hadoop面试题

合集下载

hadoop面试题总结

hadoop面试题总结

hadoop⾯试题总结1、hadoop常⽤端⼝号hadoop2.x Hadoop3.x访问HDFS端⼝50070 9870访问MR执⾏情况端⼝8088 8088历史服务器19888 19888客户端访问集群端⼝9000 80202、hadoop集群搭建hadoop搭建流程概述:(1)准备三个客户端,master,node1,node2(2)安装jdk 配置免密 ssh-keygen -t rsa 分发秘钥 ssh-copy-id master ssh-copy-id node1 ssh-copy-id node2(3)配置环境变量 source ⼀下(4)主要有 hadoop环境配置⽂件:hadoop-env.sh hadoop核⼼配置⽂件 core-site.xml yarn配置⽂件 yarn-site.xml mapreduce核⼼配置⽂件 mapred-site.xml hdfs配置⽂件 hdfs-site.xml(5)分发集群⽂件 scp -r /usr/local....... 格式化 hdfs namenode-format 启动集群 start-all.sh 访问hdfs页⾯查看是否搭建成功3、环境配置⽂件主要内容(1)hadoop-env.sh : Hadoop 环境配置⽂件vim hadoop-env.sh修改JAVA_HOMEexport JAVA_HOME=/usr/local/soft/jdk1.8.0_171(2)core-site.xml : hadoop核⼼配置⽂件vim core-site.xml在configuration中间增加以下内容<property><name>fs.defaultFS</name><value>hdfs://master:9000</value></property><property><name>hadoop.tmp.dir</name><value>/usr/local/soft/hadoop-2.7.6/tmp</value></property><property><name>fs.trash.interval</name><value>1440</value></property>(3)hdfs-site.xml : hdfs配置⽂件vim hdfs-site.xml在configuration中间增加以下内容<property><name>dfs.replication</name><value>1</value></property><property><name>dfs.permissions</name><value>false</value></property>(4)yarn-site.xml: yarn配置⽂件vim yarn-site.xml在configuration中间增加以下内容<property><name>yarn.resourcemanager.hostname</name><value>master</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.log-aggregation-enable</name><value>true</value></property><property><name>yarn.log-aggregation.retain-seconds</name><value>604800</value></property><property><name>yarn.nodemanager.resource.memory-mb</name><value>20480</value></property><property><name>yarn.scheduler.minimum-allocation-mb</name><value>2048</value></property><property><name>yarn.nodemanager.vmem-pmem-ratio</name><value>2.1</value></property>(5)mapred-site.xml: mapreduce配置⽂件重命名mv mapred-site.xml.template mapred-site.xmlvim mapred-site.xml在configuration中间增加以下内容<property><name></name><value>yarn</value></property><property><name>mapreduce.jobhistory.address</name><value>master:10020</value></property><property><name>mapreduce.jobhistory.webapp.address</name><value>master:19888</value></property>3、hdfs读写流程写流程:1)客户端向namenode请求上传⽂件,namenode检查⽬标⽂件是否已存在,⽗⽬录是否存在。

hadoop常见面试问题

hadoop常见面试问题

hadoop常见面试问题
以下是一些Hadoop常见的面试问题:
1. Hadoop是什么?它在大数据领域中的作用是什么?
2. Hadoop的核心组件有哪些?它们各自的作用是什么?
3. HDFS是什么?它有哪些特点和优势?
4. MapReduce是什么?它是如何工作的?
5. YARN是什么?它在Hadoop中的作用是什么?
6. 在Hadoop中如何处理数据倾斜?有哪些常见的数据倾斜问题需要避免?
7. Hadoop集群的部署和配置需要注意哪些问题?
8. 如何优化Hadoop集群的性能?有哪些常见的性能调优方法?
9. 在Hadoop中如何进行数据迁移?有哪些常见的迁移策略?
10. 如何进行Hadoop的安全性配置和管理?有哪些常见的安全措施需要采取?
11. Hadoop和Spark的区别和联系是什么?在什么情况下应该选择Hadoop或Spark?
12. 在Hadoop中如何进行数据清洗和预处理?有哪些常用的工具和库可以使用?
13. 如何使用Hadoop进行机器学习和数据挖掘?有哪些常见的算法和应用场景?
14. Hadoop的版本演进和兼容性问题需要注意哪些方面?
15. 你如何在Hadoop上进行大数据实时流处理?有哪些常用的流处理框架可以选择和使用?。

Hadoop最全面试题整理(附目录)

Hadoop最全面试题整理(附目录)

Hadoop面试题目及答案(附目录)选择题1.下面哪个程序负责HDFS 数据存储。

a)NameNode b)Jobtracker c)Datanode d)secondaryNameNode e)tasktracker答案C datanode2. HDfS 中的block 默认保存几份?a)3 份b)2 份c)1 份d)不确定答案A 默认3 份3.下列哪个程序通常与NameNode 在一个节点启动?a)SecondaryNameNode b)DataNode c)TaskTracker d)Jobtracker答案D分析:hadoop 的集群是基于master/slave 模式,namenode 和jobtracker 属于master,datanode 和tasktracker 属于slave,master 只有一个,而slave 有多个SecondaryNameNode 内存需求和NameNode 在一个数量级上,所以通常secondaryNameNode(运行在单独的物理机器上)和NameNode 运行在不同的机器上。

JobTracker 和TaskTrackerJobTracker 对应于NameNode,TaskTracker 对应于DataNode,DataNode 和NameNode 是针对数据存放来而言的,JobTracker 和TaskTracker 是对于MapReduce 执行而言的。

mapreduce 中几个主要概念,mapreduce 整体上可以分为这么几条执行线索:jobclient,JobTracker 与TaskTracker。

1、JobClient 会在用户端通过JobClient 类将应用已经配置参数打包成jar 文件存储到hdfs,并把路径提交到Jobtracker,然后由JobTracker 创建每一个Task(即MapTask 和ReduceTask)并将它们分发到各个TaskTracker 服务中去执行。

Hadoop 100道面试题及答案解析

Hadoop 100道面试题及答案解析

3.6误)3.7Hadoop支持数据的随机读写。

(错) (8)NameNode负责管理metadata,client端每次读写请求,它都会从磁盘中3.8读取或则会写入metadata信息并反馈client端。

(错误) (8)NameNode本地磁盘保存了Block的位置信息。

(个人认为正确,欢迎提出其它意见) (9)3.93.10 3.11DataNode通过长连接与NameNode保持通信。

(有分歧) (9)Hadoop自身具有严格的权限管理和安全措施保障集群正常运行。

(错误)93.12 3.13 3.14Slave节点要存储数据,所以它的磁盘越大越好。

(错误) (9)hadoop dfsadmin–report命令用于检测HDFS损坏块。

(错误) (9)Hadoop默认调度器策略为FIFO(正确) (9)100道常见Hadoop面试题及答案解析目录1单选题 (5)1.1 1.2 1.3 1.4 1.5 1.6 1.7下面哪个程序负责HDFS数据存储。

(5)HDfS中的block默认保存几份? (5)下列哪个程序通常与NameNode在一个节点启动? (5)Hadoop作者 (6)HDFS默认Block Size (6)下列哪项通常是集群的最主要瓶颈: (6)关于SecondaryNameNode哪项是正确的? (6)2 3多选题 (7)2.12.22.32.42.5下列哪项可以作为集群的管理? (7)配置机架感知的下面哪项正确: (7)Client端上传文件的时候下列哪项正确? (7)下列哪个是Hadoop运行的模式: (7)Cloudera提供哪几种安装CDH的方法? (7)判断题 (8)3.13.23.3Ganglia不仅可以进行监控,也可以进行告警。

(正确) (8)Block Size是不可以修改的。

(错误) (8)Nagios不可以监控Hadoop集群,因为它不提供Hadoop支持。

Hadoop常见面试笔试题目与参考答案小结

Hadoop常见面试笔试题目与参考答案小结

Hadoop常见⾯试笔试题⽬与参考答案⼩结1. namenode的重要性是什么?namenode的作⽤在Hadoop中⾮常重要。

它是Hadoop的⼤脑,主要负责管理系统上的分配块,还为客户提出请求时的数据提供特定地址2. 当NameNode关闭时会发⽣什么?如果NameNode关闭,⽂件系统将脱机。

3. 是否可以在不同集群之间复制⽂件?如果是的话,怎么能做到这⼀点?是的,可以在多个Hadoop集群之间复制⽂件,这可以使⽤分布式复制来完成。

Distcp是⼀个Hadoop复制⼯具,主要⽤于执⾏MapReduce作业来复制数据。

Hadoop环境中的主要挑战是在各集群之间复制数据,distcp也将提供多个datanode来并⾏复制数据。

4. 什么是检查点?对⽂件数据的修改不是直接写回到磁盘的,很多操作是先缓存到内存的Buffer中,当遇到⼀个检查点Checkpoint时,系统会强制将内存中的数据写回磁盘,当然此时才会记录⽇志,从⽽产⽣持久的修改状态。

因此,不⽤重放⼀个编辑⽇志,NameNode可以直接从FsImage加载到最终的内存状态,这肯定会降低NameNode启动时间5. 什么是机架感知?这是⼀种决定如何根据机架定义放置块的⽅法。

Hadoop将尝试限制存在于同⼀机架中的datanode之间的⽹络流量。

为了提⾼容错能⼒,名称节点会尽可能把数据块的副本放到多个机架上。

综合考虑这两点的基础上Hadoop设计了机架感知功能。

6. 投机性执⾏如果⼀个节点正在执⾏⽐主节点慢的任务。

那么就需要在另⼀个节点上冗余地执⾏同⼀个任务的⼀个实例。

所以⾸先完成的任务会被接受,另⼀个可能会被杀死。

这个过程被称为“投机执⾏”。

7. 是否可以在Windows上运⾏Hadoop?可以,但是最好不要这么做,Red Hat Linux或者是Ubuntu才是Hadoop的最佳操作系统。

在Hadoop安装中,Windows通常不会被使⽤,因为会出现各种各样的问题。

大数据工程师面试题及答案

大数据工程师面试题及答案

大数据工程师面试题及答案在大数据领域,对工程师的要求越来越高。

以下是一些常见的大数据工程师面试题及答案,希望能为您的面试准备提供一些帮助。

一、基础知识1、请简要介绍一下 Hadoop 生态系统中的主要组件。

答案:Hadoop 生态系统主要包括 HDFS(分布式文件系统)用于存储大规模数据;YARN(资源管理框架)负责资源的分配和调度;MapReduce(分布式计算框架)用于处理大规模数据的计算任务。

此外,还有 Hive(数据仓库工具)、HBase(分布式数据库)、Sqoop(数据导入导出工具)等组件。

2、什么是数据仓库?与数据库有什么区别?答案:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。

数据库主要用于事务处理,强调实时性和一致性;而数据仓库侧重于数据分析和决策支持,数据量大、结构复杂,存储历史数据。

二、数据处理和分析1、如何处理数据倾斜问题?答案:数据倾斜通常是指某些键值的分布不均匀,导致某些任务处理的数据量远大于其他任务。

可以通过对倾斜的键进行加盐处理,或者使用 Combiner 函数在 Map 端进行局部聚合来缓解。

还可以对数据进行重新分区,或者调整并行度等方式来解决。

2、请介绍一下 Spark 的核心概念,如 RDD、DataFrame 和 Dataset。

答案:RDD(弹性分布式数据集)是 Spark 的基础数据结构,具有不可变、可分区、可并行操作等特点。

DataFrame 类似于关系型数据库中的表,具有列名和数据类型。

Dataset 是 DataFrame 的扩展,提供了类型安全和面向对象的编程接口。

三、数据存储1、介绍一下 HBase 的架构和工作原理。

答案:HBase 基于 Hadoop 的 HDFS 存储数据,采用主从架构。

HMaster 负责管理表的元数据,HRegionServer 负责存储和管理实际的数据。

数据按照行键进行排序和存储,通过 Region 进行划分和管理。

大数据方向_面试题目(3篇)

大数据方向_面试题目(3篇)

第1篇一、基础知识与理论1. 请简述大数据的概念及其与传统数据处理的区别。

2. 请解释什么是Hadoop,并简要说明其组成部分。

3. 请简述MapReduce的核心思想及其在Hadoop中的应用。

4. 请描述HDFS(Hadoop分布式文件系统)的工作原理及其优势。

5. 请说明YARN(Yet Another Resource Negotiator)的作用及其在Hadoop中的地位。

6. 请解释什么是Spark,以及它与传统的大数据处理技术相比有哪些优势。

7. 请描述Spark的架构及其核心组件。

8. 请说明什么是Hive,并简要介绍其作用。

9. 请解释什么是HBase,以及它在大数据中的应用场景。

10. 请说明什么是NoSQL,并列举几种常见的NoSQL数据库及其特点。

二、Hadoop生态系统1. 请介绍Hadoop生态系统中常用的数据处理工具,如Hive、Pig、Spark等。

2. 请说明Hadoop生态系统中常用的数据分析工具,如Elasticsearch、Kafka、Flume等。

3. 请解释Hadoop生态系统中数据存储解决方案,如HDFS、HBase、Cassandra等。

4. 请描述Hadoop生态系统中常用的数据仓库解决方案,如Apache Hudi、Delta Lake等。

5. 请说明Hadoop生态系统中常用的数据可视化工具,如Tableau、Power BI、D3.js等。

三、大数据技术1. 请简述大数据技术中的数据清洗、数据集成、数据存储、数据挖掘等基本概念。

2. 请介绍大数据技术中的数据挖掘算法,如聚类、分类、关联规则等。

3. 请说明大数据技术中的数据可视化方法及其在数据分析中的应用。

4. 请描述大数据技术中的实时数据处理技术,如流处理、事件驱动等。

5. 请介绍大数据技术中的机器学习算法及其在数据分析中的应用。

四、大数据应用案例1. 请列举大数据技术在金融、医疗、电商、物联网等领域的应用案例。

史上最全的大数据面试题,大数据开发者必看

史上最全的大数据面试题,大数据开发者必看

史上最全的大数据面试题,大数据开发者必看在大数据领域,面试常常是求职者获取工作机会的重要环节。

面试官会针对各个方面提问,从技术知识到项目经验,从算法能力到数据处理能力,全方位考察候选人的综合素质。

为了帮助大数据开发者准备面试,本文整理了一份史上最全的大数据面试题,供参考使用。

一、Hadoop基础知识1·Hadoop的核心组件有哪些?分别简要介绍。

2·HDFS的特点和工作原理是什么?3·MapReduce的工作原理是什么?举例说明MapReduce的运行流程。

4·Hadoop集群的搭建步骤和注意事项是什么?5·Hadoop环境中如何进行数据备份和恢复操作?二、Hadoop生态系统1·Hive和HBase有什么区别?适用场景分别是什么?2·Pig和Hive的功能和使用场景有何异同?3·Sqoop和Flume的作用及使用场景有哪些?4·ZooKeeper的作用是什么?简要介绍其应用场景。

5·Spark和Hadoop的区别是什么?它们之间如何共同工作?三、大数据处理技术1·数据采集的方法有哪些?请简要说明每种方法的原理和适用场景。

2·数据清洗的过程和步骤有哪些?如何处理用户输入的脏数据?3·数据存储有哪些方式?请简要介绍每种方式的特点和适用场景。

4·数据挖掘常用的算法有哪些?请简要说明每种算法的原理和适用场景。

5·数据可视化的方法和工具都有哪些?请简要介绍每种方法和工具的特点和适用场景。

四、大数据实战项目1·请简要介绍你参与过的大数据项目,包括项目背景、使用的技术和取得的成果。

2·在项目中如何解决数据倾斜的问题?请具体描述解决方案。

3·在项目中如何保证数据的安全性和隐私性?4·在处理大规模数据时,如何优化性能和提高效率?5·请描述一个你在项目中遇到的难题,并介绍你是如何解决的。

hadoop面试题

hadoop面试题

hadoop面试题Hadoop是一个开源的分布式计算框架,被广泛应用于大数据处理。

在面试中,掌握Hadoop的基本概念和技术非常重要。

下面是一些常见的Hadoop面试题,希望能够帮助你更好地准备面试。

1. 什么是Hadoop?它的核心组件有哪些?Hadoop是一个由Apache开发的开源分布式计算框架。

它的核心组件包括Hadoop Distributed File System (HDFS)、YARN (Yet Another Resource Negotiator)和MapReduce。

2. 请简要介绍一下HDFS的特点和工作原理。

HDFS是Hadoop的分布式文件系统,具有高容错性、高吞吐量和高扩展性等特点。

它的工作原理是将大文件切分成多个数据块并存储在不同的服务器上,通过复制机制实现数据的冗余和容错。

3. YARN是什么?它的作用是什么?YARN是Hadoop的资源管理系统,负责集群中的资源分配和作业调度。

它允许多个计算框架共享集群资源,并提供了更好的资源利用率和作业运行效率。

4. MapReduce是Hadoop的一个核心概念,请解释一下Map和Reduce的作用。

MapReduce是一种编程模型,用于处理大规模数据集的并行计算。

Map负责将输入数据转化为键值对的形式,并进行数据处理和转换,而Reduce则负责对Map输出的结果进行汇总和整理。

5. Hadoop中的数据本地性是什么意思?为什么它很重要?数据本地性是指计算任务在执行时尽可能地处理位于相同节点或相邻节点上的数据。

这样可以减少数据传输的开销,提高作业的执行效率。

6. Hadoop的副本复制是如何工作的?为什么要进行副本复制?Hadoop通过将数据切分为多个数据块,并进行多次复制来实现副本复制。

这样可以提高数据的可靠性和容错性,保证即使某台服务器发生故障,数据仍然可用。

7. 请解释一下Hadoop中的数据倾斜问题。

数据倾斜指的是在进行数据处理时,某些特定键值对的数据量过大,导致某些节点的负载过重。

hadoop spark 面试题

hadoop spark 面试题

hadoop spark 面试题1. 介绍Hadoop的MapReduce框架及其工作流程MapReduce是Hadoop的核心组成部分,用于分布式计算与数据处理。

其工作流程如下:- Map阶段:将输入数据切分为固定大小的数据块,并由多个Mapper并行处理。

Mapper根据特定的映射函数,将输入数据中的每对键值对(key-value)转换成中间键值对(intermediate key-value)。

- Shuffle(洗牌)阶段:将Mapper输出的中间键值对根据键进行分组,将相同键的值集中在一起,以便进行后续的Reducer处理。

- Reduce阶段:Reducer并行处理经过Shuffle阶段后的中间键值对。

Reducer对每个键的值集合进行聚合操作,得到最终的输出结果。

2. 什么是Spark?它与Hadoop有何不同?Spark是一个快速且通用的大数据处理引擎,与Hadoop相比有以下不同之处:- 数据处理模型:Hadoop使用MapReduce作为编程模型,而Spark则采用了弹性分布式数据集(Resilient Distributed Dataset,简称RDD)来支持更丰富的数据处理模式,如Map、Reduce、Filter、Join等。

- 内存计算:相比Hadoop的磁盘存储和读写,Spark将数据存储在内存中,并利用内存计算加速数据处理过程,提供更高的性能。

- 执行速度:由于数据存储在内存中,Spark能够在迭代计算等需要多次访问数据的场景下显著提高执行速度。

- 多语言支持:Spark支持多种编程语言(如Java、Scala、Python)进行开发,而Hadoop主要使用Java语言。

3. 解释什么是RDD(弹性分布式数据集),并说明其特点和应用场景RDD(Resilient Distributed Dataset)是Spark中的核心抽象数据类型,代表分布式的、只读的、可容错的数据集合。

hadoop 面试题

hadoop 面试题

hadoop 面试题一、概述Hadoop是一个开源的分布式处理框架,它提供了存储和处理大规模数据集的能力。

在面试中,通常会涉及到Hadoop的相关知识和技术,下面将就Hadoop的面试题一一进行讨论。

二、Hadoop的核心组件1. Hadoop分布式文件系统(HDFS)HDFS是Hadoop的存储系统,它通过将文件分为块并分布在多个节点上,实现了数据的可靠性和高吞吐量。

2. Hadoop分布式计算框架(MapReduce)MapReduce是Hadoop的计算引擎,它采用了分片和并行处理的思想,可以高效地处理大规模数据集。

三、常见的Hadoop面试题1. HDFS的特点是什么?HDFS的特点包括高容错性、高可靠性、高扩展性和高吞吐量。

它通过数据的冗余存储和节点的自动恢复来实现容错性和可靠性;它可以通过添加更多的节点来轻松扩展存储和计算能力;它通过块级别的并行读写来实现高吞吐量。

2. Hadoop的主要优势是什么?Hadoop的主要优势包括处理大规模数据、容错性和高可靠性、灵活性和可扩展性、经济实惠。

Hadoop可以处理PB级别的数据,适用于各种类型的数据处理任务;它可以自动恢复节点故障,保证数据的可靠性;它可以根据需求增加或减少计算和存储资源,实现灵活性和可扩展性;使用Hadoop相对于使用传统的关系型数据库软件来说成本更低。

3. Hadoop中的NameNode和DataNode分别是什么?NameNode是HDFS的主节点,负责存储文件的元数据信息,并响应客户端的文件操作请求;而DataNode是HDFS的工作节点,负责存储和管理实际的数据块。

4. Hadoop的数据写入流程是怎样的?当客户端向HDFS写入数据时,首先会与NameNode进行通信,NameNode会告诉客户端将数据块存储在哪些DataNode上,并返回一个DataNode列表。

然后,客户端将数据块分成若干个Packet,分别发送给对应的DataNode进行存储。

大数据面试题及答案

大数据面试题及答案

大数据面试题及答案一、概述在当今信息时代,数据无处不在,大数据已经成为各个行业的热门话题。

因此,面对大数据的挑战和机遇,各企业纷纷开始招聘大数据人才。

而面试则是评估求职者技能水平的重要环节。

本文将介绍一些常见的大数据面试题及其答案,旨在帮助求职者更好地准备面试。

二、大数据面试题1. 请介绍一下大数据的概念。

答:大数据是指在传统数据处理软件和硬件工具无法处理的规模和复杂性下,利用现代技术手段进行获取、管理和分析的数据集合。

大数据具有高维度、高速度、高价值和多样性等特点。

2. 请解释什么是Hadoop?答:Hadoop是一种开源的分布式计算平台,可用于存储和处理大规模数据集。

它包括Hadoop Distributed File System(HDFS)和MapReduce计算模型。

HDFS负责数据的存储,而MapReduce则负责数据的处理和分析。

3. 请说明Hadoop中的NameNode和DataNode的作用。

答:NameNode是HDFS的主节点,负责管理文件的命名空间、数据块的映射以及数据块的复制。

DataNode是HDFS的工作节点,负责存储实际的数据块,并向NameNode汇报其存储的数据块信息。

4. 请解释一下MapReduce的工作原理。

答:MapReduce是一种分布式计算模型,其工作原理主要分为两个阶段:Map和Reduce。

在Map阶段,数据被划分成一系列的键值对,并由多个Mapper进行并行处理。

在Reduce阶段,Mapper输出的键值对会根据键进行分组,并由多个Reducer进行处理和聚合,最终得到最终的结果。

5. 如何在Hadoop集群中进行数据的备份和容错处理?答:Hadoop通过HDFS进行数据的备份和容错处理。

在HDFS中,数据会被分割成块进行存储,并在集群中的多个DataNode上复制备份。

这样即使某个节点出现故障,数据仍然可以从其他节点上恢复。

三、大数据面试题答案1. 大数据的概念:大数据是指在传统数据处理软件和硬件工具无法处理的规模和复杂性下,利用现代技术手段进行获取、管理和分析的数据集合。

面试hadoop可能被问到的问题,你能回答出几个

面试hadoop可能被问到的问题,你能回答出几个

1、hadoop运行的原理?hadoop主要由三方面组成:1、HDFS2、MapReduce3、HbaseHadoop框架中最核心的设计就是:MapReduce和HDFS。

MapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释MapReduce就是“任务的分解与结果的汇总”。

HDFS是Hadoop分布式文件系统(Hadoop Distributed File System)的缩写,为分布式计算存储提供了底层支持。

MapReduce从它名字上来看就大致可以看出个缘由,两个动词Map和Reduce,“Map(展开)”就是将一个任务分解成为多个任务,“Reduce”就是将分解后多任务处理的结果汇总起来,得出最后的分析结果。

这不是什么新思想,其实在前面提到的多线程,多任务的设计就可以找到这种思想的影子。

不论是现实社会,还是在程序设计中,一项工作往往可以被拆分成为多个任务,任务之间的关系可以分为两种:一种是不相关的任务,可以并行执行;另一种是任务之间有相互的依赖,先后顺序不能够颠倒,这类任务是无法并行处理的。

回到大学时期,教授上课时让大家去分析关键路径,无非就是找最省时的任务分解执行方式。

在分布式系统中,机器集群就可以看作硬件资源池,将并行的任务拆分,然后交由每一个空闲机器资源去处理,能够极大地提高计算效率,同时这种资源无关性,对于计算集群的扩展无疑提供了最好的设计保证。

(其实我一直认为Hadoop 的卡通图标不应该是一个小象,应该是蚂蚁,分布式计算就好比蚂蚁吃大象,廉价的机器群可以匹敌任何高性能的计算机,纵向扩展的曲线始终敌不过横向扩展的斜线)。

任务分解处理以后,那就需要将处理以后的结果再汇总起来,这就是Reduce要做的工作。

2、mapreduce的原理?Hadoop中的MapReduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的式并行处理上T级别的数据集。

hadoop面试题(自己整理版)

hadoop面试题(自己整理版)

hadoop⾯试题(⾃⼰整理版)
1、 hadoop 运⾏原理
2、 mapreduce 原理
3、 mapreduce 的优化
4、举⼀个简单的例⼦说下 mapreduce 是怎么运⾏的
5、 hadoop 中 combiner 的作⽤
6、简述 hadoop 的安装
7、请列出 hadoop 的进程名
8、简述 hadoop 的调度器
9、列出你开发 mapreduce 的语⾔
10、我们开发 job 时是否可以去掉 reduce 阶段
11、 datanode 在什么情况下不会备份
12、 combiner 出现在哪个过程
13、 hdfs 的体系结构
14、 3 个 datanode 中有⼀个 datanode 出现错误会怎么样
15、描述⼀下 hadoop 中,有哪些地⽅⽤了缓存机制,作⽤分别是
什么?
16、如何确定 hadoop 集群的健康状况
17、 shuffe 阶段,你怎么理解
18、 mapreduce 的 map 数量和 reduce 数量怎么确定,怎么配置
19、简单说⼀下 mapreduce 的编程模型
20、 hadoop 的 TextInputFormatter 作⽤是什么,如何⾃定义实现
21、 hadoop 和 spark 都是并⾏计算,他们有什么相同和区别
22、为什么要⽤ flume 导⼊ hdfs, hdfs 的架构是怎样的
23、简单说⼀下 hadoop 和 spark 的 shuffle 过程
24、 hadoop ⾼并发
25、 map-reduce 程序运⾏的时候会有什么⽐较常见的问题。

大数据面试题试卷

大数据面试题试卷

大数据面试题及答案汇总版第1部分选择题1.1 Hadoop选择题1.1.1 HDFS1.下面哪个程序负责 HDFS 数据存储?A.NameNodeB.JobtrackerC.DatanodeD.secondaryNameNodeE.tasktracker2. HDFS 中的 block 默认保存几份?A.3份B.2份C.1份D.4份3. 下列哪个程序通常与NameNode 在一个节点启动?A. SecondaryNameNodeB.DataNodeC.TaskTrackerD. Jobtracker4. HDFS 默认 Block Size(新版本)A. 32MBB.64MBC.128MBD.256MB5. Client 端上传文件的时候下列哪项正确A. 数据经过 NameNode 传递给 DataNodeB.Client 端将文件切分为 Block,依次上传C.Client 只上传数据到一台 DataNode,然后由 NameNode 负责 Block 复制工作6. 下面与 HDFS 类似的框架是?A.NTFSB.FAT32C.GFSD.EXT37. 的8. 的1.1.2 集群管理1. 下列哪项通常是集群的最主要瓶颈A. CPUB.网络C.磁盘IOD.存2. 关于SecondaryNameNode 哪项是正确的?A.它是 NameNode 的热备B.它对存没有要求C.它的目的是帮助 NameNode 合并编辑日志,减少 NameNode 启动时间D.SecondaryNameNode 应与 NameNode 部署到一个节点3. 下列哪项不可以作为集群的管理?A. Puppet B.Pdsh C.ClouderaManager D.Zookeeper4. 配置机架感知的下面哪项正确A. 如果一个机架出问题,不会影响数据读写B.写入数据的时候会写到不同机架的 DataNode 中C.MapReduce 会根据机架获取离自己比较近的网络数据5. 下列哪个是 Hadoop 运行的模式A. 单机版 B.伪分布式 C.分布式6. Cloudera 提供哪几种安装 CDH 的方法A. Cloudera manager B.Tarball C.Yum D.Rpm7.1.2 Hbase选择题1.2.1 Hbase基础1. HBase 来源于哪篇博文? CA TheGoogle File System BMapReduceCBigTableD Chubby2. 下面对 HBase 的描述是错误的? AA 不是开源的B 是面向列的C 是分布式的D 是一种 NoSQL 数据库3. HBase 依靠()存储底层数据 AA HDFSB HadoopC MemoryDMapReduce4. HBase 依赖()提供消息通信机制 A AZookeeperB ChubbyC RPCD Socket5. HBase 依赖()提供强大的计算能力 DAZookeeperB ChubbyC RPCDMapReduce6. MapReduce 与 HBase 的关系,哪些描述是正确的? B、CA 两者不可或缺,MapReduce 是 HBase 可以正常运行的保证B 两者不是强关联关系,没有 MapReduce,HBase 可以正常运行CMapReduce 可以直接访问 HBaseD 它们之间没有任何关系7. 下面哪些选项正确描述了HBase 的特性? A、B、C、DA 高可靠性B 高性能C 面向列D 可伸缩8. 下面哪些概念是 HBase 框架中使用的?A、CA HDFSB GridFSCZookeeperD EXT39. D1.2.2 Hbase核心1. LSM 含义是?AA 日志结构合并树B 二叉树C 平衡二叉树D 长平衡二叉树2. 下面对 LSM 结构描述正确的是? A、CA 顺序存储B 直接写硬盘C 需要将数据 Flush 到磁盘D 是一种搜索平衡树3. LSM 更能保证哪种操作的性能?BA 读B 写C 随机读D 合并4. LSM 的读操作和写操作是独立的?AA 是。

Hadoop面试中6个常见的问题及答案

Hadoop面试中6个常见的问题及答案

Hadoop面试中6个常见的问题及答案你准备好面试了吗?呀,需要Hadoop 的知识!!?不要慌!这里有一些可能会问到的问题以及你应该给出的答案。

Q1.什么是Hadoop?Hadoop 是一个开源软件框架,用于存储大量数据,并发处理/查询在具有多个商用硬件(即低成本硬件)节点的集群上的那些数据。

总之,Hadoop 包括以下内容:HDFS(Hadoop Distributed File System,Hadoop 分布式文件系统):HDFS 允许你以一种分布式和冗余的方式存储大量数据。

例如,1 GB(即1024 MB)文本文件可以拆分为16 * 128MB 文件,并存储在Hadoop 集群中的8 个不同节点上。

每个分裂可以复制3 次,以实现容错,以便如果1 个节点故障的话,也有备份。

HDFS 适用于顺序的“一次写入、多次读取”的类型访问。

MapReduce:一个计算框架。

它以分布式和并行的方式处理大量的数据。

当你对所有年龄> 18 的用户在上述1 GB 文件上执行查询时,将会有“8 个映射”函数并行运行,以在其128 MB 拆分文件中提取年龄> 18 的用户,然后“reduce”函数将运行以将所有单独的输出组合成单个最终结果。

YARN(Yet Another Resource Nagotiator,又一资源定位器):用于作业调度和集群资源管理的框架。

Hadoop 生态系统,拥有15 多种框架和工具,如Sqoop,Flume,Kafka,Pig,Hive,Spark,Impala 等,以便将数据摄入HDFS,在HDFS 中转移数据(即变换,丰富,聚合等),并查询来自HDFS 的数据用于商业智能和分析。

某些工具(如Pig 和Hive)是MapReduce 上的抽象层,而Spark 和Impala 等其他工具则是来自MapReduce 的改进架构/设计,用于显著提高的延迟以支持近实时(即NRT)和实时处理。

大数据集群面试题目(3篇)

大数据集群面试题目(3篇)

第1篇一、基础知识1. 请简述大数据的概念及其在当今社会中的重要性。

2. 什么是Hadoop?请简要介绍其架构和核心组件。

3. 请解释HDFS的工作原理,以及它在数据存储方面的优势。

4. 请说明MapReduce编程模型的基本原理和执行流程。

5. 什么是YARN?它在Hadoop生态系统中的作用是什么?6. 请描述Zookeeper在Hadoop集群中的作用和常用场景。

7. 什么是Hive?它与传统的数据库有什么区别?8. 请简述HBase的架构和特点,以及它在列式存储方面的优势。

9. 什么是Spark?它与Hadoop相比有哪些优点?10. 请解释Flink的概念及其在流处理方面的应用。

二、Hadoop集群搭建与优化1. 请描述Hadoop集群的搭建步骤,包括硬件配置、软件安装、配置文件等。

2. 请说明如何实现Hadoop集群的高可用性,例如HDFS和YARN的HA配置。

3. 请简述Hadoop集群的负载均衡策略,以及如何进行负载均衡优化。

4. 请解释Hadoop集群中的数据倾斜问题,以及如何进行数据倾斜优化。

5. 请说明如何优化Hadoop集群中的MapReduce任务,例如调整map/reduce任务数、优化Shuffle过程等。

6. 请描述Hadoop集群中的内存管理策略,以及如何进行内存优化。

7. 请简述Hadoop集群中的磁盘I/O优化策略,例如磁盘阵列、RAID等。

8. 请说明如何进行Hadoop集群的性能监控和故障排查。

三、数据存储与处理1. 请描述HDFS的数据存储格式,例如SequenceFile、Parquet、ORC等。

2. 请解释HBase的存储结构,以及RowKey和ColumnFamily的设计原则。

3. 请简述Hive的数据存储格式,以及其与HDFS的交互过程。

4. 请说明Spark的数据存储格式,以及其在内存和磁盘之间的数据交换过程。

5. 请描述Flink的数据流处理模型,以及其在数据流中的操作符和窗口机制。

hadoop面试题目(3篇)

hadoop面试题目(3篇)

第1篇一、Hadoop基础知识1. 请简述Hadoop的核心组件及其作用。

2. 什么是Hadoop生态系统?列举出Hadoop生态系统中的主要组件。

3. 什么是MapReduce?请简述MapReduce的原理和特点。

4. 请简述Hadoop的分布式文件系统HDFS的架构和特点。

5. 什么是Hadoop的YARN?它有什么作用?6. 请简述Hadoop的HBase、Hive、Pig等组件的特点和应用场景。

7. 什么是Hadoop的集群部署?请简述Hadoop集群的部署流程。

8. 什么是Hadoop的分布式缓存?请简述其作用和实现方式。

9. 什么是Hadoop的MapReduce作业?请简述MapReduce作业的执行流程。

10. 请简述Hadoop的HDFS数据复制策略。

11. 什么是Hadoop的NameNode和DataNode?它们各自有什么作用?12. 请简述Hadoop的HDFS数据写入和读取过程。

13. 什么是Hadoop的Zookeeper?它在Hadoop集群中有什么作用?14. 请简述Hadoop的HDFS数据块的校验和机制。

15. 什么是Hadoop的HDFS数据恢复机制?二、Hadoop核心组件面试题1. 请简述Hadoop的MapReduce组件的架构和执行流程。

2. 请简述Hadoop的HDFS数据块的读写过程。

3. 请简述Hadoop的YARN资源调度器的工作原理。

4. 请简述Hadoop的HBase组件的架构和特点。

5. 请简述Hadoop的Hive组件的架构和特点。

6. 请简述Hadoop的Pig组件的架构和特点。

7. 请简述Hadoop的Zookeeper组件的架构和特点。

8. 请简述Hadoop的HDFS数据块的复制策略。

9. 请简述Hadoop的HDFS数据块的校验和机制。

10. 请简述Hadoop的HDFS数据恢复机制。

三、Hadoop高级面试题1. 请简述Hadoop集群的故障转移机制。

Hadoop面试45个题目及答案

Hadoop面试45个题目及答案

Hadoop面试45个题目及答案Hadoop面试45个题目及答案1.Hadoop集群可以运行的3个模式?单机(本地)模式伪分布式模式全分布式模式2. 单机(本地)模式中的注意点?在单机模式(standalone)中不会存在守护进程,所有东西都运行在一个JVM上。

这里同样没有DFS,使用的是本地文件系统。

单机模式适用于开发过程中运行MapReduce程序,这也是最少使用的一个模式。

3. 伪分布模式中的注意点?伪分布式(Pseudo)适用于开发和测试环境,在这个模式中,所有守护进程都在同一台机器上运行。

4. VM是否可以称为Pseudo?不是,两个事物,同时Pseudo只针对Hadoop。

5. 全分布模式又有什么注意点?全分布模式通常被用于生产环境,这里我们使用N台主机组成一个Hadoop集群,Hadoop守护进程运行在每台主机之上。

这里会存在Namenode运行的主机,Datanode运行的主机,以及task tracker运行的主机。

在分布式环境下,主节点和从节点会分开。

6. Hadoop是否遵循UNIX模式?是的,在UNIX用例下,Hadoop还拥有“conf”目录。

7. Hadoop安装在什么目录下?Cloudera和Apache使用相同的目录结构,Hadoop被安装在cdusrlibhadoop-0.20。

8. Namenode、Job tracker和task tracker的端口号是?Namenode,70;Job tracker,30;Task tracker,60。

9. Hadoop的核心配置是什么?Hadoop的核心配置通过两个xml文件来完成:1,hadoop-default.xml;2,hadoop-site.xml。

这些文件都使用xml格式,因此每个xml中都有一些属性,包括名称和值,但是当下这些文件都已不复存在。

10. 那当下又该如何配置?Hadoop现在拥有3个配置文件:1,core-site.xml;2,hdfs-site.xml;3,mapred-site.xml。

hadoop 面试题

hadoop 面试题

hadoop 面试题Hadoop是当前大数据领域最常用的分布式计算框架之一,广泛应用于大数据处理和分析。

在面试过程中,掌握Hadoop的相关知识和技巧成为应聘者的重要优势。

下面将介绍一些常见的Hadoop面试题,帮助你准备面试。

1. 什么是Hadoop?Hadoop是一个开源的分布式计算框架,用于存储和处理大规模数据集的分布式计算环境。

它基于Google的MapReduce和Google文件系统(GFS)设计,可以在集群中高效地执行大规模数据的并行处理。

2. Hadoop的核心组件有哪些?Hadoop的核心组件包括:- Hadoop分布式文件系统(HDFS):用于存储和管理数据的分布式文件系统。

- Hadoop YARN:负责集群资源的管理和调度。

- Hadoop MapReduce:基于YARN的分布式计算模型,用于处理和分析大规模数据集。

3. Hadoop与传统数据库的区别是什么?Hadoop适用于处理大规模的非结构化和半结构化数据,在存储和处理能力上具有优势。

而传统数据库更适合处理结构化数据,并提供了更强的事务支持和查询能力。

4. 什么是HDFS?HDFS(Hadoop Distributed File System)是Hadoop用于存储和管理数据的分布式文件系统。

它的特点包括高容错性、高可靠性、高性能和可扩展性。

5. Hadoop的任务调度模块是什么?Hadoop的任务调度模块是YARN(Yet Another Resource Negotiator),它负责管理和分配集群中的资源,以确保作业在分布式环境中有效地执行。

6. Hadoop的MapReduce是什么?MapReduce是Hadoop的分布式计算框架,用于将大规模的数据集分成一系列小块,并在集群中并行计算。

它由两个主要步骤组成:Map阶段和Reduce阶段,通过对数据进行映射和归约操作实现数据的加工和分析。

7. Hadoop的优点有哪些?Hadoop具有以下优点:- 高容错性:Hadoop具备自动备份和故障转移的能力,能够保障数据的可靠性和系统的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hadoop就业面试宝典1.0简要描述如何安装配置apache的一个开源hadoop,只描述即可,无需列出具体步骤,列出具体步骤更好。

答:1使用root账户登录2 修改IP3 修改host主机名4 配置SSH免密码登录5 关闭防火墙6 安装JDK7 解压hadoop安装包8 配置hadoop的核心文件hadoop-env.sh,core-site.xml , mapred-site.xml ,hdfs-site.xml9 配置hadoop环境变量10 格式化hadoop namenode-format11 启动节点start-all.sh2.0 请;列出正常的hadoop集群中hadoop都分别需要启动哪些进程,他们的作用分别都是什么,请尽量列的详细一些。

答:namenode:管理集群,存储数据的原信息,并管理记录datanode中的文件信息。

Secondname:可以做冷备,对一定范围内数据做快照性备份。

Datanode:存储数据Jobtracker :管理任务,并将任务分配给tasktracker。

Tasktracker: 执行JobTracker分配的任务。

3.0请写出以下的shell命令(1)杀死一个job(2)删除hdfs上的/tmp/aaa目录(3)加入一个新的存储节点和删除一个节点需要执行的命令答:(1)hadoop job –list 得到job的id,然后执行hadoop job -kill jobId就可以杀死一个指定jobId的job工作了。

(2)hadoop fs -rmr /tmp/aaa(3) 增加一个新的节点在新的几点上执行Hadoop daemon.sh start datanodeHadooop daemon.sh start tasktracker然后在主节点中执行hadoop dfsadmin -refreshnodes删除一个节点的时候,只需要在主节点执行hadoop mradmin -refreshnodes4.0请列出你所知道的hadoop调度器,并简要说明其工作方法答:Fifo schedular :默认,先进先出的原则Capacity schedular :计算能力调度器,选择占用最小、优先级高的先执行,依此类推。

Fair schedular:公平调度,所有的job 具有相同的资源。

5.0请列出你在工作中使用过的开发mapreduce的语言答:java,hive6.0当前日志采样格式为a ,b ,c , db , b , f , ea , a , c , f请你用最熟悉的语言编写mapreduce,计算第四列每个元素出现的个数Static final String答:public class WordCount1 {public static final String INPUT_PA TH = "hdfs://hadoop0:9000/in";public static final String OUT_PATH = "hdfs://hadoop0:9000/out";public static void main(String[] args) throws Exception {Configuration conf = new Configuration();FileSystem fileSystem = FileSystem.get(conf);if(fileSystem.exists(new Path(OUT_PA TH))){}fileSystem.delete(new Path(OUT_PA TH),true);Job job = new Job(conf,WordCount1.class.getSimpleName());//1.0读取文件,解析成key,value对FileInputFormat.setInputPaths(job,new Path(INPUT_PA TH));//2.0写上自己的逻辑,对输入的可以,value进行处理,转换成新的key,value对进行输出job.setMapperClass(MyMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(LongWritable.class);//3.0对输出后的数据进行分区//4.0对分区后的数据进行排序,分组,相同key的value放到一个集合中//5.0对分组后的数据进行规约//6.0对通过网络将map输出的数据拷贝到reduce节点//7.0 写上自己的reduce函数逻辑,对map输出的数据进行处理job.setReducerClass(MyReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);FileOutputFormat.setOutputPath(job, new Path(OUT_PA TH));job.waitForCompletion(true);}static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{ @Overrideprotected void map(LongWritable k1, Text v1,org.apache.hadoop.mapreduce.Mapper.Context context)throws IOException, InterruptedException {String[] split = v1.toString().split("\t");for(String words :split){context.write(split[3], 1);}}}static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>{protected void reduce(Text k2, Iterable<LongWritable> v2,org.apache.hadoop.mapreduce.Reducer.Context context)throws IOException, InterruptedException {Long count = 0L;for(LongWritable time : v2){count += time.get();}context.write(v2, new LongWritable(count));}}}7.0你认为用java ,streaming ,pipe方式开发map/reduce ,各有哪些优点就用过java 和hiveQL。

Java 写mapreduce 可以实现复杂的逻辑,如果需求简单,则显得繁琐。

HiveQL 基本都是针对hive 中的表数据进行编写,但对复杂的逻辑很难进行实现。

写起来简单。

8.0 hive有哪些方式保存元数据,各有哪些优点三种:内存数据库derby,挺小,不常用。

本地mysql。

常用远程端mysql。

不常用上网上找了下专业名称:single user mode..multi user mode...remote user mode9.0 请简述hadoop怎样实现二级排序第一种方法是,Reducer将给定key的所有值都缓存起来,然后对它们再做一个Reducer 内排序。

但是,由于Reducer需要保存给定key的所有值,可能会导致出现内存耗尽的错误。

第二种方法是,将值的一部分或整个值加入原始key,生成一个合成key。

这两种方法各有优势,第一种方法可能会更快一些(但有内存耗尽的危险),第二种方法则是将排序的任务交给MapReduce框架,更符合Hadoop/Reduce的设计思想。

这篇文章里选择的是第二种。

我们将编写一个Partitioner,确保拥有相同key(原始key,不包括添加的部分)的所有数据被发往同一个Reducer,还将编写一个Comparator,以便数据到达Reducer后即按原始key分组。

10.简述hadoop实现jion的几种方法利用dataJoin来实现mapreduce的jion问题。

11.0 请用java实现非递归二分查询1.public class BinarySearchClass2.{3.4. public static int binary_search(int[] array, int value)5. {6. int beginIndex = 0;// 低位下标7. int endIndex = array.length - 1;// 高位下标8. int midIndex = -1;9. while (beginIndex <= endIndex) {10.midIndex = beginIndex + (endIndex - beginIndex) / 2;//防止溢出11. if (value == array[midIndex]) {12. return midIndex;13. } else if (value <array[midIndex]) {14.endIndex = midIndex - 1;15. } else {16.beginIndex = midIndex + 1;17. }18. }19. return -1;20. //找到了,返回找到的数值的下标,没找到,返回-121. }22.23.24. //start 提示:自动阅卷起始唯一标识,请勿删除或增加。

25. public static void main(String[] args)26. {27. System.out.println("Start...");28. int[] myArray = new int[] { 1, 2, 3, 5, 6, 7, 8, 9 };29. System.out.println("查找数字8的下标:");30. System.out.println(binary_search(myArray, 8));31. }32. //end //提示:自动阅卷结束唯一标识,请勿删除或增加。

相关文档
最新文档