(完整版)三角恒等变换所有公式
(完整版)三角恒等变换公式大全,推荐文档
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+b cosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换
三角恒等变换三角恒等变换是解决三角函数之间关系的重要工具,它们能够将一个三角函数表达式转化为与之等价的形式。
在解三角函数方程、简化和证明三角恒等式时,熟练掌握三角恒等变换是至关重要的。
1. 基本的三角恒等变换基本的三角恒等变换包括:- 正弦函数的平方加上余弦函数的平方等于1:sin^2(x) + cos^2(x) = 1- 1加上正切函数的平方等于secant函数的平方:1 + tan^2(x) = sec^2(x)- 1加上余切函数的平方等于cosecant函数的平方:1 + cot^2(x) = csc^2(x)这些基本的恒等变换在求解三角函数方程的时候经常会用到。
2. 倍角恒等变换倍角恒等变换是将角度翻倍的三角函数关系,其中包括:- 正弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)- 余弦函数的倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)- 正切函数的倍角公式:tan(2x) = (2tan(x))/(1 - tan^2(x))倍角恒等变换可以帮助我们简化三角函数表达式,从而更容易进行计算和证明。
3. 和差恒等变换和差恒等变换是将两个三角函数的和或差转化为一个三角函数的形式,常见的和差恒等变换包括:- 正弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- 余弦函数的和差公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)- 正切函数的和差公式:tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))和差恒等变换可以帮助我们将复杂的三角函数表达式转化为简单的形式,方便计算和处理。
4. 半角恒等变换半角恒等变换是将一个角度的一半与三角函数的关系转化为另一个角度的三角函数关系。
三角恒等变换讲解
三角恒等变换讲解三角恒等变换是指在三角函数之间相互变换的一系列等式关系,常用于简化和证明三角函数的性质以及求解三角方程。
下面介绍一些常见的三角恒等变换:1. 基本恒等变换:-正弦与余弦的关系:sin²θ+ cos²θ= 1-正切与余切的关系:tanθ= sinθ/ cosθ,cotθ= cosθ/ sinθ-余割与正割的关系:cscθ= 1 / sinθ,secθ= 1 / cosθ2. 倍角恒等变换:-正弦的倍角公式:sin(2θ) = 2sinθcosθ-余弦的倍角公式:cos(2θ) = cos²θ- sin²θ= 2cos²θ- 1 = 1 - 2sin²θ-正切的倍角公式:tan(2θ) = (2tanθ) / (1 - tan²θ)3. 和差恒等变换:-正弦的和差公式:sin(A ±B) = sinAcosB ±cosAsinB-余弦的和差公式:cos(A ±B) = cosAcosB ∓sinAsinB-正切的和差公式:tan(A ±B) = (tanA ±tanB) / (1 ∓tanAtanB)4. 反函数恒等变换:-正弦的反函数:sin⁻¹(x) = θ,其中sinθ= x,-π/2 ≤θ≤π/2-余弦的反函数:cos⁻¹(x) = θ,其中cosθ= x,0 ≤θ≤π-正切的反函数:tan⁻¹(x) = θ,其中tanθ= x,-π/2 < θ< π/2注意,上述恒等变换只是一部分常见的例子,实际上还有许多其他的三角恒等变换。
在解题或证明过程中,根据需要,可以根据题目的要求和三角函数的关系,使用适当的三角恒等变换来简化计算或推导出所需的结果。
三角恒等变换所有公式及推论
三角恒等变换所有公式及推论
三角恒等变换是一种可以将任意三角形变换成其他三角形的变换,它可以用来表示某一几
何图形变换为另一几何图形的变换性质,并提供一种明确的、可以用数学语言描述的基本变换方式。
它适用于三角形在由不同点i,j,k采分的空间和时间中的出现,即它可以使
三角形的空间或时间结构:T(i,j,k)变为T'(i',j',k')。
三角恒等变换的数学公式如下:
T'(i',j',k')=T(i,j,k)=M(i,j,k)
其中M(i,j,k)为矩阵公式,其包含有三个主要参数,分别为它的长边尺寸a,它的高δ,以及它的顶点坐标x, y, z。
在实际应用时,三角恒等变换可以用来比较两个不同形状或位置的三角形之间的变换关系。
该变换可以用来求解某一复杂形状的旋转平移问题,或者利用该变换操作,可以更加有效地实现几何图形之间的转换。
三角恒等变换还可以用于把三个一般性三角形变换为具有更高几何结构性质的三角形,可
以实现几何图形的对称变换,也可以实现几个三角形按照一定的排布方式发生平移或旋转变换。
总而言之,三角恒等变换可以方便地使任意三角形变换到其他三角形,可以实现几何图形之间的变换,可以实现三角形的对称变换,以及三角形的平移和旋转变换,因此,具有重
要的应用价值。
三角恒等变换公式大全(完整资料).doc
【最新整理,下载后即可编辑】三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asin x+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot (C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换、解三角形公式总结
三角恒等变换、解三角形公式总结一、三角恒等变换1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⑹()tan tan tan 1tan tan αβαβαβ++=- 2、二倍角的正弦、余弦和正切公式:(1)sin 22sin cos ααα=. (2)21sin 2(sin cos )ααα±=±(3)2222cos2cos sin 2cos 112sin ααααα=-=-=-(4)降次升角公式2cos 21cos 2αα+=,21cos 2sin 2αα-=(5)辅助角公式:()sin cos αααϕA +B =+,其中tan ϕB =A. (6) 45tan 90sin cot tan cos sin 1===+=αααα3、常见的角的配凑(1) ββαββαα-+=+-=)()(;(2))4()4()()(2απαπβαβαα--+=-++=二、三角函数1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . ⑤在C ∆AB 中有:B A B A B A b a B A B A 2cos 2cos cos cos sin sin cos cos 22<⇔<⇔>⇔>⇔>⇔<3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中有:2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=. 6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C >。
三角恒等变换万能公式
三角恒等变换万能公式
三角恒等变换(Trigonometric Identities)是指由三角函数相互组合而成的等式。
其中,最为常用的三角恒等变换是万能公式(Universal Formula),也称作Euler公式。
该公式如下:
cos²x + sin²x = 1
这个公式表明,在任何角度下,正弦(sin)和余弦(cos)的平方和等于1。
这个公式可以用来化简和证明许多其他的三角函数等式,例如:
tan x = sin x / cos x,代入万能公式可得:
sin²x / cos²x + 1 = 1 / cos²x
整理后得到:
sin²x = 1 - cos²x
这个等式被称为余弦的补充公式。
sin(-x) = -sin x,代入万能公式可得:
cos²(-x) + sin²(-x) = 1
由于cos函数是偶函数,即cos(-x) = cos x,所以上式可以改写为:
cos²x + sin²(-x) = 1
同时,由于sin函数是奇函数,即sin(-x) = -sin x,所以上式可以进一步改写为:
cos²x - sin²x = 1
这个等式被称为正弦和余弦的差公式。
通过这些等式,我们可以将三角函数的复杂计算转化为更为简单的形式,从而更加便捷地进行求解和证明。
三角恒等变形公式大全修订版
三角恒等变形公式大全修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cos α)/sinα。
三角恒等变换所有公式
三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。
下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。
三角恒等变形公式大全
和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1—2sin^2(α)=(1—tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1—tan^2(α)]半角公式:sin^2(α/2)=(1—cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1—cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)—3cosαtan3α=(3tanα—tan^3(α))÷(1—3tan^2(α))sin3α=4sinα×sin(60—α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1—tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α—β)]cosα·sinβ=(1/2)[sin(α+β)—sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α—β)]sinα·sinβ=-(1/2)[cos(α+β)—cos(α—β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα—sinβ=2cos[(α+β)/2]sin[(α—β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α—β)/2]cosα-cosβ=—2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1—cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)—3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60—α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60—α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)—sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α—β)]sinα·sinβ=-(1/2)[cos(α+β)—cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α—β)/2]sinα—sinβ=2cos[(α+β)/2]sin[(α—β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=—2sin[(α+β)/2]sin[(α—β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1—2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1—cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα—4sin^3(α)cos3α=4cos^3(α)—3cosαtan3α=(3tanα-tan^3(α))÷(1—3tan^2(α))sin3α=4sinα×sin(60—α)sin(60+α)cos3α=4cosα×cos(60—α)cos(60+α)tan3α=4tanα×tan(60—α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α—β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα—sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=—2sin[(α+β)/2]sin[(α—β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)—sin^2(α)=2cos^2(α)-1=1—2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1—cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1—cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1—cosα)/sinα。