特征值与特征向量定义与计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.

特征值与特征向量

特征值与特征向量的概念及其计算

定义1. 设A是数域P上的一个n阶矩阵,λ是一个未知量,

称为A的特征多项式,记ƒ(λ)=| λE-A|,是一个P上的关于λ

的n次多项式,E是单位矩阵。

ƒ(λ)=| λE-A|=λn+α1λn-1+…+αn= 0是一个n次代数方程,称为A 的特征方程。特征方程ƒ(λ)=| λE-A|=0的根 (如:λ0) 称为A的特征根(或特征值)。 n次代数方程在复数域内有且仅有n 个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。

以A的特征值λ0代入 (λE-A)X=θ,得方程组 (λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为 |λ0E-A|=0,(λ0E-A)X=θ必存在非零解X(0),X(0) 称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。

.

一.特征值与特征向量的求法

对于矩阵A,由AX=λ0X,λ0EX=AX,得:

[λ0E-A]X=θ即齐次线性方程组

有非零解的充分必要条件是:

即说明特征根是特征多项式 |λ0E-A| =0的根,由代数基本定理

有n个复根λ1, λ2,…, λn,为A的n个特征根。

当特征根λi(I=1,2,…,n)求出后,(λi E-A)X=θ是齐次方程,λi

均会使 |λi

E-A|=0,(λi E-A)X=θ必存在非零解,且有无穷个解向量,

(λi E-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。

例1. 求矩阵的特征值与特征向量。

解:由特征方程

解得A有2重特征值λ1=λ2=-2,有单特征值λ3=4 对于特征值λ1=λ2=-2,解方程组 (-2E-A)x=θ

得同解方程组 x1-x2+x3=0

解为x1=x2-x3 (x2,x3为自由未知量)

分别令自由未知量

得基础解系

所以A的对应于特征值λ1=λ2=-2的全部特征向量为

x=k1ξ1+k2ξ2 (k1,k2不全为零)

可见,特征值λ=-2的特征向量空间是二维的。注意,特征值在重根时,特征向量空间的维数≤特征根的重数。

对于特征值λ3=4

,方程组 (4E-A)x=θ

通解为

令自由未知量 x3=2 得基础解系

所以A的对于特征值λ3=4 得全部特征向量为 x= k3 ξ3

例2.

求矩阵的特征值与特征向量

解:由特征方程

解得A有单特征值λ1=1,有2重特征值λ2=λ3=0 对于

λ1=1,解方程组 (E-A) x = θ

得同解方程组为

同解为

令自由未知量 x3=1,得基础解系

所以A的对应于特征值λ1=1的全部特征向量为 x=k1ξ1 (k1≠0)

,解方程组 (0E-A)=θ

对于特征值λ2=λ3=0

通解为

令自由未知量 x 3=1,得基础解系

此处,二重根λ=0 的特征向量空间是一维的,特征向量空间的维数<特征根的重数,这种情况下,矩阵A是亏损的。

所以A的对应于特征值λ2=λ3=0 得全部特征向量为 x=k2ξ3

例3.矩阵

的特征值与特征向量

解:由特征方程

解得A的特征值为λ1=1, λ2=i, λ3=-i

对于特征值λ1

=1,解方程组 (E-A)=θ,由

得通解为

令自由未知量 x1=1,得基础解系ξ1=(1,0,0)T,所以A的对应于特征值λ1=1得全部特征向量为 x=k1ξ1

对于特征值λ2=i,解方程组 (iE-A)=θ

得同解方程组为

通解为

令自由未知量 x3=1,得基础解系ξ2=(0,i,1)T,所以A对应于特征值λ2=1的全部特征向量为 x=k2ξ2 (k2≠0)。

对于特征值λ3=-i,解方程组 (-E-A)x=θ,由

得同解方程组为

通解为

相关文档
最新文档