基因克隆的基本理论及实验技术
分子生物学实验中的克隆技术使用方法解析
分子生物学实验中的克隆技术使用方法解析克隆技术是分子生物学中常用的实验方法之一,它可以复制DNA分子,从而产生大量相同的DNA片段。
这项技术的应用非常广泛,包括基因工程、疾病研究、生物医药等领域。
本文将从克隆技术的原理、步骤和应用等方面进行解析。
克隆技术的原理是利用DNA分子的复制特性,通过PCR(聚合酶链式反应)或细菌转化等方法,将目标DNA片段复制出来。
首先,需要从源DNA中选择目标片段,可以通过限制性内切酶切割DNA,或利用PCR扩增目标片段。
然后,将目标片段与载体DNA连接,形成重组DNA。
最后,将重组DNA导入宿主细胞,使其复制并表达目标片段。
克隆技术的步骤包括DNA提取、DNA切割、连接、转化和筛选等。
首先,需要从细胞或组织中提取DNA。
DNA提取的方法有多种,包括酚-氯仿法、盐法、离心法等。
其次,需要选择适当的限制性内切酶对DNA进行切割。
限制性内切酶是一类能够识别特定DNA序列并切割的酶,它们可以将DNA切割成特定的片段。
然后,将目标片段与载体DNA进行连接。
载体DNA可以是质粒、噬菌体或人工染色体等,它们能够稳定地复制和传递目标片段。
连接的方法有多种,包括DNA连接酶法、化学连接法等。
连接完成后,将重组DNA导入宿主细胞,使其复制并表达目标片段。
最后,通过筛选方法,选择含有目标片段的克隆进行进一步研究。
克隆技术在分子生物学研究中有着广泛的应用。
首先,它可以用于基因工程,包括基因的克隆、表达和改造等。
通过克隆技术,科学家可以将感兴趣的基因从一个生物体中克隆到另一个生物体中,从而实现基因的转移和表达。
其次,克隆技术也可以用于疾病研究。
通过克隆疾病相关基因,科学家可以深入研究其功能和作用机制,为疾病的治疗和预防提供理论依据。
此外,克隆技术还可以用于生物医药领域,包括药物研发、疫苗生产等。
通过克隆技术,科学家可以大规模复制目标基因,从而实现药物和疫苗的生产。
当然,克隆技术也存在一些问题和挑战。
基因克隆与表达及功能鉴定研究
基因克隆与表达及功能鉴定研究在现代生命科学领域中,基因克隆与表达以及功能鉴定是非常重要的研究方向之一,它涉及到许多生物医学、农业、工业和环境等领域的研究和实际应用。
本文将从基因克隆与表达的基本原理、方法、技术和应用,以及功能鉴定的原理、方法、技术和应用等方面进行探讨。
一、基因克隆与表达基因克隆是指通过分子生物学技术,将含有某个或某些特定基因的DNA序列从一个大的DNA分子(如染色体)中分离出来,然后插入到特定的载体DNA中,形成重组DNA分子的过程。
基因表达是指基因信息的转录和翻译过程,将基因的DNA序列转录成RNA分子,然后翻译成蛋白质分子的过程。
基因表达是生物体形成和发展的基础,也是生命活动的重要表现形式。
1. 基因克隆原理基因克隆的主要原理是利用限制酶、DNA连接酶、DNA聚合酶以及质粒或噬菌体等DNA载体的特性,将特定DNA序列插入到载体DNA中,形成重组DNA分子。
限制酶是一种能够识别、切割DNA分子特定序列的酶,其识别序列具有一定的特异性。
DNA连接酶是一种能够连接两个DNA分子的酶,常用的有T4 DNA连接酶和快速连接酶等。
DNA聚合酶是一种能够在DNA模板上合成互补链的酶,其作用是在重组DNA分子中完成互补链的合成。
2. 基因克隆方法基因克隆的主要方法有限制性片段长度多态性(RFLP)分析、聚合酶链式反应(PCR)克隆、原核表达克隆和真核表达克隆等。
RFLP分析是一种利用限制酶对DNA序列进行切割,并根据不同的RFLP位点进行区分的方法,其主要应用于基因型鉴定和进化研究等领域。
PCR克隆是一种利用PCR技术扩增目标基因或DNA片段,并将扩增产物克隆到载体DNA中的方法,其主要应用于基因检测、DNA测序和分子克隆等领域。
原核表达克隆是一种利用质粒或噬菌体等原核生物作为DNA载体,将外源基因转入细菌或古细菌等原核生物细胞中,通过蛋白质表达实现基因功能研究的方法。
真核表达克隆是一种利用真核生物(如哺乳动物、鸟类、昆虫、线虫等)作为DNA载体,将外源基因转入具有表达能力的真核细胞中,通过蛋白质表达实现基因功能研究的方法。
cdna基因克隆的基本原理和流程
一、CDNA基因克隆的基本原理CDNAplementary DNA)是DNA的互补序列,通过反转录酶将mRNA作为模板合成的一种DNA。
CDNA基因克隆是利用逆转录酶将mRNA逆转录合成cDNA,并通过PCR或其他方法将cDNA插入到质粒载体中,实现对目标基因的克隆。
二、CDNA基因克隆的流程1. RNA提取:首先需要从细胞中提取出总RNA,可以使用TRIzol等试剂进行RNA的提取纯化工作。
2. 反转录合成cDNA:将提取得到的RNA作为模版,利用逆转录酶进行cDNA的合成。
反转录反应通常包括RNA模版、随机引物、dNTPs、逆转录酶和缓冲液,并经过一系列温度循环反应,将mRNA 逆转录成cDNA。
3. cDNA纯化:为了避免反转录反应中产生的非特异性产物和杂质,需要对反转录反应产物进行纯化。
4. cDNA扩增:对cDNA进行PCR扩增,以获得目标基因的cDNA 片段。
PCR反应体系包括cDNA模板、引物、dNTPs、Taq聚合酶和缓冲液,通过一系列温度循环反应,扩增目标基因cDNA片段。
5. 酶切与连接:将PCR扩增得到的cDNA片段与质粒载体进行酶切,并在两者的黏端上连接。
6. 转化:将连接得到的质粒转化入大肠杆菌等细菌中,使其进行复制。
7. 筛选与鉴定:通过筛选和鉴定,选出携带目标基因cDNA片段的质粒,进行测序和分析,最终确定目标基因序列。
三、CDNA基因克隆的应用CDNA基因克隆技术已广泛应用于基因克隆、基因表达等多个领域。
在科研领域中,通过CDNA基因克隆技术可以方便快捷地获得目标基因的cDNA,实现对目标基因的研究和功能分析;在医药领域,CDNA基因克隆技术也被应用于基因治疗、蛋白表达等方面。
总结:CDNA基因克隆是一种重要的基因工程技术,通过反转录酶合成cDNA并将其插入到质粒中,可以方便地获取目标基因序列,具有广泛的应用前景。
掌握CDNA基因克隆的基本原理和流程对于开展相关实验研究具有重要意义。
克隆技术的实验原理和应用
克隆技术的实验原理和应用1. 实验原理克隆技术是指通过无性生殖繁殖方法,复制一个或多个与原始个体完全相同的个体。
克隆技术的实验原理主要包括以下几个步骤:1.1 细胞核移植细胞核移植是克隆技术的核心步骤之一。
它通过将需要克隆的个体的成体细胞的细胞核,移植到无细胞核的胚胎细胞或卵母细胞中,从而形成一个与原个体基因相同的胚胎。
1.2 胚胎移植胚胎移植是指将经过细胞核移植后形成的胚胎,移植到另一只动物的子宫内进行发育。
这样的胚胎具有与原个体相同的基因组,可以发育成一个与原个体完全相同的个体。
1.3 基因组克隆基因组克隆是指通过体细胞核移植的方法,复制一个个体的完整基因组。
这种克隆方法可以使得克隆个体与原个体完全相同,包括基因组的DNA序列和表达。
1.4 胚胎干细胞克隆胚胎干细胞克隆是指通过体细胞核移植的方法,获得可以分化为各种类型细胞的胚胎干细胞。
这些胚胎干细胞具有多向分化潜能,可以用于治疗各种疾病。
2. 应用克隆技术在生物领域有着广泛的应用,以下是一些常见的应用领域:2.1 农业生产克隆技术在农业生产中可以用于繁殖优良品种。
通过克隆技术,可以复制优秀的作物或畜禽个体,保留其优良基因,并加速优良种质资源的传播和繁殖。
2.2 医学研究克隆技术在医学研究领域有着重要的应用。
通过克隆技术,可以研究疾病的基因机制,探索治疗方法,并提供药物筛选平台。
2.3 生殖医学克隆技术在生殖医学中可以用于治疗不孕症或遗传性疾病。
通过体细胞核移植技术,可以获得与患者基因相同的胚胎,进行移植治疗。
2.4 动物保护克隆技术可以帮助保护濒危物种。
通过克隆技术,可以复制濒危物种的个体,增加其数量,并对其进行繁殖保护。
2.5 人类遗传资源保存克隆技术可以用于保存人类的遗传资源。
通过克隆技术,可以冷冻保存个体的细胞或组织,以备将来使用。
3. 限制和伦理问题克隆技术的应用也面临一些限制和伦理问题:3.1 技术限制目前的克隆技术仍存在技术限制,如胚胎发育的成功率低、健康问题和产生的胚胎干细胞具有不稳定性等。
简述基因克隆的基本过程
简述基因克隆的基本过程
基因克隆是指利用生物学技术进行繁殖某一抗原性基因组片段实现基因复制的过程。
主要由下面几个步骤组成:
一、启动物获取:
1. 从细胞中分离出DNA片段;
2. 使用酶切技术将DNA片段的‘钩子’附加到对应的载体上;
二、基因克隆扩增:
1. 把完美结合的细菌进行培养,促进DNA分子的复制;
2. 使用克隆抗体来处理载体以防止它们散发;
三、基因克隆分离:
1. 使用特定的限制酶进行裂解,将前面复制的DNA分离出来;
2. 使用水和石蜡将克隆体分离;
四、基因克隆实验:
1. 实验研究克隆DNA片段表达的基因;
2. 用PCR微量实验研究克隆体的表达水平;
五、基因突变:
1. 对克隆的DNA片段进行诱变;
2. 使用嵌合子技术将变异的片段插入到载体中;
六、基因表达检测:
1. 检测新插入的基因是否有正常表达;
2. 研究新基因对于抗性或者功能的影响;
七、生成抗原性基因组片段:
1. 用PCR实验研究整个新基因的表达水平;
2. 使用基因合成技术进一步改善新基因的特性;
基因克隆技术的应用有很大的广度,能够有效地增强病原体与病毒的抗体力,提升受抗原抗药的抵抗力,为生物科学的发展提供更多的研究材料。
PCR技术克隆目的基因全过程
实验:目的基因克隆PCR技术课前预习PCR polymerase chain reaction 反应的基本原理;目的要求1.学习和掌握PCR 反应的基本原理与实验技术方法;2.认真完成每一步实验操作,详细记录实验现象和结果并加以分析和总结;基本原理类似于DNA 的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物;PCR 由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA 与引物的退火复性:模板DNA 经加热变性成单链后,温度降至55℃左右,引物与模板DNA 单链的互补序列配对结合;③引物的延伸:DNA 模板--引物结合物在TaqDNA 聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板;每完成一个循环需2~4 分钟,2~3 小时就能将待扩目的基因扩增放大几百万倍;到达平台期Plateau所需循环次数取决于样品中模板的拷贝;实验用品1.材料:重组质粒DNA作为模板2.器材和仪器:移液器及吸头,硅烷化的PCR 小管,DNA扩增仪PE 公司,琼脂糖凝胶电泳所需设备电泳槽及电泳仪,台式高速离心机3.试剂:①10×PCR 反应缓冲液:500mmol/L KCl, 100mmol/L Tris·Cl, 在25℃下, , %Triton X-100;②MgCl2 :25mmol/L;③ 4 种dNTP 混合物:每种L;④Taq DNA聚合酶5U/μl;⑤T4 DNA连接酶及连接缓冲液:方法步骤一PCR反应1. 依次混匀下列试剂35μl H2 O 5μl 10×PCR反应缓冲液4μl 25mmol/L MgCl2 4μl 4种dNTP μl 上游引物引物1μl 下游引物引物2μl 模板DNA约1ng 混匀后离心5秒;2. 将混合物在94℃下加热5分钟后冰冷,迅速离心数秒, 使管壁上液滴沉至管底,加入Taq DNA聚合酶μl约,混匀后稍离心,加入一滴矿物油覆盖于反应混合物上;3. 用94℃变性1分钟,45℃退火1分钟, 72℃延伸2分钟, 循环35轮,进行PCR;最后一轮循环结束后, 于72℃下保温10分钟,使反应产物扩增充分;4 电泳按前所述,取10μl扩增产物用1%琼脂糖凝胶进行电泳分析,检查反应产物及长度; 注意1. PCR非常灵敏, 操作应尽可能在无菌操作台中进行;2. 吸头、离心管应高压灭菌, 每次吸头用毕应更换, 不要互相污染试剂;3. 加试剂前, 应短促离心10秒钟, 然后再打开管盖, 以防手套污染试剂及管壁上的试剂污染吸头侧面;4. 应设含除模板DNA所有其它成分的负对照;实验结果注意事项微量操作、PCR 反应体系的设计、引物设计、扩增条件的优化思考题1. 降低退火温度对反应有何影响2. 延长变性时间对反应有何影响3. 循环次数是否越多越好为何4. PCR有哪些用途举例说明;附:PCR知识供参考一PCR 反应体系与反应条件标准的PCR 反应体系:10×扩增缓冲液10ul4 种dNTP 混合物各200umol/L引物各10~100pmol模板DNA ~2ugTaq DNA聚合酶Mg2+ L加双或三蒸水至100ulPCR 反应五要素:参加PCR 反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+引物:引物是PCR 特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度;理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR 就可将模板DNA在体外大量扩增;设计引物应遵循以下原则:①引物长度:15-30bp,常用为20bp左右;②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb 的片段;③引物碱基:G+C 含量以40-60%为宜,G+C 太少扩增效果不佳,G+C 过多易出现非特异条带;ATGC最好随机分布,避免5 个以上的嘌呤或嘧啶核苷酸的成串排列;④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带;⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR 失败;⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处;⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性;引物量:每条引物的浓度~1umol 或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会;酶及其浓度:目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶;催化一典型的PCR 反应约需酶量指总反应体积为100ul 时,浓度过高可引起非特异性扩增,浓度过低则合成产物量减少;dNTP 的质量与浓度:dNTP 的质量与浓度和PCR 扩增效率有密切关系,dNTP 粉呈颗粒状,如保存不当易变性失去生物学活性;dNTP 溶液呈酸性,使用时应配成高浓度后,以1M NaOH 或1M Tris;HCl的缓冲液将其PH调节到~,小量分装,-20℃冰冻保存;多次冻融会使dNTP 降解;在PCR 反应中,dNTP 应为50~200umol/L, 尤其是注意 4 种dNTP 的浓度要相等等摩尔配制, 如其中任何一种浓度不同于其它几种时偏高或偏低,就会引起错配;浓度过低又会降低PCR 产物的产量;dNTP 能与Mg2+结合,使游离的Mg2+浓度降低;模板靶基因核酸:模板核酸的量与纯化程度,是PCR 成败与否的关键环节之一,传统的DNA 纯化方法通常采用SDS 和蛋白酶K 来消化处理标本;SDS 的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K 能水解消化蛋白质,特别是与DNA 结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸;提取的核酸即可作为模板用于PCR 反应;一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR 扩增;RNA 模板提取一般采用异硫氰酸胍或蛋白酶K 法,要防止RNase降解RNA;Mg2+浓度:Mg2+对PCR 扩增的特异性和产量有显著的影响,在一般的PCR 反应中,各种dNTP 浓度为200umol/L时,Mg2+浓度为~L为宜;Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少;PCR 反应条件的选择PCR 反应条件为温度、时间和循环次数;温度与时间的设置:基于PCR 原理三步骤而设置变性-退火-延伸三个温度点;在标准反应中采用三温度点法,双链DNA 在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸;对于较短靶基因长度为100~300bp 时可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸此温度Taq DNA酶仍有较高的催化活性;①变性温度与时间:变性温度低,解链不完全是导致PCR 失败的最主要原因;一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响;此步若不能使靶基因模板或PCR 产物完全变性,就会导致PCR 失败;②退火复性温度与时间:退火温度是影响PCR 特异性的较重要因素;变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合;由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞;退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度;对于20 个核苷酸,G+C 含量约50%的引物,55℃为选择最适退火温度的起点较为理想;引物的复性温度可通过以下公式帮助选择合适的温度:Tm值解链温度=4G+C+2A+T复性温度=Tm值-5~10℃在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR 反应的特异性;复性时间一般为30~60sec,足以使引物与模板之间完全结合;③延伸温度与时间:Taq DNA聚合酶的生物学活性:70~80℃150核苷酸/S/酶分子70℃60 核苷酸/S/酶分子55℃24 核苷酸/S/酶分子高于90℃时, DNA合成几乎不能进行;PCR 反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合;PCR 延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够的;3~4kb 的靶序列需3~4min;扩增10Kb 需延伸至15min;延伸进间过长会导致非特异性扩增带的出现;对低浓度模板的扩增,延伸时间要稍长些;循环次数:循环次数决定PCR 扩增程度;PCR 循环次数主要取决于模板DNA的浓度;一般的循环次数选在30~40 次之间,循环次数越多,非特异性产物的量亦随之增多;PCR 反应特点特异性强PCR 反应的特异性决定因素为:①引物与模板DNA 特异正确的结合;②碱基配对原则;③Taq DNA 聚合酶合成反应的忠实性;④靶基因的特异性与保守性;其中引物与模板的正确结合是关键;引物与模板的结合及引物链的延伸是遵循碱基配对原则的;聚合酶合成反应的忠实性及Taq DNA 聚合酶耐高温性,使反应中模板与引物的结合复性可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度;再通过选择特异性和保守性高的靶基因区,其特异性程度就更高;灵敏度高PCR 产物的生成量是以指数方式增加的,能将皮克pg=10 -12 g量级的起始待测模板扩增到微克ug=10 -6 g水平;能从100 万个细胞中检出一个靶细胞;在病毒的检测中,PCR 的灵敏度可达3 个RFU空斑形成单位;在细菌学中最小检出率为3 个细菌;简便、快速PCR 反应用耐高温的Taq DNA 聚合酶,一次性地将反应液加好后,即在DNA 扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应;扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广;对标本的纯度要求低不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板;可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA 扩增检测;PCR 扩增产物分析PCR 产物是否为特异性扩增,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论;PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法;凝胶电泳分析:PCR产物电泳,EB 溴乙锭染色紫外仪下观察,初步判断产物的特异性;PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件;琼脂糖凝胶电泳:通常应用1~2%的琼脂糖凝胶,供检测用;聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析;酶切分析:根据PCR 产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究;分子杂交:分子杂交是检测PCR 产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法;Southern 印迹杂交:在两引物之间另合成一条寡核苷酸链内部寡核苷酸标记后做探针,与PCR 产物杂交;此法既可作特异性鉴定,又可以提高检测PCR 产物的灵敏度,还可知其分子量及条带形状,主要用于科研;斑点杂交:将PCR 产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR 产物特异性鉴定及变异分析;核酸序列分析:是检测PCR 产物特异性的最可靠方法;PCR 常见问题总结PCR 产物的电泳检测时间一般为48h 以内,有些最好于当日电泳检测,大于48h 后带型不规则甚致消失;假阴性,不出现扩增条带PCR 反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及活性④PCR循环条件;寻找原因亦应针对上述环节进行分析研究;模板:①模板中含有杂蛋白质,②模板中含有Taq 酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚;⑤模板核酸变性不彻底;在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改;酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性;需注意的是有时忘加Taq 酶或溴乙锭;引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR 失败或扩增条带不理想、容易弥散的常见原因;有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位;②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR 有可能失败,应和引物合成单位协商解决;如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度;③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效;④引物设计不合理,如引物长度不够,引物之间形成二聚体等;Mg2+浓度:Mg2+离子浓度对PCR 扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR 扩增产量甚至使PCR扩增失败而不出扩增条带;反应体积的改变:通常进行PCR 扩增采用的体积为20ul、30ul、50ul;或100ul,应用多大体积进行PCR 扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败;物理原因:变性对PCR 扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率;有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一;靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR 扩增是不会成功的;假阳性出现的PCR 扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高;引物设计不合适:选择的扩增序列与非目的扩增序列有同源性, 因而在进行PCR 扩增时, 扩增出的PCR产物为非目的性的序列;靶序列太短或引物太短,容易出现假阳性;需重新设计引物;靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性;这种假阳性可用以下方法解决:①操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外;②除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒;所用离心管及样进枪头等均应一次性使用;③必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸;二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性;可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR 方法来减轻或消除;出现非特异性扩增带PCR 扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带;非特异性条带的出现,其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体;二是Mg2+离子浓度过高、退火温度过低,及PCR 循环次数过多有关;其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增;其对策有:①必要时重新设计引物;②减低酶量或调换另一来源的酶;③降低引物量,适当增加模板量,减少循环次数;④适当提高退火温度或采用二温度点法93℃变性,65℃左右退火与延伸;出现片状拖带或涂抹带PCR 扩增有时出现涂抹带或片状带或地毯样带;其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起;其对策有:①减少酶量,或调换另一来源的酶;②减少dNTP的浓度;③适当降低Mg2+浓度;④增加模板量,减少循环次数;PCR 污染与对策PCR 反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生;污染原因一标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶或形成气溶胶而扩散,导致彼此间的污染;二PCR 试剂的污染:主要是由于在PCR 试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染.三PCR扩增产物污染:这是PCR反应中最主要最常见的污染问题, 因为PCR产物拷贝量大一般为1013拷贝/ml,远远高于PCR 检测数个拷贝的极限,所以极微量的PCR 产物污染,就可造成假阳就可形成假阳性;还有一种容易忽视,最可能造成PCR 产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样枪的反复吸样都可形成气溶胶而污染;据计算一个气溶胶颗粒可含48000 拷贝,因而由其造成的污染是一个值得特别重视的问题;四实验室中克隆质粒的污染:在分子生物学实验室及某些用克隆质粒做阳性对照的检验室,这个问题也比较常见;因为克隆质粒在单位容积内含量相当高,另外在纯化过程中需用较多的用具及试剂,而且在活细胞内的质粒,由于活细胞的生长繁殖的简便性及具有很强的生命力,其污染可能性也很大;污染的监测一个好的实验室,要时刻注意污染的监测,考虑有无污染是什么原因造成的污染,以便采取措施,防止和消除污染;对照试验1. 阳性对照:在建立PCR 反应实验室及一般的检验单位都应设有PCR 阳性对照,它是PCR 反应是否成功、产物条带位置及大小是否合乎理论要求的一个重要的参考标志;阳性对照要选择扩增度中等、重复性好,经各种鉴定是该产物的标本,如以重组质粒为阳性对照,其含量宜低不宜高100 个拷贝以下,但阳性对照尤其是重组质粒及高浓度阳性标本,其对检测或扩增样品污染的可能性很大;因而当某一PCR 试剂经自己使用稳定,检验人员心中有数时,在以后的实验中可免设阳性对照;2. 阴性对照:每次PCR 实验务必做阴性对照;它包括①标本对照:被检的标本是血清就用鉴定后的正常血清作对照;被检的标本是组织细胞就用相应的组织细胞作对照;②试剂对照:在PCR 试剂中不加模板DNA或RNA,进行PCR 扩增,以监测试剂是否污染;3. 重复性试验4. 选择不同区域的引物进行PCR 扩增防止污染的方法一合理分隔实验室:将样品的处理、配制PCR 反应液、PCR 循环扩增及PCR产物的鉴定等步骤分区或分室进行,特别注意样本处理及PCR产物的鉴定应与其它步骤严格分开;最好能划分①标本处理区;②PCR 反应液制备区;③PCR 循环扩增区;④PCR 产物鉴定区;其实验用品及吸样枪应专用,实验前应将实验室用紫外线消毒以破坏残留的DNA 或RNA;二吸样枪:吸样枪污染是一个值得注意的问题;由于操作时不慎将样品或模板核酸吸入枪内或粘上枪头是一个严重的污染源,因而加样或吸取模板核酸时要十分小心,吸样要慢,吸样时尽量一次性完成,忌多次抽吸,以免交叉污染或产生气溶胶污染;三预混和分装PCR试剂:所有的PCR 试剂都应小量分装,如有可能,PCR 反应液应预先配制好,然后小量分装,-20℃保存;以减少重复加样次数,避免污染机会;另外,PCR 试剂,PCR 反应液应与样品及PCR产物分开保存,不应放于同一冰盒或同一冰箱;四防止操作人员污染,使用一次性手套、吸头、小离心管应一次性使用;五设立适当的阳性对照和阴性对照,阳性对照以能出现扩增条带的最低量的标准病原体核酸为宜,并注意交叉污染的可能性,每次反应都应有一管不加模板的试剂对照及相应不含有被扩增核酸的样品作阴性对照;六减少PCR 循环次数,只要PCR 产物达到检测水平就适可而止;七选择质量好的Eppendorf管,以避免样本外溢及外来核酸的进入,打开离心管前应先离心,将管壁及管盖上的液体甩至管底部;开管动作要轻,以防管内液体溅出;参考文献一、主要教学参考书:1.基因工程原理第二版.吴乃虎编著,科学出版社2.分子克隆实验指南第三版.黄培堂等译,科学出版社3.基因克隆和DNA分析.魏群等译,高等教育出版社4.最新分子生物学实验技术梁国栋主编,科学出版5分子生物学实验指导主编:魏群高等教育出版社施普林格出版社二、主要参考文献:, SN, ACY Chang and L Hsu, 1972, Sci. 69:2110., HC and J Doly. 1979.,Nucleic Acids Res. 7:1513., C and P Borst, 1972.,Biochim. Biophys. Acta 269:192.F, RL Rodriguez, PJ Greene, MC Betlach, HL Heyneker, HW Boyer, JH Crosa, and S Falkow, 1977b,,Gene 2:95.K, F Faloona, S Scharf, R Saiki, G Horn and H Erlich, 1986.,Cold Spring Harbor Symp. Quant. Biol. 51:263.。
分子克隆部分实验报告
一、实验目的1. 学习分子克隆的基本原理和方法;2. 掌握质粒的提取、纯化、线性化及目的基因的插入等实验操作;3. 熟悉DNA的纯化、鉴定及重组载体的构建等实验技术。
二、实验原理分子克隆是指将目的基因片段从基因组DNA中分离出来,并在宿主细胞中复制和扩增的过程。
实验过程中,利用限制性内切酶切割目的基因和载体,通过连接酶将二者连接形成重组载体,然后转化宿主细胞,筛选出含有目的基因的克隆。
三、实验材料1. 质粒:pET-28a2. 目的基因:EGFP3. 限制性内切酶:BamHI、EcoRI4. DNA连接酶:T4 DNA连接酶5. DNA分子量标准:DL20006. DNA纯化试剂盒7. 转化宿主细胞:大肠杆菌DH5α8. LB培养基、氨苄青霉素9. 等等四、实验步骤1. 质粒提取与纯化(1)按照试剂盒说明书提取质粒DNA;(2)用DNA纯化试剂盒纯化质粒DNA;(3)检测质粒浓度和纯度。
2. 目的基因的线性化(1)用BamHI和EcoRI双酶切目的基因片段和载体;(2)用DNA纯化试剂盒纯化酶切产物;(3)检测酶切产物浓度和纯度。
3. DNA连接(1)将纯化的目的基因片段和载体进行连接反应;(2)将连接产物转化大肠杆菌DH5α;(3)在含有氨苄青霉素的LB培养基中培养转化菌。
4. 阳性克隆的筛选(1)提取转化菌的DNA;(2)用BamHI和EcoRI双酶切提取的DNA;(3)电泳检测酶切产物,筛选出与预期大小相符的重组质粒;(4)将重组质粒进行测序验证。
五、实验结果与分析1. 质粒提取与纯化:质粒浓度约为50ng/μl,纯度大于0.8。
2. 目的基因的线性化:酶切产物浓度约为10ng/μl,纯度大于0.8。
3. DNA连接:转化菌在含有氨苄青霉素的LB培养基中生长良好。
4. 阳性克隆的筛选:电泳结果显示,重组质粒大小与预期相符。
5. 重组质粒测序验证:测序结果与预期序列一致,表明目的基因已成功插入载体。
分子克隆的实验报告(3篇)
第1篇一、实验目的本实验旨在学习分子克隆技术的基本原理和操作步骤,掌握目的基因的扩增、克隆及表达,为后续相关研究奠定基础。
二、实验原理分子克隆技术是指将目的DNA片段从供体细胞中分离出来,通过体外重组、转化和转导等方法,将其插入到克隆载体中,再将其引入宿主细胞进行复制和扩增。
本实验采用无缝克隆技术,通过T5核酸外切酶、DNA聚合酶和DNA连接酶三种酶的共同作用,实现单片段或多片段与载体连接。
三、实验材料1. 试剂:限制性内切酶、DNA连接酶、T5核酸外切酶、DNA聚合酶、dNTPs、Taq DNA聚合酶、PCR引物、载体DNA、目的基因DNA、质粒提取试剂盒、琼脂糖凝胶电泳试剂盒等。
2. 仪器:PCR仪、凝胶成像仪、电泳仪、紫外灯、超净工作台、离心机、恒温水浴锅、移液器等。
四、实验步骤1. 目的基因扩增(1)设计引物:根据目的基因的序列设计特异性引物,引物长度一般在18-25bp,5'端添加限制酶切位点。
(2)PCR反应:配制PCR反应体系,加入引物、模板DNA、dNTPs、Taq DNA聚合酶等,进行PCR反应。
2. 载体线性化(1)酶切:使用限制性内切酶对载体DNA进行酶切,获得线性化的载体。
(2)去磷酸化:对单酶切得到的线性化载体进行去磷酸化处理。
3. 目的基因与载体连接(1)同源臂连接:将目的基因PCR产物和线性化载体进行同源臂连接,确保目的基因正确插入载体。
(2)连接反应:配制连接反应体系,加入目的基因PCR产物、线性化载体、DNA连接酶等,进行连接反应。
4. 转化与筛选(1)转化:将连接产物转化至宿主细胞中。
(2)筛选:通过抗生素筛选、酶切鉴定和测序等方法筛选出含有目的基因的克隆。
5. 目的基因表达(1)重组质粒提取:从筛选出的阳性克隆中提取重组质粒。
(2)重组质粒转化:将重组质粒转化至表达宿主细胞中。
(3)表达产物检测:通过Western blot、ELISA等方法检测目的蛋白的表达水平。
克隆基因提取实验报告(3篇)
第1篇一、实验目的本实验旨在学习并掌握克隆基因提取的基本原理和操作步骤,通过实验操作,提取目的基因,为后续的基因克隆、表达和功能研究奠定基础。
二、实验原理克隆基因提取主要利用DNA提取技术,通过破碎细胞、释放DNA、去除杂质等步骤,得到高纯度的DNA。
本实验采用碱裂解法提取目的基因,该方法具有操作简单、提取效率高、DNA纯度好等优点。
三、实验材料1. 实验试剂:NaCl溶液、Tris-HCl缓冲液、无水乙醇、异丙醇、二苯胺染液、DNA提取试剂盒等。
2. 实验仪器:高速离心机、电子天平、移液器、PCR仪、凝胶成像系统等。
3. 实验样品:目的基因载体(含目的基因)、细菌菌液等。
四、实验步骤1. 细菌培养:将目的基因载体转化至大肠杆菌,挑取单克隆菌落,接种于含有适量抗生素的LB液体培养基中,37℃、200 r/min培养过夜。
2. 酵母提取物制备:将过夜培养的菌液按1:100比例稀释,加入酵母提取物、葡萄糖等,37℃、200 r/min培养至对数生长期。
3. 细菌裂解:将培养好的菌液按照1:10比例加入裂解液,55℃水浴30 min,期间每隔5 min振荡1次,使菌体充分裂解。
4. DNA沉淀:将裂解液按照1:2比例加入等体积的异丙醇,混匀,4℃、12 000r/min离心10 min,弃上清液。
5. DNA洗涤:将沉淀用70%乙醇洗涤1次,4℃、7 500 r/min离心5 min,弃上清液。
6. DNA溶解:将沉淀用适量TE缓冲液溶解,-20℃保存。
7. DNA纯化:按照DNA提取试剂盒说明书进行操作,得到高纯度的目的基因。
8. 验证:将提取的目的基因进行PCR扩增,观察扩增结果,确认目的基因提取成功。
五、实验结果与分析1. PCR扩增结果:通过PCR扩增,成功获得目的基因,扩增产物大小与预期相符。
2. DNA纯度:利用NanoDrop2000检测提取的目的基因,A260/A280比值在1.8-2.0之间,表明DNA纯度较高。
基因工程技术与应用知识点
基因工程技术与应用知识点
1.基因工程技术的原理
基因克隆是指将感兴趣的基因从一个物种中剪切并插入到另一个物种
的DNA中。
首先,需要获得目标基因的DNA序列,然后通过PCR扩增得到
足够多的目标基因的DNA片段。
接下来,将目标基因的DNA片段与质粒进
行连接,形成重组质粒。
最后,将重组质粒导入宿主细胞中,使其进行复
制和表达。
这样,目标基因就被克隆到宿主细胞的基因组中。
转基因是指利用基因工程技术将外源基因导入目标细胞中,使其产生
新的功能或性状。
转基因主要通过两种方法实现:直接注射外源基因或利
用载体导入外源基因。
直接注射外源基因常用于转基因动物的制作,而利
用载体导入外源基因则常用于转基因植物的制作。
通过转基因技术,可以
实现农作物的抗虫、抗病、抗逆性增强,以及工业酶的大规模生产等。
2.基因工程技术的应用
农业领域:基因工程技术可以用于农作物的抗虫、抗病和抗逆性提高
等方面。
通过转基因技术,可以使植物表达抗虫蛋白,减少对农药的依赖;也可以导入外源基因,增强植物的抗逆性,使其在恶劣环境下仍能正常生长。
工业领域:基因工程技术可以用于工业酶的生产,如乳酸菌发酵生产
乳酸。
此外,基因工程还可以用于生物燃料的生产,如利用转基因酵母生
产乙醇。
基因克隆转化实验报告
一、实验目的1. 掌握基因克隆的基本原理和操作步骤;2. 学习基因克隆转化实验技术;3. 验证目的基因在受体细胞中的表达。
二、实验原理基因克隆是指将目的基因从基因组中提取出来,并在受体细胞中稳定复制、表达的过程。
基因克隆转化实验主要包括以下步骤:目的基因的提取、克隆载体构建、目的基因与克隆载体的连接、转化受体细胞、筛选阳性克隆、鉴定阳性克隆等。
三、实验材料1. 材料:大肠杆菌DH5α、克隆载体pUC19、目的基因片段、DNA连接酶、限制性内切酶、DNA聚合酶、质粒提取试剂盒等;2. 仪器:PCR仪、电泳仪、凝胶成像仪、离心机、恒温培养箱等;3. 试剂:LB培养基、氨苄青霉素、IPTG、X-gal等。
四、实验方法1. 目的基因的提取:采用PCR技术扩增目的基因片段,利用限制性内切酶将目的基因片段与克隆载体连接;2. 克隆载体构建:将目的基因片段与克隆载体pUC19连接,构建重组克隆载体;3. 转化受体细胞:将重组克隆载体转化到大肠杆菌DH5α中;4. 筛选阳性克隆:在含有氨苄青霉素的LB培养基上培养转化后的菌落,挑选白色菌落进行PCR验证;5. 鉴定阳性克隆:对PCR验证阳性的菌落进行菌落PCR,将扩增产物进行电泳,观察条带是否与预期大小一致。
五、实验结果1. 目的基因提取:PCR扩增产物电泳结果显示,目的基因片段大小与预期一致;2. 克隆载体构建:重组克隆载体转化到大肠杆菌DH5α后,在含有氨苄青霉素的LB培养基上培养,观察到白色菌落;3. 筛选阳性克隆:PCR验证结果显示,白色菌落中含有目的基因片段;4. 鉴定阳性克隆:菌落PCR结果显示,阳性克隆中含有与预期大小一致的目的基因片段。
六、实验讨论1. 实验过程中,DNA连接酶和限制性内切酶的用量、转化效率等因素对实验结果有一定影响,需根据实际情况调整;2. 实验中,菌落PCR验证和鉴定阳性克隆是确保实验结果准确的关键步骤;3. 基因克隆转化实验技术在生物科研和生物医药领域具有广泛的应用前景。
基因克隆技术的原理及应用
基因克隆技术的原理及应用1. 基因克隆技术的引言基因克隆技术是生物学领域中一项重要的实验技术,被广泛用于基础研究、生产应用、医学诊断等领域。
本文将介绍基因克隆技术的原理以及其在不同领域的应用。
2. 基因克隆技术的原理基因克隆技术是指将感兴趣的DNA片段从一个有机体中复制到另一个有机体的过程。
它主要包括DNA片段的获取、载体的选择、转化和筛选等步骤。
2.1 DNA片段的获取DNA片段可以通过多种方法进行获取,包括PCR、限制性内切酶切割、合成以及基因库筛选等。
其中,PCR是最常用的方法之一,通过酶连锁反应可以扩增目标DNA片段。
2.2 载体的选择克隆过程中需要选择一个合适的DNA载体来承载目标DNA片段。
常见的载体包括质粒、噬菌体和人工染色体等。
选择载体时需要考虑载体的大小、复制能力、表达能力等因素。
2.3 转化将目标DNA片段与选定的载体进行连接后,需要将复合物转化到宿主细胞中。
转化可以通过化学方法、电穿孔等方式实现。
转化后的细胞将能够持续地复制目标DNA片段。
2.4 筛选为了筛选出含有目标DNA片段的克隆体,可以利用选择性培养基、荧光标记、抗生素抗性等方法进行筛选。
筛选后的克隆体可以进一步进行纯化和验证。
3. 基因克隆技术的应用基因克隆技术在许多领域都得到了广泛的应用,下面将介绍其在基础研究、生产应用和医学诊断中的应用。
3.1 基础研究基因克隆技术在基础研究中起到了至关重要的作用。
通过克隆和研究特定基因,科学家可以深入了解基因的结构、功能以及相互作用关系。
这对于研究生物学基本原理、探索疾病机理等具有重要意义。
3.2 生产应用基因克隆技术在农业、药物生产和工业生产等领域都有广泛的应用。
例如,农业方面可以利用基因克隆技术改良作物品种,提高产量和抗病性;药物生产方面可以利用基因克隆技术大规模生产特定蛋白质,用于制造药物;工业方面可以利用基因克隆技术生产高效酶、清洁能源等。
3.3 医学诊断基因克隆技术在医学诊断中的应用也越来越广泛。
关于克隆技术的相关知识
关于克隆技术的相关知识
克隆技术是一种生物技术,旨在复制一个生物体的基因组,从而生成与原始生物体相同或相似的个体。
以下是一些关于克隆技术的相关知识:
1. 胚胎克隆:这是最常见的克隆方法之一,它涉及将一个成体细胞的细胞核移植到一个无核的受精卵中。
这个受精卵然后被植入到一个代孕母体中发育,最终产生一个基因组与捐赠的成体相同的个体。
这个过程在动物中已被成功实现,例如“多利羊”是历史上第一个从成体细胞克隆的哺乳动物。
2. 基因克隆:这是一种通过分子生物学技术来复制基因或DNA片段的方法。
它通常涉及使用PCR(聚合酶链式反应)来扩增特定基因或DNA序列,然后将其插入到载体中,如质粒或病毒,以进行复制和表达。
3. 细胞克隆:这是一种通过体细胞核移植来复制整个动物的方法。
它在动物研究中已成功应用,但在实际应用中仍存在许多技术和伦理挑战。
4. 植物克隆:类似于动物,植物也可以通过组织培养或其他方法进行克隆。
这种方法通常涉及将植物组织的一部分(例如叶片或茎段)放入培养基中,以促进组织再生和新植物的生长。
克隆技术在医学、农业、生物研究等领域都有着广泛的应用前景,但也引发了一些伦理和道德上的争议,尤其是涉及到动物和人类的克隆。
基因克隆的原理
基因克隆的原理
基因克隆是指通过重组DNA分子来复制或复制特定基因的过程。
它的原理涉及利用DNA重组技术从一个生物体中提取目
标基因,并将其插入到另一个宿主生物体的基因组中。
以下是基因克隆的基本原理和步骤:
1. 提取目标基因:从一个生物体的DNA中提取目标基因。
这
可以通过多种方法实现,如聚合酶链式反应(PCR)或酶切和连接技术。
2. 槽融合:使用合适的酶将目标基因与质粒DNA或其他载体DNA相连接。
这些质粒DNA通常是经过改造的DNA分子,
包含有关目标基因的所需信息,如启动子、激活子和选择性标记。
3. 转化宿主细胞:将重组质粒DNA导入到宿主细胞中。
这可
以通过多种方法实现,如电穿孔、化学转化或基因枪。
宿主细胞通常是细菌或酵母等单细胞生物。
4. 选择性筛选:使用特定的标记或抗生素等方法筛选出已经成功转化的宿主细胞。
这有助于确保目标基因已经被插入到宿主细胞的基因组中。
5. 复制和表达:将含有目标基因的宿主细胞进行培养和繁殖,以实现大规模的基因复制。
通过适当的培养条件和诱导剂等方法,目标基因可以被表达出来,并产生所需的功能蛋白或产物。
总的来说,基因克隆基于DNA重组技术,利用质粒DNA或其他载体DNA将目标基因导入宿主细胞的基因组中。
这种方法使得科学家能够通过修改和复制基因,研究基因功能、制备蛋白质或生产其他有用的化合物。
分子克隆组装实验报告(3篇)
第1篇一、实验目的1. 学习分子生物学中最基本的技术——分子克隆的操作过程。
2. 掌握基因克隆的概念,了解基因克隆的基本原理和方法。
3. 熟练掌握DNA提取、限制性内切酶切割、DNA连接、转化、筛选和鉴定等分子克隆实验操作。
4. 提高实验操作技能,培养严谨的科学态度。
二、实验原理分子克隆是指将目的基因(或DNA片段)与载体DNA连接,使其在宿主细胞中复制和表达的过程。
本实验采用分子克隆组装技术,将目的基因插入载体中,实现基因克隆。
三、实验材料1. 基因组DNA提取试剂盒2. 限制性内切酶3. DNA连接酶4. 载体DNA5. 目的基因片段6. 转化宿主细胞7. LB培养基、琼脂糖、氨苄青霉素等四、实验步骤1. 提取目的基因片段和载体DNA(1)取适量基因组DNA,按照试剂盒说明书进行提取。
(2)取适量载体DNA,按照试剂盒说明书进行提取。
2. 限制性内切酶切割(1)将目的基因片段和载体DNA分别用限制性内切酶进行切割。
(2)酶切反应体系:10×酶切缓冲液5μl,限制性内切酶1μl,DNA模板5μl,加双蒸水至50μl。
(3)酶切条件:37℃反应2小时。
3. DNA连接(1)将酶切后的目的基因片段和载体DNA进行连接。
(2)连接反应体系:10×连接缓冲液5μl,DNA连接酶1μl,酶切后的目的基因片段5μl,酶切后的载体DNA5μl,加双蒸水至50μl。
(3)连接条件:16℃反应4小时。
4. 转化宿主细胞(1)将连接产物转化大肠杆菌DH5α感受态细胞。
(2)转化条件:42℃热激45秒。
5. 筛选和鉴定(1)将转化后的细胞涂布于含有氨苄青霉素的LB培养基平板上,37℃培养过夜。
(2)挑取单克隆菌落,提取质粒DNA。
(3)对提取的质粒DNA进行PCR扩增,检测目的基因是否插入载体。
(4)对阳性克隆进行测序,验证插入序列的正确性。
五、实验结果1. 成功提取目的基因片段和载体DNA。
2. 目的基因片段和载体DNA经限制性内切酶切割后,酶切图谱与预期相符。
克隆模型实验报告总结(3篇)
第1篇一、实验背景克隆模型实验是一种重要的生物学研究方法,通过模拟生物体发育过程中的基因表达和细胞命运决定,帮助我们理解生物发育的分子机制。
本实验旨在通过构建克隆模型,探究特定基因在细胞命运决定中的作用,以期为相关疾病的诊断和治疗提供理论依据。
二、实验目的1. 构建克隆模型,模拟生物体发育过程中的基因表达和细胞命运决定;2. 探究特定基因在细胞命运决定中的作用;3. 为相关疾病的诊断和治疗提供理论依据。
三、实验方法1. 构建克隆模型:通过基因编辑技术,将目标基因敲除或过表达,构建克隆模型;2. 分离细胞:将构建好的克隆模型细胞进行分离,得到不同基因表达的细胞群体;3. 观察细胞形态和功能:通过显微镜观察细胞形态变化,检测细胞功能变化;4. 数据分析:对实验数据进行统计分析,得出结论。
四、实验结果1. 成功构建克隆模型:通过基因编辑技术,成功构建了敲除和过表达目标基因的克隆模型;2. 分离细胞:成功分离出不同基因表达的细胞群体;3. 细胞形态变化:与野生型细胞相比,敲除目标基因的细胞形态发生了显著变化,过表达目标基因的细胞形态与野生型细胞相似;4. 细胞功能变化:敲除目标基因的细胞功能受到显著影响,过表达目标基因的细胞功能与野生型细胞相似。
五、实验结论1. 成功构建了克隆模型,模拟了生物体发育过程中的基因表达和细胞命运决定;2. 特定基因在细胞命运决定中起着重要作用,敲除或过表达该基因会导致细胞形态和功能发生显著变化;3. 为相关疾病的诊断和治疗提供了理论依据。
六、实验讨论1. 克隆模型实验为研究基因功能提供了有力手段,有助于揭示生物发育的分子机制;2. 本实验结果表明,特定基因在细胞命运决定中具有重要作用,为相关疾病的诊断和治疗提供了新的思路;3. 未来研究可以进一步探究该基因在不同细胞类型中的作用,以及与其他基因的相互作用。
七、实验展望1. 深入研究该基因在细胞命运决定中的作用机制,揭示其在生物发育过程中的调控网络;2. 探索该基因在相关疾病中的作用,为疾病的诊断和治疗提供新的靶点;3. 将克隆模型实验与其他研究方法相结合,进一步拓展其在生物学研究中的应用。
基因工程的基本原理
基因工程的基本原理基因工程是一种利用生物技术手段对生物体进行基因改造的技术。
它的基本原理是通过人为干预生物体的基因组,来改变生物体的遗传特征,从而达到改良生物体的目的。
基因工程的基本原理主要包括基因的克隆、基因的修饰和基因的表达等方面。
首先,基因的克隆是基因工程的重要基本原理之一。
基因的克隆是指将感兴趣的基因从一个生物体中分离出来,并通过体外复制技术进行扩增,得到大量的同一基因序列。
这样的基因序列可以用于后续的基因修饰和表达实验。
基因的克隆需要利用DNA重组技术,将目标基因插入到适当的载体中,然后将载体导入到宿主细胞中进行复制。
其次,基因的修饰也是基因工程的重要基本原理之一。
基因的修饰是指对目标基因进行特定的改变,以达到特定的目的。
常见的基因修饰包括基因敲除、基因敲入、基因突变等。
基因的修饰可以通过CRISPR/Cas9等基因编辑技术来实现,这些技术可以精确地对基因进行修改,从而改变生物体的遗传特征。
最后,基因的表达也是基因工程的重要基本原理之一。
基因的表达是指将目标基因导入到宿主细胞中,并使其在细胞内表达出目标蛋白。
基因的表达需要利用适当的启动子和终止子来调控基因的转录和翻译过程,从而实现目标基因的高效表达。
基因的表达可以通过转基因技术来实现,将目标基因导入到植物、动物或微生物中,使其表达出目标蛋白。
综上所述,基因工程的基本原理主要包括基因的克隆、基因的修饰和基因的表达等方面。
通过这些基本原理,可以对生物体的基因进行精确的改造,从而实现对生物体遗传特征的调控。
基因工程技术的发展将为农业、医学、生物制药等领域带来巨大的变革,有望为人类社会带来更多的福祉和发展机遇。
克隆技术的原理及其应用
克隆技术的原理及其应用克隆技术是一种基因工程技术,基于这种技术,科学家可以制造出与原始细胞一模一样的细胞,包括人类细胞。
克隆技术的发展,标志着基因工程技术进入一个新的阶段。
本文将介绍克隆技术的原理,以及其在医学和农业领域的应用。
一、克隆技术的原理克隆技术基于细胞分裂的原理。
一般来说,生殖细胞是只有一份染色体的细胞,而我们的身体细胞通常都有两份染色体。
当生殖细胞与配偶结合,就会形成一个新的细胞,也就是受精卵。
在这个细胞分裂的过程中,细胞会不断地复制和分裂,最终形成一个成熟的胚胎。
克隆技术的原理就是通过控制细胞分裂的过程,制造出和原细胞一模一样的胚胎。
从理论上来说,要制造出和原细胞一模一样的细胞,需要两个步骤。
第一步,需要一份体细胞,它可以来自人体的任何部位,比如皮肤、肝脏等等。
第二步,则是通过移植和分裂,将这份体细胞转化为胚胎。
当这个过程完成后,就可以将胚胎种植到母体的子宫中,培育出一只完全和原细胞一样的动物。
二、克隆技术在医学上的应用克隆技术在医学领域有着广泛的应用,其中最重要的就是通过制造胚胎干细胞来治疗一些疾病。
胚胎干细胞的特点是可以发育成身体的任何器官和组织,因此它可以用来治疗一些难以治愈的疾病,比如骨髓炎、肝炎、血液病等等。
同时,胚胎干细胞也可以作为实验手段,帮助科学家进行研究和测试。
除了胚胎干细胞,克隆技术还可以用来进行转基因动物的制造。
转基因动物的作用是可以帮助医学领域进行研究,从而开发一些新的药物和治疗方法。
比如,科学家可以通过制造某种基因的转基因小鼠,研究这种基因在人体中的作用和影响。
这些研究成果可以为新药品的开发提供很好的理论基础。
三、克隆技术在农业上的应用在农业领域,克隆技术可以用来制造出品质优良的动物。
比如,科学家可以通过将优秀牛的体细胞移植到普通母牛的子宫中,来制造优质的奶牛。
这种技术不仅可以使养殖业获得更多的收益,同时也可以保持动物纯种。
此外,克隆技术也可以用来进行植物育种。
基因工程原理及实验技术
基因工程原理及实验技术基因工程是一种利用DNA技术改变生物的基因组成和功能的技术,它是现代生物技术的重要分支之一、基因工程的原理主要涉及到基因的克隆、重组和转入宿主细胞等过程。
在实验上,基因工程采用一系列的实验技术来进行基因的克隆、重组和表达。
基因工程的原理主要包括以下三个步骤:基因克隆、基因重组和基因转移。
首先,基因工程的第一步是基因克隆,通过PCR(聚合酶链反应)或其他方法,将目标基因从其宿主细胞中扩增出来。
然后,将扩增的目标基因插入到载体DNA中,形成重组DNA。
载体常用的有质粒DNA、病毒DNA 等。
第二,基因重组是将目标基因插入到载体DNA中,形成重组DNA。
重组的方法主要有两种,一是限制性内切酶切割,通过酶切将目标基因和载体DNA切开,然后利用互补的末端序列使目标基因与载体DNA连接;二是利用连接酶连接,直接将目标基因与载体DNA连接形成重组DNA。
重组DNA得到后,可以通过转化、通过感染等方法引入宿主细胞。
第三,基因转移是将重组DNA转移到宿主细胞中,使宿主细胞具有新的基因特性。
宿主细胞可以是细菌、植物或动物细胞等。
细菌表达系统是广泛用于基因工程的一个常见实验技术。
将重组DNA转入细菌中,然后通过培养、筛选等方法,筛选出带有目标基因的细菌。
利用这些细菌,可以生产大量的目标基因产物。
在基因工程的实验中,有一些常见的技术也是必不可少的。
如PCR技术是一种在体外扩增DNA片段的方法,它可以高效快速地扩增目标基因。
PCR技术是基因工程中的一项基础技术,可用于克隆、基因突变、基因定量等实验。
另外,在基因工程实验中,还常用到DNA测序技术、蛋白质表达和纯化技术、细胞培养技术等。
总之,基因工程的原理主要涉及基因的克隆、重组和转移,通过一系列的实验技术来实现。
基因工程的发展为我们带来了很多巨大的利益,例如疾病的诊断和治疗、转基因作物的培育、蛋白质生产等。
同时,我们也需要充分考虑基因工程的伦理和安全性问题,确保其应用的合理性和安全性。
基因克隆原理及实验介绍
859bp
859bp
336bp
336bp
336bp
2700bp 2700bp 2700bp
1485bp
339bp 339bp 339bp
498bp 498bp 498bp
质粒载体 pcDNA3.1+3flag pcDNA3.1+3flag pcDNA3.1+3flag
pcDNA3.1+3flag
T4 DNA Ligase Total
• 混匀,4℃过夜或常温条件下反应4h
用量 13-15μl 2-4μl
2μl 1μl 20μl
整理课件
23
引物设计
pCR
回收纯化
双酶切
连接
转化
挑菌
提质粒
测序
将连接产物通过转化转入到感受态大肠杆菌中,从而使连接产物(重组质粒)在大肠杆菌中大量复制
LB培养基配制
2μl
enzyme 1
2μl
enzyme 2
2μl
enzyme 2
2μl
dd H2O
补至50μl
dd H2O
补至50μl
*根据质粒浓度(如pcDNA3.1+3flag浓度为455ng/μl,4000bp,反应体积约为9μl)
• 混匀,37℃孵育4-6h(6h以上更佳)整理课件
22
引物设计
pCR
回收纯化
双酶切
连接
转化
挑菌
提质粒
测序
通过凝胶电泳验证目的DNA、质粒是否酶切成功,并通过胶回收DNA及质粒(切去 的片段除外)最终回收体积为30μl
通过连接使目的DNA导入质粒中,为下一步转染准备
Procedure
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E Escherichia co coli R RY13 I 首先发现
(属) (种) (品系) 在此类细菌中发现的顺序
DNA连接酶
DNA连接酶是1967年在三个实验室同时发现的,最初是在大 肠杆菌细胞中发现的。它是一种封闭DNA链上缺口酶,借助 ATP或NAD水解提供的能量催化DNA链的5’-PO4与另一DNA 链的3’-OH生成磷酸二酯键将两条紧邻DNA链连接起来。
mRNA 5’ 单链cDNA 3’
5’ 3’
RT反应
AAAAAAAAAAAAAAAAA 3’ 3’ TTTTTTTTTTTT 5’
TTTTTTTTTTTT 5’
PCR扩增 3’ 5’
转录起始调控区(启动子区)的扩增
转录起始点
转录起始调控区 基因(DNA)
外显子 内含子
PCR扩增
5’ 3’
3’ 5’
课时及内容安 排
第一课时: 基因克隆的基本概念及理论知识 第二课时: 基因克隆的操作过程及注意事项 第三课时: 实验操作过程演示(录像)
第一课
基因克隆的基本概念及理论知识
基因克隆的定义:
1. 工具书上: 插入有同一个基因或DNA片段的重组质粒的一个群体,这个群体
是由一个重组质粒增殖而来,通过基因克隆技术可获得某个基因或 DNA片段的克隆。
OH
G CTTGG
PO4
AATTC A
连接酶
GAATTC CTTGGA
CTG
ATT
GAC
TAA
连接酶
CTGATT GACTAA
内切酶和连接酶是基因克隆实验中两种 重要的工具酶,它们如同分子生物学家剪刀 和针线,可以任意地将感兴趣的基因片段进 行切割和连接,实现DNA序列的重组。
质粒(plasmid)和载体(vector)有什么区别?
生物的性状。
染色体、DNA 与基因之间的关系
基因的结构及其表达蛋白的过程
转录起始点 外显子 内含子
转录起始调控区 基因(DNA)
5’ 非翻译区
转录
转录终止点 转录终止信号
3’ 非翻译区
初级转录本(hnRNA)
RT-PCR 双链cDNA
加帽 成熟mRNA
蛋白质
加工 翻译
加poly(A)
RT-PCR扩增基因的编码区序列
非定向克隆
+
或
TA克隆载体
T T
A
A
酶切位点定向克隆的克隆载体
P(BLA) ApaLI (2367)
AP r
pUC19
2686 bp
ApaLI (178) ALPHA EcoRI (397) AvaI (413) XmaI (413) SmaI (415) BamHI (418) PstI (440) HindIII (448) P(LAC) ORI
质粒的重要特征
(1) 是染色质外的环形双链DNA分子; (2)能自主复制,是能独立复制的复制子; (3)质粒对宿主生存并不是必需的; (4)质粒上常带有耐抗生素基因; (5)质粒DNA上有多个酶切位点。
限制性核酸内切酶
限制性核酸内切酶(restriction endonuclease):是从细菌中分离 出来的一种识别并切割特异的双链DNA序列的内切核酸酶。 目前已从多种细菌中分离出超过400种,识别各自不同的核苷 酸顺序。
2. 学术文献上: (1) 基因克隆是指在体外对DNA按照即定目的和方案进行人工重组,将重
组DNA进行扩增以获得目的基因的大量拷贝。 (2) 它是将DNA或基因组的DNA片段嵌入克隆载体,再将载体植入培养
的宿主细胞。 (3) 科学家将这一过程称为基因克隆:基因表达需有调节的DNA片断控
制,要使克隆到的基因能表达、发挥作用,必须将其与调节单位连接 起来。
质粒是指细菌细胞质中的小型环状DNA分子,是 天然存在的,主要控制细菌的次级代谢。
载体是指在基因工程中用以协载目的基因的小型 环状DNA分子,载体一般是经过改造的质粒,还 包括病毒,部分高等生物细胞中的DNA。
载体的种类
克隆载体:一般是只用来在大肠杆菌中扩增基因序列的拷 贝数。
表达载体:除了能扩增基因序列的拷贝数之外,还能在原 核或真核细胞中表达目的蛋白,也可用鉴定基因表达调控 元件的功能。根据表达目的蛋白所使用启动子不同分为原 核表达载体(原核启动子)和真核表达载体(真核启动 子)。
ApaLI (1121)
非定向克隆
+
克隆的片段只能按特定方向连接
P(BLA) ApaLI (2367)
AP r
pUC19
2686 bp
ApaLI (178) ALPHA EcoRI (397) AvaI (413) XmaI (413) SmaI (415) BamHI (418) PstI (440) HindIII (448) P(LAC) ORI
什么是Байду номын сангаас因?
1、基因是存在于细胞内有自体繁殖能力的遗传单位。 2、基因是一个具有遗传功能的特定核苷酸序列的DNA片段。 3、编码一个RNA或一条多肽链的DNA片段称为一个基因。 4、基因是生物体遗传的基本单位,存在于细胞的染色体上,
作直线排列。 5、基因通过指导蛋白质的合成来传递遗传信息,从而控制
ApaLI (1121)
EcoR I+Hind III切
EcoR I
Hind III
EcoR I Hind III PCR扩增
EcoR I
A
Hind III
A
EcoR I+Hind III切
启动子区序列
转录终止点 转录终止信号
基因的编码区及启动子区序列必须通过 连接到质粒上构建成重组表达载体,然 后进行目的片段扩增及功能研究。
什么是质粒(Plasmid)?
质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细 胞器和细菌细胞中染色体以外的脱氧核糖核酸(DNA)分子。现在习惯上用 来专指细菌、酵母菌和放线菌等生物中染色体以外的DNA分子。在基因 工程中质粒常被用做基因的载体。许多细菌除了染色体外,还有大量很 小的环状DNA分子,这就是质粒(plasmid)。
GAATTC CTTGGA
EcoR I
G
AATTC
CTTGG
A
AAGCTT TTCGAA
Hind III
A
AGCTT
TTCGA
A
限制性核酸内切酶的命名法则
限制性核酸内切酶的命名:一般是以微生物属名的第一个 字母和种名的前两个字母组成,第四个字母表示菌株(品系)。 例如:EcoR I是从大肠杆菌Escherichia coli RY13 中第一个发 现的内切酶I 。