焊缝探伤超声波探头的选择方案参考

合集下载

超声波检测焊缝

超声波检测焊缝

中厚板对接焊缝超声波检测实际操作要点一. 检测前的准备1.选择探头1)K值的选择(1)探头K值的选择应从以下三个方面考虑:使声束能扫查到整个焊缝截面;(2)使声束中心线尽量与主要危险性缺陷垂直;(3)保证有足够的探伤灵敏度设工件厚度为T,焊缝上下宽度的一半分别为a和b,探头K值为K,探头前沿长度为L0,则有:K (a+b+L0)/T一般斜探头K值可根据工件厚度来选择,较薄厚度采用较大K值,如8~14厚度可选K3.0~K2.0探头,以便避免近场区探伤,提高定位定量精度;较厚工件采用较小K值,以便缩短声程,减小衰减,提高探伤灵敏度。

如15~46厚度可选K2.0~K1.5探头,同时还可减少打磨宽度。

在条件允许的情况下,应尽量采用大K值探头。

探头K值常因工件中的声速变化和探头的磨损而产生变化,所以探伤前必须在试块上实测K值,并在以后的探伤中经常校验。

2)频率选择焊缝的晶粒比较细小,可选用比较高的频率探伤,一般为2.5~5.0MHz。

对于板厚较小的焊缝,可采用较高的频率;对于板厚较大,衰减明显的焊缝,应选用较低的频率。

2. 探头移动区宽度焊缝两侧探测面探头移动区的宽度P一般根据母材厚度而定。

图1 探头移动区和检测区厚度为8 ~46mm的焊缝采用单面两侧二次波探伤,探头移动区宽度为:P ≥ 2KT+50 (mm)厚度为大于46mm的焊缝采用双面两侧一次波探伤,探头移动区宽度为:P ≥ KT+50 (mm)式中K----探头的K值;T-----工件厚度。

工件表面的粗糙度直接影响探伤结果,一般要求表面粗糙度不大于6.3μm,否则应予以修整3. 耦合剂的选择在焊缝探伤中,常用的耦合剂有机油、甘油、浆糊、润滑脂和水等,实际探伤中用的最多的是浆糊和机油。

二.探头测定与仪器(A型)的调节1.探头测试1)斜探头入射点的测试斜探头的入射点是指其主声束轴线与探测面的交点。

入射点至探头前沿的距离称为探头的前沿长度。

测定探头的入射点和前沿长度是为了便于对缺陷定位和测定探头的K值。

8~15mm厚钢板对接焊缝超声检测探头的选择

8~15mm厚钢板对接焊缝超声检测探头的选择
扫查方式为单面双侧 ,扫查区域为距上表面为 T - 3mm 的焊缝区域 ,探伤方法见图 2 ,当探头后移 时 ,最高反射波二次声程的水平距离 > ( T + 3) K 或 < 2 TK 则均为缺陷波 。 > 2 TK 则不判为缺陷波 。
3 结论
(1) 实际探伤时 ,必须实际测量 T , b , K 和 L 值 ,根据公式进行计算后正确选择探头 。目前探头 制造厂可提供用户所需 K 和 L 值的探头 。
7
8
14 8
2. 2 2. 4 2. 6 2. 8 3. 0
16 10
1. 7 1. 85 2. 0 2. 14 2. 28
18 12
1. 44 1. 55 1. 66 1. 77 1. 88
20 14
1. 27 1. 36 1. 45 1. 54 1. 63
21 15
1. 2 1. 29 1. 37 1. 45 1. 54
2 二次声程扫查焊缝上部时的探头选择
探头的选择应满足 ,当其前端与焊缝余高接触 且再无法向前移动时 ,使主声束二次声程能扫查到 焊缝宽度中心线距底面 3mm 的焊缝位置 (图 3) ,即
( T + 3) K =
b 2
+L
(2)
当 ( T + 3) K < bΠ2 + L 时 ,会产生漏检 ,图 4 阴
可见 ,当 L = 8mm 时可选择 5MHz6mm ×6mm , L = 4mm 的 K1 探头 ; L = 10mm 时可选择 5MHz6mm × 6mm ,L = 5mm 的 K1 探头 ; L = 12mm 时可选择 2. 5MHz7mm ×9mm , L = 6mm 的 K1 探 头 ; L = 14 ~ 15mm 时可选择 2. 5MHz7mm ×9mm , L = 7mm 的 K1 探头 。

超声波检测时探头选择原则

超声波检测时探头选择原则

超声波探头角度过大,应该如何调整1.老师您好,我们的超声波探头的视角是60度的,现在想调整角度的话,如何调整为40度角的话,要加喇叭形状的还是直筒形状的结构呢,加的高度有什么计算原则,还有应该选择什么材质的呢 ?超声波探伤中,超声波的发射和接收都是通过探头来实现的。

探头的种类很多,结构型式也不一样。

探伤前应根据被检对象的形状、衰减和技术要求来选择探头。

探头的选择包括探头型式、频率、晶片尺寸和斜探头K值的选择等。

1.探头型式的选择常用的探头型式有纵波直探头、横波斜探头表面波探头、双晶探头、聚焦探头等。

一般根据工件的形状和可能出现缺陷的部位、方向等条件来选择探头的型式,使声束轴线尽量与缺陷垂直。

纵波直探头只能发射和接收纵波,束轴线垂直于探测面,主要用于探测与探测面平行的缺陷,如锻件、钢板中的夹层、折叠等缺陷。

横波斜探头是通过波形转换来实现横波探伤的。

主要用于探测与深测面垂直或成一定角的缺陷。

如焊缝生中的未焊透、夹渣、未溶合等缺陷。

表面波探头用于探测工件表面缺陷,双晶探头用于探测工件近表面缺陷。

聚焦探头用于水浸探测管材或板材。

2.探头频率的选择超声波探伤频率在O.5~10MHz之间,选择范围大。

一般选择频率时应考虑以下因索。

(1)由于波的绕射,使超声波探伤灵敏度约为,因此提高频率,有利于发现更小的缺陷。

(2)频率高,脉冲宽度小,分辨力高,有利于区分相邻缺陷。

(3) 可知,频率高,波长短,则半扩散角小,声束指向性好,能量集中,有利于发现缺陷并对缺陷定位。

(4) 可知,频率高,波长短,近场区长度大,对探伤不利。

(5) 可知,频率增加,衰减急剧增加。

由以上分析可知,频率的离低对探伤有较大的影响。

频率高,灵敏度和分辨力高,指向性好,对探伤有利。

但频率高,近场区长度大,衰减大,又对探伤不利。

实际探伤中要全面分析考虑各方面的因索,合理选择频率。

一般在保证探伤灵敏度的前提下尽可能选用较低的频率。

对于晶粒较细的锻件、轧制件和焊接件等,一般选用较高的频率,长用2.5~5.0MHz。

无损检测超声波探伤检测方案

无损检测超声波探伤检测方案

无损检测超声波探伤检测方案1 适用范围本方案适用于母材厚度不小于8mm的低超声衰减(特别是散射衰减小)金属材料熔化焊焊接接头以及母材和焊缝均为铁素体类钢的全熔透焊缝。

2 引用标准GB/T ll345-2013《焊缝无损检测超声检测技术、检测等级和评定》GB/T 29712-2013《焊缝无损检测超声检测验收等级》GB/T 2616-2014 《无损检测应用导则》GB/T 29711-2013《焊缝无损检测超声检测焊缝中的显示特性》 GB/T 19418-2003 《钢的弧焊接头缺陷质量分级指南》3 试验项目及质量要求3.1 试验项目超声波法检测焊缝内部缺陷。

3.2 质量要求3.2.1 检验等级的分级根据焊接接头的质量要求,检验等级分A、B、C、D四级,从检测等级A到检测等级C,逐渐增加检测覆盖范围,提高缺欠检出率。

检测等级D适用于特殊应用,本方案不做说明。

表3.2.1A 当需要评定显示特征时,应按GB/T29711评定。

B 不推荐做超声检测,但可在规范中规定后使用(与C级焊缝质量要求一致)。

3.2.2 检验区域的选择1)检测区域是指焊缝和焊缝两侧至少10mm宽母材或热影响区宽度(取二者较大值)的内部区域。

2)超声波检测应在焊缝及探伤表面经外观检查合格后方可进行,应划好检验区域,标出检验区段编号。

3)接头移动区应清除焊接飞溅、铁屑、油垢及其它外部杂质。

探伤区域表面应平整光滑,便于探头的自由扫查,检测面与探头靴底面之间的间隙不应大于0.5mm,必要时进行打磨。

在任何情况下,声束扫查应覆盖整个检测区域。

4)去除余高的焊缝,应将余高打磨到与临邻近母材平齐。

保留余高焊缝,如焊缝表面有咬边,较大的隆起和凹陷等也应进行适当修磨,并做圆滑过渡以免影响检验结果的评定。

4 仪器、试块、耦合剂、探头4.1 超声波探伤仪4.2 试块应满足GB/T 19799.1、GB/T 19799.2标准规定。

4.3 耦合剂应选用适当的液体或模糊状物作耦合剂。

如何选择超声波探伤仪探头

如何选择超声波探伤仪探头
4、超声波探伤仪表面波探头
用于发射和接收表面波的探头。表面波是沿工件表面传播的波,幅值随表面下的深度迅速减少,传播速度是横波的0.9倍,质点的振动轨迹为椭圆。表面波探头在被检工件的表面和近表面产生表面波。型号中列明的角度为有机玻璃斜块的倾斜角(入射角)。
5、超声波探伤仪可拆式斜探头
斜探头的一种特殊类型,将斜探头分成斜块、探头芯两个部分,使用时将两者组合起来。常用的规格2.5P20的探头芯、不同K值的斜块(1.0、1.5、2.0、2.5、3.0等等)。接受定制其他规格的可拆式斜探头。
1、超声波探伤仪直探头
进行垂直探伤用的单晶片探头,主要用于纵波探伤。直探头由插座、外壳、保护膜、压电晶片、吸声材料等组成,头接触面为可更换的软膜,用于检测表面粗糙的工件。
2、超声波探伤仪斜探头
进行斜射探伤用的探头,主要用于横波探伤。斜探头由斜块、压电晶片、吸声材料、外壳、插座等组成,斜探头的声束与探头表面倾斜,因此可用于检测直声束无法到达的部位、或者缺陷的方向与检测面之间存在夹角的区域。
如何选择超声波探伤仪探头?下面给出最常用的超声波斜探头的选择方案参考:
1.斜探头K值与角度的对应关系
NO.
K值
对应角度
1
K1
对应45度
2
K1.5
对应56.3度
3
K2
对应63.4度
4
K2.5
对应68.2度
5
K3
对应71.6度
2.焊缝探伤超声波探头的选择方案参考
编号
被测工件厚度
选择探头和斜率
选择探头和斜率
14—5mm6×来自K3不锈钢:1.25MHz
铸铁:0.5—2.5MHz
普通钢:5MHz
2
6—8mm

超声波探头该如何选择

超声波探头该如何选择

超声波探头该如何选择超声波探伤仪双晶探头装有两个晶片的探头。

另一个作为接收器。

又称分割式探头、或者联合双探头。

双晶探头主要由插座、外壳、隔声层、发射晶片、接收晶片、延迟块等组成。

?插座为电气接口,通过探头线连接到仪器上去?铝合金外壳起到支撑、维护、电磁屏蔽的作用?探伤仪超声波声束的发射由发射晶片完成?接收晶片将工件中反射回来的声束转换成电信号?发射晶片和接收晶片之间,贴合有隔声层?晶片被粘结在延迟块上,改变两个延迟块之间的夹角,可获得不同的焦距值。

超声波双晶探头的用途与直探头相似:使用垂直的纵波声束扫查工件。

相对直探头而言,双晶直探头具有更好的近表面缺陷检出能力用于检测外表粗糙的工件,型号2.5P20频率2.5MHz晶片Φ20mm超声波探伤仪斜探头进行斜射探伤用的探头,主要用于横波探伤。

斜探头由斜块、压电晶片、吸声材料、外壳、插座等组成。

超声波的发射/接收由压电晶片完成;斜块的作用是实现波型的转换,当入射角(α)第一临界角和第二临界角之间时,根据超声波在不同声阻抗界面的折射定律,工件中只有横波的存在吸声材料用来吸收晶片背面、斜块四周发散的噪声;外壳起到支撑、维护、电磁屏蔽等作用;插座为电信号接口,测厚仪通过探头线连接到仪器。

斜探头折射角的大小通过K值来标明。

探头的型号上标明检测钢工件时的K值,K=tgΘ)即折射角度的正切值。

常用的K值有0.81.01.52.02.53.0等几种。

采用K值标称探头,缺陷的定位计算比较方便。

斜探头的声束与探头表面倾斜,因此可用于检测直声束无法到达的部位、或者缺陷的方向与检测面之间存在夹角的区域。

超声波探伤仪小径管探头单晶微型横波斜探头,用于小直径薄壁管焊接接头的检验。

检测规范参照电力行业规范DL/T8202002管道焊接接头超声波检验技术规程》适合检测管径≥32mm小于等于159mm壁厚≥4mm小于14mm小直径薄壁管;也可适用于其他行业类似管道的检测。

探头外形尺寸小,探头接触面为可更换的软膜。

超声波探伤探头选用规则

超声波探伤探头选用规则

超声波探伤探头选用规则摘要:焊接随着新技术的不断出现和检测设备的不断更新,超声波检测技术是目前无损检测技术中发展最快、应用最广泛的方法之一,在无损检测技术中占有非常重要的地位。

在检测过程中,除了超声检测仪器,发射和接收超声波的探头也起着非常重要的作用,所以探头性能的好坏以及探伤过程中对探头的选取是否得当,将直接影响到探伤结果的准确性和可靠性。

下文重点讲述压电型超声探头的分类、作用和选用原则。

关键词:超声波探伤;探头;选用原则引言超声波探头对于超声检测来说,就像是它的眼睛,探头对探伤结果影响非常大,俗话说工欲善其事必先利其器,在实际探伤过程中应根据工件情况、探伤条件、缺陷情况以及执行的标准认真选用。

1超声波探头的分类超声波探伤中由于被探工件的形状、材质、探伤目的、探伤条件不同,因而需使用不同形式的探头。

超声波探头按不同的归纳方式可以进行不同的分类,一般有以下几种。

1)按被探工件中产生的波型,可分为纵波探头、横波探头、板波(兰姆波)探头、爬波探头和表面波探头。

2)按按入射声束方向,可分为直探头和斜探头。

3)按照探头与被探工件表面的耦合方式,可分为接触式探头和液浸式探头。

4)按照探头中压电晶片的材料,可分为普通压电晶片探头和复合压电晶片探头。

5)按照探头中压电晶片的数目,可分为单晶探头、双晶探头和多晶探头。

6)按照超声波声束的聚焦否可,分为聚焦探头和非聚焦探头。

7)按超声波频谱,可分为宽频带和窄频带探头。

8)按匹配检测工件的曲率,可分为平面探头和曲面探头。

2常见典型探头的作用1)纵波探头通常称为直探头,主要用于检测与检测面平行的缺陷,如板材、铸、锻件检测等。

2)横波斜探头是利用横波检测,是入射角在第一临界角与第二临界角之间且折射波为纯横波的探头,主要用于检测与检测面垂直或成一定角度的缺陷,广泛用于焊缝、管材、锻件的检测。

3)纵波斜探头是入射角小于第一临界角的探头。

目的是利用小角度的纵波进行缺陷检验,或在横波衰减过大的情况下,利用纵波穿透能力强的特点进行纵波斜入射检验,使用时需注意试件中同时存在横波的干扰。

如何选择超声波探伤仪探头

如何选择超声波探伤仪探头
4、超声波探伤仪表面波探头
用于发射和接收表面波的探头。表面波是沿工件表面传播的波,幅值随表面下的深度迅速减少,传播速度是横波的0.9倍,质点的振动轨迹为椭圆。表面波探头在被检工件的表面和近表面产生表面波。型号中列明的角度为有机玻璃斜块的倾斜角(入射角)。
5、超声波探伤仪可拆式斜探头
斜探头的一种特殊类型,将斜探头分成斜块、探头芯两个部分,使用时将两者组合起来。常用的规格2.5P20的探头芯、不同K值的斜块(1.0、1.5、2.0、2.5、3.0等等)。接受定制其他规格的可拆式斜探头。
如何选择超声波探伤仪探头?下面给出最常用的超声波斜探头的选择方案参考:
1.斜探头K值与角度的对应关系
NO.
K值
对应角度
1
K1
对应45度
2
K1.5
对应56.3度
3
K2
对应63.4度
4
K2.5
对应68.2度
5
K3
对应71.6度
2.焊缝探伤超声波探头的选择方案参考
编号
被测工件厚度
选择探头和斜率
选择探头和斜率
1、超声波探伤仪直探头
进行垂直探伤用的单晶片探头,主要用于纵波探伤。直探头由插座、外壳、保护膜、压电晶片、吸声材料等组成,头接触面为可更换的软膜,用于检测表面粗糙的工件。
2、超声波探伤仪斜探头
进行斜射探伤用的探头,主要用于横波探伤。斜探头由斜块、压电晶片、吸声材料、外壳、插座等组成,斜探头的声束与探头表面倾斜,因此可用于检测直声束无法到达的部位、或者缺陷的方向与检测面之间存在夹角的区域。
8、超声波水浸式探头
用于半自动或者自动化探伤系统中。当探头发射的声束轴线垂直于检测面时,纵波直声束扫查工件;调节探头声束轴线与检测面成一定的夹角,声束在水和工件这两种介质的界面折射,可在工件中产生倾斜的横波声束来扫查工件。将探头晶片前面的有机玻璃或者固化的环氧树脂加工成一定弧度(球面或者圆柱面),可得到点聚焦或者线聚焦的水浸式探头。

超声波检测时探头选择原则

超声波检测时探头选择原则

超声波探头角度过大,应该如何调整1.老师您好,我们的超声波探头的视角是60度的,现在想调整角度的话,如何调整为40度角的话,要加喇叭形状的还是直筒形状的结构呢,加的高度有什么计算原则,还有应该选择什么材质的呢 ?超声波探伤中,超声波的发射和接收都是通过探头来实现的。

探头的种类很多,结构型式也不一样。

探伤前应根据被检对象的形状、衰减和技术要求来选择探头。

探头的选择包括探头型式、频率、晶片尺寸和斜探头K值的选择等。

1.探头型式的选择常用的探头型式有纵波直探头、横波斜探头表面波探头、双晶探头、聚焦探头等。

一般根据工件的形状和可能出现缺陷的部位、方向等条件来选择探头的型式,使声束轴线尽量与缺陷垂直。

纵波直探头只能发射和接收纵波,束轴线垂直于探测面,主要用于探测与探测面平行的缺陷,如锻件、钢板中的夹层、折叠等缺陷。

横波斜探头是通过波形转换来实现横波探伤的。

主要用于探测与深测面垂直或成一定角的缺陷。

如焊缝生中的未焊透、夹渣、未溶合等缺陷。

表面波探头用于探测工件表面缺陷,双晶探头用于探测工件近表面缺陷。

聚焦探头用于水浸探测管材或板材。

2.探头频率的选择超声波探伤频率在O.5~10MHz之间,选择范围大。

一般选择频率时应考虑以下因索。

(1)由于波的绕射,使超声波探伤灵敏度约为,因此提高频率,有利于发现更小的缺陷。

(2)频率高,脉冲宽度小,分辨力高,有利于区分相邻缺陷。

(3) 可知,频率高,波长短,则半扩散角小,声束指向性好,能量集中,有利于发现缺陷并对缺陷定位。

(4) 可知,频率高,波长短,近场区长度大,对探伤不利。

(5) 可知,频率增加,衰减急剧增加。

由以上分析可知,频率的离低对探伤有较大的影响。

频率高,灵敏度和分辨力高,指向性好,对探伤有利。

但频率高,近场区长度大,衰减大,又对探伤不利。

实际探伤中要全面分析考虑各方面的因索,合理选择频率。

一般在保证探伤灵敏度的前提下尽可能选用较低的频率。

对于晶粒较细的锻件、轧制件和焊接件等,一般选用较高的频率,长用2.5~5.0MHz。

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考

编号被测工件厚度选择探头和斜率14—5mm6×6 K3不锈钢:1.25MHz铸铁:0.5—2.5 MHz普通钢:5MHz26—8mm8×8 K339—10mm9×9 K3411—12mm9×9 K2.5513—16 mm9×9 K2617—25 mm13×13 K2726—30 mm13×13 K2.5831—46 mm13×13 K1.5947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1)20×20 ( K2—K1)超声波探伤在无损检测焊接质量中的作用焊缝检验方法:1,外观检查.2,致密性试验和水压强度试验.3,焊缝射线照相.4,超声波探伤.5,磁力探伤.6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。

无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。

肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。

至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。

那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。

用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。

利用声音来检测物体的好坏,这种方法早已被人们所采用。

例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。

但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。

超声波探伤检测方案

超声波探伤检测方案

1、检测方案流 程 图1.1 钢结构焊接质量无损检测依据《钢结构工程施工质量验收规范》GB 50205-2020及《钢结构超声波探伤及质量分级法》JG/T 203-2007规定,采用超声波法对焊缝内部进行探伤检测,设计质量等级为一级的焊缝探伤比例为100%,设计质量等级为二级的焊缝探伤比例为20%。

1.1.1 检测区域的选择⑴超声波检测应在焊缝及探伤表面经外观检查合格后方可进行,应划好检测区域,标出检测区段编号。

⑵检测区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一般区域,这区域最小10mm ,最大20mm 。

⑶接头移动区应清除焊接飞溅、铁屑、油垢及其它外部杂质。

探伤区域表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过 6.3um ,必要时进行打磨。

a 、采用一次反射法或串列式扫查探伤时,探头移动区应大于2.5δk ,(其中,δ为板厚,k 为探头值);b 、采用直射法探伤时,探头移动区应大于1.25δk 。

检测结果处理不合格 接受检测委托探伤检测准备现场检测操作审 核 检测结果评定 检测报告 检测人员、工艺 材料设备准备 业 主返工⑷去除余高的焊接,应将余高打磨到与临邻近母材平齐。

保留余高焊缝,如焊缝表面有咬边,较大的隆起和凹陷等也应进行适当修磨,并做圆滑过渡以免影响检测结果的评定。

1.1.2 检测频率检测频率f一般在2-5MHz的范围内选择,推荐选用2~2.5MHz 的频率检测,特殊情况下,可选用低于2MHz或高于2.5MHz的检测频率,但必须保证系统灵敏度的要求。

1.1.3 仪器、试块、耦合剂、探头1、仪器:CTS-9002+型超声波探伤仪、PXUT-300C型超声波探伤仪2、试块:CSK-IA 试块、RB-2试块、CSK-ICj 试块3、耦合剂应选用适当的液体或模糊状物作耦合剂。

耦合剂应具备有良好透声性和适宜流动性,不应对材料和人体有损伤作用。

同时应便于检测后清理。

典型耦合剂为水、机油、甘油和浆糊。

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考第一篇:焊缝探伤超声波探头的选择方案参考焊缝探伤超声波探头的选择方案参考编号被测工件厚度选择探头和斜率选择探头和斜率14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13(K2—K1)10121—400 mm18×18(K2—K1)20×20(K2—K1)超声波探伤在无损检测焊接质量中的作用焊缝检验方法: 1,外观检查.2,致密性试验和水压强度试验.3,焊缝射线照相.4,超声波探伤.5,磁力探伤.6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。

无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。

肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。

至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。

那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。

用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。

利用声音来检测物体的好坏,这种方法早已被人们所采用。

例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。

超声波检测焊缝时如何选择斜探头

超声波检测焊缝时如何选择斜探头

超声波检测焊缝时如何选择斜探头在焊接件超声波检测工作中,选择合适的探头是发现缺陷、并对缺陷定位和定量的关键。

因此在进行超声波检验之前,一定要对检验对像有一个充分的了解,对可能产生的缺陷有一定的认识,从而根据这些情况来选择探头。

一、频率的选择频率的大小主要影响探头近场区的长度和半扩散角的大小,频率高,波长短,声束窄、扩散角小,能量集中,声束指向性好,因为波长短,对发现细小缺陷的能力强,分辨力高,缺陷定位准确。

但是频率高,声波在材料中的衰减大,穿透能力差,频率高,近场区较大,对薄板工件发现近表面缺陷能力减弱,在选择探头频率时要综合考虑。

对厚板对接焊缝应尽量选择频率小一些,一般取2MHz左右;特别是铸件和奥氏体不锈钢件,衰减大,频率一般选0.5;-;1MH,对中等厚度板对接焊缝可选择频率较大一些的探头一般选择2.5MHz的探头,薄板最大频率可选择5MHz。

二、晶片尺寸的选择晶片尺寸的大小决定了超声波的发射功率,晶片尺寸越大,发射功率越大,晶片尺寸大,半扩散角小,声束指向性好,信噪比优于小晶片探头,未扩散区增大,相对扫查的厚度范围较大,对厚板应尽量选择晶片尺寸大一些的探头,晶片尺寸大,相对扫查宽度大,能够提高工作效率。

晶片尺寸大,近场较大,对于容器筒体或接管表面为曲面时为保证耦合,探头晶片不宜过大。

对于奥氏体不锈钢焊缝,为了减少晶粒散射的面积,应当选用大晶片探头。

晶片尺寸大对于薄板材料来说近场大,对探伤不利,在保证强度足够的前提下尽量选择晶片尺寸小一些的探头。

方形晶片相对长方形晶片发射能量集中,在选择晶片时,应优先选择方形晶片。

三、K值的选择K值对探伤灵敏度、声束轴线的方向,一次波的声程有较大的影响,对于有机玻璃制成的斜楔,在K=0.84时,声压往复透射率高,K值越大,折射角大,一次波的声程大,当检测厚壁工件时,应选用较小的K值,薄壁工件时,应选择较大K值,焊缝检测过程中应保证主声束能够扫查整个焊缝截面。

无损检测超声波检测探头选择

无损检测超声波检测探头选择

无损检测超声波检测探头选择分析摘要:超声检测一般是指使超声波与工件相互作用,就反射,透射和散射的波进行研究,对工件宏观缺陷检测,几何特性测量,组织结构和力学性能的变化的检测和表征,并进行对其特定应用进行评价的技术。

超声波检测通常指宏观缺陷检测和材料厚度测量。

如在众多有关超声检验的技术规范中,对诸如确定缺陷埋藏深度,评定缺陷的当量大小,延伸长度以及缺陷投影面积等都有明确的方法规定,对保证产品构件的质量和安全使用具有重大作用。

这主要是由于缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声波传播方向的长度和厚度、缺陷的表面粗糙度、缺陷内含物以及缺陷的种类和性质等等。

可见,超声检测是一个综合复杂因素,我们要把最基础的探头选择好,才会给我们带来不必要的麻烦。

1.探头分类(1)、以压电晶体分(2)、探头结构形式分类:a.直探头:单晶纵波直探头,双晶纵波直探头。

b.斜探头:单晶横波斜探头,双晶横波斜探头,1<L<Ⅱ单晶纵波斜探头L<1;c.爬波探头:L在1附近为爬波探头;d.表面波探头:L≧Ⅱ;e.带曲率探头:大多数为横波探头,分周向曲率、轴向曲率。

横波周向曲率探头适合无缝钢管、直缝焊管、筒型锻件、轴类工件等轴向缺陷的检测(工件直径小于2000.00mm时为保证耦合良好都需磨周向曲率)。

横波轴向曲率探头适合无缝钢管、钢管对接焊缝、筒型锻件、轴类工件等径向缺陷的检测(工件直径小于600.00mm时为保证耦合良好都需磨轴向曲率)。

f.聚焦探头:点聚焦(压电晶片为锅底型);线聚焦(压电晶片为瓦片型);2、探头规格型号的正确表达方式:(1).纵波单晶直探头:频率-压电晶体材质-压电晶体尺寸-00或(Z)。

(2).纵波双晶直探头:频率-压电晶体材质-压电晶体尺寸-F值(菱形区对角线交点深度)。

(3).纵波单晶斜探头:频率-压电晶体材质-压电晶体尺寸-βL(纵波折射角度)。

(4).横波单晶斜探头:频率-压电晶体材质-压电晶体尺寸-K值或(βS横波折射角度)。

超声波探伤检测方案

超声波探伤检测方案

1.1钢结构焊接质量无损检测依据《钢结构工程施工质量验收规范》GB50205-2020及《钢结构超声波探伤及质量分级法》JG/T203-2007规定,采用超声波法对焊缝内部进行探伤检测,设计质量等级为一级的焊缝探伤比例为100%,设计质量等级为二级的焊缝探伤比例为20%。

1.1.1检测区域的选择⑴超声波检测应在焊缝及探伤表面经外观检查合格后方可进行,应划好检测区域,标出检测区段编号。

⑵检测区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一般区域,这区域最小10mm,最大20mm。

⑶接头移动区应清除焊接飞溅、铁屑、油垢及其它外部杂质。

探伤区域表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3um,必要时进行打磨。

a、采用一次反射法或串列式扫查探伤时,探头移动区应大于2.56k,(其中,§为板厚,k为探头值);b、采用直射法探伤时,探头移动区应大于1.256k。

⑷去除余高的焊接,应将余高打磨到与临邻近母材平齐。

保留余高焊缝,如焊缝表面有咬边,较大的隆起和凹陷等也应进行适当修磨,并做圆滑过渡以免影响检测结果的评定。

1.1.2检测频率检测频率f一般在2-5MHz的范围内选择,推荐选用2〜2.5MHz的频率检测,特殊情况下,可选用低于2MHz或高于2.5MHz的检测频率,但必须保证系统灵敏度的要求。

1.1.3仪器、试块、耦合剂、探头1、仪器:CTS-9002+型超声波探伤仪、PXUT-300C型超声波探伤仪2、试块:CSK-IA试块、RB-2试块、CSKTCj试块3、耦合剂应选用适当的液体或模糊状物作耦合剂。

耦合剂应具备有良好透声性和适宜流动性,不应对材料和人体有损伤作用。

同时应便于检测后清理。

典型耦合剂为水、机油、甘油和浆糊。

在试块上调节仪器和产品检测应采用相同的耦合剂。

4、探头:斜探头:频率为2.5-5MHz,前沿为10-20mm,晶片尺寸为6X6、9X9、13X13(mm);直探头:频率为2.5-5MHz,直径为14或20mm。

焊缝超声波探伤标准

焊缝超声波探伤标准

焊缝超声波探伤标准焊接是金属材料加工中常见的工艺,而焊缝作为焊接的重要部分,其质量直接影响到整体结构的安全性和可靠性。

为了保证焊缝的质量,超声波探伤技术被广泛应用于焊缝的质量检测中。

本文将介绍焊缝超声波探伤的标准,以及其在焊接工艺中的重要性。

首先,焊缝超声波探伤的标准主要包括超声波探伤设备的选择、探头的选择、探伤技术参数的设置等内容。

在选择超声波探伤设备时,需要考虑焊缝的类型、厚度和材料,以及探伤的环境条件等因素,以确保设备的适用性和可靠性。

探头的选择也是至关重要的,不同类型的焊缝需要选择不同频率和形式的探头,以获得更准确的检测结果。

此外,探伤技术参数的设置也需要根据具体的焊缝情况进行调整,包括脉冲重复频率、增益、阈值等参数的设置,以保证探伤的准确性和可靠性。

其次,焊缝超声波探伤在焊接工艺中的重要性不言而喻。

通过超声波探伤技术,可以及时发现焊缝中的各种缺陷,如气孔、夹杂物、裂纹等,从而及时采取措施进行修补或重新焊接,以确保焊缝的质量。

同时,超声波探伤还可以对焊接工艺参数进行优化和调整,以提高焊接质量和效率。

因此,焊缝超声波探伤标准的制定和执行对于保障焊接质量和安全具有重要意义。

总之,焊缝超声波探伤标准是现代焊接工艺中不可或缺的一部分,其准确性和可靠性直接关系到焊接结构的安全性和可靠性。

通过严格执行焊缝超声波探伤标准,可以及时发现和处理焊缝中的各种缺陷,提高焊接质量,确保焊接结构的安全可靠。

因此,各个相关行业和企业都应高度重视焊缝超声波探伤标准的制定和执行,以推动焊接工艺的质量提升和技术进步。

在实际应用中,需要根据具体的焊接项目和要求,结合相关标准和规范,制定适合的焊缝超声波探伤方案,并严格执行,以确保焊接质量和安全。

同时,也需要不断加强对焊缝超声波探伤技术的研究和应用,提高检测的准确性和可靠性,为焊接工艺的发展和提升质量提供技术支持和保障。

综上所述,焊缝超声波探伤标准是焊接工艺中的重要环节,其准确执行对于确保焊接质量和安全具有重要意义。

焊缝的超声波探伤

焊缝的超声波探伤

超声波的反射、折射、波形转换
在有机玻璃与钢的介面: 第一临界角为α=27.2°,βS=33.3° 第二临界角为α=56.7°,βS=90° 用于焊缝检测的超声波斜探头的入射 角必须大于第一临界角而小于第二临 界角。 我国习惯:斜探头的横波折射角用横 波折射角度的正切值表 示,如K=2
超声波探伤仪
超声波探伤用试块
调节:探头的前沿、K值、声速
超声波探伤用试块
CSK-IIIA
距离-波幅(DAC)曲线绘制
三条曲线生成后,按“增益”键,使用方向键调节曲线的高底, 使判废线达到屏幕的80%高度,进入探伤界面,进行探伤检测。
探测灵敏度的选定
探测灵敏度决定了检测缺陷的能力 灵敏度高,检测缺陷的能力大,探伤时反射的杂波太多,影响缺陷波 的识别 ;灵敏度低,检测缺陷的能力也低,会漏掉缺陷 。 表 距离-波幅(DAC)曲线的灵敏度 级别
未熔合
未焊透
焊瘤
烧穿
下塌
超声波探伤基本方法—直接接触法
垂直入射法 ——采用直探头将声束垂直入射工件探伤面进行探 伤的方法。

B’
斜角探伤法
——是采用斜探头将声束倾斜入射工件探伤面进行探 伤的方法。
探测面的修整
采用二次波探伤,探测面修整宽度为:
S ≥ 2KT+50 (mm)
A
DAC曲线 8~50
B
板厚,mm 8~300
C
8~300
判废线
定量线 评定线
DAC
DAC-10dB DAC-16dB
DAC-4dB
DAC-10dB DAC-16dB
DAC-2dB
DAC-8dB DAC-14dB
焊接接头类型
对接接头
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊缝探伤超声波探头的选择方案参考编号被测工件厚度选择探头和斜率选择探头和斜率14—5mm6×6 K3不锈钢:1.25MHz铸铁:0.5—2.5 MHz普通钢:5MHz26—8mm8×8 K339—10mm9×9 K3411—12mm9×9 K2.5513—16 mm9×9 K2617—25 mm13×13 K2726—30 mm13×13 K2.5831—46 mm13×13 K1.5947—120 mm13×13( K2—K1)10121—400 mm18×18 ( K2—K1)20×20 ( K2—K1)超声波探伤在无损检测焊接质量中的作用焊缝检验方法:1,外观检查.2,致密性试验和水压强度试验.3,焊缝射线照相.4,超声波探伤.5,磁力探伤.6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。

无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。

肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。

至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。

那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。

用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。

利用声音来检测物体的好坏,这种方法早已被人们所采用。

例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。

但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。

由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

下面介绍一下超声波探伤在实际工作中的应用。

接到探伤任务后,首先要了解图纸对焊接质量的技术要求。

目前钢结构的验收标准是依据GB50205-95《钢结构工程施工及验收规范》来执行的。

标准规定:对于图纸要求焊缝焊接质量等级为一级时评定等级为Ⅱ级时规范规定要求做100%超声波探伤;对于图纸要求焊缝焊接质量等级为二级时评定等级为Ⅲ级时规范规定要求做20%超声波探伤;对于图纸要求焊缝焊接质量等级为三级时不做超声波内部缺陷检查。

在此值得注意的是超声波探伤用于全熔透焊缝,其探伤比例按每条焊缝长度的百分数计算,并且不小于200mm。

对于局部探伤的焊缝如果发现有不允许的缺陷时,应在该缺陷两端的延伸部位增加探伤长度,增加长度不应小于该焊缝长度的10%且不应小于200mm,当仍有不允许的缺陷时,应对该焊缝进行100%的探伤检查,其次应该清楚探伤时机,碳素结构钢应在焊缝冷却到环境温度后、低合金结构钢在焊接完成24小时以后方可进行焊缝探伤检验。

另外还应该知道待测工件母材厚度、接头型式及坡口型式。

截止到目前为止我在实际工作中接触到的要求探伤的绝大多数焊缝都是中板对接焊缝的接头型式,所以我下面主要就对焊缝探伤的操作做针对性的总结。

一般地母材厚度在8-16mm之间,坡口型式有I型、单V型、X型等几种形式。

在弄清楚以上这此东西后才可以进行探伤前的准备工作。

在每次探伤操作前都必须利用标准试块(CSK-IA、CSK-ⅢA)校准仪器的综合性能,校准面板曲线,以保证探伤结果的准确性。

1、探测面的修整:应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等,光洁度一般低于▽4。

焊缝两侧探伤面的修整宽度一般为大于等于2KT+50mm,(K:探头K值,T:工件厚度)。

一般的根据焊件母材选择K值为2.5探头。

例如:待测工件母材厚度为10mm,那么就应在焊缝两侧各修磨100mm。

2、耦合剂的选择应考虑到粘度、流动性、附着力、对工件表面无腐蚀、易清洗,而且经济,综合以上因素选择浆糊作为耦合剂。

3、由于母材厚度较薄因此探测方向采用单面双侧进行。

4、由于板厚小于20mm所以采用水平定位法来调节仪器的扫描速度。

5、在探伤操作过程中采用粗探伤和精探伤。

为了大概了解缺陷的有无和分布状态、定量、定位就是精探伤。

使用锯齿形扫查、左右扫查、前后扫查、转角扫查、环绕扫查等几种扫查方式以便于发现各种不同的缺陷并且判断缺陷性质。

6、对探测结果进行记录,如发现内部缺陷对其进行评定分析。

焊接对头内部缺陷分级应符合现行国家标准GB11345-89《钢焊缝手工超声波探伤方法和探伤结果分级》的规定,来评判该焊否合格。

如果发现有超标缺陷,向车间下达整改通知书,令其整改后进行复验直至合格。

一般的焊缝中常见的缺陷有:气孔、夹渣、未焊透、未熔合和裂纹等。

到目前为止还没有一个成熟的方法对缺陷的性质进行准确的评判,只是根据荧光屏上得到的缺陷波的形状和反射波高度的变化结合缺陷的位置和焊接工艺对缺陷进行综合估判。

对于内部缺陷的性质的估判以及缺陷的产生的原因和防止措施大体总结了以下几点:1、气孔:单个气孔回波高度低,波形为单缝,较稳定。

从各个方向探测,反射波大体相同,但稍一动探头就消失,密集气孔会出现一簇反射波,波高随气孔大小而不同,当探头作定点转动时,会出现此起彼落的现象。

产生这类缺陷的原因主要是焊材未按规定温度烘干,焊条药皮变质脱落、焊芯锈蚀,焊丝清理不干净,手工焊时电流过大,电弧过长;埋弧焊时电压过高或网络电压波动太大;气体保护焊时保护气体纯度低等。

如果焊缝中存在着气孔,既破坏了焊缝金属的致密性,又使得焊缝有效截面积减少,降低了机械性能,特别是存链状气孔时,对弯曲和冲击韧性会有比较明显降低。

防止这类缺陷防止的措施有:不使用药皮开裂、剥落、变质及焊芯锈蚀的焊条,生锈的焊丝必须除锈后才能使用。

所用焊接材料应按规定温度烘干,坡口及其两侧清理干净,并要选用合适的焊接电流、电弧电压和焊接速度等。

2、夹渣:点状夹渣回波信号与点状气孔相似,条状夹渣回波信号多呈锯齿状波幅不高,波形多呈树枝状,主峰边上有小峰,探头平移波幅有变动,从各个方向探测时反射波幅不相同。

这类缺陷产生的原因有:焊接电流过小,速度过快,熔渣来不及浮起,被焊边缘和各层焊缝清理不干净,其本金属和焊接材料化学成分不当,含硫、磷较多等。

防止措施有:正确选用焊接电流,焊接件的坡口角度不要太小,焊前必须把坡口清理干净,多层焊时必须层层清除焊渣;并合理选择运条角度焊接速度等。

3、未焊透:反射率高,波幅也较高,探头平移时,波形较稳定,在焊缝两侧探伤时均能得到大致相同的反射波幅。

这类缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险性缺陷。

其产生原因一般是:坡口纯边间隙太小,焊接电流太小或运条速度过快,坡口角度小,运条角度不对以及电弧偏吹等。

防止措施有:合理选用坡口型式、装配间隙和采用正确的焊接工艺等。

4、未熔合:探头平移时,波形较稳定,两侧探测时,反射波幅不同,有时只能从一侧探到。

其产生的原因:坡口不干净,焊速太快,电流过小或过大,焊条角度不对,电弧偏吹等。

防止措施:正确选用坡口和电流,坡口清理干净,正确操作防止焊偏等。

5、裂纹:回波高度较大,波幅宽,会出现多峰,探头平移时反射波连续出现波幅有变动,探头转时,波峰有上下错动现象。

裂纹是一种危险性最大的缺陷,它除降低焊接接头的强度外,还因裂纹的末端呈尖销的缺口,焊件承载后,引起应力集中,成为结构断裂的起源。

裂纹分为热裂纹、冷裂纹和再热裂纹三种。

热裂纹产生的原因是:焊接时熔池的冷却速度很快,造成偏析;焊缝受热不均匀产生拉应力。

防止措施:限制母材和焊接材料中易偏析元素和有害杂质的含量,主要限制硫含量,提高锰含量;提高焊条或焊剂的碱度,以降低杂质含量,改善偏析程度;改进焊接结构形式,采用合理的焊接顺序,提高焊缝收缩时的自由度。

冷裂纹产生的原因:被焊材料淬透性较大在冷却过程中受到人的焊接拉力作用时易裂开;焊接时冷却速度很快氢来不及逸出而残留在焊缝中,氢原子结合成氢分子,以气体状态进到金属的细微孔隙中,并造成很大的压力,使局部金属产生很大的压力而形成冷裂纹;焊接应力拉应力并与氢的析集中和淬火脆化同时发生时易形成冷裂纹。

防止措施:焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解能在足够的温度区间内进行,避免淬硬组织的产生,同时有减少焊接应力的作用;焊接后及时进行低温退火,去氢处理,消除焊接时产生的应力,并使氢及时扩散到外界去;选用低氢型焊条和碱性焊剂或奥氏体不锈钢焊条焊丝等,焊材按规定烘干,并严格清理坡口;加强焊接时的保护和被焊处表面的清理,避免氢的侵入;选用合理的焊接规范,采用合理的装焊顺序,以改善焊件的应力状态。

超声波探伤仪原理:超声波探伤仪原理运用超声检测的方法来检测的仪器称之为超声波探伤仪。

超声波探伤仪原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,超声波探伤仪原理是通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。

超声波探伤仪原理的超声检测方法通常有穿透法、脉冲反射法、串列法等。

声波探伤仪的种类繁多,但在实际的探伤过程,超声波探伤仪原理脉冲反射式超声波探伤仪应用的最为广泛。

超声波探伤仪原理一般在均匀的材料中,缺陷的存在将造成材料的不连续,超声波探伤仪原理这种不连续往往又造成声阻抗的不一致,超声波探伤仪原理由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,超声波探伤仪原理反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。

超声波探伤仪原理的脉冲反射式超声波探伤仪就是根据这个原理设计的。

超声波探伤仪原理目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,超声波探伤仪原理所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,超声波探伤仪原理纵坐标是超声波反射波的幅值。

譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。

这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。

相关文档
最新文档