西门子标准变频器矢量控制及PID控制描述
西门子-simosvert masterdrives 矢量控制 使用大全-上册说明书
矢量控制版本:AGsimovert使用大全(上册)我们保留更改功能、技术数据、标准、附图及参数的权利。
西门子电气传动有限公司对于6SE70书本型和装机装柜型装置提供电压等级为400V的产品,对于6SE71变频调速柜提供电压等级为400V、500V、690V全功率范围的产品。
对增强书本型装置(Compact PLUS units),暂不在西门子电气传动有限公司供货范围内,如果您需要,请与当地西门子销售机构联系。
如果您需要其他电压等级和功率的产品以及多电机传动的直流母线方案,也请与当地的西门子销售机构联系。
未经授权复制,传播或使用本文件及其内容是不允许的。
违犯者将负赔偿责任,所有权力,包括专利权授予的权力及应用型号或设计的注册权将被保留。
我们已经校对了本出版物的内容,他与其中所介绍硬件及软件内容是一致的。
但是,仍然有可能存在差异,因此,我们不能保证他们完全相同。
本出版物所提供的资料将定期回顾,并且任何必要的更正将在接下来的发行中执行。
为Siemens 注册商标® 欢迎在任何时间提出改进建议。
SIMOVERT西门子电气传动有限公司版权所有不得翻印上 册 系统说明 配置和接线举例 依照EMC 导则进行 传动装置设计的说明 功能块和参数 参数设置 参数设置步骤SIMOVERT MASTERDRIVES矢量控制使用大全功 能 通 讯 版本: AG6SE7085-0QX60感谢您使用西门子公司的传动产品!西门子公司变频传动产品SIMOVERT MASTERDRIVES自在中国市场推出以来,与西门子公司的其他产品一样,得到了广大用户的认同和使用。
新推出的SIMOVERT MASTERDRIVES Vector Control系列变频传动产品具有更大允许电压波动范围、更小的体积、更强的通讯能力并可同直流传动系统100% 的兼容。
我们相信,新系列产品将会在多种工业、商用及民用领域中得到更广泛的应用。
为此,我们对西门子公司的广大用户及关心西门子公司产品的人士表示由衷的感谢!为了用户能够更深入地了解、使用西门子公司SIMOVERT MASTERDRIVES Vector Control变频传动产品,我们根据英文版使用大全,翻译出这本中文版的使用大全。
变频器的PID控制(变频控制经典)
变频器工作原理变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
1. 电机的旋转速度为什么能够自由地改变?*1: r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:2极电机50Hz 3000 [r/min]4极电机50Hz 1500 [r/min]结论:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。
感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。
由电机的工作原理决定电机的极数是固定不变的。
由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。
另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
n = 60f/pn: 同步速度f: 电源频率p: 电机极对数结论:改变频率和电压是最优的电机控制方法如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。
因此变频器在改变频率的同时必须要同时改变电压。
输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。
例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?*1: 工频电源由电网提供的动力电源(商用电源)*2: 起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。
工频直接起动会产生一个大的起动起动电流。
而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。
针对矢量控制浅析SIEMENS公司6SE70系列变频器
针对矢量控制浅析SIEMENS公司6SE70系列变频器【摘要】八一钢铁股份公司冷轧厂彩涂、镀锌生产线电气传动控制均采用了SIEMENS公司6SE70系列矢量变频器。
本文简单介绍了矢量控制的基本原理,介绍了异步电机三相交流绕组物理模型等效为直流电机的物理模型的过程,并针对矢量控制浅析了6SE70系列变频器的控制模型结构。
【关键词】矢量;变频器;控制模型结构1.前言直流电动机动态性能好、调节范围宽广,便于实现控制,异步交流电机与直流电机相比较结构简单、造价低、易于维护,所以很早人们就想象控制直流电机一样去控制交流电机。
异步交流电动机的数学模型是一个高阶、非线性、强耦合的多变量系统,通过传统的单变量、线性控制很难实现对其精确控制,针对此情况,许多专家学者对此进行潜心的研究,形成了现已得到普遍应用的矢量控制变频调速系统。
2.矢量控制通过坐标转换完成电机绕组物理模型的等效2.1 矢量控制的原理直流电动机的磁通Φ和电枢电流Ia可以独立进行控制,是一种典型的解耦控制,异步电动机的矢量控制就是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。
这种解耦实际上是把异步电动机的物理模型设法等效变换成类似于直流电动机的模式,这种等效变换是借助于坐标变换来完成的,等效的原则是,在不同坐标系下电动机模型所产生的磁动势相同。
2.2 异步电机三相交流绕组物理模型等效为直流电机的物理模型2.2.1 三相交流绕组等效为两相交流绕组交流电机三相对称的静止绕组A、B、C通以三相平衡的正弦电流iA、iB、iC时所产生的合成磁势是旋转磁动势F,它在空间呈正弦分布,并以同步转速ω1,顺A-B-C相序旋转,其模型如图1(a)所示。
产生同样的旋转磁动势并不一定非要三相,如图1(b)所示,两个互相垂直的静止绕组α和β通入两相对称电流可以产生相同的旋转磁动势F,由此可见iα、iβ和iA、iB、iC之间存在某种确定的换算关系,通过这种换算关系可以完成三相静止坐标系A、B、C轴系到两相静止坐标系α、β轴系之间的坐标变换。
西门子S7-300_400PLC的PID调节功能模块的详细说明
Group Topic1Simple PID Controllers for the S7-300/400OverviewThis programming example shows a method for programming a Proportional Integral Derivative (PID) controller on a S7 PLC. The example is already a fully functioning program, needing only for the user to tie the actual inputs and outputs to appropriate variables to be a working controller. This program is suitable for simple PID applications.For complex PID applications, Siemens offers the SIMATIC S7 Standard Control software package, which offers numerous features that this applications tip lacks. These features include alarming, scaling, deadband control, feed-forward control, range limiting, ramp/soak steps, and an integrated scheduler. The Standard Control package includes a Windows-based configuration tool that greatly simplifies configuring and tuning a PID loop.To prepare a user to make these programming changes, the text will explain the basics of the PID controller implemented in the sample code. Below is a brief outline for the rest of this document:1.What does the example program do?2.Where do you use a PID controller?3.Auto Mode vs. Manual Mode4.What does a PID controller do, and how?5.What are the Sample, Gain, Rate, and Reset?6.How is the Error figured?7.How is the Proportional term figured?8.How is the Integral term figured?9.How is the Derivative term figured?10.What if the final Output is too high?11.What should the user add to make the program work for his system?12.Adjusting the Reset, Rate, Gain, Sample time and Mode during run-timePID ExploredWhat does the example program do?示例程序的用途?This programming example is a skeleton program for a true PID controller and, as such, requires that the user make a few additions (i.e. read/write input/output variables) before it is fully functional. Before discussing these, however, let’s get a better feel for what a PID program actually does through a brief example.When do you use a PID controller?Figure 2.1 shows a picture of an example system to which a user might connect a PID controller. The figure shows a water tank sitting atop a hot plate, with a temperature control device for the hot plate and a small, monitored turbine for measuring the rate of the steam flow. This is a system that will work with a PID controller because of the relationship between the two variables: You can directly control the steam flow rate by adjusting the temperature of the hot plate. Figure 2.2 shows how both variables relate to the PID controller.The variable which represents the state of the system being controlled is called the ‘Process Variable.’ In our example above, you can see that the rate at which the steam spins the turbine is a good indicator of the event that we are trying to control: the speed at which the water is being boiled off. The output is the variable which, being altered by the controller, can affect the process variable by different degrees based on its intensity -- By turning the hot plate up, the water boils more quickly, more steam is produced, and the turbine’s speed increases. Therefore, when a variable that accurately reflects the state of the process and an adjustable control which proportionally affects the process variable, then it is possible to use a PID controller. Common systems using PID controllers are air conditioning systems, solution mixing, heaters, etc.Auto Mode vs. Manual Mode自动模式和手动模式There are two settings available on our PID controller. Putting a controller in Manual mode causes the PID loop do nothing, so that the user can directly control the output. The second, Auto, is the mode in which the PID loop is actually controlling the system. For the rest of this text, it will be assumed that the controller is in Auto mode.What does the PID controller do, and how does it do it? PID控制器作些什么?如何去做?Quite simply, a PID controller adjusts the value of its output to try and balance the value of the process variable to a given ‘setpoint.’To calculate the output value for a given instance, the controller finds the value of three different terms (using its user defined Sample time, Gain, Rate, and Reset values along with the calculated Error value): a Proportional term, an Integral term, and a Derivative term.Output = M P + M I + M DFormula 2.1What are the Sample, Gain, Rate, and Reset, and where do they come from?The sample rate is the cycle time (in milliseconds) at which the PID loop recalculates the output. The gain controls the sensitivity of the output calculation by affecting the influence of all the terms. The reset is a time given in milliseconds which is used to increase or decrease the influence of the Integral term in the equation. Finally, the rate value is used to control the influence of the Derivative term in the equation. Each of these values needs to be preset by the user before the PID controller starts.If the user does not want integral action (no I in the PID calculation), then a value of infinity or a value of 0 should be specified for the integral time. If the user does not want derivative action (no D in the PID calculation), then a value of 0 should be specified for the derivative time. If the user does not want proportional action (no P in the PID), then a value of 0 should be specified for the gain (gain is normally a multiplier in the integral and derivative coefficient calculation, but is removed from the coefficient calculation, if gain = 0, to allow I, ID, or D loop control).How is the Error figured? 误差是如何计算的?Error is figured as the difference between the normalized values of the setpoint and the process variable. The controller calculates this value in three steps. The first two steps are to change both the setpoint and the process variable into values that are based on a 0 to 1 (normalized) scale. This is done using the formulae:SP = raw_SP / max_valPV = raw_PV / max_valFormulae 2.2 & 2.3In the above formulae, the raw_SP and raw_PV values are the actual values that come into the controller, and the max_val term is the maximum value that either can take on. For example, ifthe values of raw_SP and raw_PV were being read in as values from 0 to 27,648, then the max_val term would have the value 27,648.After these two values have been calculated, the error term is figured as follows:Error = SP - PVFormula 2.4How is the Proportional term calculated?The proportional term, M P, is calculated using the following equation:M P = Gain * ErrorFormula 2.2Going back to our earlier example with the water tank, the proportional term says that as the speed of the turbine increases further above the setpoint, the heat is decreased proportionally to bring the speed down. As the turbine slows below the setpoint, the heat is increased to proportionally to bring the speed up.How is the Integral Term calculated? 积分项如何计算?The integral term, M I, is calculated using the following equation:M I = Bias + (C I * Error)Formula 2.3In this equation, two new terms are introduced. The first, C I, is the coefficient系数 of the Integral term, and is calculated from the Reset:C I = Gain * (Sample / Reset)Formula 2.4Both the Sample and Reset terms were introduced earlier, but in this equation their uses become apparent. The larger the Reset value is, the less impact the integral term will have onthe output, while larger Sample times give it a bigger influence (Sample time also affects the Derivative term, which will be explained later).The Bias term in Formula 2.3 represents (technically speaking) the area under the curve of a graph plotting the Error vs. time.Abstractly, however, the Bias value (ideally) grows to an output level that keeps the system stable, letting the Proportional and Derivative terms handle any small fluctuations. In relation to our water tank example from earlier, this means that eventually the Bias portion of M I would be the only significant contribution to the final output value, and the M P and M D terms would only be active (non-zero) when a fluctuation occurred.At a time n the equations for M I and the Bias term are:M I,n = Bias n-1 + (C I * Error)Bias n = M I,nFormula 2.5How is the Derivative term calculated?微分项如何计算?The derivative formula for a given time n is calculated with the following equation:M D = C D * (PV n-1 - PV n)Formula 2.6This formula only introduces 1 new term, C D, which is calculated using Formula 2.7.C D = Gain * (Rate / Sample)Formula 2.7The Sample term (which is also used in figuring C I) is the sample time from earlier. In the Derivative term, the Sample time is indirectly proportional to the derivative component, while the Rate is directly proportional.What if the final output value is too high?如果最终输出值太高怎么办?During many processes (such as the water tank example earlier), the Process variable doesn’t respond immediately to a change in the value of the output -- if the water in the tank were ice cold, then even an output of 100% is not going to cause an instantaneous increase in steam flow. Likewise, setting the output to 0% when the water is boiling doesn’t provide an immediate reduction in steam production.Because of this ‘system inertia,’ the output value for a give time could take on a value greater than 100% or less than 0%. In response to this, the PID program implements Output Clamping. If the output is greater than 100%, then it is clamped to 100%. If the output falls lower than 0%, then it is held to 0%.The only problem left to solve lies with the Bias portion of the Integral term. When the output for a system remains at 100% for a long period of time (such as when heating up cold water in our tank from earlier), the integral sum (which the Bias term represents) can grow to extremely large values. This means that when the variable starts responding, the Bias term will be keeping the calculated output well over 100% until it can be wound down. This generally results in the output swinging wildly from one limit to the other, but can be avoided using Bias Clamping. There are a few different types of Bias Clamping, but the only pertinent one here is the one used in the program. There are two different conditions which cause Bias clamping to occur and two formulae as well:If Output > 1Bias = 1 - (M P + M D)Formula 2.8If Output < 0Bias = -(M P + M D)Formula 2.9As the formulae show, when the Output grows to be greater than 1, the value of the Bias is adjusted so that the sum of M P, M D, and the Bias will be 1. Likewise, when the Output slips below 0, the value of the Bias is adjusted so that the above sum will be 0. The adjusted Bias value is then clamped such that its maximum value is 1 and its minimum value is 0.What should be added to make the program work for the system?1. Read in the Process Variable2. Write the Output3. Set the Setpoint4. Adjust the scale for the Input and Setpoint5. Adjust the scale for the Output6. Adjust the Reset, Rate, Gain, and Sample time values.Read in the Process VariableThe Process variable (the variable which accurately reflects the state of the system to be controlled) should be passed to the PV parameter of the function block.Write the OutputThe OUT parameter of the PID loop should be set to the analog output being controlled in the PID function block call.Set the SetpointThe user’s code must pass the Setpoint value to the PID function block via the SP parameter.Adjust the scale for the Process Variable and Setpoint 调整过程值和设定点值。
【步骤详解】西门子PLCPID组态设置及PID常见问题解答
【步骤详解】西门⼦PLCPID组态设置及PID常见问题解答1PID控制知识讲解S7-200 SMART能够进⾏PID控制。
S7-200 SMART CPU最多可以⽀持8个PID控制回路(8个PID指令功能块)PID是闭环控制系统的(⽐例-积分-微分)PID控制器根据设定值(给定)与被控对象的实际值(反馈)的差值,按照PID算法计算出控制器的输出量,控制执⾏机构去影响被控对象的变化。
PID控制是负反馈闭环控制,能够抑制系统闭环内的各种因素所引起的扰动,使反馈跟随给定变化。
根据具体项⽬的控制要求,在实际应⽤中有可能⽤到其中的⼀部分,⽐如常⽤的是PI(⽐例-积分)控制,这时没有微分控制部分。
PID算法在S7-200 SMART中的实现PID控制最初在模拟量控制系统中实现,随着离散控制理论的发展,PID也在计算机化控制系统中实现。
2PID向导组态设置Micro/WIN SMART提供了PID Wizard(PID指令向导),可以帮助⽤户⽅便地⽣成⼀个闭环控制过程的PID算法。
此向导可以完成绝⼤多数PID运算的⾃动编程,⽤户只需在主程序中调⽤PID向导⽣成的⼦程序,就可以完成PID控制任务。
PID向导既可以⽣成模拟量输出PID控制算法,也⽀持开关量输出;既⽀持连续⾃动调节,也⽀持⼿动参与控制。
建议⽤户使⽤此向导对PID编程,以避免不必要的错误。
PID向导编程组态步骤:1.在Micro/WIN SMART中的⼯具菜单中选择PID向导:图1. 在⼯具栏中选择PID向导图2.在项⽬树中打开'向导'⽂件夹,然后双击'PID',或选择'PID'并按回车键。
定义需要配置的PID回路号图3.在此对话框中选择要组态的回路图4.最多可组态 8 个回路。
在此对话框上选择回路时,PID 向导左侧的树视图随组态该回路所需的所有节点⼀起更新。
2.为回路组态命名图5.可为回路组态⾃定义名称。
西门子G120变频器说明书[13]
西门子G120变频器说明书一、产品概述西门子G120变频器是一种可满足多样化要求的模块化变频器,组件采用模块化设计,功率范围宽,0.55 kW ~ 250kW,可确保始终能够组合出一种满足要求的理想变频器。
该系列变频器提供有三种电压型号,可连接 200 V、400 V 和 690 V 电网。
³西门子G120变频器由两部份组成:控制单元(CU)和功率模块(P M)。
控制单元负责控制和监视功率模块和连接的机电,并提供操作员界面和通信接口。
功率模块负责将输入的交流电转换为可调节的输出电压和频率,以驱动连接的机电。
高效能:采用空间矢量脉宽调制(SVPWM)技术,提高了输出电压的利用率,降低了谐波损耗,提高了效率和动态性能。
高可靠性:采用先进的散热设计,实现了优化的温度分布和散热效果,延长了变频器的寿命。
同时,具有过载、过压、欠压、过温、短路等多种保护功能,保证了变频器的安全运行。
高灵便性:提供多种控制单元和功率模块的组合选择,满足不同的应用需求。
同时,支持多种现场总线协议,如PROFINET、PROFIBUS、EtherNet/IP、CANopen、USS、Bacnet、Modbus等,实现了与上位机或者其他设备的方便通信。
高智能:具有自动调节功能,可根据机电参数和负载情况自动优化控制策略,提高了运行效率和稳定性。
同时,具有故障诊断功能,可显示故障代码和故障原因,便于排除故障。
二、产品型号型号前缀:SINAMICS G120控制单元型号:CUxxx功率模块型号:PMxxx功率模块选件:Fxxx例如:SINAMICS G120 CU240E-2 PN PM240-2 FSA表示一台带有CU240E-2 PN控制单元和PM240-2FSA功率模块的西门子G120变频器。
2.1 控制单元型号---控制单元型号 ---功能描述 ---------:---------CU240B-2 ---基本功能控制单元,支持标量控制(U/f)和矢量控制(SLVC),带有数字输入/输出接口和摹拟输入/输出接口 -------CU240B-2 DP ---在CU240B-2的基础上增加了PROFIBUSDP通信接口 -------CU240E-2 ---扩展功能控制单元,支持标量控制(U/f)、矢量控制(SLVC)和伺服控制(SVC),带有数字输入/输出接口、摹拟输入/输出接口和脉冲/方向输入接口 -------CU240E-2 DP ---在CU240E-2的基础上增加了PROFIBUSDP通信接口 -------CU240E-2 PN ---在CU240E-2的基础上增加了PROFINET通信接口 -------CU250S-2 ---高性能控制单元,支持标量控制(U/f)、矢量控制(SLVC)、伺服控制(SVC)和闭环矢量控制(CLVC),带有数字输入/输出接口、摹拟输入/输出接口、脉冲/方向输入接口和编码器输入接口 -------CU250S-2 DP ---在CU250S-2的基础上增加了PROFIBUSDP通信接口 -------CU250S-2 PN ---在CU250S-2的基础上增加了PROFINET通信接口 ----2.2 功率模块型号---功率模块型号 ---电压等级 ---功率范围 -----------------PM240-2 ---200 V ~ 240 V ---0.55 kW ~ 90 kW -------PM240P-2 ---380 V ~ 480 V ---0.75 kW ~ 90 kW -------PM240-2 FSA ~ FSG ---380 V ~ 480 V ---0.75 kW ~ 132 kW -------PM240-2 FSF ~ FSH ---380 V ~ 480 V ---160 kW ~ 250 kW -------PM240-2 FSA ~ FSG ---500 V ~ 690 V ---45 kW ~ 200 kW ----2.3 功率模块选件---功率模块选件 ---功能描述 ---------:---------FSC ---带有电抗器的功率模块,用于降低谐波电流和提高功率因数 -------FSD ---带有电抗器和制动单元的功率模块,用于实现快速制动和回馈能量 -------FSE ---带有电抗器和制动单元的功率模块,用于实现快速制动和消耗能量 -------FSF ---带有电抗器和制动单元的功率模块,用于实现快速制动和回馈能量或者消耗能量 ----三、产品安装3.1 安装前准备检查变频器的外观是否完好,型号是否与定货单一致,随机附件是否齐全。
西门子PID控制原理总结
PID 控制原理一、 理论回顾1、 闭环控制系统(closed —loop control system )闭环控制系统是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。
闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback ),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。
2、PID 控制是比例积分微分控制(Proportional-Integral-Differential );输入:控制偏差e ( t ) = r ( t ) - y ( t )输出:偏差的比例(P)、积分(I)和微分(D)的线性组合式中 Kc ——比例系数 T I ——积分时间常数T D ——微分时间常数3、比例调节(P 调节)在 P 调节中,调节器的输出信号u 与偏差信号e 成比例,即u =K c e ;式中,Kc 称为比例增益(视情况可设置为正或负)。
当偏差e 为零,因而u=0时,并不意味着调节器没有输出,它只能说明此时有u=u 0.注意:在实际应用中,由于执行器的运动(如阀门开度)有限,控制器的输出u(t)也就被限制在一定的范围之内,换句话说,在Kc 较大时,偏差e(t)仅在一定的范围内与控制器的输出保持线性关系。
因此,比例控制有一定的应用范围,超过该范围时,控制器输))()(1)(()(0dt t de T dt t e T t e K t u D tIc ++=⎰出与输入之间不成比例关系。
3.1、比例控制的特点○1、P 调节对偏差信号能做出及时反应,没有丝毫的滞后。
○2、比例调节的显著特点就是有差调节。
如果采用比例调节,则在负荷扰动下的调节过程结束后,被调量不可能与设定值准确相等,它们之间一定有残差。
因为根据比例调节的特点,只有调节器的输入有变化,即被调量和设定值之间有偏差,调节器的输出才会发生变化。
西门子变频MM430_PID_的参数设置
西门子 矢量控制 装机装柜型变频器(AC-AC) 说明书
SIMOVERT MASTERDRIVES 矢量控制装机装柜型变频器(AC – AC)使用说明书此使用说明书仅适用于装置软件版本V3.2。
我们保留更改功能、技术数据、标准、附图及参数的权利。
西门子电气传动有限公司(SEDL)目前只提供本使用说明书中:- 3AC 380V~480V MASTERDRIVES 6SE70产品及相应选件- 3AC 380V~480V MASTERDRIVES 6SE71产品及相应选件- 3AC 660V~690V MASTERDRIVES 6SE71产品及相应选件用户如需要其它电压等级的产品或有特殊要求,请与当地西门子公司办公室联系。
西门子电气传动有限公司保留更改本使用说明书的权利,如有更改,恕不通知。
注册商标:SIMOVERT03.03序言感谢您使用西门子的传动产品!西门子变频传动产品SIMOVERT MASTERDRIVES自在中国市场推出以来,与西门子公司的其它产品一样,得到了广大用户的认同和使用。
新推出的SIMOVERT MASTERDRIVES Vector Control系列变频传动产品具有更大允许电压波动范围、更小的体积、更强的通讯能力并可同直流传动系统100%的兼容。
我们相信,新系列产品将会在多种工业、商用及民用领域中得到更广泛的应用。
为此,我们对西门子公司的广大用户及关心西门子公司产品的人士表示由衷的感谢!为了用户能够更方便的使用西门子公司SIMOVERT MASTERDRIVES Vector Control变频传动产品,我们根据原英文版使用说明书,翻译出版了这套中文版的使用说明书。
这套使用说明书仅适用于装置软件版本V3.2。
随着产品技术的不断更新,我们将及时更新中文使用说明书内容,以方便您的使用。
限于篇幅,本说明书简单介绍了产品的基本信息,如您需要更进一步的了解,请查阅“SIMOVERT MASTERDRIVES矢量控制使用大全”(中文版订货号6SE7085-0QX60)的有关章节,如EMC 导则、通讯、功能图、参数表等。
西门子变频器V20如何调试PID控制恒压供水
西门子变频器V20如何调试PID控制恒压供水工厂复位:当调试西门子变频器V20时,建议执行工厂复位操作:P0010=30;P0970 =1(显示50?时按下OK按钮选择输入频率,直接转至P304进入快速调试。
)西门子变频器V20PID控制恒压供水快速调试参数操作流程:输入输出端子相关参数设置DI端子设置P0700[0]=2端子启动P0701[0]=1DI1作为启动信号P0703[0]=9DI3作为故障复位DO端子设置P0731[0]=52.2DO1设置为运行信号P0732[0]=52.3DO2设置为故障信号P0748.1=1DO2作为故障输出,有故障时NO触点闭合,无故障时NO触点断开。
AI端子设置P0756[0]=2模拟量输入通道1,电流信号P0757[0]=4模拟量输入通道1定标X1=4mAP0758[0]=0模拟量输入通道1定标Y1=0%P0759[0]=20模拟量输入通道1定标X2=20mAP0760[0]=100模拟量输入通道1定标Y2=100%P0761[0]=4模拟量输入通道1死区宽度4mAAO端子设置P0771[0]=21模拟量输出通道1,设置为实际频率输出P0773[0]=50模拟量输出通道1,滤波时间50msP0777[0]=0模拟量输出通道定标X1=0%P0778[0]=4模拟量输出通道定标Y1=4mAP0779[0]=100模拟量输出通道定标X2=100%P0780[0]=20模拟量输出通道定标Y2=20mAP0781[0]=4模拟量输出通道死区宽度4mAPID恒压控制功能调试P2200[0]=1使能PID控制器P2240[0]=X依用户需求设置压力设定值的百分比P2253[0]=2250BOP作为PID目标给定源P2264[0]=755.0PID反馈源于模拟通道1P2265=1PID反馈滤波时间常数P2274=0微分时间设置。
通常微分需要关闭,设置为0 P2280=P参数比例增益设置(需要根据现场调试)P2285=I参数积分时间设置(需要根据现场调试)其他可选功能斜坡启动、自由停车设置P0701[0]=99端子DI1使用BICO连接功能P0840[0]=722.0端子DI1设置为启动功能P0852[0]=722.0端子DI1设置为脉冲使能很多人认为调试西门子变频器V20PID控制恒压供水装置是一个艰巨的任务,其实并不难,只要大家按照上述调试步骤,就可以完成调试西门子变频器V20PID控制恒压供水装置的调试工作。
变频器矢量控制说明介绍
变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
因此人们又研究出矢量控制变频调速。
矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。
其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。
通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
矢量控制方法的提出具有划时代的意义。
然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
V/F控制与矢量都是恒转矩控制。
U/F相对转矩可能变化大一些。
而矢量是根据需要的转矩来调节的,相对不好控制一些。
对普通用途。
两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。
西门子6SE70矢量控制变频器的调试应用
西门子6SE70矢量控制变频器的调试应用1 引言随着电力电子技术、微电子技术的发展及现代控制理论向交流电气传动领域的渗透,变频器已经广泛应用于交流电动机的速度控制和对控制精度、动态特性要求不严的转矩控制,在目前的市场上,各种用于交流传动的通用变频器形形色色,主导的产品主要有富士的g1 1/p11系列,安川的cimr-g7系列,西门子公司的6se70/6se71系列,ab公司的plus ii/im pact系列,abb公司的acs600/acs800系列及ge公司的av-300系列,在这些产品中有些是专门针对高性能的交流传动开发的,如ab公司的1336 impact变频器、西门子公司的6 se70/6se71变频器,abb公司的acs600/acs800变频器,它们基本上都解决了交流传动中的两个难题:(1)启动转矩达额定转矩1.5倍以上;(2)低速运行时能实现高精度的转矩控制。
但就传动控制的软件开放程度来讲,只有西门子公司的6se70/6se71矢量控制变频器最高,它几乎公开了所有的传动控制电路,并将系统中可以由用户修改的数值和对控制结构的修改都以参数、连接量的形式提供给用户,这给用户工程师带来了最大的自由度,但同时也给初学者的完成调试工作带来了一定的难度。
2 6se70变频器的调试调试前,6se70所有的选件板都已经安装到位,并检查装置的以下功率设置参数是否与装置铭牌一致,否则应设p060=8,重新完成功率部分的定义。
p070:装置的订货号,在在装置的铭牌数据中有定义p071:装置电压p072:装置电流p073:装置功率如果还需要增加其他选件板,在安装到位后,需执行p060=4完成选件板的参数配置,选件板是否安装成功,可以通过参数r826.1—r826.8进行检查。
根据笔者对6se70变频器的现场调试经验,一般将调试工作分为两步:2.1 粗调完成对变频器基本控制参数的现场化,使被传动设备能够运转起来。
基于西门子MM420变频器的PID控制
基于西门子MM420变频器的PID控制在现代工业控制系统中,PID控制技术应用非常广泛。
然而,用实际的单闭环控制系统进行PID控制器参数整定的话,会存在一定的风险。
这篇文章介绍的是,通过使用西门子MM420变频器对PID单闭环控制系统进行模拟仿真实验,并用西门子MM420变频器进行参数的修改起到调节PID的作用。
综合的分析和判断调节参数,使PID单闭环控制系统得到较好的响应曲线。
标签:PID单闭环控制系统、参数设定、仿真一、PID控制原理PID控制就是比例(P)、积分(I)、微分(D)控制。
PID控制是闭环控制,是将传感器测得的反馈信号(实际信号)与被控量的给定目标信号进行比较,以判断是否已经达到预定的控制目标。
如果尚未达到预定目标值,则根据两者之间的差值进行调节,直到达到预定目标值为止,即根据系统的误差,利用比例、积分、微分计算出控制量进行控制。
特别适用于过程的动态性能良好而且控制性能要求不太高的情况。
PID控制,实际中也有PI和PD控制。
比例+积分+微分(PID)控制器能改善系统在调节过程中的动态特性。
P、PI、PD、PID控制的动态响应曲线对比如图1-2所示。
二、变频器PID控制在系统要求不高的控制中,微分功能D可以不用,因为反馈信号的每一点变化都被控制器的微分作用所放大,从而可能引起控制器输出的不稳定。
MM420的微分项D(P2274)乘上当前(采样)的反馈信号与上一个(采样)反馈信号之差,可以提高控制器对突然出现的误差的反应速度。
在系统反应太慢时,应调大KP(比例增益)P2280,或减小积分时间P2285;在发生振荡时,应调小KP (比例增益)P2280,或调大积分时间P2285。
MM420的PID控制可以选择7个目标值的PID控制,由數字输入端子DIN1~DIN3通过P0701~P0703设置实现多个目标值的选择控制。
每个目标值的PID参数值分别由P2201~P2207进行设置。
端子选择目标值的方式和7段速度控制的目标选择方式相同,分为直接选择目标值、直接选择目标值带ON命令、二进制编码选择目标值带ON命令。
西门子标准变频器矢量控制及PID控制描述
西门子标准变频器控制方法描述第一节速度矢量控制(MM440)在矢量控制中,速度控制器影响系统的动态特性。
特别是恒转矩负载,速度闭环控制有利于改善系统的运动精度和跟随性能。
在矢量控制过程中,速度控制器的配置是重要的环节。
根据速度控制器的反馈信号来源,可以将速度矢量控制分为带传感器的矢量控制(VC)与无传感器的矢量控制(SLVC)两种。
编码器的反馈信号(VC):P1300=20观测器模型的反馈信号(SLVC):P1300=21在快速调试和电机参数优化的过程中,变频器会根据负载参数自动辨识系统模型,建立模型观测器,在没有传感器的情况下,系统也会根据输出电流来计算当前速度,作为速度反馈来构成速度闭环。
速度控制器的设定方式(P1460,P1462,P1470,P1472)手动调节可根据经验对速度控制器的比例与积分参数进行整定PID自整定设定参数:P1400当P1400.0=1,使能速度控制器的增益自适应功能,即根据系统偏差的大小来自动调节比例增益系数Kp。
在弱磁区,增益系数随磁通的降低而减小。
当P1400.1=1,速度控制器的积分被冻结,只有比例增益,即对开环运行的电动机加上滑差补偿。
优化方式自整定通过设置P1960=1,变频器会自动对速度控制器的各参数进行整定。
第二节 转矩控制(MM440)矢量控制分为速度矢量控制与转矩矢量控制,转矩控制与速度矢量控制的主要区别是闭环调节是基于转矩物理量进行运算的。
在某些特殊的场合,系统对变频器输出转矩的要求比较严格。
因此在MM440变频器中又实现了转矩设置功能。
同速度矢量控制一样,转矩控制也分为无传感器矢量控制和带传感器的矢量控制。
在无传感器的转矩控制过程中,系统根据观测器模型来计算当前频率,与加速度转矩控制输出频率进行预算后,反馈到调制器。
带传感器的转矩控制,将编码器测得的信号与观测器模型进行运算后直接反馈到调制器。
一速度控制与转矩控制的切换通过设置P1501=1,或者P1501=722.X来实现速度控制到转矩控制的切换。
西门子变频器工作原理
西门子变频器工作原理西门子变频器也可用于家电产品。
使用西门子变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。
用于电机控制的西门子变频器,既可以改变电压,又可以改变频率。
但用于荧光灯的西门子变频器主要用于调节电源供电的频率。
汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。
西门子变频器的工作原理被广泛应用于各个领域。
例如计算机电源的供电,在该项应用中,西门子变频器用于抑制反向电压、频率的波动及电源的瞬间断电。
1 西门子变频器的工作原理我们知道,交流电动机的同步转速表达式位:n = 60 f(1 - s)/p (1)式中 n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式 (1) 可知,转速 n 与频率 f 成正比,只要改变频率 f 即可改变电动机的转速,当频率 f 在 0 ~ 50Hz 的范围内变化时,电动机转速调节范围非常宽。
西门子变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
2 西门子变频器控制方式低压通用变频输出电压为 380 ~ 650V ,输出功率为 0.75 ~ 400kW ,工作频率为 0 ~ 400Hz ,它的主电路都采用交—直—交电路。
其控制方式经历了以下四代。
2.1U/f=C 的正弦脉宽调制( SPWM )控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
变频器课件PID控制功能 PPT
3.变频器内置PID功能
• PID闭环运行,必须首先选择PID闭环功能有 效的情况下,变频器按照给定值和反馈值进行 PID调节。PID调节是过程控制中应用得十分普遍 的一种控制方式。它是使控制系统的被控物理量 能够迅速而准确地接近于控制目标的基本手段。
• (3)多段速只有在在外部操作模式或PU/外部组合 操作模式(Pr.79 = 3,4)中有效。
• (4)当用Pr.180~Pr.186改变端子功能分配时,有 可能对其他的功能产生影响。请确定各端子的功能 后再进行设定。
图3.14 多段速运行示意图
• 对于变频器来说,比例控制实际上就是 将偏差信号(XT-XF)放大了KP倍后再作 为频率给定信号。
•
• (2)积分控制 • 在积分控制中,控制器的输出与输入偏差信号
的积分成正比关系。即使给定频率信号XG的变化 与KP(XT-XF)对时间的积分成正比。
• 对一个自动控制系统,如果在进入稳态后存在 稳态误差,则称这个系统为有稳态误差的系统, 简称有差系统。为了消除稳态误差,在控制器中 必须引入积分项。积分项对偏差取决于时间的积
• 在PID调节中,必须有两种控制信号: • (1)给定值(又称为设定值)。它是与被控物理
量的控制目标对应的信号。 • 在PID方式中,它指的是对测量值全范围中确定
一个符合现场控制要求的一个数值,并以该数值 为目标值,使系统最终稳定在此值的水平上或范 围内,并且越接近越好。
• 一方面,给定值是和所选传感器的量程有 关的。给定信号的大小由传感器量程的百 分数表示。例如,当目标压力为0.7MPa时, 如所选压力传感器的量程为0-1.0MPa(420mA电流输出),则对应于0.7MPa的给 定量为70%; 如所选压力传感器的量程为 0-5.0MPa(4-20mA电流输出),则对应 于0.6MPa的给定量为14%。
西门子变频器PID参数设定举例
50
PID反馈信号增益-----可以调整误差(P2273)零点
P2271
0
反馈信号不取反
P2280
0.15
PID的比例增益系数------太大易震荡
P2285
9
PID积分时间
P2291
100
PID输出上限
P2292
-100
PID输出下限
调试备忘:设定1300=0时(V/F控制模式),在带负载低速时滚筒运转明显有些不畅,且电流不稳40~110变化不稳。当速度达到170m/s时,有时显得速度过快,就断丝了,有时没有问题,速度可以上升。期间活套不是很稳,启动时有时速度会跟随不好,梢慢
PID反馈信号源增益
P2280
0.5
PID比例增益系数
P2285
10
PID积分系数
P2
-100
PID输出下限
设定1300=20时(无传感器的矢量控制),明显改善启动状态,而且速度跟随良好。但是将1470=20时,设备震动厉害(产生共振),将1470=17后,明显改善。
山东淄博复绕机mm440变频器参数
P700
2
P701
1
起停
P702
3
惯性停车
P703
9
故障确认
P756(0)
0
模拟输入1为电压
P756(1)
2
模拟输入2为电流
P1000
2
模拟输入1为给定
P1082
80
P1300
0
P2000
50
P2200
1
P2251
1
P2253
2250
PID设定值信号源
P2255
西门子6SE70矢量控制变频器的调试应用
西门子6SE70矢量控制变频器的调试应用1 引言随着电力电子技术、微电子技术的发展及现代控制理论向交流电气传动领域的渗透,变频器已经广泛应用于交流电动机的速度控制和对控制精度、动态特性要求不严的转矩控制,在目前的市场上,各种用于交流传动的通用变频器形形色色,主导的产品主要有富士的g1 1/p11系列,安川的cimr-g7系列,西门子公司的6se70/6se71系列,ab公司的plus ii/im pact系列,abb公司的acs600/acs800系列及ge公司的av-300系列,在这些产品中有些是专门针对高性能的交流传动开发的,如ab公司的1336 impact变频器、西门子公司的6 se70/6se71变频器,abb公司的acs600/acs800变频器,它们基本上都解决了交流传动中的两个难题:(1)启动转矩达额定转矩1.5倍以上;(2)低速运行时能实现高精度的转矩控制。
但就传动控制的软件开放程度来讲,只有西门子公司的6se70/6se71矢量控制变频器最高,它几乎公开了所有的传动控制电路,并将系统中可以由用户修改的数值和对控制结构的修改都以参数、连接量的形式提供给用户,这给用户工程师带来了最大的自由度,但同时也给初学者的完成调试工作带来了一定的难度。
2 6se70变频器的调试调试前,6se70所有的选件板都已经安装到位,并检查装置的以下功率设置参数是否与装置铭牌一致,否则应设p060=8,重新完成功率部分的定义。
p070:装置的订货号,在在装置的铭牌数据中有定义p071:装置电压p072:装置电流p073:装置功率如果还需要增加其他选件板,在安装到位后,需执行p060=4完成选件板的参数配置,选件板是否安装成功,可以通过参数r826.1—r826.8进行检查。
根据笔者对6se70变频器的现场调试经验,一般将调试工作分为两步:2.1 粗调完成对变频器基本控制参数的现场化,使被传动设备能够运转起来。
西门子变频器基本参数设置
西门子变频器基本参数设置预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制6SE70调试基本参数设置恢复缺省设置P053=6 允许参数存取6:允许通过PMU和串行接口OP1S变更参数P060=2 固定设置菜单P366=0 0:具有PMU的标准设置1:具有OP1S的标准设置P970=0 参数复位参数设置P060=5 系统设置菜单P071= 装置输入电压P095=10 异步/同步电机,国际标准P100= 1:V/f控制3:无测速机的速度控制4:有测速机的速度控制5:转矩控制P101= 电机额定电压P102= 电机额定电流P103= 电机励磁电流,如果此值未知,设P103=0当离开系统设置,此值自动计算。
P104= 电机额定功率因数P108= 电机额定转速P109= 电机级对数P113= 电机额定转矩P114=3 3:高强度冲击系统(在:P100=3,4,5时设置)P115=1 计算电机模型参数值P350-P354设定到额定值P130= 10:无脉冲编码器11:脉冲编码器P151= 脉冲编码器每转的脉冲数P330= 0:线性(恒转矩)1:抛物线特性(风机/泵)P384.02= 电机负载限制P452= % 正向旋转时的最大频率或速度P453= % 反向旋转时的最大频率或速度数值参考P352和P353P060=1 回到参数菜单P128= 最大输出电流P462= 上升时间P464= 下降时间P115=2 静止状态电机辩识(按下P键后,20S之内合闸)P115=4 电机模型空载测量(按下P键后,20S之内合闸)6SE70 变频装置调试步骤一.内控参数设定1.1 出厂参数设定P053=7 允许CBP+PMU+PC 机修改参数P60=2 固定设置,参数恢复到缺省P366=0 PMU 控制P970=0 启动参数复位执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的设定和命令源可以来自端子,OP1S,PMU。
西门子变频器说明书
变转矩负载下功率 无 5.5kW 至 45kW 7.5kW 至 250kW 1.5kW 至 90kW
输入频率 输出频率
47 至 63 Hz 0.12kW 至 75kW 0 Hz 至 650 Hz(v/f 控制方式)/ 0 Hz 至 200 Hz(矢量控制方式) 90kW 至 200kW 0 Hz 至 267Hz(v/f 控制方式)/ 0 Hz 至 200 Hz(矢量控制方式)
1.1 BOP按键功能介绍
显示区域 反转键
功能键
启动键
增加键
停止键
点动键
确认键
减少键
1.2 BOP修改参数
下面通过将参数P1000的第0组参数,即设置P1000[0]=1的过程为例,介绍一下通过操作BOP面板 修改一个参数的流程:
操作步骤 1 按 键,访问参数 2 按 键,直到显示 P1000 3 按 键,显示 in000,即P1000的第0组值 4 按 键,显示当前值 2 5 按 键,达到所要求的数值 1 6 按 键,存储当前设置 7 按 键显示 r0000 8 按 键,显示频率
MM440变频器订货号解释:
功率倍率: (W) 1 = 101 2 = 102 3 = 103 4 = 104
变频器功率数值 前两位(W)
外形尺寸: A,B,C D, E, F F = FX G = GX
产地: A=欧洲 B=中国
6SE6440 2 U D 1 3 — 7 A A 1
防护等级: 0 = IP00 1 = IP10 2 = IP20/22 5 = IP56 6 = IP65/66 7 = IP67
电源电压及功率范围输入电压恒转矩负载下功率变转矩负载下功率1ac200至240v10012kw至3kw无3ac200至240v10012kw至45kw55kw至45kw3ac380至480v10037kw至200kw75kw至250kw3ac500至600v10075kw至75kw15kw至90kw输入频率输出频率47至63hz012kw至75kw0hz至650hzvf控制方式0hz至200hz矢量控制方式90kw至200kw0hz至267hzvf控制方式0hz至200hz矢量控制方式功率因数大于095变频器效率96至97过载能力恒转矩012kw75kw150过载持续时间60秒200过载持续时间3秒重复周期300秒90kw200kw136过载持续时间57秒160过载持续时间3秒重复周期300秒过载能力变转矩55kw90kw140过载持续时间3秒110过载持续时间60秒重复周期300秒110kw250kw150过载持续时间1秒110过载持续时间59秒重复周期300秒控制方式矢量控制vf控制转矩控制平方vf控制等频率设定分辨率数字输入和串行通讯输入为001hz10位二进制模拟输入通讯接口rs485标配rs232可选另有profibusdevicenetcanopen选件电机电缆长度不带输出电抗器012kw75kw最长50m屏蔽电缆最长100m非屏蔽电缆非屏蔽电缆防护等级工作温度存放温度相对湿度工作地区海拔高度保护功能过电压欠电压过载接地短路过温第二章安装与接线l1l2l3pe模拟量输入175kw以上需外接制动单元dcdcbrbb12132627110v20v模拟地3ain14ain1924v280v数字地14uvmwpe模拟量输出1模拟量输出223继电器325第三章操作介绍第一节基本操作面板bop的使用11bop按键功能介绍显示区域停止键功能键增加键减少键反转键启动键12bop下面通过将参数bop面板修改一个参数的流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西门子标准变频器控制方法描述第一节速度矢量控制(MM440)在矢量控制中,速度控制器影响系统的动态特性。
特别是恒转矩负载,速度闭环控制有利于改善系统的运动精度和跟随性能。
在矢量控制过程中,速度控制器的配置是重要的环节。
根据速度控制器的反馈信号来源,可以将速度矢量控制分为带传感器的矢量控制(VC)与无传感器的矢量控制(SLVC)两种。
编码器的反馈信号(VC):P1300=20观测器模型的反馈信号(SLVC):P1300=21在快速调试和电机参数优化的过程中,变频器会根据负载参数自动辨识系统模型,建立模型观测器,在没有传感器的情况下,系统也会根据输出电流来计算当前速度,作为速度反馈来构成速度闭环。
速度控制器的设定方式(P1460,P1462,P1470,P1472)手动调节可根据经验对速度控制器的比例与积分参数进行整定PID自整定设定参数:P1400当P1400.0=1,使能速度控制器的增益自适应功能,即根据系统偏差的大小来自动调节比例增益系数Kp。
在弱磁区,增益系数随磁通的降低而减小。
当P1400.1=1,速度控制器的积分被冻结,只有比例增益,即对开环运行的电动机加上滑差补偿。
优化方式自整定通过设置P1960=1,变频器会自动对速度控制器的各参数进行整定。
第二节 转矩控制(MM440)矢量控制分为速度矢量控制与转矩矢量控制,转矩控制与速度矢量控制的主要区别是闭环调节是基于转矩物理量进行运算的。
在某些特殊的场合,系统对变频器输出转矩的要求比较严格。
因此在MM440变频器中又实现了转矩设置功能。
同速度矢量控制一样,转矩控制也分为无传感器矢量控制和带传感器的矢量控制。
在无传感器的转矩控制过程中,系统根据观测器模型来计算当前频率,与加速度转矩控制输出频率进行预算后,反馈到调制器。
带传感器的转矩控制,将编码器测得的信号与观测器模型进行运算后直接反馈到调制器。
一速度控制与转矩控制的切换通过设置P1501=1,或者P1501=722.X来实现速度控制到转矩控制的切换。
二转矩的设定通过P1500来选择转矩设定源或者直接在P1503中设定相应转矩值。
三附加转矩设定值注:在速度控制与转矩控制中都可以选择转矩作为附加设定值。
第三节振荡阻尼与谐振阻尼一V/f控制方式下的谐振阻尼在MM4系列变频其中,在V/f控制方式下,提供参数P1338来对系统的电流进行监控,如果电流变化幅度比较大,即di/dt变化比较大的情况下,通过调整P1338来降低变频器的输出频率。
通过降低输出频率的方法来限制变频器的输出电流,从而避免过电流。
如果P1338越大,频率降低的幅度越大,相当于控制其中的前控效应。
过大的谐振阻尼系数会影响系统的稳定性。
二振荡阻尼在无传感器矢量控制中,根据系统电流模型以及观测器模型得到的速度自适应控制器的输出后要经过振荡阻尼P1740的修正后作为实际输出频率。
振荡阻尼相当于控制器的速度微分项,振荡阻尼的设定影响系统的响应速度和系统稳定性。
第四节加速度预控在矢量控制中的应用(MM440)在矢量控制中,速度控制器与转矩控制是可以通过参数(P1501)进行切换的。
而在速度控制其中,西门子MM440变频器也设计了加速度预控与特性下垂功能。
这里对加速度预控的应用进行探讨。
一简介:加速度预控即控制理论中的前馈补偿功能,根据经过标定的加速度值与驱动系统的总惯量求出相应力矩,同速度控制器的输出转矩相加后作为电机的转矩设定值。
二加速度预控的作用:加速度预控同速度控制器一同构成复合控制,它能在不影响系统稳态性能的前提下,提高系统的响应速度,补偿系统的动态滞后,准确的加速度标定能够提高系统控制精度。
三应用举例:应用场景:MM440用于控制拉丝机运转。
现象:在低频时投入矢量控制器,在5HZ左右系统输出会有抖动,从而影响拉丝机的平稳运行。
用示波器测得系统输出频率变化过程如下:其中黑线表示禁止预控情况下品率上升曲线。
解决办法:设置P1496=20,投入加速度预控,则频率在上升的过程中,抖动减小。
其频率上升曲线如图中红线所示。
四结果分析:由于在低频时系统的开环增益较小,动态性能较差,因此系统在投入PID时会存在超调和动态滞后,因为速度控制器通过优化得到,因此调整的裕量不大,可以尝试在系统稳定的前提下,增大比例系数与减小积分时间。
但调整裕量较小。
投入加速度预控,有助于补偿系统动态滞后,即在PID发生作用之前给系统一定的转矩,使系统提前相应。
实验证明:加速度预控有助于减小系统抖动。
50Hz5Hzt第五节 PID功能概述(MM420,430,440)一功能介绍西门子变频器的PID控制属于闭环控制,是使控制系统的被控量迅速而准确地无限接近目标值的一种手段。
即实时地将传感器反馈回来的信号与被控量的目标信号相比较,以判断是否达到预期的目标,如未达到则根据两者偏差继续调整,直至达到预定的控制目标为止。
如恒压供水,为了保证出口压一定。
采用压力传感器装在水泵附近的主出水管,感受到的压力转化为电信号(BCAD48)作为反馈信号。
变频器内置调节器作为压力调节器,调节器将来自压力传感器的压力反馈信号与出口压力给定值比较运算,其结果作为频率指令输送给变频器,调节水泵的转速使出口压保持一定。
即当用水量增加,水压降低时,调节器使变频器输出频率增加,电机拖动水泵加速,水压增大;反之,当用水量减少,水压上升,调节器使变频器输出频率减少,电机拖动水泵减速,水压减小。
另外,PID闭环控制功能也用于其他被控量的控制,如温度,速度等等。
具体参数设置如下图所示:PID-RFG(P2257)(P2258)滤波限幅(P2265)(P2267)(P2268)二 PID设定值信号源(P2253)在MM4系列变频器中,主设定值的给定主要通过以下几种方式:1.模拟输入2.固定PID设定值3.已激活的PID设定值三反馈通道的设定(P2264)通过各种传感器、编码器采集的信号或者变频器的模拟输出信号,均可以作为闭环系统的反馈信号,反馈通道的设定同主设定值相同。
四 PID固定频率的设定直接选择(P0701=15或P0702=15)在这种方式下,一个数字输入选择一个固定PID频率。
直接选择+ON命令(P0701=16或P0702=16)每个数字输入在选择一个固定频率的同时,还带有运行命令。
二进制编码的十进制数选择+ON命令(P0701=17-P0706=17) 使用这种选择固定频率,最多可以选择15不同的频率值,请参见手册。
令P0701=99,P1020=722.0,P1016=1, 则选通P2201的频率设定值。
令P0701=99,P2220=722.0,P2016=1,则选通P2201的频率设定值。
五 PID控制器的设计PID比例增益系数P(P2280)的作用使得控制器的输入输出成比例关系,一一对应,一有偏差立即会产生控制作用,当偏差为0时控制作用也就为0,因此,比例控制是基于偏差进行调节的,是有差调节,为了尽量减小偏差同时也为了加快响应速度,缩短调节时间,就需要增大P,但是P又受到系统稳定性的限制,不能任意增大,如果系统容易遭受突然跳变的反馈信号,一般情况下应将比例项P设定为较小的数值(0.5)。
注意,如果在P2280为零的情况下,积分项的作用是误差信号的平方。
PID的积分作用I(P2285)是为了消除静差而引入的,然而, I的引入使得响应的快速性下降,稳定性变差,尤其在大偏差阶段的积分往往使得系统响应出现过大的超调,调节时间变长,因此可以通过增大积分时间来减少积分作用,从而增加系统稳定性。
注意当积分时间P2285为零的情况下,并不投入积分项。
微分作用D(P2274)的引入使之能够根据偏差变化的趋势做出反应,加快了对偏差变化的反应速度,能够有效地减小超调,缩小最大动态偏差,但同时又使系统容易受到高频干扰的影响。
通常情况下,并不投入微分项,即P2274=0。
因此,只有合理地整定这三个参数,才能获得比较满意的控制性能。
六 PID控制器类型的选择(P2263)1.P2263=0 对反馈信号进行微分的控制器,即微分先行控制器,为了避免大幅度改变给定值所引起的振荡现象。
2.P2263=1 对误差信号进行微分的控制器。
七滤波在闭环控制系统中,无论是传感器测量,主设定值的给定,都不可避免引入系统噪声,噪声的引入会引起系统不稳定和精度下降。
因此西门子MM4系列变频器在PID控制器的功能中又加入了滤波环节。
为了平滑PID的设定值,设置P2261为一时间常数。
为了平滑PID反馈信号,设置参数P2265为相应时间常数。
八 PID自整定在MICROMASTER440中,PID参数自整定是按照Ziegler Nichols标准根据系统的开环特性来确定控制器比例增益系数和积分时间。
与此同时,MICROMASTER440对PID参数进行自整定的时候,以阶跃响应的超调和响应时间为依据,通过选择不同的命令源来设定不同积分、微分系数和比例增益的大小。
令P2350=1,使能PID自整定功能。
通过设置不同的P2350的值,可以使系统具有不同的超调和阻尼。
九PID trim (微调)PID闭环控制既可以适用于主设定回路控制,也可以作为微调控制,微调控制需设定以下参数。
P2251=1P2254选择微调回路的设定值。
十举例利用MM440的两路模拟输入通道来实现闭环控制设定参数如下:P0700=2P2200=1P2253=755.0P2264=755.1P2280=0.5P2285=5第六节 MM430节能控制功能在PID控制过程中,当反馈信号大于主设定频率时,系统偏差(ΔΡ)为负,此时电动机的频率逐渐降低,但仍在不停运转,在系统偏差不断调节的同时,系统不断消耗电能。
为了实现节能,西门子对MM430变频器设计了节能控制功能。
出发点如下:当电机的频率降低到某一比较频率(P2390)时,激活节能定时器(P2391),当定时时间到期时,按斜坡下降时间停车,即输出功率为零,在无输出的情况下,系统偏差会迅速从负到正变化,当偏差超过某一设定值(P2392)时,再起动电机,当电机频率按斜坡上升时间升到某一值时(此值稍大于P2390设定频率),投入PID,使系统恢复正常控制。
参数设定方法:P2390要低于PID主设定值所对应频率一定幅度,以保证系统实现正常的PID控制,如果P2390太小,节能又不易投入,因此P2390要根据经验来进行整定,通常情况下,取P2390=主设定值对应频率:20~25Hz。
P2391 定时器时间的设定要依据系统的响应速度,如果系统响应时间快,则P2391应设定较小的值。
通常供水系统中,P2391大于200秒。
P2392 比较偏差的设定要根据客户对系统控制精度的要求设定,通常情况P2392=ζ*ΔΡmax;其中0<ζ<1;ΔΡmax为客户所允许的最大偏差。