a 2+1,当2a =a 2+1时,即a =1时,函数无意义,∴a ≠1,B ={x |2a <x <a 2+1}.①当3a +1<2,即a <13时,A ={x |3a +1<x <2},要使B ⊆A成立,则⎩⎪⎨⎪⎧2a ≥3a +1,a 2+1≤2,即a =-1.②当3a +1=2,即a =13时,A =∅,B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫23<x <109,此时不满足B ⊆A ;③当3a +1>2,即a >13时,A ={x |2<x <3a +1},要使B ⊆A成立,则⎩⎪⎨⎪⎧2a ≥2,a 2+1≤3a +1,即1≤a ≤3.又a ≠1,故1<a ≤3.综上所述,满足B ⊆A 的实数a 的取值范围是{a |1<a ≤3}∪{a |a =-1}.【例3-1】D 解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0}, A ∪B =(-∞,1),A ∩B =(-1,0],故题图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.【例3-2】解:由x 2-3x +2=0, 得x =1或x =2, 故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件, 综上,a 的值为-1或-3. (2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3). ∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅,满足条件; ②当Δ=0,即a =-3时,B ={2},满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件, 则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾;综上,a 的取值范围是(-∞,-3].演练巩固提升 1.D2.B 解析:由题意可得,A ={x |-1<x <2}, 而B ={x |-1<x <1},故B A .3.A 解析:∵M ={1,3,5},U ={1,2,3,4,5,6}, ∴∁U M ={2,4,6}.4.D 解析:由题意得,A =⎩⎨⎧⎭⎬⎫x |x >-23,B ={x |x <-1,或x>3},所以A ∩B =(3,+∞).5.D 解析:方法一:由sin x =1得,x =2k π+π2,k ∈Z ,所以P =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z ;由cos x =-1得,x =2k π+π,k ∈Z ,所以Q ={x |x =2k π+π,k ∈Z }; 由sin x +cos x =0得,2sin ⎝ ⎛⎭⎪⎫x +π4=0,即sin ⎝⎛⎭⎪⎫x +π4=0,可得x +π4=k π,k ∈Z ,即x =k π-π4,k ∈Z ,所以S =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k π-π4,k ∈Z .由于P ∩Q =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z ∩{x |x =2k π+π,k ∈Z }=∅,因此(P ∩Q )⊆S ,所以选项D 正确.方法二:P 表示终边落在y 轴非负半轴上角的集合,Q 表示终边落在x 轴非正半轴上角的集合,故P ∩Q =∅,所以选项D 正确.。

2013年高考数学(理)一轮复习复习讲义第一部分集合与简易逻辑1集合部分(人教A版)

2013年高考数学(理)一轮复习复习讲义第一部分集合与简易逻辑1集合部分(人教A版)

集合部分一, 解决集合问题应注意的问题1,明确集合的三种表示方法,能够灵活的应用和转化; 2,明确集合的元素的意义,确定对象的类型,即元素是点、还是说、还是图形、还是向量等;如集合2A={x|y=x 1}-和2B={y|y=x 1}-不是同一个集合 3,弄清集合是由哪些元素组成的,善于对集合的三种语言(文字语言、符号语言、图形语言)之间进行相互转化;化简出集合的最简形式; 4,注意集合元素的互异性,在求值问题中不要忘记检验是否满足这一性质,这是集合题目的隐含条件; 5,注意空集的特殊性和特殊作用,注意空集性质的应用; 6,判断集合关系的方法和研究集合问题的方法是从元素下手; 7,注意运用数形结合思想、分类讨论思想、化归和转化思想来解决集合的问题; 8, 集合问题多与函数、方程、不等式等知识综合在一起,应注意各类知识之间的联系和融会贯通; 二, 常见的结论1,若集合A 中有n 个元素,则集合A 的子集有2n 个,真子集有21n -个,非空真子集有22n -个2,若集合A 中元素的个数用card(A)表示,则集合A 和集合B 的并集中元素的个数为()()()()card A B card A card B card A B =+-;则集合A 、B 、C 三个集合的并集中元素的个数为()()()()()()()()card A B C card A card B card C card A B card A C card C B card A B C =++---+ 3, 集合交集和并集的混合运算的两个公式:()()()u u u A B A B c c c =()()()u u u A B A B c c c =4, 空集的性质(1)A ∅⊆(2)()A A ∅⊂≠∅(3)A ∅=∅(4)A A ∅=5,A B A A B =⇔⊆,A B A B A =⇔⊆6,A B B A A B ⊆⊆⇔=且7,A B ⊂是A B ⊆的充分不必要条件三, 例题分析1、(12浙江理1)设集合{|14}A x x =<<,集合2{|230}B x x x =--≤, 则()R A C B =( ) A 、(1,4) B 、(3,4) C 、(1,3) D 、 (1,2)(3,4)【解析】此题考查集合的交集和补集的运算,考查一元二次不等式的解法2{|230}{|13}{|13}R B x x x x x C B xx x =--≤=-≤≤⇒=<->或, ()R A C B =}43|{<<x x 。

高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教学案 理 北师大版-北师大版高三全册数学

高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教学案 理 北师大版-北师大版高三全册数学

第1章集合与常用逻辑用语全国卷五年考情图解高考命题规律把握说明:“Ⅰ1〞指全国卷Ⅰ第1题,“Ⅱ1〞指全国卷Ⅱ第1题,“Ⅲ1〞指全国卷Ⅲ第1题. 1.考查形式本章在高考中一般考查1或2个小题,主要以选择题为主,很少以填空题的形式出现.2.考查内容从考查内容来看,集合主要有三方面考查:一是集合中元素的特性;二是集合间的关系;三是集合的运算,包含集合的交、并、补集运算;常用逻辑用语主要从四个方面考查:分别为命题及其关系、充分必要条件的判断、逻辑联结词“且〞“或〞“非〞以及全称量词与存在量词.3.备考策略(1)熟练掌握解决以下问题的方法和规律①集合的交、并、补集运算问题;②充分条件、必要条件的判断问题;③含有“且〞“或〞“非〞的命题的真假性的判断问题;④含有一个量词的命题的否定问题.(2)重视数形结合、分类讨论、转化与化归思想的应用.第一节集合[最新考纲] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈和∉表示.(3)集合的三种表示方法:列举法、描述法、Venn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即假设x∈A,那么x∈B)A⊆B或(B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B或B A集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}1.集合子集的个数对于有限集合A,其元素个数为n,那么集合A的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.2.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B ).一、思考辨析(正确的打“√〞,错误的打“×〞) (1)任何一个集合都至少有两个子集.( ) (2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)假设{x 2,1}={0,1},那么x =0,1.( )(4)直线y =x +3与y =-2x +6的交点组成的集合是{1,4}.( ) [答案] (1)× (2)× (3)× (4)× 二、教材改编1.假设集合A ={x ∈N |x ≤22},a =2,那么以下结论正确的选项是( ) A .{a }⊆A B .a ⊆A C .{a }∈AD .a ∉AD [由题意知A ={0,1,2},由a =2,知a ∉A .]2.集合M ={0,1,2,3,4},N ={1,3,5},那么集合M ∪N 的子集的个数为________. 64 [∵M ={0,1,2,3,4},N ={1,3,5}, ∴M ∪N ={0,1,2,3,4,5}, ∴M ∪N 的子集有26=64个.]3.U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},那么∁U (A ∪B )=________.[答案] {x |x 是直角}4.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =1的解集为________.⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫23,13 [由⎩⎪⎨⎪⎧x +y =1,2x -y =1,得⎩⎪⎨⎪⎧x =23,y =13,故方程组的解集为⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫23,13.]5.集合A ={x |x 2-x -6<0},集合B ={x |x -1<0},那么A ∩B =________,A ∪B =________.(-2,1) (-∞,3) [∵A ={x |-2<x <3},B ={x |x -1<0}={x |x <1}, ∴A ∩B ={x |-2<x <1},A ∪B ={x |x <3}.]考点1 集合的概念与集合中的元素有关的问题的求解思路(1)确定集合的元素是什么,即集合是数集还是点集. (2)看清元素的限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数.1.(2018·全国卷Ⅱ)集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },那么A 中元素的个数为( )A .9B .8C .5D .4A [由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 13C 13=9,应选A.]2.集合A ={m +2,2m 2+m },假设3∈A ,那么m 的值为________. -32 [由题意得m +2=3或2m 2+m =3, 那么m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.]3.假设集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,那么a =________. 0或98 [当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.]4.a ,b ∈R ,假设⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},那么a 2 020+b 2 020=________.1 [由得a ≠0,那么b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 020+b2 020=(-1)2 020+02 020=1.](1)求解此类问题时,要特别注意集合中元素的互异性,如T 2,T 4.(2)常用分类讨论的思想方法求解集合问题,如T 3.考点2 集合的基本关系判断两集合关系的方法(1)列举法:用列举法表示集合,再从元素中寻求关系.(2)化简集合法:用描述法表示的集合,假设代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系.(1)(2019·某某模拟)集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },那么( )A .AB B .B AC .A ⊆BD .B =A(2)集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},假设B ⊆A ,那么实数m 的取值X 围为________.(1)B (2)D (3)(-∞,3] [(1)由题意知A ={x |y =1-x 2,x ∈R }, 所以A ={x |-1≤x ≤1}.所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以B A ,应选B.(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,那么集合C 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.(3)因为B ⊆A ,所以①假设B =∅,那么2m -1<m +1,此时m <2. ②假设B ≠∅,那么⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值X 围为(-∞,3].] [母题探究]1.(变问法)本例(3)中,假设B A ,求m 的取值X 围. [解] 因为B A ,①假设B =∅,成立,此时m <2.②假设B ≠∅,那么⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值X 围为(-∞,3].2.(变问法)本例(3)中,假设A ⊆B ,求m 的取值X 围.[解] 假设A ⊆B ,那么⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值X 围为∅.3.(变条件)假设将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值X 围.[解] 因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意. ②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12,即m >4.综上可知,实数m 的取值X 围为(-∞,2)∪(4,+∞).(1)两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(2)空集是任何集合的子集,当题目条件中有B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.1.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,那么这样的集合M 共有( )A .6个B .5个C .4个D .3个A [由题意知,M ={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.]2.假设集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },且B ⊆A ,那么实数m 的取值X 围为________.[-2,2) [①假设B =∅,那么Δ=m 2-4<0, 解得-2<m <2,符合题意; ②假设1∈B ,那么12+m +1=0, 解得m =-2,此时B ={1},符合题意; ③假设2∈B ,那么22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数m的取值X围为[-2,2).] 考点3 集合的基本运算集合运算三步骤确定元素确定集合中的元素及其满足的条件,如函数的定义域、值域,一元二次不等式的解集等化简集合根据元素满足的条件解方程或不等式,得出元素满足的最简条件,将集合清晰地表示出来运算求解利用交集或并集的定义求解,必要时可应用数轴或Venn图来直观解决集合的运算(1)(2019·全国卷Ⅰ)集合M={x|-4<x<2},N={x|x2-x-6<0},那么M∩N=( )A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}(2)(2019·某某高考)全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},那么(∁U A)∩B=( )A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}(3)设集合A={y|y=2x,x∈R},B={x|x2-1<0},那么A∪B等于( )A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)(1)C(2)A(3)C[(1)∵N={x|x2-x-6<0}={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},应选C.(2)∵∁U A={-1,3},∴(∁U A)∩B={-1},应选A.(3)∵A={y|y>0},B={x|-1<x<1},∴A∪B=(-1,+∞),应选C.][逆向问题] A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},那么A=( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}D[法一:(直接法)因为A∩B={3},所以3∈A,又(∁U B)∩A={9},所以9∈A.假设5∈A,那么5∉B(否那么5∈A∩B),从而5∈∁U B,那么(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理,1∉A,7∉A,故A={3,9}.法二:(Venn图)如下图.]集合运算的常用方法(1)假设集合中的元素是离散的,常用Venn图求解.(2)假设集合中的元素是连续的实数,那么用数轴表示,此时要注意端点的情况.利用集合的运算求参数(1)集合A={0,2,a},B={1,a2},假设A∪B={0,1,2,4,16},那么a的值为( )A.0 B.1C.2 D.4(2)集合A={x|x<a},B={x|x2-3x+2<0},假设A∩B=B,那么实数a的取值X围是( )A.a<1 B.a≤1C.a>2 D.a≥2(1)D(2)D[(1)根据并集的概念,可知{a,a2}={4,16},故只能是a=4.(2)B={x|x2-3x+2<0}={x|1<x<2},又A∩B=B,故B⊆A.又A={x|x<a},结合数轴,可知a≥2.]利用集合的运算求参数的值或取值X围的方法(1)假设集合中的元素能一一列举,那么一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.如T(1).(2)与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到,如T(2).提醒:在求出参数后,注意结果的验证(满足互异性).[教师备选例题]1.集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},那么A⊕B中元素的个数为( ) A.77 B.49C.45 D.30C[如图,集合A表示如下图的所有圆点“〞,集合B表示如下图的所有圆点“〞+所有圆点“〞,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),那么集合A ⊕B 表示如下图的所有圆点“〞+所有圆点“〞+所有圆点“〞,共45个.故A ⊕B 中元素的个数为45.应选C.]2.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},假设A ∩B 中恰含有一个整数,那么实数a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,34 B .⎣⎢⎡⎭⎪⎫34,43C.⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞)B [A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图像的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知假设A ∩B 中恰有一个整数,那么这个整数为2,所以有⎩⎪⎨⎪⎧f 2≤0,f3>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43.应选B.] 1.(2019·全国卷Ⅱ)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},那么A ∩B =( )A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)A [由题意得A ={x |x <2或x >3},B ={x |x <1}, ∴A ∩B ={x |x <1}.]2.(2019·某某模拟)全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},那么如下图阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C.{x|-2≤x≤-1} D.{x|-1≤x≤2}D[依题意得A={x|x<-1或x>4},因此∁R A={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁R A)∩B={x|-1≤x≤2},应选D.]3.A={1,2,3,4},B={a+1,2a}.假设A∩B={4},那么a=________.3 [因为A∩B={4},所以a+1=4或2a=4.假设a+1=4,那么a=3,此时B={4,6},符合题意;假设2a=4,那么a=2,此时B={3,4},不符合题意.综上,a=3.]。

2013版高考数学人教A版一轮复习课件第1单元-集合与常用逻辑用语(理科)

2013版高考数学人教A版一轮复习课件第1单元-集合与常用逻辑用语(理科)

第1讲 │ 问题思考
► 问题3 集合的运算 (1)A∩B=A∪B的充要条件是A=B.( (2)A∩B=∅的充要条件是A=B=∅.(
) )
第1讲 │ 问题思考
[答案] (1)对;(2)错.
[解析] (1)根据韦恩图分析可知. (2)A∩B=∅时,只要集合 A,B 没有公共元素即可,不一 定是 A=B=∅.
B∩A A ∅ (3)交集:A∩B=______,A∩A=____,A∩∅=____, ⊆ A∩B____A,A∩B=A⇔A⊆ B. ∅ U (4)补集:A∩(∁UA)=____,A∪(∁UA)=____.
(∁UA)∪(∁ (5)∁U(A∪B)=________,∁U(A∩B)=________. UB ) (∁UA)∩(∁UB)
集合 常用逻 辑用语 集合 常用逻 辑用语
集合的含义、运算、 基本关系 命题、充要条件、逻 辑联结词、量词
了解 理解 了解 理解 了解 理解 理解
2011江苏1 2011陕西12 2010北京20 2010安徽20
解 答 题
第一单元 │ 使用建议 使用建议
第1讲 │ 知识梳理
(4)几个常用集合的表示法 数集 自然数 正整数 集 集 整数集 有理数 集 实数集
N*或N Q R 表示法 ______ ______+ ______ ______ ______ N Z 列举法 描述法 (5)集合有三种表示法:________,________, Venn图法 ________.
第1讲 │ 问题思考
► 问题4 元素、集合的关系 (1)a {a}.( ) (2)∅∈{∅}.( ) (3){(1,2)}⊆ {1,2}.( )
第1讲 │ 问题思考
[答案] (1)错;(2)对;(3)错.

高考数学一轮总复习第一章集合与常用逻辑用语不等式 2常用逻辑用语课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式 2常用逻辑用语课件
− + 1 ≤ 0,
是− + 1 < < + 1的一个充分条件,则满足ቊ
解得 ≥ 1.故选D.
+ 1 ≥ 1,
考点三 全称量词命题与存在量词命题
命题角度1 全称、存在量词命题及其否定
例3 【多选题】设命题: ∃ ∈ 0,4 , 2 > 4且 3 < 6,命题:每个三角形都有内切圆,
)
3.(教材题改编)若 ∈ ,则“3 > 1”是“2 > 1”的(
A.充分不必要条件

C.充要条件
)
B.必要不充分条件
D.既不充分也不必要条件
解:解不等式3 > 1可得 > 1,解不等式2 > 1可得 < −1或 > 1.
因为{ > 1} ⫋ { < −1或 > 1},
A.充分不必要条件

)
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
π
2
π
2
解:(方法一){ sin = 1} = { = + 2π , ∈ } ⫋ {| = + π ,
∈ } = {|cos = 0},故是充分不必要条件.
(方法二)当sin = 1时,由同角关系,得cos = 0,充分性成立;当cos = 0时,
≤ sin ,故B正确.素数2不是奇数,所以是真命题,故C正确.的否定:所有的素
数都是奇数,故D错误.故选BC.
命题角度2
根据命题的真假求参数
例4 已知“命题:∃ ∈ , 2 + 2 + 1 < 0”为真命题,则实数的取值范围是 (

高考一轮复习教案数学(理)新课标 第一篇 集合与常用逻辑用语 1 集合的概念与运算

高考一轮复习教案数学(理)新课标 第一篇 集合与常用逻辑用语 1 集合的概念与运算

第1讲集合的概念与运算【2013年高考会这样考】1.考查集合中元素的互异性.2.求几个集合的交、并、补集.3.通过给的新材料考查阅读理解能力和创新解题的能力.【复习指导】1.主要掌握集合的含义、集合间的关系、集合的基本运算,立足基础,抓好双基.2.练习题的难度多数控制在低中档即可,适当增加一些情境新颖的实际应用问题或新定义题目,但数量不宜过多.基础梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的基本运算(1)并集:A∪B={x|x∈A,或x∈B}.(2)交集:A∩B={x|x∈A,且x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.一个性质要注意应用A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.双基自测1.(人教A版教材习题改编)设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于().A.{x|3≤x<4} B.{x|x≥3}C.{x|x>2} D.{x|x≥2}解析B={x|3x-7≥8-2x}={x|x≥3},∴结合数轴得:A∪B={x|x≥2}.答案 D2.(2011·浙江)若P ={x |x <1},Q ={x |x >-1},则( ).A .P ⊆QB .Q ⊆PC .∁R P ⊆QD .Q ⊆∁R P解析 ∵∁R P ={x |x ≥1}∴∁R P ⊆Q .答案 C3.(2011·福建)i 是虚数单位,若集合S ={-1,0,1},则( ).A .i ∈SB .i 2∈SC .i 3∈S D.2i ∈S解析 ∵i 2=-1,∴-1∈S ,故选B.答案 B4.(2011·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1]B. [1,+∞) C .[-1,1] D .(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案 C5.(人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________.解析 A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.答案 2考向一 集合的概念【例1】►已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.[审题视点] 分m +2=3或2m 2+m =3两种情况讨论.解析 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合乎题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3合乎题意.所以m =-32.答案 -32集合中元素的互异性,一可以作为解题的依据和突破口;二可以检验所求结果是否正确.【训练1】 设集合A ={-1,1,3},B ={a +2,a 2+2},A ∩B ={3},则实数a 的值为________.解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.若a 2+2=3,则a =±1.当a =-1时,B ={1,3}此时A ∩B ={1,3}不合题意,故a =1.答案 1考向二 集合的基本运算【例2】►(2011·天津)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =⎩⎨⎧⎭⎬⎫x ∈R |x =4t +1t -6,t ∈(0,+∞),则集合A ∩B =________.[审题视点] 先化简集合A ,B ,再求A ∩B .解析 不等式|x +3|+|x -4|≤9等价于⎩⎨⎧ x ≥4,x +3+x -4≤9或⎩⎨⎧ -3<x <4,x +3+4-x ≤9或⎩⎨⎧ x ≤-3,-x -3+4-x ≤9,解不等式组得A =[-4,5],又由基本不等式得B =[-2,+∞),所以A ∩B =[-2,5].答案 {x |-2≤x ≤5}集合运算时首先是等价转换集合的表示方法或化简集合,然后用数轴图示法求解.【训练2】 (2011·江西)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( ).A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.答案 B考向三 集合间的基本关系【例3】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.[审题视点] 若B ⊆A ,则B =∅或B ≠∅,故分两种情况讨论.解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎨⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.【训练3】 (2011·江苏)设集合A =⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪ m 2≤(x -2)2+y 2≤m 2,⎭⎪⎬⎪⎫x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.解析 ①若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而|2-2m -1|2≤|m |,解得2-22≤m ≤2+22,与m <0矛盾; ②若m =0,代入验证,可知不符合题意;③若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,集合B 表示一个带形区域,从而当直线x +y =2m +1与x +y =2m 中至少有一条与圆(x -2)2+y 2=m 2有交点,即符合题意,从而有|2-2m |2≤|m |或|2-2m -1|2≤|m |,解得2-22≤m ≤2+2,由于12>2-22,所以12≤m ≤2+ 2.综上所述,m 的取值范围是12≤m ≤2+ 2. 答案 ⎣⎢⎡⎦⎥⎤12,2+2难点突破1——集合问题的命题及求解策略在新课标高考中,可以看出,集合成为高考的必考内容之一,考查的形式是一道选择题或填空题,考查的分值约占5分,难度不大.纵观近两年新课标高考,集合考题考查的主要特点是:一是注重基础知识的考查,如2011年安徽高考的第8题;二是与函数、方程、不等式、三角等知识相结合,在知识的交汇点处命题,如2011年山东高考的第1题,与不等式相结合;三是在集合的定义运算方面进行了新的命题,如2011年浙江高考的第10题.一、集合与排列组合【示例】► (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ).A .57B .56C .49D .8二、集合与不等式的解题策略【示例】► (2011·山东)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N 等于( ).A.[1,2) B.[1,2] C.(2,3] D.[2,3]三、集合问题中的创新问题【示例】►(2011·浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是().A.|S|=1且|T|=0 B.|S|=1且|T|=1C.|S|=2且|T|=2 D.|S|=2且|T|=3。

高考数学一轮总复习第一章集合与常用逻辑用语不等式 1集合课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式 1集合课件
card ∪ = card + card − card ∩ .
1.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)任何一个集合都至少有两个子集.
( ×)
(2){ = 2 + 1} = { = 2 + 1} = { , | = 2 + 1}. ( × )


不属于
______;如果不是集合中的元素,就说________集合,记作______.
列举法
描述法
图示法
(3)集合的表示方法:________、________、________.
(4)常用数集及其记法:
数集 非负整数集(或自然数集)
符号

___
正整数集 整数集 有理数集 实数集
∗ 或( )

_________
+

___

___

___
复数


___
2.集合间的基本关系
分类
子集
真子集
文字语言
任意一个
不属于
记法

_______(或

_______)

_______(或
Ý
_______)
=
_______
相等
空集
符号语言
不含任何元素的集合

___
3.集合的基本运算
(2)(2023年全国乙卷)设集合 = ,集合 = {| < 1}, = {| − 1 < < 2},
则{| ≥ 2} =(
A.∁


)
B. ∪ ∁

数学(理)一轮教学案:第一章第1讲 集合的概念及运算 Word版含解析

数学(理)一轮教学案:第一章第1讲 集合的概念及运算 Word版含解析

第一章集合与常用逻辑用语第1讲集合的概念及运算1集合的基本概念(1)集合元素的性质:确定性、互异性、无序性.(2)元素与集合的关系:属于记为∈,不属于记为∉.(3)常见集合的符号集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R(4)集合的表示方法:列举法、描述法、图示法.2集合间的基本关系表示关系文字语言符号语言相等集合A与集合B中的所有元素相同A⊆B且B⊆A⇔A=B子集A中任意一个元素均为B中的元素A⊆B或B⊇A真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B或B A空集空集是任何集合的子集,是任何非空集合的真子集∅⊆A∅B(B≠∅)注意点元素互异性的应用(1)利用集合元素的互异性找到解题的切入点.(2)在解答完毕时,注意检验集合的元素是否满足互异性以确保答案正确.1.思维辨析(1){1,2,3}={2,3,1}.()(2)空集中只有一个元素0.()(3)集合{x2+x,0}中实数x可取任意值.()(4)任何集合都至少有两个子集.()(5)集合{x|y=x-1}与集合{y|y=x-1}是同一个集合.()(6)若A={0,1},B={(x,y)|y=x+1},则A⊆B.()答案(1)√(2)×(3)×(4)×(5)×(6)×2.若集合A={x∈N|x≤10},a=22,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D解析A={x∈N|x≤10}={0,1,2,3}而a=22,∴a∉A.3.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案 C解析由U={1,2,3,4,5,6,7},A={1,3,5,6},∴∁U A={2,4,7},故选C.4.已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是()A.{x|2<x<3}B.{x|-1<x≤0}C.{x|0≤x<6}D.{x|x<-1}答案 C解析由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A={x|0≤x<6},故选C. U[考法综述]集合元素的三大特性是理解集合概念的关键,一般涉及集合与元素之间的关系及根据集合中元素的特性(特别是集合中元素的互异性),来确定集合中元素的个数,或求参数的取值范围,属于基础题.命题法1 集合的基本概念典例1 (1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0D .0或98 [解析] (1)当x =0,y =0,1,2时,x -y 的值分别为0,-1,-2;当x =1,y =0,1,2时,x -y 的值分别为1,0,-1;当x =2,y =0,1,2时,x -y 的值分别为2,1,0;∴B ={-2,-1,0,1,2}.∴集合B 中元素的个数是5个.(2)集合A 是方程ax 2-3x +2=0在实数范围内的解集,且A 中只有一个元素,所以方程ax 2-3x +2=0只有一个实数根.若a =0,则方程为-3x +2=0,解得x =23,满足条件;若a ≠0,则二次方程ax 2-3x +2=0有两个相等的实数根,即Δ=(-3)2-8a =0,解得a =98,所以a =0或a =98.[答案] (1)C (2)D【解题法】 解决集合概念问题的一般思路研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.命题法2 集合之间的关系典例2已知集合A={x|x<-3或x>7},B={x|x<2m-1},若B⊆A,则实数m的取值范围是________.[解析]由题意知2m-1≤-3,m≤-1,∴m的取值范围是(-∞,-1].[答案](-∞,-1]【解题法】利用集合关系求参数取值范围及集合相等问题(1)根据两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析,而且常要对参数进行讨论.注意点:注意区间端点的取舍.(2)若两个集合相等,首先分析某一集合的已知元素在另一个集合中与哪一个元素相等,有几种情况,然后列方程(组)求解.1.已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A答案 D解析由真子集的概念知B A,故选D.2.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案 A解析ax2+ax+1=0只有一个根,当a=0时方程无解,当a≠0,Δ=0时,即a2-4a=0,a=4,故选A.3.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是()A.{-1} B.{1}C.{-1,1} D.{-1,0,1}答案 D解析 B ={x |(x +1)(x -1)=0}={-1,1}.若A ⊆B ,则有以下情况:当a =0时,A =∅,满足A ⊆B ;当a ≠0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =1a ,若A ⊆B ,则A ={-1}时,a =-1;A ={1}时,a =1;故当a =0,-1,1时满足A ⊆B .4.设集合P ={x |x >1},Q ={x |x 2-x >0},则下列结论正确的是( )A .P ⊆QB .Q ⊆PC .P =QD .P ∪Q =R答案 A解析 ∵Q ={x |x 2-x >0}={x |x >1或x <0}, 又P ={x |x >1},∴P ⊆Q ,故选A. 1 集合的运算及性质 名称 交集 并集 补集 符号 A ∩B A ∪B ∁U A 数学语言 A ∩B ={x |x ∈A 且x ∈B }A ∪B ={x |x ∈A 或x ∈B }∁U A ={x |x ∈U 且x ∉A } 图形运算性质A ∩B ⊆A , A ∩B ⊆B , A ∩∅=∅B ⊆A ∪B , A ⊆A ∪B , A ∪∅=AA ∪(∁U A )=U , A ∩(∁U A )=∅, ∁U (∁U A )=A2 集合间运算性质的重要结论 (1)A ∪B =A ⇔B ⊆A . (2)A ∩B =A ⇔A ⊆B . (3)A ∩B =A ∪B ⇔A =B .(4)狄摩根定律:∁U (A ∪B )=(∁U A )∩(∁U B ); ∁U (A ∩B )=(∁U A )∪(∁U B ). 注意点 空集的特殊性在解题中,若未指明集合非空时,要考虑空集的可能性,如A ⊆B ,则有A =∅和A ≠∅两种可能,此时应分类讨论.1.思维辨析(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.()(4)若A∩B=A∩C,则B=C.()(5)已知集合M={1,2,3,4},N={2,3},则M∩N=N.()(6)若全集U={-1,0,1,2},P={x∈Z|x2<4},则∁U P={2}.()答案(1)×(2)×(3)√(4)×(5)√(6)√2.已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}答案 A解析A={x|(x-2)(x+1)≤0}={x|-1≤x≤2},又B为整数集,所以A∩B={-1,0,1,2},故选A.3.已知集合A={0,1,2},集合B满足A∪B={0,1,2},则集合B 有________个.答案8解析由A∪B={0,1,2}得B⊆A,所以B是A的子集.由A中有3个元素知B有23=8个.[考法综述]集合的基本运算是历年高考的热点,常与函数、不等式、方程等知识综合考查,主要以选择题形式出现.命题法求交集、并集和补集典例(1)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1] B.[-1,1]C.[-1,2) D.[1,2)(2)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析](1)由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.(2)利用数轴分析求解.∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0,或x≥1}.在数轴上表示,如图所示.∴∁U(A∪B)={x|0<x<1}.[答案](1)A(2)D【解题法】解决集合运算问题的方法在进行集合运算时,要尽可能地利用数形结合的思想使抽象问题直观化.(1)用列举法表示的集合进行交、并、补的运算,常采用Venn图法解决,此时要搞清Venn图中的各部分区域表示的实际意义.(2)用描述法表示的数集进行运算,常采用数轴分析法解决,此时要注意“端点”能否取到.(3)若给定的集合是点集,常采用数形结合法求解.1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B =()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}答案 A解析因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.2.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}答案 A解析由已知得∁U B={2,5,8},∴A∩(∁U B)={2,5}.3.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]答案 C解析∵P={x|x≥2或x≤0},∴∁R P={x|0<x<2},∴(∁R P)∩Q=(1,2).4.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1} B.{1}C.{1,-1} D.∅答案 C解析A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.5.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N =()A.[0,1] B.[0,1)C.(0,1] D.(0,1)答案 B解析∵M={x|x≥0,x∈R}.N={x|x2<1,x∈R}={x|-1<x<1,x∈R}.∴M∩N={x|0≤x<1},即M∩N=[0,1).故选B.6.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}答案 C解析M={-1,0,1},N={0,1,2},M∪N={-1,0,1,2},故选C.7.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)答案 C解析 A ={x ||x -1|<2}={x |-1<x <3},B ={y |y =2x ,x ∈[0,2]}={y |1≤y ≤4},∴A ∩B ={x |-1<x <3}∩{y |1≤y ≤4}={x |1≤x <3}.8.设全集U =R ,A ={x |y =lg (1-x )},则∁R A =( ) A .(-∞,1) B .(0,1) C .[1,+∞) D .(1,+∞)答案 C解析 ∵y =lg (1-x ),∴1-x >0,即x <1,∴∁R A ={x |x ≥1}.9.已知集合A ={x |x =2k +1,k ∈Z },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3≤0,则A ∩B =( )A .[-1,3]B .{-1,3}C .{-1,1}D .{-1,1,3}答案 C解析 ∵B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3≤0={x |-1≤x <3},又集合A 为奇数集,∴A ∩B ={-1,1},故选C.10.已知全集U =R ,A ={x |x >1},B ={x |x 2-2x >0},则∁U (A ∪B )=( )A .{x |x ≤2}B .{x |x ≥1}C .{x |0≤x ≤1}D .{x |0≤x ≤2} 答案 C解析 由x 2-2x >0得x >2或x <0,即B ={x |x <0,或x >2},∴A∪B={x|x<0,或x>1},∴∁U(A∪B)={x|0≤x≤1}.11.集合M={2,log3a},N={a,b},若M∩N={1},则M∪N=()A.{0,1,2} B.{0,1,3}C.{0,2,3} D.{1,2,3}答案 D解析因为M∩N={1},所以log3a=1,即a=3,所以b=1,即M={2,1},N={3,1},所以M∪N={1,2,3},故选D.12.已知全集U,集合A⊆B⊆U,则有()A.A∩B=B B.A∪B=AC.(∁U A)∩(∁U B)=∁U B D.(∁U A)∪(∁U B)=∁U B答案 C解析∵A⊆B⊆U,∴A∩B=A,故选项A不正确;A∪B=B,故选项B不正确;(∁U A)∩(∁U B)=∁U(A∪B)=∁U B,故选项C正确;(∁A)∪(∁U B)=∁U(A∩B)=∁U A,故选项D不正确.故选C.U13.设集合U=R,A={x|2x(x-2)<1},B={x|y=ln (1-x)},则图中阴影部分表示的集合为()扫一扫·听名师解题A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}答案 B解析易知A={x|2x(x-2)<1}={x|x(x-2)<0}={x|0<x<2},B={x|y =ln (1-x)}={x|1-x>0}={x|x<1},则∁U B={x|x≥1},阴影部分表示的集合为A∩(∁U B)={x|1≤x<2}.创新考向以集合为载体的创新问题是近几年高考命题的一个热点,这类问题以集合为依托,考查学生理解问题、解决创新问题的能力.其命题形式常见的有新概念、新法则、新运算、新性质等.创新例题已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49C.45 D.30答案 C解析集合A={(x,y)|x2+y2≤1,x,y∈Z},所以集合A中有5个元素(即5个点),即图中圆内及圆上的整点.集合B={(x,y)||x|≤2,|y|≤2,x,y∈Z}中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD上的整点.集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}中的元素可看作正方形A1B1C1D1内及正方形A1B1C1D1上除去四个顶点外的整点,共7×7-4=45个.创新练习1.设集合S={A0,A1,A2},在S上定义运算⊕:A i⊕A j=A k,其中k为i+j被3除的余数,i,j∈{1,2,3},则使关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)总共有()A.1对B.2对C.3对D.4对答案 C解析i=1时,j=1符合要求,i=2时,j=2符合要求;i=3时,j=3符合要求,所以使关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)有(1,1),(2,2),(3,3),共3对.2.若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.答案 6解析因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上,符合条件的有序数组的个数是6.3.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.则S 4的所有奇子集的容量之和为________.答案 7解析 根据题意,S 4的所有奇子集为{1}、{3}、{1,3},分析可得{1}的容量为1,{3}的容量为3,{1,3}的容量为3,则其容量之和为1+3+3=7.创新指导1.准确转化:解决集合创新问题时,一定要读懂题目的本质含义,紧扣题目所给条件,结合题目要求进行恰当转化,切忌同已有概念或定义相混淆.2.方法选取:对于集合创新问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解,同时注意培养学生领悟新信息、运用新信息的能力.已知集合A ={x |ax -1=0},B ={x |1<log 2x ≤2,x ∈N },且A ∩B =A ,则a 的所有可能值组成的集合是( )A .∅B.⎩⎨⎧⎭⎬⎫13 C.⎩⎨⎧⎭⎬⎫13,14 D.⎩⎨⎧⎭⎬⎫13,14,0 [错解][错因分析] 集合A 为方程ax -1=0的实数解构成的集合,由A ∩B =A ,知A ⊆B ,A 可以为非空集合,也可以是空集.在解题中,很容易漏掉对A =∅的讨论,导致误选C.[正解] 由A ∩B =A ,得A ⊆B .因为B ={x |1<log 2x ≤2,x ∈N }={x |2<x ≤4,x ∈N }={3,4},当A =∅时,则方程ax -1=0无实数解,所以a =0,此时显然有A ⊆B ,符合题意.当A ≠∅时,则由方程ax -1=0,得x =1a . 要使A ⊆B ,则1a =3或1a =4,即a =13或a =14.综上所述,a 的所有可能取值组成的集合是⎩⎨⎧⎭⎬⎫0,13,14.故选D. [答案] D [心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[2016·武邑中学模拟]已知集合A ={0,1},B ={x |x ⊆A },则下列集合A 与B 的关系正确的是( )A .A ⊆B B .A BC .B AD .A ∈B答案 D解析 因为x ⊆A ,所以B ={∅,{0},{1},{0,1}},则集合A ={0,1}是集合B 中的元素,所以A ∈B .故选D.2.[2016·枣强中学一轮检测]已知集合A ⊆B ,A ⊆C ,B ={0,1,2,3,5,9},C ={2,4,8,10},则A 可以是( )A .{1,2}B .{2,4}C .{4}D .{2} 答案 D解析 解法一:因为A ⊆B ,A ⊆C ,所以A ⊆(B ∩C ),故集合A 可以是{2},故选D.解法二:逐项验证,可知当A ={1,2}时,不满足A ⊆C ;同理可知当A ={2,4}和A ={4}时,不满足A ⊆B ,故选D.3.[2016·衡水中学周测]若集合A ={2,3,4},B ={x |x =m +n ,m ,n ∈A ,m ≠n },则集合B 的非空子集的个数是( )A .4B .7C .8D .15答案 B解析 解法一:因为x =m +n ,m ,n ∈A ,m ≠n ,所以B ={5,6,7},故B 的非空子集有{5},{6},{7},{5,6},{5,7},{6,7},{5,6,7},共7个.解法二:因为x =m +n ,m ,n ∈A ,m ≠n ,所以B ={5,6,7},根据公式可得集合B 的非空子集的个数是23-1=7.4.[2016·冀州中学月考]已知集合A ={x |y =lg (x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)答案 B解析 因为A ={x |y =lg (x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).因为A ⊆B ,画出数轴,如图所示,得c ≥1.故选B.5.[2016·武邑中学周测]设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2答案 C解析 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,从而ba =-1,所以有a =-1,b =1,所以b -a =2,故选C.6.[2016·衡水中学月考]已知集合A =(-2,5],B =[m +1,2m -1].若B ⊆A ,则m 的取值范围是( )A .(-3,3]B .[-3,3]C .(-∞,3]D .(-∞,3)答案 C解析 当B =∅时,m +1>2m -1即m <2,B ⊆A . 当B ≠∅时,由题意可画数轴m ≥2且⎩⎪⎨⎪⎧m +1>-22m -1≤5解得2≤m ≤3.综上可知m ∈(-∞,3],故选C.7.[2016·枣强中学猜题]设集合M ={-1,0,1},N ={a ,a 2},则使M ∩N =N 成立的a 的值是( )A .1B .0C .-1D .1或-1答案 C解析 若M ∩N =N ,则N ⊆M .结合集合元素的互异性得⎩⎪⎨⎪⎧a 2=1,a =-1,所以a =-1.故选C. 8.[2016·衡水中学期中]若集合A ={x |1≤3x ≤81},B ={x |log 2(x 2-x )>1},则A ∩B =( )A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]答案 A解析 因为A ={x |1≤3x ≤81}={x |30≤3x ≤34}={x |0≤x ≤4},B ={x |log 2(x 2-x )>1}={x |x 2-x >2}={x |x <-1或x >2},所以A ∩B ={x |0≤x ≤4}∩{x |x <-1或x >2}={x |2<x ≤4}=(2,4].9.[2016·武邑中学期中]已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1) 答案 D解析 由题意可知,M =(-3,1),N =[-1,1],∴阴影部分表示的集合为M ∩(∁U N )=(-3,-1).10.[2016·衡水中学期末]设全集U 是实数集R ,集合M ={x |x 2>2x },N ={x |log 2(x -1)≤0},则(∁U M )∩N 为( )A .{x |1<x <2}B .{x |1≤x ≤2}C .{x |1<x ≤2}D .{x |1≤x <2}答案 C解析 x 2>2x ⇒x >2或x <0.M ={x |x >2或x <0},log 2(x -1)≤0⇒0<x -1≤1,1<x ≤2,N ={x |1<x ≤2},(∁U M )∩N ={x |1<x ≤2},故选C.11.[2016·冀州中学猜题]已知全集U ={0,1,2,3,4},A ={1,2,3},B ={2,4},则下图中阴影部分表示的集合为( )A .{0,2}B .{0,1,3}C .{1,3,4}D .{2,3,4}答案 C解析 集合A ∪B ={1,2,3,4},A ∩B ={2},阴影部分表示的集合为{1,3,4}.12.[2016·武邑中学仿真]已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=( )A .(1,2)B .[0,2]C .∅D .[1,2]答案 D解析 ∵2x <1,∴x -2x >0,∴x <0或x >2,∴M ={x |x <0或x >2},∴∁R M ={x |0≤x ≤2}.∵y =x -1+1,∴y ≥1,∴N ={y |y ≥1},∴N ∩(∁R M )=[1,2],故选D.能力组13.[2016·衡水中学模拟]已知集合A ={0,1},则满足条件A ∪B ={0,1,2,3}的集合B 共有( )A .1个B .2个C .3个D .4个答案 D解析 由题知B 集合必须含有元素2,3,可以是{2,3},{2,1,3},{2,0,3},{2,0,1,3},共四个,故选D.14.[2016·冀州中学期中]已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为( )A .-32<a ≤-1 B .a ≤-32 C .a ≤-1 D .a >-32 答案 C解析 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3, 得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②得,a ≤-1.15. [2016·衡水中学仿真]已知集合A ={x |2x 2-2x <8},B ={x |x 2+2mx -4<0},若A ∩B ={x |-1<x <1},A ∪B ={x |-4<x <3},则实数m 等于________.答案 32解析 由2x 2-2x <8,得x 2-2x <3,解得-1<x <3,所以A ={x |-1<x <3}.因为A ∩B ={x |-1<x <1},A ∪B ={x |-4<x <3},所以B ={x |-4<x <1}.由不等式与方程之间的关系可得,-4,1是方程x 2+2mx-4=0的两根,所以-4+1=-2m,即-2m=-3,解得m=32.16.[2016·枣强中学预测]已知集合A={y|y=x2+2x,-2≤x≤2},B={x|x2+2x-3≤0},在集合A中任意取一个元素a,则a∈B的概率是________.答案2 9解析依题意,函数y=x2+2x=(x+1)2-1(-2≤x≤2)的值域是A={y|-1≤y≤8};由x2+2x-3≤0得-3≤x≤1,即B={x|-3≤x≤1},则A∩B={x|-1≤x≤1},因此所求的概率等于1-(-1) 8-(-1)=2 9.。

高考数学一轮复习 第1章 集合与常用逻辑用语 第1讲 集合的概念与运算创新教学案(含解析)新人教版-

高考数学一轮复习 第1章 集合与常用逻辑用语 第1讲 集合的概念与运算创新教学案(含解析)新人教版-

第一章集合与常用逻辑用语第1讲集合的概念与运算[考纲解读] 1.了解集合的含义.体会元素与集合的关系,能用自然语言、图形语言、集合语言(列举法或描述法)描述具体问题.2.理解集合间的相等与包含关系,会求集合的子集,了解全集与空集的含义.(重点) 3.在理解集合间的交、并、补的含义的基础上,会求两个集合的并集与交集,会求给定子集的补集.(重点、难点)4.能使用Venn图表达集合间的基本关系及基本运算.[考向预测] 从近三年高考情况来看,本讲一直是高考中的必考内容.预测2021年高考会以考查集合交、并、补的运算为主,结合不等式的解法,求函数的定义域、值域等简单综合命题,试题难度不大,以选择题形式呈现.1.集合与元素(1)集合中元素的三个特征:01确定性、02互异性、03无序性.(2)元素与集合的关系有04属于或05不属于两种,用符号06∈或07∉表示.(3)集合的表示法:08列举法、09描述法、10图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合间的基本关系(1)基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即假设x∈A,01A⊆B (或02B⊇A)那么x∈B)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中03A B(或04B A)集合相等集合A,B中的元素相同或集合A,B互为子集05A=B(2)结论①空集是任意集合的子集,是任意非空集合的真子集,符号表示为∅⊆A,∅B(B≠∅).②对于任意集合A,A⊆A.③假设A⊆B,B⊆C,那么□06A⊆C.3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于A01且属于B的元素组成的集合{x|x∈A,02且x∈B}03A∩B并集属于A04或属于B的元素组成的集合{x|x∈A,05或x∈B}06A∪B补集全集U中07不属于A的元素组成的集合{x|x∈U,且x08∉A}09∁U A4.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔01B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔02A⊆B.(3)补集的性质:A∪(∁U A)03U;A∩(∁U A)04∅;∁U(∁U A)05A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).(4)假设有限集A 中有n 个元素,那么A 的子集个数为062n 个,非空子集个数为072n-1个,真子集有082n -1个,非空真子集的个数为092n-2个.1.概念辨析(1)假设1∈{x ,x 2},那么x =±1.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3){x |x ≥2}={t |t ≥2}.( )(4)对于任意两个集合A ,B ,总有(A ∩B )⊆A ,A ⊆(A ∪B ).( ) 答案 (1)× (2)× (3)√ (4)√ 2.小题热身(1)集合A ={x |(x -1)(x +2)=0},B ={x ∈Z |-3<2x -1≤3},那么A ∪B =( ) A .{-2,1}B .{0,1,2}C .{-2,-1,0,1,2}D .{-2,0,1,2}答案 D解析 因为A ={-2,1},B ={x ∈Z |-1<x ≤2}={0,1,2},所以A ∪B ={-2,0,1,2}. (2)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},那么A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2} D .{x |0<x <2} 答案 B解析 因为B ={x |x ≥1},所以∁R B ={x |x <1}.因为A ={x |0<x <2},所以A ∩(∁R B )={x |0<x <1},应选B.(3)集合A ={x |x =3n ,n ∈N },B ={x |x =6m ,m ∈N },那么A 与B 的关系为________. 答案 BA解析 任取x ∈B ,那么x =6m =3·2m,2m ∈N ,所以x ∈A ,所以B ⊆A ,又3∈A 但3∉B ,所以B A .(4)集合A =⎩⎨⎧⎭⎬⎫8x,y ,B ={0,x 2},且A =B ,那么集合A 的子集为_______.答案 ∅,{0},{4},{0,4}解析 由题意得8x=x 2,y =0,解得x =2,所以A={0,4},其子集为∅,{0},{4},{0,4}.题型一集合的基本概念与表示方法1.(2019·厦门一中模拟)设集合M={x|x=2m+1,m∈Z},P={y|y=2m,m∈Z},假设x0∈M,y0∈P,a=x0+y0,b=x0y0,那么( )A.a∈M,b∈P B.a∈P,b∈MC.a∈M,b∈M D.a∈P,b∈P答案 A解析解法一:设x0=2n+1,y0=2k(n,k∈Z),那么x0+y0=2n+1+2k=2(n+k)+1∈M,x0y0=(2n+1)(2k)=2(2nk+k)∈P,故a∈M,b∈P.解法二:由得,集合M是所有奇数构成的集合,集合P是所有偶数构成的集合,根据奇数+偶数是奇数,奇数×偶数是偶数可知a∈M,b∈P.2.(2018·全国卷Ⅱ)集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},那么A中元素的个数为( )A.9 B.8C.5 D.4答案 A解析∵x2+y2≤3,∴x2≤3,∵x∈Z,∴x=-1,0,1,当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1,所以A 中元素共有9个,应选A.3.假设集合A={a-3,2a-1,a2-4},且-3∈A,那么实数a=________.答案0或1解析因为-3∈A,所以a-3=-3或2a-1=-3或a2-4=-3,解得a=0或a=-1或a=1.当a=0时,A={-3,-1,-4},符合题意;当a=-1时,2a-1=a2-4=-3,不满足集合中元素的互异性,故舍去;当a=1时,A={-2,1,-3},符合题意.综上知a=0或1.1.用描述法表示集合的两个关键点(1)搞清楚集合中的代表元素是什么.如举例说明1,3是数,举例说明2是有序数对(或平面内的点).(2)看这些元素满足什么共同特征.如举例说明1,集合M是所有奇数构成的集合,集合P是所有偶数构成的集合.如举例说明2,x,y是整数且满足x2+y2≤3.2.两个易错点(1)忽视集合中元素的互异性.如举例说明3,求出a值后应注意检验.(2)忽视分类讨论.如举例说明2,要分x=-1,x=0和x=1三种情况讨论,可以保证不重不漏.1.设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },那么集合B 中元素的个数为( ) A .1 B .2 C .3 D .4答案 A解析 假设x ∈B ,那么-x ∈A ,所以x 只可能取0,-1,-2,-3.逐一检验可知B ={-3},只有1个元素.2.单元素集合A ={x |x 2-(a +2)x +1=0},那么a 等于( ) A .0 B .-4 C .-4或1 D .-4或0答案 D解析 因为集合A 只有一个元素,所以一元二次方程x 2-(a +2)x +1=0有两个相等的实根,所以Δ=(a +2)2-4=0,解得a =-4或0.题型 二 集合间的基本关系1.集合M ={x |x =3n,n ∈N },集合N ={x |x =3n ,n ∈N },那么集合M 与集合N 的关系为( )A .M NB .N MC .M =ND .MN 且N M答案 D解析 因为1∈M,1∉N ,所以M N ,因为0∈N,0∉M ,所以N M .综上知,M ⃘N 且N ⃘M .2.集合M ={|x x =k π4+π4,k ∈Z ,集合N ={|x x =k π8-π4,k ∈Z ,那么( ) A .M N B .N M C .M =N D .以上都不对答案 A 解析 ∵k π4+π4=2k +18π,k ∈Z ,k π8-π4=k -28π,k ∈Z ,∴任取x ∈M ,有x ∈N ,且π8∈N ,但π8∉M ,∴MN .3.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},假设B ⊆A ,那么实数m 的取值范围为________.答案 (-∞,3]解析 因为B ⊆A ,所以①假设B =∅,那么2m -1<m +1,此时m <2. ②假设B ≠∅,那么⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3.条件探究 将本例中的集合A 改为“A ={x |x <-2或x >5}〞,那么实数m 的取值范围为________.答案 (-∞,2)∪(4,+∞) 解析 因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12,即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.判断集合间关系的三种方法列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.如举例说明1结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.如举例说明2数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.如举例说明32.根据集合间的关系求参数的策略 (1)注意对集合是否为空集进行分类讨论因为∅⊆A 对任意集合A 都成立.如举例说明3中2m -1<m +1时,B =∅,B ⊆A 也成立. (2)借助Venn 图和数轴使抽象问题直观化.如举例说明3,当B ≠∅时,由B ⊆A ,借助数轴,列出关于m 的不等式组.(3)注意检验区间端点值,如举例说明3,假设将两个集合改为A ={x |-2<x ≤5},B ={x |m +1≤x <2m -1},假设B ≠∅,为使B ⊆A ,m 须满足⎩⎪⎨⎪⎧2m -1>m +1,m +1>-2,2m -1≤5.1.(2020·广州市高三学情调研)集合{x |x 2+ax =0}={0,1},那么实数a 的值为( ) A .-1 B .0 C .1 D .2答案 A解析 由x 2+ax =0,得x (x +a )=0,所以x =0或x =-a .所以由条件可得-a =1,所以a =-1.2.集合A ={x |x 2-2x ≤0},B ={x |x ≤a },假设A ⊆B ,那么实数a 的取值范围是( ) A .a ≥2 B .a >2 C .a <0 D .a ≤0答案 A解析 ∵A ={x |0≤x ≤2},B ={x |x ≤a },∴为使A ⊆B ,a 须满足a ≥2. 3.满足{0,1,2}A ⊆{0,1,2,3,4,5}的集合A 的个数为________.答案 7解析 集合A 除含元素0,1,2外,还至少含有3,4,5中的一个元素,所以集合A 的个数等于{3,4,5}的非空子集的个数,即为23-1=7.题型 三 集合的基本运算角度1 集合的并、交、补运算1.(2019·全国卷Ⅰ)集合M ={x |-4<x <2},N ={x |x 2-x -6<0},那么M ∩N =( )A .{x |-4<x <3}B .{x |-4<x <-2}C .{x |-2<x <2}D .{x |2<x <3}答案 C解析 由x 2-x -6<0,得(x -3)(x +2)<0,解得-2<x <3,即N ={x |-2<x <3},∴M ∩N ={x |-2<x <2}.应选C.2.集合A ={y |y =x 2-1},B ={x |y =lg (x -2x 2)},那么∁R (A ∩B )=( )A.⎣⎢⎡⎭⎪⎫0,12 B .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫0,12 D .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ 答案 D解析 因为A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg (x -2x 2)}=⎝ ⎛⎭⎪⎫0,12,所以A ∩B =⎝ ⎛⎭⎪⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 3.(2019·合肥模拟)集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},那么A ∩(∁U B )=________.答案 {3}解析 因为全集U ={1,2,3,4},且∁U (A ∪B )={4},所以A ∪B ={1,2,3},又B ={1,2},所以A ={3}或{1,3}或{3,2}或{1,2,3},所以A ∩(∁U B )={3}.角度2 知集合的运算结果求参数4.集合A ={x |x 2-ax ≤0,a >0},B ={0,1,2,3},假设A ∩B 有3个真子集,那么a 的取值范围是( )A .(1,2]B .[1,2)C .(0,2]D .(0,1)∪(1,2]答案 B解析 因为集合A ={x |0≤x ≤a ,a >0},B ={0,1,2,3},假设A ∩B 有3个真子集,那么A ∩B ={0,1},所以1≤a <2.所以a 的取值范围是[1,2).5.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0},假设(∁U A )∩B =∅,那么m =________.答案 1或2解析 A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A .x2+(m+1)x+m=0可化为(x+1)(x+m)=0,当m=1时,B={-1},符合题意;当m≠1时,B={-1,-m},为使B⊆A成立,须有-m=-2,即m=2.综上知m=1或2.1.求集合交集、并集或补集的步骤2.知集合的运算结果求参数问题的两个关键点(1)分析运算结果并进行恰当转换.如举例说明5中,由(∁U A)∩B=∅,知B⊆A.(2)化简集合为求参数创造有利条件.如举例说明5中,A={-2,-1}.当m=1时,B={-1};当m≠1时,B={-1,-m}.1.(2019·天津高考)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},那么(A∩C)∪B=( )A.{2} B.{2,3}C.{-1,2,3} D.{1,2,3,4}答案 D解析∵A∩C={-1,1,2,3,5}∩{x∈R|1≤x<3}={1,2},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4}.应选D.2.(2019·中原名校模拟)集合M={y|y=-x2,x∈R},N={x|x2+y2=2,x∈R},那么M∩N=( )A.{(-1,-1),(1,-1)} B.{-1}C.[-1,0] D.[-2,0]答案 D解析由y=-x2,x∈R得y≤0,所以集合M=(-∞,0],由x2+y2=2,x∈R得N=[-2,2],所以M∩N=[-2,0],应选D.3.(2019·辽宁五校模拟)集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,那么a的取值范围是( )A.(-2,+∞) B.(4,+∞)C.(-∞,-2] D.(-∞,4]答案 C解析集合P={x|x2-2x-8>0}={x|x<-2或x>4},Q={x|x≥a},假设P∪Q=R,那么a≤-2,即a的取值范围是(-∞,-2].题型四集合的新定义问题设全集U={1,2,3,4,5,6},且U的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)假设M={2,3,6},那么∁U M表示的6位字符串为________;(2)A={1,3},B⊆U,假设集合A∪B表示的字符串为101001,那么满足条件的集合B的个数是________.答案(1)100110 (2)4解析(1)由得,∁U M={1,4,5},那么∁U M表示的6位字符串为100110.(2)由题意可知A∪B={1,3,6},而A={1,3},B⊆U,那么B可能为{6},{1,6},{3,6},{1,3,6),故满足条件的集合B的个数是4.与集合相关的新定义问题的解题思路(1)紧扣“新〞定义:分析新定义的特点,把新定义所表达的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新〞性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.(3)遵守“新〞法那么:准确把握新定义的运算法那么,将其转化为集合的交集、并集与补集的运算.如果集合A 满足:假设x ∈A ,那么-x ∈A ,那么就称集合A 为“对称集合〞.集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,那么A ∩B =________.答案 {0,6}解析 由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.组 基础关1.设集合P ={x |0≤x ≤2},m =3,那么以下关系中正确的选项是( ) A .m ⊆P B .m PC .m ∈PD .m ∉P答案 D解析 ∵3>2,∴m ∉P .2.全集U =R ,那么表示集合M ={x |x 2+3x =0}和N ={-3,0,3}关系的示意图是( )答案 D解析 因为集合M ={-3,0},N ={-3,0,3},所以M N ,应选D. 3.集合A ={x |x =3k -1,k ∈Z },那么以下表示正确的选项是( ) A .-1∉A B .-11∈A C .3k 2-1∈A D .-34∉A答案 C解析 令k =0得x =-1,故-1∈A ;令-11=3k -1,解得k =-103∉Z ,故-11∉A ;令-34=3k -1,解得k =-11∈Z ,故-34∈A ;对于3k 2-1,因为k ∈Z 时,k 2∈Z ,所以3k 2-1∈A .应选C.4.(2019·全国卷Ⅱ)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},那么A ∩B =( ) A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)答案 A解析 A ∩B ={x |x 2-5x +6>0}∩{x |x -1<0}={x |x <2或x >3}∩{x |x <1}={x |x <1}.应选A.5.假设集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,那么a 等于( ) A.92 B.98 C .0 D .0或98答案 D解析 当a =0时,A =⎩⎨⎧⎭⎬⎫23,符合题意;当a ≠0时,Δ=(-3)2-4×a ×2=0,解得a =98,此时A =⎩⎨⎧⎭⎬⎫43,符合题意.综上可知,a =0或98. 6.(2020·茂名市摸底)集合M ={(x ,y )|y =3x 2},N ={(x ,y )|y =5x },那么M ∩N 中元素的个数为( )A .0B .1C .2D .3答案 C解析解方程组⎩⎪⎨⎪⎧y =3x 2,y =5x ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =53,y =253,所以M ∩N =⎩⎨⎧⎭⎬⎫0,0,⎝ ⎛⎭⎪⎫53,253.所以M ∩N 中元素的个数为2.7.设全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },那么图中阴影部分表示的区间是( )A .[0,1]B .(-∞,-1]∪[2,+∞)C .[-1,2]D .(-∞,-1)∪(2,+∞)答案 D解析 A ={x |x 2-2x ≤0}=[0,2],B ={y |y =cos x ,x ∈R }=[-1,1].图中阴影部分表示∁U (A ∪B )=(-∞,-1)∪(2,+∞).8.集合A ={0,2,a },B ={1,a 2},假设A ∪B ={0,1,2,4,16},那么a 的值为________. 答案 4解析 因为A ={0,2,a },B ={1,a 2},假设A ∪B ={0,1,2,4,16},那么⎩⎪⎨⎪⎧a 2=16,a =4,所以a =4.9.设集合A ={-1,1},集合B ={x |ax =1,a ∈R },那么使得B ⊆A 的a 的所有取值构成的集合是________.答案 {-1,0,1}解析 因为B ⊆A ,所以①当B =∅时,可知a =0,显然成立.②当B ={1}时,可得a =1,符合题意.③当B ={-1}时,可得a =-1,符合题意.故满足条件的a 的取值集合是{-1,0,1}.10.a ,b ∈R ,假设⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},那么a 2019+b 2019=________.答案 -1解析 ∵⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},∴a ≠0.∴b =0,a 2=1,又a ≠1,∴a =-1, ∴a2019+b2019=-1.组 能力关1.设集合M ={x |x =5-4a +a 2,a ∈R },N ={y |y =4b 2+4b +2,b ∈R },那么以下关系中正确的选项是( )A .M =NB .N ⊆MC .M ⊆ND .M ∩N =∅答案 A解析 因为集合M ={x |x =5-4a +a 2,a ∈R }={x |x =(a -2)2+1,a ∈R }={x |x ≥1},N ={y |y =(2b +1)2+1,b ∈R }={y |y ≥1}.所以M =N .2.(2019·衡水模拟)集合A ={x |log 2x <1},B ={x |0<x <c },假设A ∪B =B ,那么c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)答案 D解析 因为集合A ={x |log 2x <log 22}={x |0<x <2},B ={x |0<x <c },又由A ∪B =B ,得A ⊆B ,所以c ≥2.3.集合A =[1,+∞),B ={|x ∈R 12a ≤x ≤2a -1,假设A ∩B ≠∅,那么实数a 的取值范围是( )A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A解析 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.4.假设x ∈A ,那么1x∈A ,就称A 是“伙伴关系〞集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系〞的集合的个数为( )A .15B .16C .32D .256答案 A解析 由题意得,满足题意的“伙伴关系〞的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现.所以集合M 的所有非空子集中具有“伙伴关系〞的集合的个数为24-1=15.5.设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.假设A ∩B =B ,那么实数a 的取值范围是________.答案 a ≤-1或a =1解析 ∵A ∩B =B ,∴B ⊆A .又A ={0,-4}, ∴B 的可能情况有∅,{-4},{0},{-4,0}.①假设B =∅,那么Δ=4(a +1)2-4(a 2-1)<0,解得a <-1. ②假设B ={-4},那么a ∈∅. ③假设B ={0},那么a =-1. ④假设B ={-4,0},那么a =1. 综上可知,a ≤-1或a =1. 6.设数集M =x ⎪⎪⎪⎭⎬⎫m ≤x ≤m +34,N =x ⎪⎪⎪⎭⎬⎫n -13≤x ≤n ,且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度〞,那么集合M ∩N 的长度的最小值为________.答案112解析 由得,当m =0且n =1或n -13=0且m +34=1时,M ∩N 的长度最小.当m =0且n=1时,M ∩N =x ⎪⎪⎪⎭⎬⎫23≤x ≤34,其长度为34-23=112.当m =14且n =13时,M ∩N =x ⎪⎪⎪⎭⎬⎫14≤x ≤13,其长度为13-14=112.综上可知,M ∩N 的长度的最小值为112.。

高考数学第一轮复习精品教案:第一章 集合与常用逻辑用语

高考数学第一轮复习精品教案:第一章 集合与常用逻辑用语

精品教案――集合与简易逻辑一、本章知识结构:二、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。

三、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x 2},表示非负实数集,点集{(x ,y)|y=x 2}表示开口向上,以y 轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…};②描述法。

2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A ⊆B 时,称A 是B 的子集;当A ≠⊂B 时,称A 是B 的真子集。

3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论例1、下面四个命题正确的是(A )10以内的质数集合是{1,3,5,7} (B )方程x 2-4x +4=0的解集是{2,2}(C )0与{0}表示同一个集合 (D )由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}解:选(D ),最小的质数是2,不是1,故(A )错;由集合的定义可知(B )(C )都错。

高考数学一轮复习 1.1集合教案

高考数学一轮复习 1.1集合教案

课题第一章集合与常用逻辑用语第一节集合教学目标:知识与技能:了解集合的含义,元素与集合的属于关系,理解集合之间的包含与相等关系,理解子集与补集的关系。

过程与方法:会求两个集合的交,并,补集,能使用韦恩图表达集合的关系及运算。

情感、态度与价值观:教学过程中,要让学生充分体验集合的具体应用,应用集合解决实际问题的方法。

教学重点:集合的交,并,补关系及运算教学难点:使用韦恩图表达集合的关系及运算教具:多媒体、实物投影仪教学过程:一、复习引入:1.集合的含义与表示方法2.集合间的基本关系3.集合的基本运算二、例题讲解例1判断下面结论是否正确(请在括号中打“√”或“×”).(1)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(2)含有n个元素的集合的子集个数是2n,真子集个数是2n-1,非空真子集的个数是2n-2.( )(3)A∩B= 的充要条件是A=B= .( )(4)A∩B=A⇔A⊆B.( )(5)A∪B=A⇔B⊆A.( )(6) (A∪B)=( A)∩( B).( )【解析】(1)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是满足方程y=x2的实数x,y的集合,也可以看作是函数y=x2图象上的点组成的集合,因此这三个集合互不相等.(2)正确.空集的子集个数为1个,即;含有1个元素的集合{a1}的子集个数为2个,即 ,{a1};含有2个元素的集合{a1,a2}的子集个数为4个,即 ,{a1},{a2},{a1,a2}……归纳可得含有n个元素的集合的子集个数为2n个,故其真子集个数是2n-1,非空真子集的个数是2n-2.(3)错误. A∩B= 时,只要集合A,B没有公共元素即可,不一定是A=B= .(4)正确.当A⊆B时,显然A∩B=A;当A∩B=A时,对任意x∈A,得x∈A∩B,得x∈B,即x∈A⇒x∈B,故A⊆B.(5)正确.当B⊆A时,显然A∪B=A;当A∪B=A时,对任意x∈B,则x∈A∪B,得x∈A,即x∈B⇒x∈A,即B⊆A.(6)正确.设x∈ (A∪B),则x (A∪B),得x A且x B,即x∈ A且x∈ B,即x∈( A)∩( B),即 (A∪B)⊆( A)∩( B);反之,当x∈( A)∩( B)时,得x∈ A且x∈ B得x A且x B,得x (A∪B),得x∈ (A∪B),即 (A∪B) ( A)∩( B).根据集合相等的定义得 (A∪B)=( A)∩( B).答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√考向 1 集合的基本概念∈A},则B中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10(2)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( )(A)0 (B)1 (C)2 (D)3【思路点拨】(1)集合B中的元素是满足x∈A,y∈A,x-y∈A的有序实数对,根据要求分类列举求解.(2)据1∈A逐个讨论求解a值,根据集合元素的互异性得集合B中元素的个数.【规范解答】(1)选D.方法:x=2时,y=1,x-y=1,此时(x,y)=( 2,1),此时(x,y)有1个;x=3时,y=1,2,此时x-y=2,1,(x,y)有2个;x=4时,y=1,2,3,此时x-y=3,2,1,(x,y)有3个;所以集合B中的元素个数为1+2+3+4=10.(2)选B.若a+2=1,则a=-1,代入集合A,得A={1,0,1},与集合元素的互异性矛盾;若(a+1)2=1,得a=0或-2,代入集合A,得A={2,1,3}或A={0,1,1},后者与集合元素的互异性矛盾,故a=0符合要求;若a2+3a+3=1,则a=-1或-2,代入集合A,得A={1,0,1}或A={0,1,1},都与集合元素的互异性相矛盾.综上可知,只有a=0符合要求,故集合B中只有一个元素.【互动探究】在本例(1)的集合B中如果去掉x-y∈A的限制条件,其他条件均不变,则集合B中含有的元素个数是多少?5×5=25个元素【变式训练】定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )(A)0 (B)2 (C)3 (D)6【解析】选D.根据指定的法则,集合A*B中的元素是A,B中的元素的乘积,根据集合元素的性质,得A*B={0,2,4},故集合A*B中所有元素之和为6.考向 2 集合间的基本关系【典例2】(1)(2014·三明模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )(A)1 (B)2 (C)3 (D)4(2)若集合A={1,a,b},B={a,a2,ab},且A∪B=A∩B,则实数a的取值集合是.【思路点拨】(1)求出A,B中的元素,由A⊆C⊆B,知集合C的个数由B中有A中没有的元素个数决定.(2)A∪B=A∩B⇔A=B,得出关于a,b的方程组,解出a,b,再根据集合元素的性质加以检验得出结论.【规范解答】(1)选D.A={x|x2-3x+2=0,x∈R}={1,2},方法一:则C中含有除1,2之外的3,4两元素中的0个、1个、2个,即C的个数可以看作是集合{3,4}的子集的个数,有22=4个.(2)方法一:因为A∪B=A∩B,所以A=B,所以{1,b}={a2,ab},所以解得反代回A,B集合知,只有适合,所以即实数a的取值集合是{-1}.【变式训练】(1)已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( ) (A)1 (B)-1 (C)1或-1 (D)0或1或-1【解析】选D.M∩N=N⇔N⊆M.当a=0时,N= ,符合要求,当a≠0时,只要即a=±1即可.(2)设集合A={x,y,x+y},B={0,x2,xy},若A=B,则实数对(x,y)的取值集合是_________.【解析】由A=B,且0∈B,故集合B中的元素x2≠0,xy≠0,故x≠0,y≠0,那么只能是集合A中的x+y=0,此时就是在条件x+y=0下,{x,y}={x2,xy},答案:{(1,-1),(-1,1)}考向 3 集合的基本运算【典例3】(1)(2012·福建高考)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )(A)N⊆M (B)M∪N=M (C)M∩N=N (D)M∩N={2}(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【思路点拨】(1)根据集合M,N中元素的特点逐一验证.(2)可以根据补集定义求出 A, B,再根据交集定义得出结论,还可以利用Venn图解决.【规范解答】(1)选D.显然M∩N={2}. (2)选B.方法:集合( A)∩( B)= (A∪B)={7,9}.如图所示:【拓展提升】小结:集合的运算律(1)交换律:A∪B=B∪A,A∩B=B∩A.(2)结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C).(3)分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C).【变式训练】(1)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=( )(A)(0,2) (B)(2,+∞)(C)[0,+∞] (D)(-∞,0)∪(2,+∞)【解析】选A. 集合M为函数y=2x的值域,即M=(0,+∞),集合N是函数y=lg(2x-x2)的定义域,由不等式2x-x2>0,解得N=(0,2),所以M∩N=(0,2).三,布置作业思考辨析,考点自测,知能巩固中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

高考数学一轮复习 第一章 集合与常用逻辑用语 第1节 集合教学案(含解析)新人教A版-新人教A版高三

高考数学一轮复习 第一章 集合与常用逻辑用语 第1节 集合教学案(含解析)新人教A版-新人教A版高三

五年高考考点统计精准分析高效备考证明直线过定点证明直线过定点线问题线与椭圆的位置关系位置关系轨迹方程义、直线与抛物线质,直线与椭圆位置关系21导数与不等式,证明函数极值点的存在性导数与函数的单调性及函数的零点导数与不等式的综合运用导数与函数的单调性、零点、证不等式导数与函数的单调性、不等式、最值函数与导数的最值、不等式导数的几何意义与函数的零点问题导数与函数的单调性与求最值22极坐标方程与直角坐标参数方程的应用参数方程、极坐标的应用参数方程与极坐标方程互化极坐标方程与参数方程互化参数方程,极坐标方程极坐标方程的应用极坐标方程与求距离23不等式证明解含绝对值的不等式,不等式的综合运用含绝对值不等式的解法及不等式的综合运用解含绝对值的不等式解与证明含绝对值的不等式解含绝对值的不等式,求参数解绝对值不等式及函数的图象不等式的证明与充要条件的判断第1节集合考试要求 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:假设对任意x∈A,都有x∈B,那么A⊆B或B⊇A.(2)真子集:假设A⊆B,且集合B中至少有一个元素不属于集合A,那么A B或B A.(3)相等:假设A⊆B,且B⊆A,那么A=B.(4)空集的性质:是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B假设全集为U,那么集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.[常用结论与微点提醒]1.假设有限集A中有n个元素,那么A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C .3.注意空集:空集是任何集合的子集,是非空集合的真子集,应时刻关注对于空集的讨论.4.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .5.∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).诊 断 自 测1.判断以下结论正误(在括号内打“√〞或“×〞) (1)任何一个集合都至少有两个子集.( )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (3)假设{x 2,1}={0,1},那么x =0,1.( )(4)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( ) 解析 (1)错误.空集只有一个子集.(2)错误.{x |y =x 2+1}=R ,{y |y =x 2+1}=[1,+∞),{(x ,y )|y =x 2+1}是抛物线y =x 2+1上的点集.(3)错误.当x =1时,不满足集合中元素的互异性. 答案 (1)× (2)× (3)× (4)√2.(新教材必修第一册P9T1(1)改编)假设集合P ={x ∈N |x ≤ 2 021},a =22,那么( ) A.a ∈P B.{a }∈P C.{a }⊆P D.a ∉P解析 因为a =22不是自然数,而集合P 是不大于 2 021的自然数构成的集合,所以a ∉P ,只有D 正确. 答案 D3.(老教材必修1P44A 组T5改编)集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且y =x },那么A ∩B 中元素的个数为________.解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝ ⎛⎭⎪⎫22,22,⎝ ⎛⎭⎪⎫-22,-22,那么A ∩B 中有两个元素. 答案 24.(2019·全国Ⅲ卷)集合A ={-1,0,1,2},B ={x |x 2≤1},那么A ∩B =( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}解析 因为B ={x |x 2≤1|}={x |-1≤x ≤1},又A ={-1,0,1,2},所以A ∩B ={-1,0,1}. 答案 A5.(2019·全国Ⅱ卷改编)集合A ={x |x 2-5x +6>0},B ={x |x -1≥0},全集U =R ,那么A ∩(∁UB )=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)解析 由题意A ={x |x <2或x >3}.又B ={x |x ≥1},知∁U B ={x |x <1},∴A ∩(∁U B )={x |x <1}. 答案 A6.(2020·某某模拟)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |1<2x<4},Q ={y |y =2+sin x ,x ∈R },那么P -Q =( ) A.{x |0<x ≤1} B.{x |0≤x <2} C.{x |1≤x <2} D.{x |0<x <1}解析 由题意得P ={x |0<x <2},Q ={y |1≤y ≤3}, ∴P -Q ={x |0<x <1}. 答案 D考点一 集合的基本概念[例1] (1)定义P ⊙Q =⎩⎨⎧⎭⎬⎫z |z =y x+xy,x ∈P ,y ∈Q ,P ={0,-2},Q ={1,2},那么P ⊙Q =( )A.{1,-1}B.{1,-1,0}C.⎩⎨⎧⎭⎬⎫1,-1,-34D.⎩⎨⎧⎭⎬⎫-1,-34(2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,那么实数a 的取值X 围为________. 解析 (1)由定义,当x =0时,z =1,当x =-2时,z =1-2+-21=-1或z =2-2-1=-34.因此P ⊙Q =⎩⎨⎧⎭⎬⎫1,-1,-34.(2)由题意得⎩⎪⎨⎪⎧〔2-a 〕2<1,〔3-a 〕2≥1,解得⎩⎪⎨⎪⎧1<a <3,a ≤2或a ≥4. 所以1<a ≤2.答案 (1)C (2)(1,2]规律方法1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.[训练1] (1)(2018·全国Ⅱ卷)集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },那么A 中元素的个数为( ) A.9 B.8 C.5 D.4(2)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元〞.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元〞的集合共有________个.解析 (1)由题意知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素.(2)依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元〞时,这三个元素一定是连续的三个整数.∴所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个. 答案 (1)A (2)6 考点二 集合间的基本关系[例2] (1)(2019·某某六校联考)集合A ={-1,1},B ={x |ax +1=0}.假设B ⊆A ,那么实数a 的所有可能取值的集合为( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)(2020·某某长郡中学模拟)集合A ={x |y =log 2(x 2-3x -4)},B ={x |x 2-3mx +2m 2<0(m >0)},假设B ⊆A ,那么实数m 的取值X 围为( ) A.(4,+∞) B.[4,+∞) C.(2,+∞) D.[2,+∞)解析 (1)当B =时,a =0,此时,B ⊆A .当B ≠时,那么a ≠0,∴B =⎩⎨⎧⎭⎬⎫x |x =-1a .又B ⊆A ,∴-1a∈A ,∴a =±1.综上可知,实数a 所有取值的集合为{-1,0,1}. (2)由x 2-3x -4>0得x <-1或x >4, 所以集合A ={x |x <-1或x >4}. 由x 2-3mx +2m 2<0(m >0)得m <x <2m . 又B ⊆A ,所以2m ≤-1(舍去)或m ≥4. 答案 (1)D (2)B规律方法 1.假设B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.确定参数所满足的条件时,一定要把端点值代入进行验证,否那么易增解或漏解. [训练2] (1)假设集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},那么( ) A.M =N B.M ⊆N C.M ∩N =D.N ⊆M(2)(2020·武昌调研)集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},假设A ⊆B ,那么实数a 的取值X 围为( ) A.(1,3) B.[1,3] C.[1,+∞) D.(-∞,3]解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M . (2)由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2).因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值X 围为[1,3]. 答案 (1)D (2)B 考点三 集合的运算 多维探究角度1 集合的基本运算[例3-1] (1)(2019·全国Ⅰ卷)集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},那么B ∩(∁U A )=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}(2)(2020·某某模拟)全集U=R,集合A={x|x-4≤0},B={x|ln x<2},那么∁U(A∩B)=( )A.{x|x>4}B.{x|x≤0或x>4}C.{x|0<x≤4}D.{x|x<4或x≥e2}解析(1)由题意知∁U A={1,6,7}.又B={2,3,6,7},∴B∩(∁U A)={6,7}.(2)易知A={x|x≤4},B={x|0<x<e2},那么A∩B={x|0<x≤4},故∁U(A∩B)={x|x≤0或x>4}. 答案(1)C (2)B角度2 抽象集合的运算[例3-2] 设U为全集,A,B是其两个子集,那么“存在集合C,使得A⊆C,B⊆∁U C〞是“A∩B =〞的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由图可知,假设“存在集合C,使得A⊆C,B⊆∁U C〞,那么一定有“A∩B=〞;反过来,假设“A∩B=〞,那么一定能找到集合C,使A⊆C且B⊆∁U C.答案 C规律方法 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.[训练3] (1)(角度1)(2018·某某卷)设全集为R,集合A={x|0<x<2},B={x|x≥1},那么A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}(2)(角度1)集合A={x|x2-x≤0},B={x|a-1≤x<a},假设A∩B只有一个元素,那么a=( )A.0B.1C.2D.1或2(3)(角度2)假设全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},那么图中阴影部分所表示的集合为( )A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}解析(1)因为B={x|x≥1},所以∁R B={x|x<1},又A={x|0<x<2},所以A∩(∁R B)={x|0<x<1}.(2)易知A=[0,1],且A∩B只有一个元素,因此a-1=1,解得a=2.(3)B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).又A∪B={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}.答案(1)B (2)C (3)DA级基础巩固一、选择题1.(2019·全国Ⅰ卷)集合M={x|-4<x<2},N={x|x2-x-6<0},那么M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}解析M={x|-4<x<2},N={x|-2<x<3},∴M∩N={x|-2<x<2}.答案 C2.(2019·某某卷)全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},那么(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}解析由题意,得∁U A={-1,3},∴(∁U A)∩B={-1}.答案 A3.(2020·某某测试)集合A={1,2,3,4},B={y|y=2x-3,x∈A},那么集合A∩B的子集个数为( ) A.1 B.2 C.4 D.8解析 由题意,得B ={-1,1,3,5},∴A ∩B ={1,3}. 故集合A ∩B 的子集个数为22=4. 答案 C4.设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x<1,那么( )A.M NB.N MC.M =ND.M ∪N =R解析 集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x<1={x |x >1或x <0},所以M =N .答案 C5.设集合A ={x |-1<x ≤2},B ={x |x <0},那么以下结论正确的选项是( ) A.(∁R A )∩B ={x |x <-1} B.A ∩B ={x |-1<x <0} C.A ∪(∁R B )={x |x ≥0} D.A ∪B ={x |x <0}解析 易求∁R A ={x |x ≤-1或x >2},∁R B ={x |x ≥0}, ∴(∁R A )∩B ={x |x ≤-1},A 项不正确.A ∩B ={x |-1<x <0},B 项正确,检验C 、D 错误.答案 B6.集合M ={x |y =x -1},N ={x |y =log 2(2-x )},那么∁R (M ∩N )=( ) A.[1,2) B.(-∞,1)∪[2,+∞) C.[0,1] D.(-∞,0)∪[2,+∞)解析 由题意可得M ={x |x ≥1},N ={x |x <2},∴M ∩N ={x |1≤x <2},∴∁R (M ∩N )={x |x <1或x ≥2}.答案 B7.(2020·日照一中月考)A =[1,+∞),B =[0,3a -1],假设A ∩B ≠∅,那么实数a 的取值X 围是( )A.[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫23,+∞D.(1,+∞) 解析 由题意可得3a -1≥1,解得a ≥23,∴实数a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞.答案 C8.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},那么满足M ⊆(A ∩B )的集合M 的个数是( )A.0B.1C.2D.3 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =3,得⎩⎪⎨⎪⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}. 答案 C 二、填空题9.(2019·某某卷)集合A ={-1,0,1,6},B ={x |x >0,x ∈R },那么A ∩B =________. 解析 由交集定义可得A ∩B ={1,6}. 答案 {1,6}10.集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },那么集合A ∪B 中元素的个数为________. 解析 由得B ={3,7,9,15}, 所以A ∪B ={1,3,4,7,9,15}, 故集合A ∪B 中元素的个数为6. 答案 611.集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},假设B ⊆A ,那么实数m 的取值X 围为________.解析 A ={x |x 2-5x -14≤0}={x |-2≤x ≤7}. 当B =∅时,有m +1≥2m -1,那么m ≤2. 当B ≠∅时,假设B ⊆A ,如图.那么⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值X 围为(-∞,4]. 答案 (-∞,4]12.假设全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},那么A ∩(∁U B )=________.解析 由题意,得集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2}, 因为log 3(2-x )≤1=log 33,所以0<2-x ≤3, 解得-1≤x <2,所以B ={x |-1≤x <2}, 从而∁U B ={x |x <-1或x ≥2}, 故A ∩(∁U B )={x |x <-1或x ≥2}. 答案 {x |x <-1或x ≥2}B 级 能力提升13.(2020·某某检测)集合A ={x |x 2-16<0},B ={x |3x 2+6x =1},那么( ) A.A ∪B =B.B ⊆AC.A ∩B ={0}D.A ⊆B解析 由题意,得A ={x |x 2-16<0}={x |-4<x <4},B ={x |3x 2+6x =1}={0,-6},A ∪B ={x |x =-6或-4<x <4},A ∩B ={0},故A 错误,显然B 、D 错误,故C 正确. 答案 C14.集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},假设A ∪B =A ,那么实数a 的取值X 围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)解析 集合A ={x |y =4-x 2}={x |-2≤x ≤2}, 因A ∪B =A ,那么B ⊆A . 又B ≠,所以有⎩⎪⎨⎪⎧a ≥-2,a +1≤2,所以-2≤a ≤1.答案C15.(多填题)集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),那么m =________,n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,那么B={x|m<x<2},画出数轴,可得m=-1,n=1.答案-1 116.集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},那么图中阴影部分所表示的集合是________.解析易知A=(-1,2),B=(-∞,1),∴∁U B=[1,+∞),A∩(∁U B)=[1,2).因此阴影部分表示的集合为A∩(∁U B)={x|1≤x<2}.答案[1,2)C级创新猜想17.(多填题)对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B-A),记A={y|y≥0},B={x|y=lg(9-x2)},那么B-A=________,A*B=________.解析由题意,得A={y|y≥0},B={x|-3<x<3},∴A-B={x|x≥3},B-A={x|-3<x<0}.因此A*B={x|x≥3}∪{x|-3<x<0}={x|-3<x<0或x≥3}.答案{x|-3<x<0} {x|-3<x<0或x≥3}。

2013届高考数学一轮复习讲义第一章1.4集合与常用逻辑用语的综合应用

2013届高考数学一轮复习讲义第一章1.4集合与常用逻辑用语的综合应用

(2)若綈 r 是綈 p 的必要非充分条件,求实数 a 的取值范围.
学生解答展示
审题视角
(1)可以求出 p、q 的不等式的解集,再对 p、q 否定,即求出 它们对应不等式的解集的补集,也可以直接对不等式否定,但 注意对分式不等式否定时,注意分母为零的情况. (2)綈 r 是綈 p 的必要非充分条件等价于綈 p⇒綈 r 且綈 r⇒ 綈 p.
于是-(-44+)×0=0=-a22-(a+1,1),
得 a=1.即 P={1}.
充分条件、必要条件问题
例 2 已知 p:x2-4x-32≤0;q:[x-(1-m)][x-(1+m)]≤0 (m>0).若“非 p”是“非 q”成立的必要但不充分条件,求 m 的取值范围. p:-4≤x≤8,从而 p 为真时 x 的取值范围是集合 P=[-4,8].
∴綈 p 是綈 q 的充分不必要条件.
[6 分]
(2)r:(x-a)(x-a-1)<0,∴a<x<a+1. ∴綈 r:x≤a 或 x≥a+1.
∵綈 r 是綈 p 的必要非充分条件.
∴綈 p⇒綈 r 且綈 r⇒綈 p, ∴2≤a 或 a+1≤23,∴a≥2 或 a≤-13. ∴a 的取值范围是a|a≥2或a≤-13.
(2)充分性 由 a1=1,得 a2=3-a1=2.
因为(an+1+an+2)-(an+an+1)=[2(n+1)+1]-(2n+1)=2,
即 an+2-an=2,所以数列{a2k-1}是首项为 1、公差为 2 的等差数列, 数列{a2k}是首项为 2、公差为 2 的等差数列,从而 a2k-1=1+2(k -1)=2k-1,a2k=2+2(k-1)=2k,故 an=n,进而 an+1-an=1, ∴{an}为等差数列. 故数列{an}为等差数列的充要条件是 a1=1.

2013届高考数学一轮 1.1 集合及其运算精品教学案 新人教版(教师版)

2013届高考数学一轮 1.1 集合及其运算精品教学案 新人教版(教师版)
【名师点睛】本题用推理的方法求解不如先画出文氏图,用填图的方法来得简捷,由图不难看出.
【变式训练】5.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B.
【易错专区】
问题:空集
例1.已知集合A={x|x2-3x+2=0},B={x|x2- x+ -1=0},且A∪B=A,则 的值为______.
例5.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩CUB={1,5,7},CUA∩CUB={9},则集合A、B是________.
【答案】A={1,3,5,7},B={2,3,4,6,8}.
【解析】由题意,画出图如下:
由图可知:A={1,3,5,7},B={2,3,4,6,8}.
【变式训练】4.(2012年高考北京卷文科1)已知集合A={x∈R|3x+2>0} B={x∈R|(x+1)(x-3)>0} 则 A∩B=( )
A.(- ,-1) B.(-1,- ) C.(- ,3) D. (3,+ )
考点五要注意利用数形结合思想解决集合问题
集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解.
1.集合的 概念与运算是历年来必考内容之一,题型主要以选择填空题为主,单纯的集合问题以解答题的形式出现的机率不大,多数与函数的定义域、值域、不等式的解法相联系,解题时要注意利用韦恩图、数轴、函数图象相结合.另外,集合新定义信息题是近几年命题的热点,注意此种类型.
2.2013年的高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.
(A)A B (B)B A (C)A=B (D)A∩B=

【创新设计】高考数学一轮复习 第一篇 集合与常用逻辑用语教案 北师大版

【创新设计】高考数学一轮复习 第一篇 集合与常用逻辑用语教案 北师大版

第一篇集合与常用逻辑用语第1讲集合及其运算[最新考纲]1.了解集合的含义、元素与集合的属于关系.2.理解集合之间包含与相等的含义,能识别给定集合的子集.3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.5.能使用韦恩(Venn)图表达集合的关系及运算.知识梳理1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言1.元素与集合的辨别(1)若{x2,1}={0,1},则x=0,1.(×)(2)含有n个元素的集合的子集个数是2n,真子集个数是2n-1,非空真子集的个数是2n-2.(√)(3)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.(×)2.对集合基本运算的辨别(4)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)总成立.(√)(5)(2013·浙江卷改编)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T={x|-2<x≤1}.(√)(6)(2013·陕西卷改编)设全集为R,函数f(x)=1-x2的定义域为M,则∁R M={x|x>1,或x<-1}.(√)[感悟·提升]1.一点提醒求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.如第(3)题就是混淆了数集与点集.2.两个防范一是忽视元素的互异性,如(1);二是运算不准确,尤其是运用数轴图示法时要特别注意端点是实心还是空心,如(6).3.集合的运算性质:①A∪B=B⇔A⊆B;②A∩B=A⇔A⊆B;③A∪(∁U A)=U;④A∩(∁U A)=∅.考点一集合的基本概念【例1】 (1)(2013·江西卷)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( ).A .4B .2C .0D .0或4(2)(2013·山东卷)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ).A .1B .3C .5D .9解析 (1)由ax 2+ax +1=0只有一个实数解,可得当a =0时,方程无实数解;当a ≠0时,则Δ=a 2-4a =0,解得a =4.(a =0不合题意舍去)(2)x -y ∈{-2,-1,0,1,2}. 答案 (1)A (2)C规律方法 集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【训练1】 已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a2 014+b2 014=________.解析 由已知得b a=0及a ≠0,所以b =0,于是a 2=1,即a=1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 014+b2 014=1.答案 1考点二 集合间的基本关系【例2】 (1)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.(2)设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,求m 的值.解 (1)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围是(-∞,4].(2)A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅.∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件.∴m =1或2.规律方法 (1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.【训练2】 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ).A .1B .2C .3D .4(2)(2014·九江模拟)已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( ).A .{-1}B .{1}C .{-1,1}D .{-1,0,1}解析 (1)由题意知:A ={1,2},B ={1,2,3,4}.又A ⊆C ⊆B ,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)a =0时,B ={x |1≠0}=∅⊆A ;a ≠0时,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-1a ⊆A ,则-1a =-1或-1a=1,故a =0或a =1或-1.答案 (1)D (2)D考点三 集合的基本运算【例3】 (1)(2013·山东卷)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( ).A .{3}B .{4}C .{3,4}D .∅(2)(2014·唐山模拟)若集合M ={y |y =3x},集合S ={x |y =lg(x -1)},则下列各式正确的是( ).A .M ∪S =MB .M ∪S =SC .M =SD .M ∩S =∅审题路线 (1)⎭⎪⎬⎪⎫A ∪B ={1,2,3}⇒3∈A ∁U B ={3,4}⇒A ∩∁U B ={3}; (2)先分别求出集合M ,S ,再判断选项. 解析 (1)由∁U (A ∪B )={4}知A ∪B ={1,2,3}. 又B ={1,2},∴3∈A ,∁U B ={3,4},∴A ∩∁U B ={3}. (2)M ={y |y >0},S ={x |x >1},故选A. 答案 (1)A (2)A规律方法 一般来讲,集合中的元素离散时,则用Venn 图表示;集合中的元素是连续的实数时,则用数轴表示,此时要注意端点的情况.【训练3】 (1)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ).A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}(2)已知全集U =R ,集合A ={x |-1≤x ≤3},集合B ={x |log 2(x -2)<1},则A ∩(∁U B )=________.解析 (1)∁U A ={0,4},∴(∁U A )∪B ={0,2,4}.(2)由log 2(x -2)<1,得0<x -2<2,2<x <4,所以B ={x |2<x <4}.故∁U B ={x |x ≤2,或x ≥4},从而A ∩(∁U B )={x |-1≤x ≤2}.答案 (1)C (2){x |-1≤x ≤2}数轴和韦恩(Venn)图是进行集合交、并、补运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.创新突破1——与集合有关的新概念问题【典例】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( ).A.3 B.6C.8 D.10解析法一(列表法) 因为x∈A,y∈A,所以x,y的取值只能为1,2,3,4,5,故x,y及x-y的取值如下表所示:由题意x(x,y)的取值满足条件的共有10个,即B中的元素个数为10,故选D.法二(直接法) 因为A={1,2,3,4,5},所以集合A中的元素都为正数,若x-y∈A,则必有x-y>0,x>y.当y=1时,x可取2,3,4,5,共有4个数;当y=2时,x可取3,4,5,共有3个数;当y=3时,x可取4,5,共有2个数;当y=4时,x只能取5,共有1个数;当y=5时,x不能取任何值.综上,满足条件的实数对(x,y)的个数为4+3+2+1=10.答案D[反思感悟] (1)解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.(2)以集合为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力.【自主体验】设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“好元素”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“好元素”的集合共有( ).A.6个B.12个C.9个D.5个解析依题,可知由S的3个元素构成的所有集合中,不含“好元素”,则这3个元素一定是相连的3个数.故这样的集合共有6个.答案A基础巩固题组(建议用时:40分钟)一、选择题1.(2013·安徽卷)已知A={x|x+1>0},B={-2,-1,0,1}.则(∁R A)∩B=( ).A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}解析因为A={x|x>-1},则∁R A={x|x≤-1},所以(∁R A)∩B ={-2,-1},故选A.答案A2.已知集合M={1,2,3},N={2,3,4},则( ).A.M⊆N B.N⊆MC.M∩N={2,3} D.M∪N={1,4}解析由已知得M∩N={2,3},故选C.答案C3.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P 的子集共有( ).A.2个B.4个C.6个D.8个解析P=M∩N={1,3},故P的子集共有4个.答案B4.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( ).A.A B B.B AC.A=B D.A∩B=∅解析集合A={x|-1<x<2},B={x|-1<x<1},则B A.答案B5.设集合A={x|x2+2x-8<0},B={x|x<1},则图中阴影部分表示的集合为( ).A.{x|x≥1}B.{x|-4<x<2}C.{x|-8<x<1} D.{x|1≤x<2}解析阴影部分是A∩∁R B.集合A={x|-4<x<2},∁R B={x|x≥1},所以A∩∁R B={x|1≤x<2}.答案D二、填空题6.(2013·湖南卷)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=________.解析由集合的运算,可得(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案{6,8}7.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为________.解析根据并集的概念,可知{a,a2}={4,16},故只能是a =4.答案48.集合A={x∈R||x-2|≤5}中的最小整数为________.解析由|x-2|≤5,得-5≤x-2≤5,即-3≤x≤7,所以集合A中的最小整数为-3.答案-3三、解答题9.已知集合A={a2,a+1,-3},B={a-3,a-2,a2+1},若A∩B={-3},求A∪B.解由A∩B={-3}知,-3∈B.又a2+1≥1,故只有a-3,a-2可能等于-3.①当a-3=-3时,a=0,此时A={0,1,-3},B={-3,-2,1},A∩B={1,-3}.故a=0舍去.②当a -2=-3时,a =-1,此时A ={1,0,-3},B ={-4,-3,2},满足A ∩B ={-3},从而A ∪B ={-4,-3,0,1,2}.10.设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},(1)若B ⊆A ,求a 的值;(2)若A ⊆B ,求a 的值.解 (1)A ={0,-4},①当B =∅时,Δ=4(a +1)2-4(a 2-1)=8(a +1)<0,解得a <-1;②当B 为单元素集时,a =-1,此时B ={0}符合题意; ③当B =A 时,由根与系数的关系得:⎩⎪⎨⎪⎧ -2a +1=-4,a 2-1=0,解得a =1.综上可知:a ≤-1或a =1.(2)若A ⊆B ,必有A =B ,由(1)知a =1.能力提升题组(建议用时:25分钟)一、选择题1.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( ).A .5B .4C .3D .2 解析 当x =-1,y =0时,z =-1;当x =-1,y =2时,z =1;当x =1,y =0时,z =1;当x =1,y =2时,z =3.故z 的值为-1,1,3,故所求集合为{-1,1,3},共含有3个元素.答案 C2.(2013·江西七校联考)若集合M ={x |log 2(x -1)<1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪ 14<⎝ ⎛⎭⎪⎫12x <1,则M ∩N =( ).A .{x |1<x <2}B .{x |1<x <3}C .{x |0<x <3}D .{x |0<x <2} 解析 对于集合M,0<x -1<2,即M ={x |1<x <3};对于集合N ,N ={x |0<x <2};则M ∩N ={x |1<x <2}. 答案 A二、填空题3.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析 A ={x |-5<x <1},因为A ∩B ={x |-1<x <n },B ={x |(x -m )(x -2)<0},所以m =-1,n =1.答案 -1 1三、解答题4.已知集合A ={y |y =2x -1,0<x ≤1},B ={x |(x -a )[x -(a +3)]<0}.分别根据下列条件,求实数a 的取值范围.(1)A ∩B =A ;(2)A ∩B ≠∅.解 因为集合A 是函数y =2x -1(0<x ≤1)的值域,所以A =(-1,1],B =(a ,a +3).(1)A ∩B =A ⇔A ⊆B ⇔⎩⎪⎨⎪⎧ a ≤-1,a +3>1,即-2<a ≤-1,故当A ∩B =A 时,a 的取值范围是(-2,-1].(2)当A∩B=∅时,结合数轴知,a≥1或a+3≤-1,即a≥1或a≤-4.故当A∩B≠∅时,a的取值范围是(-4,1).第2讲命题及其关系、充分条件与必要条件[最新考纲]1.理解命题的概念.2.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.知识梳理1.四种命题及其关系(1)命题的概念可以判断真假、用文字或符号表述的语句叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.(2)四种命题间的相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.2.充分条件、必要条件与充要条件的概念辨 析 感 悟1.对四种命题的认识(1)(2012·湖南卷改编)命题“若α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.(×) (2)若原命题“若p ,则q ”为真,则在这个命题的否命题、逆命题、逆否命题中真命题的个数为1或2.(×)(3)命题“若x 2-3x +2>0,则x >2或x <1”的逆否命题是“若1≤x ≤2,则x 2-3x +2≤0”.(√)2.对充分条件、必要条件的理解(4)给定两个命题p ,q .若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.(√)(5)“(2x -1)x =0”的充分不必要条件是“x =0”.(√)(6)在△ABC 中,“A =60°”是“cos A =12”的充分不必要条件.(×)[感悟·提升]1.一个区别 否命题与命题的否定是两个不同的概念.否命题同时否定原命题的条件和结论,命题的否定仅仅否定原命题的结论(条件不变),如(1)把否命题错看成是命题的否定.2.三个防范 一是分清命题中的条件和结论,并搞清楚其中的关键词,如“≠”与“=”,“>”与“≤”,“且”与“或”,“是”与“不是”,“都不是”与“至少一个是”,“都是”与“不都是”等互为否定,如(3).二是弄清先后顺序:“A的充分不必要条件是B”是指B⇒A,且A⇒/ B,如(5);而“A是B的充分不必要条件”则是指A⇒B且B⇒/ A,如(6).三是注意题中的大前提,如(6).考点一命题及其相互关系【例1】已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( ).A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题解析由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案D规律方法(1)在判断四种命题的关系时,首先要分清命题的条件与结论,当确定了原命题时,要能根据四种命题的关系写出其他三种命题.(2)当一个命题有大前提时,若要写出其他三种命题,大前提需保持不变.(3)判断一个命题为真命题,要给出推理证明;说明一个命题是假命题,只需举出反例.(4)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【训练1】(2013·高安中学二模)命题“若a2+b2=0,则a =0且b=0”的逆否命题是( ).A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.答案D考点二充分条件、必要条件的判断【例2】(1)(2013·福建卷)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2013·抚州模拟)如果a=(1,k),b=(k,4),那么“a∥b”是“k=-2”的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析(1)当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件.(2)因为a ∥b ,所以1×4-k 2=0,即4=k 2,所以k =±2.所以“a ∥b ”是“k =-2”的必要不充分条件.答案 (1)A (2)B规律方法 判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【训练2】 已知条件p :x ≤1,条件q :1x<1,则綈p 是q 的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件解析 由x >1,得1x <1;反过来,由1x<1,不能得知x >1,即綈p 是q 的充分不必要条件.答案 A考点三 充分条件、必要条件的探求【例3】 (1)若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( ).A .a >-2B .a ≤-2C .a >-1D .a ≥-1(2)函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >0,2x -a ,x ≤0有且只有一个零点的充分不必要条件是( ).A .a ≤0或a >1B .0<a <12C .12<a <1D .a <0审题路线 (1)A ∩B ≠∅⇔A 与B 有交集.(2)先求函数f (x )有且只有一个零点的充要条件M ⇒由选项推出M 成立的充分条件⇒结合选项可得结论解析 (1)A ={x |-1<x <2},B ={x |-2<x <a },如图所示: ∵A ∩B ≠∅,∴a >-1.(2)因为f (x )=⎩⎪⎨⎪⎧ log 2 x ,x >0,2x -a ,x ≤0有且只有一个零点的充要条件为a ≤0或a >1.由选项可知,使“a ≤0或a >1”成立的充分条件为选项D.答案 (1)C (2)D规律方法 有关探求充要条件的选择题,破题关键是:首先,判断是选项“推”题干,还是题干“推”选项;其次,利用以小推大的技巧,即可得结论.【训练3】 “直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的一个充分不必要条件可以是( ).A .-1<k <3B .-1≤k ≤3C .0<k <3D .k <-1或k >3解析 “直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点”等价于|1-0-k |2<2,解得k ∈(-1,3).四个选项中只有(0,3)是(-1,3)的真子集,故充分不必要条件可以是0<k <3.答案 C1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动;对于由多个并列条件组成的命题,在写其它三种命题时,应把其中一个(或几个)作为大前提.2.数学中的定义、公理、公式、定理都是命题,但命题与定理是有区别的;命题有真假之分,而定理都是真的.3.命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.思想方法1——等价转化思想在充要条件关系中的应用【典例】 已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要而不充分条件,求实数m 的取值范围.解 法一 由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m ,∴綈q :A ={x |x >1+m 或x <1-m ,m >0},由p :⎪⎪⎪⎪⎪⎪1-x -13≤2,解得-2≤x ≤10,∴綈p :B ={x |x >10或x <-2}.∵綈p 是綈q 的必要而不充分条件.∴A B ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥10,或⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9. 故实数m 的取值范围是[9,+∞).法二 ∵綈p 是綈q 的必要而不充分条件,∴p 是q 的充分而不必要条件,由q :x 2-2x +1-m 2≤0,得1-m ≤x ≤1+m ,∴q :Q ={x |1-m ≤x ≤1+m },由p :⎪⎪⎪⎪⎪⎪1-x -13≤2, 解得-2≤x ≤10,∴p :P ={x |-2≤x ≤10}.∵p 是q 的充分而不必要条件,∴P Q ,∴⎩⎪⎨⎪⎧ m >0,1-m <-2,1+m ≥ 10,或⎩⎪⎨⎪⎧ m >0,1-m ≤-2,1+m >10,即m ≥9或m >9.∴m ≥9. 故实数m 的取值范围是[9,+∞).[反思感悟] 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.【自主体验】1.(2013·山东卷)给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析由q⇒綈p且綈p⇒/ q可得p⇒綈q且綈q⇒/ p,所以p是綈q的充分而不必要条件.答案A2.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( ).A.[1,+∞)B.(-∞,1]C.[-1,+∞) D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案A基础巩固题组(建议用时:40分钟)一、选择题1.(2012·重庆卷)命题“若p,则q”的逆命题是( ).A.若q,则p B.若綈p,则綈qC.若綈q,则綈p D.若p,则綈q解析根据原命题与逆命题的关系可得:“若p,则q”的逆命题是“若q,则p”,故选A.答案A2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ).A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析同时否定原命题的条件和结论,所得命题就是它的否命题.答案A3.(2013·榆林调研)“a=2”是“直线(a2-a)x+y=0和直线2x+y+1=0互相平行”的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为两直线平行,所以(a2-a)×1-2×1=0,解得a =2或-1,所以选A.答案A4.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( ).A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案 C5.A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 由题意得,A ={x ∈R |x >2},A ∪B ={x ∈R |x <0,或x >2},C ={x ∈R |x <0,或x >2},∴A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件.答案 C二、填空题6.(2013·安康调研)“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件.解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14. 答案 充分不必要7.(2014·商洛模拟)下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.解析 ①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.答案 ①②8.已知a ,b ,c 都是实数,则在命题“若a >b ,则ac 2>bc 2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是________.解析 当c 2=0时,原命题不正确,故其逆否命题也不正确;逆命题为“若ac 2>bc 2,则a >b ”,逆命题正确,则否命题也正确.答案 2三、解答题9.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.解 原命题:若a ≥0,则x 2+x -a =0有实根.逆否命题:若x 2+x -a =0无实根,则a <0.判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a <0,∴a <-14<0. ∴“若x 2+x -a =0无实根,则a <0”为真命题.10.已知p :x 2-8x -20≤0,q :x 2-2x +1-a 2≤0(a >0).若p 是q 的充分不必要条件,求实数a 的取值范围.解 p :x 2-8x -20≤0⇔-2≤x ≤10, q :x 2-2x +1-a 2≤0⇔1-a ≤x ≤1+a .∵p ⇒q ,q ⇒/ p ,∴{x |-2≤x ≤10}{x |1-a ≤x ≤1+a }.故有⎩⎪⎨⎪⎧ 1-a ≤-2,1+a ≥10,a >0,且两个等号不同时成立,解得a ≥9.因此,所求实数a 的取值范围是[9,+∞).能力提升题组(建议用时:25分钟)一、选择题1.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ).A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析 否命题既否定题设又否定结论,故选B.答案 B2.设a ,b 都是非零向量.下列四个条件中,使a |a |=b |b |成立的充分条件是( ).A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |解析 对于A ,注意到a =-b 时,a |a |≠b |b |;对于B ,注意到a∥b 时,可能有a =-b ,此时a |a |≠b |b |;对于C ,当a =2b 时,a |a |=2b |2b |=b |b |;对于D ,当a ∥b 且|a |=|b |时,可能有a =-b ,此时a |a |≠b |b |,综上所述,使a |a |=b |b |成立的充分条件是a =2b . 答案 C二、填空题3.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.解析 已知方程有根,由判别式Δ=16-4n ≥0,解得n ≤4,又n ∈N +,逐个分析,当n =1,2时,方程没有整数根;而当n =3时,方程有整数根1,3;当n =4时,方程有整数根2.答案 3或4三、解答题4.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围.解 ∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p ⇒/ 綈q 等价于p ⇒q ,且q ⇒/ p .记p :A ={x ||4x -3|≤1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12≤x ≤1,q :B ={x |x 2-(2a +1)x +a (a +1)≤0|={x |a ≤x ≤a +1},则A B .从而⎩⎪⎨⎪⎧ a +1≥1,a ≤12,且两个等号不同时成立,解得0≤a ≤12. 故所求实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 第3讲 全称量词与存在量词、逻辑联结词“且”“或”“非”[最新考纲]1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.知 识 梳 理1.简单的逻辑联结词(1)逻辑联结词命题中的“且”、“或”、“非”叫作逻辑联结词.(2)命题p 且q ,p 或q ,綈p 的真假判断2(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:非p且非q;p且q的否定为:非p或非q.辨析感悟1.逻辑联结词的理解与应用(1)命题p且q为假命题的充要条件是命题p,q至少有一个假命题.(√)(2)命题p或q为假命题的充要条件是命题p,q至少有一个假命题.(×)2.对命题的否定形式的理解(3)(2013·长安一中质检改编)“有些偶数能被3整除”的否定是“所有的偶数都不能被3整除”.(√)(4)(2013·延安模拟改编)命题p:存在n0∈N,2n0>1 000,则綈p:存在n∈ N,2n≤1 000.(×)(5)(2013·四川卷改编)设x∈Z,集合A是奇数集,集合B是偶数集,若命题p:任意x∈A,2x∈B,则綈p:存在x∉A,2x∉B.(×)(6)已知命题p:若x+y>0,则x,y中至少有一个大于0,则綈p:若x+y≤0,则x,y中至多有一个大于0.(×) [感悟·提升]1.一个区别逻辑联结词“或”与日常生活中的“或”是有区别的,前者包括“或此、或彼、或兼”三种情形,后者仅表示“或此、或彼”两种情形.有的含有“且”“或”“非”联结词的命题,从字面上看不一定有“且”“或”“非”等字样,这就需要我们掌握一些词语、符号或式子与逻辑联结词“且”“或”“非”的关系.如“并且”、“綊”的含义为“且”;“或者”、“≤”的含义为“或”;“不是”、“∉”的含义为“非”.2.两个防范 一是混淆命题的否定与否命题的概念导致失误,綈p 指的是命题的否定,只需否定结论.如(5)、(6);二是否定时,有关的否定词否定不当,如(6).考点一 含有逻辑联结词命题的真假判断【例1】 设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图像关于直线x =π2对称.则下列判断正确的是( ).A .p 为真B .綈q 为假C .p 且q 为假D .p 或q 为真解析 函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;x =π2不是y =cos x 的对称轴,命题q 为假命题,故p 且q 为假.故选C.答案 C规律方法 若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相对,做出判断即可.【训练1】 (2013·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A .(綈p )或(綈q )B .p 或(綈q )C .(綈p )且(綈q )D .p 或q解析 命题“至少有一位学员没有降落在指定范围”包含以下三种情况:“甲、乙均没有降落在指定范围”“甲降落在指定范围,乙没有降落在指定范围”“乙降落在指定范围,甲没有降落在指定范围”.选 A.或者,命题“至少有一位学员没有降落在指定范围”等价于命题“甲、乙均降落在指定范围”的否命题,即“p 且q ”的否定.选A.答案 A考点二 含有一个量词的命题否定【例2】 写出下列命题的否定,并判断其真假:(1)p :任意x ∈R ,x 2-x +14≥0; (2)q :所有的正方形都是矩形;(3)r :存在x 0∈R ,x 20+2x 0+2≤0;(4)s :至少有一个实数x 0,使x 30+1=0.解 (1)綈p :存在x 0∈R ,x 20-x 0+14<0,假命题. (2)綈q :至少存在一个正方形不是矩形,假命题.(3)綈r :任意x ∈R ,x 2+2x +2>0,真命题.(4)綈s :任意x ∈R ,x 3+1≠0,假命题.规律方法 对含有存在(全称)量词的命题进行否定需两步操作:(1)将存在(全称)量词改写成全称(存在)量词;(2)将结论加以否定.这类问题常见的错误是没有变换量词,或者对于结论没给予否定.有些命题中的量词不明显,应注意挖掘其隐含的量词.【训练2】 (2013·西工大附中模拟)已知命题p :存在x 0>1,x 20-1>0,那么綈p 是( ).A .任意x >1,x 2-1>0B .任意x >1,x 2-1≤0C .存在x 0>1,x 20-1≤0D .存在x 0≤1,x 20-1≤0解析 特称命题的否定为全称命题,所以綈p :任意x >1,x 2-1≤0,故选B.答案 B考点三 含有量词的命题的真假判断【例3】 下列四个命题p 1:存在x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0<⎝ ⎛⎭⎪⎫13x 0; p 2:存在x 0∈(0,1),log 12x 0>log 13x 0; p 3:任意x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ; p 4:任意x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x . 其中真命题是( ).A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析 根据幂函数的性质,对任意x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x ,故命题p 1是假命题;由于log 12x -log 13x =lg x -lg 2-lg x -lg 3=lg x lg 2-lg 3lg 2lg 3,故对任意x ∈(0,1),log 12x >log 13x ,所以存在x 0∈(0,1),log 12x 0>log 13 x 0,命题p 2是真命题;当x ∈⎝⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x <1,log 12x >1,故⎝ ⎛⎭⎪⎫12x >log 12x 不成立,命题p 3是假命题;任意x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <1,log 13x >1,故⎝ ⎛⎭⎪⎫12x <log 13x ,命题p 4是真命题.答案 D规律方法 对于特称命题的判断,只要能找到符合要求的元素使命题成立,即可判断该命题成立,对于全称命题的判断,必须对任意元素证明这个命题为真,而只要找到一个特殊元素使命题为假,即可判断该命题不成立.【训练3】 (2013·鹰潭二模)下列命题中的真命题是( ).A .存在x ∈R ,使得sin x +cos x =32B .任意x ∈(0,+∞),e x >x +1C .存在x ∈(-∞,0),2x <3xD .任意x ∈(0,π),sin x >cos x解析 因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2<32,故A 错误;当x <0时,y =2x 的图像在y =3x 的图像上方,故C 错误;因为x ∈⎝ ⎛⎭⎪⎫0,π4时有sin x <cos x ,故D 错误.所以选B.答案 B1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“綈p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真.答题模板1——借助逻辑联结词求解参数范围问题【典例】 (12分)已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式ax2-ax+1>0对任意x∈R恒成立.若“p 且q”为假,“p或q”为真,求a的取值范围.[规范解答] ∵函数y=a x在R上单调递增,∴p:a>1.不等式ax2-ax+1>0对任意x∈R恒成立,且a>0,∴a2-4a<0,解得0<a<4,∴q:0<a<4.(5分)∵“p且q”为假,“p或q”为真,∴p、q中必有一真一假.(7分)①当p真,q假时,{a|a>1}∩{a|a≥4}={a|a≥4}.(9分)②当p假,q真时,{a|0<a≤1}∩{a|0<a<4}={a|0<a≤1}.(11分)故a的取值范围是{a|0<a≤1,或a≥4}.(12分)[反思感悟] 解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲集合的概念与运算【2013年高考会这样考】1.考查集合中元素的互异性.2.求几个集合的交、并、补集.3.通过给的新材料考查阅读理解能力和创新解题的能力.【复习指导】1.主要掌握集合的含义、集合间的关系、集合的基本运算,立足基础,抓好双基.2.练习题的难度多数控制在低中档即可,适当增加一些情境新颖的实际应用问题或新定义题目,但数量不宜过多.基础梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅ B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的基本运算(1)并集:A∪B={x|x∈A,或x∈B}.(2)交集:A∩B={x|x∈A,且x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.一个性质要注意应用A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.双基自测1.(人教A版教材习题改编)设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A ∪B等于().A.{x|3≤x<4} B.{x|x≥3}C.{x|x>2} D.{x|x≥2}解析B={x|3x-7≥8-2x}={x|x≥3},∴结合数轴得:A∪B={x|x≥2}.答案 D2.(2011·浙江)若P ={x |x <1},Q ={x |x >-1},则( ). A .P ⊆Q B .Q ⊆P C .∁R P ⊆Q D .Q ⊆∁R P 解析 ∵∁R P ={x |x ≥1}∴∁R P ⊆Q . 答案 C3.(2011·福建)i 是虚数单位,若集合S ={-1,0,1},则( ). A .i ∈S B .i 2∈S C .i 3∈S D.2i ∈S解析 ∵i 2=-1,∴-1∈S ,故选B. 答案 B4.(2011·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1] B. [1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1]. 答案 C5.(人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________.解析 A ∪B ={1,3,m }∪{3,4}={1,2,3,4}, ∴2∈{1,3,m },∴m =2. 答案 2考向一 集合的概念【例1】►已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. [审题视点] 分m +2=3或2m 2+m =3两种情况讨论. 解析 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合乎题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3合乎题意.所以m =-32答案 -32集合中元素的互异性,一可以作为解题的依据和突破口;二可以检验所求结果是否正确.【训练1】 设集合A ={-1,1,3},B ={a +2,a 2+2},A ∩B ={3},则实数a 的值为________.解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.若a 2+2=3,则a =±1.当a =-1时,B ={1,3}此时A ∩B ={1,3}不合题意,故a =1. 答案 1考向二 集合的基本运算【例2】►(2011·天津)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =⎩⎨⎧⎭⎬⎫x ∈R |x =4t +1t-6,t ∈(0,+∞),则集合A ∩B =________.[审题视点] 先化简集合A ,B ,再求A ∩B . 解析 不等式|x +3|+|x -4|≤9等价于⎩⎨⎧ x ≥4,x +3+x -4≤9或⎩⎨⎧ -3<x <4,x +3+4-x ≤9或⎩⎨⎧x ≤-3,-x -3+4-x ≤9,解不等式组得A =[-4,5],又由基本不等式得B =[-2,+∞),所以A ∩B = [-2,5].答案 {x |-2≤x ≤5}集合运算时首先是等价转换集合的表示方法或化简集合,然后用数轴图示法求解.【训练2】 (2011·江西)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B=( ). A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. 答案 B考向三 集合间的基本关系【例3】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.[审题视点] 若B ⊆A ,则B =∅或B ≠∅,故分两种情况讨论. 解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、V enn 图帮助分析,而且经常要对参数进行讨论. 【训练3】 (2011·江苏)设集合A =⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪ m 2≤(x -2)2+y 2≤m 2,⎭⎬⎫x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.解析 ①若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而|2-2m -1|2≤|m |,解得2-22≤m ≤2+22,与m <0矛盾;②若m =0,代入验证,可知不符合题意;③若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,集合B 表示一个带形区域,从而当直线x +y =2m +1与x +y =2m 中至少有一条与圆(x -2)2+y 2=m 2有交点,即符合题意,从而有|2-2m |2≤|m |或|2-2m -1|2≤|m |,解得2-22≤m ≤2+2,由于12>2-22,所以12≤m ≤2+ 2.综上所述,m 的取值范围是12≤m ≤2+ 2.答案 ⎣⎢⎡⎦⎥⎤12,2+2难点突破1——集合问题的命题及求解策略在新课标高考中,可以看出,集合成为高考的必考内容之一,考查的形式是一道选择题或填空题,考查的分值约占5分,难度不大.纵观近两年新课标高考,集合考题考查的主要特点是:一是注重基础知识的考查,如2011年安徽高考的第8题;二是与函数、方程、不等式、三角等知识相结合,在知识的交汇点处命题,如2011年山东高考的第1题,与不等式相结合;三是在集合的定义运算方面进行了新的命题,如2011年浙江高考的第10题. 一、集合与排列组合【示例】► (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ). A .57 B .56 C .49 D .8二、集合与不等式的解题策略【示例】► (2011·山东)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N 等于( ).A .[1,2)B .[1,2]C .(2,3]D .[2,3]三、集合问题中的创新问题【示例】►(2011·浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是().A.|S|=1且|T|=0 B.|S|=1且|T|=1C.|S|=2且|T|=2 D.|S|=2且|T|=3。

相关文档
最新文档