数字万用表设计实验
实验25 数字万用电表的设计、制作与校准---讲义
实验二十五 数字万用表的设计、制作与校准数字电表以它显示直观、准确度高、分辨率强、功能完善、性能稳定、体积小易于携带等特点在科学研究、工业现场和生产生活中得到了广泛应用。
数字电表工作原理简单,完全可以让同学们理解并利用这一工具来设计对电流、电压、电阻、压力、温度等物理量的测量,从而提高大家的动手能力和解决问题能力。
【实验目的】1.了解数字电表的基本原理和特性。
2.掌握数字电表的校准方法和使用方法。
3.设计数字万用表(即多量程数字电压、电流和电阻表)。
4.了解交流电压和二极管相关参数的测量。
【实验仪器】ZKDB-A 型数字电表改装试验仪1套(所含模块如下图所示),通用标准万用表1个。
量程转换开关模块交直流电压转换模块 功能:把交流电压转换成直流电压,模块中有电位器进行调整。
参考电阻模块 功能:提供可调参考电阻和可调待测电阻各一个。
三位半数字电压表头AD 参考电压模块功能:提供数字电压表头中模数转换芯片所需的参考电压(Vr-,Vr+), 有两档(0.1V 和1V ),有电位器可进行电压调节。
【实验原理】 1. 数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
数字信号与模拟信号不同,其幅值大小是不连续的,就是说数字信号的大小只能是某些分立的数值,所以需要进行量化处理。
若最小量化单位为∆,则数字信号的大小是∆的整数倍,该整数可以用二进制码表示。
设∆=0.1mV,我们把被测电量程扩展分压器模块 a 量程扩展分流器模块 a 量程扩展分流器模块 b电流档保护模块 功能:防止过流。
量程扩展分压器模块b量程扩展分档电阻模块电阻档保护模块 功能:防止过压损坏仪器。
待测元件模块功能:提供电阻、二极管、NPN 三极管和PNP 三极管各一个。
GND+5V3K10K二极管测量XDAXDKXDO二极管测量模块电阻档基准电压模块 功能:用于在电阻测量时提供测量基准电压。
数字万用表实验报告
数字万用表实验报告引言在现代科技高速发展的时代,数字万用表成为一种必不可少的测量仪器。
它的广泛应用使得我们能够方便地测量电压、电流、电阻等各种电学参数。
本实验旨在通过多个实验项目的研究与探索,深入了解数字万用表的原理、使用方法以及相关应用领域。
实验一电压测量实验首先,将数字万用表设置为直流电压测量模式,并连接电源电压。
然后将测试笔分别连接至电源的两个极端,注意连接的极性。
在读数窗口中可以看到数字万用表显示的电压数值。
通过改变电源电压,我们可以观察到数字万用表的读数也相应变化。
实验二电流测量实验在进行电流测量实验前,我们需要将数字万用表设置为直流电流测量模式。
然后,将数字万用表串联在电路中,注意将测试笔依次与电源、电阻以及数字万用表相连。
在读取电流数值时,需注意电源电流大小不应超过数字万用表可测范围。
通过改变电阻值,我们可以观察到数字万用表的读数随之变化。
实验三电阻测量实验在进行电阻测量实验时,首先需要将数字万用表设置为电阻测量模式。
将测试笔分别接触待测电阻的两个极端,观察数字万用表读数窗口中的数值。
通过改变待测电阻的大小,我们可以看到数字万用表的读数也会相应变化。
实验四二极管正反向电压测量实验将数字万用表设置为二极管正反向电压测量模式,并连接待测二极管。
将测试笔分别与二极管的正、负极相连,观察数字万用表的读数窗口。
通过改变待测二极管的极性,我们可以观察到数字万用表读数的变化。
实验五电容测量实验在进行电容测量实验前,我们需要将数字万用表设置为电容测量模式。
首先将待测电容器两端与数字万用表的测试笔相连,然后观察并记录数字万用表的读数。
通过改变待测电容器的大小,我们可以观察到数字万用表的读数与电容器容量成正比关系。
结论通过上述实验,我们深入了解了数字万用表的原理、使用方法以及相关应用领域。
数字万用表作为一种重要的测量仪器,广泛应用于电子、通信、电力等领域。
通过对电压、电流、电阻、二极管正反向电压以及电容的测量实验,我们不仅了解了数字万用表的测量准确性和稳定性,还加深了对电路原理以及电子器件性质的理解。
数字电表原理及万用表设计实验
数字电表原理及万用表设计实验1引言数字电表和万用表是电子技术领域中使用广泛的测试工具。
随着电子技术的不断发展,数字电表和万用表的功能也在不断升级。
本文将介绍数字电表的原理和万用表设计实验,并探讨数字电表和万用表在实践中的应用。
2数字电表的原理数字电表是用数字表示电信号的测试工具。
它通过合理的电路设计和数字处理技术,将电信号转换为数字量表示。
数字电表广泛应用于电子、通信、电力等行业中,其精度和速度都比模拟电表更高。
数字电表的原理是利用模数转换器(ADC)和数字处理器(DSP)将模拟电信号转化为数字量表示。
模数转换器将模拟电信号转化为数字信号,数字处理器将数字信号处理为显示数字或计算相关参数。
数字电表一般具有多种测量功能,如电压、电流、电阻、频率、电容等。
数字电表的特点是测试精度高、速度快、易于读数、使用方便等。
3数字电表的使用方法数字电表的使用方法通常是先选择要测试的参数,如伏特表测试电压,欧姆表测试电阻,赫兹表测试频率等。
如果测试电流,则需将电流表红黑表钳接到被测试的电路中,然后通过单位选择开关选择合适的度量单位。
使用数字电表的时候,应注意以下事项:-仪器和被测电路之间的连接应牢固、稳定;-测量前应先确认被测电路是否已断电;-测量时应根据电路的特性选择正确的测试方法和测量范围;-在测试过程中,应避免突然接通或切断电路,以免损坏数字电表。
4万用表设计实验万用表是实验室中常用的测量仪器之一。
它可以测试电压、电流、电阻、电容、电感、频率、温度等多种物理量。
万用表的设计实验可以帮助学生掌握万用表的原理和功能,并提高学生的实验技能。
设计万用表的实验主要包括以下内容:-万用表的电路图设计;-万用表电路的调试和测试;-测试万用表的精度和稳定性。
在万用表的设计中,需要考虑电路图的合理性和可靠性,如采用合适的分压电路,使得万用表能够适应不同范围的电压测量;还要考虑万用表的精度和稳定性,如选择合适的电阻、电容等元器件,确保万用表的测量精度和仪器稳定性。
数字万用表实验报告
数字万用表实验报告
数字万用表是一种用于测试电路中电流、电压、电阻和容量等物理量的仪器。
它可以同时测量多种电气参数,而且精度高、操作简单,因此在电子工程、机械制造、生产加工等领域得到了广泛应用。
为了更好地了解数字万用表的原理和特点,本文将进行数字万用表的实验测试,并撰写实验报告。
一、实验目的
了解数字万用表的电路原理、使用方法及注意事项,熟悉数字万用表的各个功能及操作。
二、实验仪器
数字万用表、直流电源、可变电阻、LED 灯、电池、跳线等。
三、实验步骤
1. 将数字万用表转换为电压、电流、电阻和容量测量模式,分别进行实验和测试。
2. 用跳线将电源、电阻、LED 灯等依次串连,分别用数字万用表测量其电流、电压和电阻值等。
3. 用数字万用表测试不同电池(如干电池、铅酸蓄电池等)的电压和容量。
四、实验结果
1. 数字万用表测试的 LED 灯电流约为 20mA 左右,电压为 2V 左右,电阻为 100 欧姆左右。
2. 数字万用表测试的电池电压值与理论值相适应,干电池电压为 1.5V 左右,铅酸蓄电池电压约为 12V 左右,容量也在标准范围内。
3. 测试不同范围的电阻时,数字万用表显示的电阻值与标准值相吻合。
五、实验心得
通过本次实验,我们深入了解了数字万用表的原理和功能,同时更好地掌握了其使用方法和注意事项,增强了对电路电气参数的理解和测量技能,为今后的实践工作提供了较为充分的基础。
总之,数字万用表是一种广泛应用的电子测试仪器,其精度和实用性极高,可以为我们的科研和生产活动提供有力的支持。
希望今后在科研和实验中,我们积极运用数字万用表,将其真正发挥出更大的潜力。
数字万用表设计试验实验报告
实验名称: 数字万用表设计性实验讲义 实验目的:掌握数字万用表的工作原理、组成和特性掌握数字万用表的校准方法和使用方法 掌握分压及分流电路的连接和计算了解整流滤波电路和过压过流保护电路的功用实验原理:1数字万用表的组成2设计组装多量程直流电压表采用串联电阻分压得原理,将最大电压为200mv 的表头量程扩大.其中20V 量程缩放比例为34512345100k0.0110M R R R R R R R R ++==++++这样,就扩大了量程.2设计组装多量程交流电压表因为是测量交流电压,所以在测量直流电压的基础之上加入AC-DC 整流滤波电路.测量的是交流电压的有效值. 其他测量电路与直流电压测量电路相同试验记录 实验一制作多量程直流数字电压表并作校准曲线 实验步骤1连接小数点与对应量程相连 2连接参考电压 3连接分压电路4调节电位器,输出150~200 mv 的电压(0.5mV 误差),使组装表与标准表对同一电压显示相同.校准曲线如下020406080100120140160180200-0.10-0.050.000.050.10标准表 读数与组装表读数的差 值 m V组装表读数 mV交流电直流电 图(8)AC-DC 变换器原理简图实验二制作多量程交流数字电压表并作校准曲线1采用多量程直流数字电压表,并且加入AC-DC 电路2调节电位器,输出0~2V 的电压(50mV 误差),使组装表与标准表对同一电压显示相同. 3校准测量,与记录及校准曲线的绘制校准曲线如下:接线总结1先接公共的部分,及表头,小数点部分,再接其他部分;2接地线时,最好用黑线,就不会出现实验时将地线与有电位的线接在一起. 3先用标准表测量引入电压,再进行试验,避免烧毁表头.朱业俊 学号 PB07013077-0.015-0.010-0.0050.0000.0050.0100.0150.0200.025标准表与组装表读数差值 V 标注表读数V。
数字万用表实验设计
8.12 设计数字万用表【实验目的】1.了解数字电表的基本原理、常用双积分模数转换芯片外围参数的选择原则及电表的校准原则;2.了解数字万用表的特性、组成及工作原理;3.掌握分压、分流电路的原理;4.设计制作多量程直流电压表、电流表及电阻表;5.了解交流电压、三极管和二极管相关参数的测量。
【设计要求及实验内容】1.设计制作多量程直流数字电压表,并进行校准(自拟校准表格,量程为:200mv、2v);2.设计制作多量程直流数字电流表,并进行校准(自拟校准表格,量程为:200mA、20mA);3.设计制作多量程数字欧姆表,并进行校准(自拟校准表格,量程为:200Ω、2kΩ、20 k Ω);4.设计制作多量程交流数字电压表,并进行校准(自拟校准表格,量程为:AC, 200mv、2v);5.二极管正向压降的校准和测量;6.三极管h FE参数的测量。
以上实验,在1至3中选择2~3个实验题目为必做内容,4至6为选做内容。
【主要实验器材】1.DH6505数字电表原理及万用表设计实验仪;2.四位半通用数字万用表;3.标准电阻箱。
【实验原理、方法提示】1. 数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
(1)双积分模数转换器(ICL7107)的基本工作原理我们将完成从模拟电信号转换成数字信号的电路称为模数转换器(AD转换器)。
数字万用表常用的转换器为双积分AD转换器。
双积分模数转换电路的原理比较简单,当输入电压为Vx 时,在一定时间T1内对电量为零的电容器C 进行恒流(电流大小与待测电压Vx 成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q 与被测电压Vx 成正比(式1);接着让电容器恒流放电(电流大小与参考电压Vref 成正比),这样电容器两极之间的电量将线性减小,直到T2时刻减小为零。
数字万用表设计实验 (4)
数字万用表设计性实验[概述] 随着数字测量技术的日趋普及,指针式仪表已经逐渐被淘汰,我厂对“指针式改装电表实验”进行了改进,现采用了“数字万用表设计性实验”,使学生对数字电表的原理和使用方法有了深入的理解和应用,深得广大院校师生的好评。
一、实验目的1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用二、实验仪器1.DM-Ⅰ数字万用表设计性实验仪一台2.三位半或四位半数字万用表一台(另配)三、实验原理1.数字万用表的特性与指针式万用表相比较,数字万用表有如下优良特性:⑴高准确度和高分辨力三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。
分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。
通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。
⑵电压表具有高的输入阻抗电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。
三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。
而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。
⑶测量速率快数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。
三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。
⑷自动判别极性指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。
而数字万用表能自动判别并显示被测量的极性,使用起来格外方便。
⑸全部测量实现数字式直读指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。
特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。
大学物理实验教案数字万用表
⼤学物理实验教案数字万⽤表⼤学物理实验教案实验内容提要(1)按下图接线,选取电阻箱⽰值为240Ω,合上K,接通A、B端,⽤多⽤表电压挡(选择合适量程)量电池的端电压得V CD 测,计算I算值CDBVIR=测算测式中R B测⽤步骤1测得的数据。
(2)将多⽤表量程转换开关旋⾄50mA档,(接在AB端),测出电流值I测,并计算电流表内阻R ACDA BVR RI=-测测测(3)断开K,转换开关旋⾄5mA档,再合上K,测电流I测,计算R A。
(4)变换电阻箱⽰值为24Ω(计算⽤步骤1实测值),重复上述步骤。
即分别⽤50mA和5mA档测量电流,并求出I算和内阻R A。
(5)变换电阻箱⽰值为2400Ω(计算⽤步骤1实测值),E换为晶体管稳压电源,并调到V CD约为10V,测I测和V CD测,并求出I算和R A。
(6)将各组数据两两对照[(1)与(2),(1)与(3),(4)与(2)],⽐较内阻对测量I测的影响,什么情况下R A的影响可以忽略,以及量程的选择对R A计算的准确度有什么影响。
注意,每次测试变换电表量程前都应先断开K。
3. 测直流电压(1)将电压表量程转换开关旋⾄直流电压10V档,接⼊下图电路,调C端,使电表读数为10V。
(2)把多⽤表量程换⾄直流电压50V档,并接于电压表上。
(3)调节滑线变阻器,使输出电压,依次为9V、8V、6V、4V、2V、1V、0.5V,分别记下多⽤表指针偏转格数。
(4)将多⽤表转换开关分别旋⾄10V和2.5V档照上述(2),(3)步骤进⾏测量。
(5)分析不同量程测量同⼀电压时,所得的数值及有效数字之差异并说明这种数值间的差异是否合理。
数字万用表实验报告
数字万用表实验报告
实验报告
实验名称:数字万用表实验
实验日期:XXX年XX月XX日
实验目的:通过使用数字万用表测量电路中电压、电流、电阻等参数,熟悉数字万用表的使用方法和测量技巧。
实验仪器:数字万用表、电源、电阻、电路板等。
实验原理:数字万用表是一种用来测量电路中电压、电流、电阻、频率等参数的仪器。
它通过将被测电路与电源和万用表相连,根据电路参数的不同选择适当的测量档位,并读取显示屏上的数值来进行测量。
实验步骤:
1. 将电路板与电源相连,确保电路正常工作。
2. 将数字万用表的电源引线与电路板的正负极相连。
3. 根据需要选择适当的测量档位,比如测量电压时选择直流电压档位、测量电流时选择直流电流档位。
4. 将数字万用表的测试引线分别与电路中需要测量的点相连,根据实验需要依次测量电压、电流和电阻。
5. 读取数字万用表显示屏上的数值,并记录下来。
6. 将测量完成的数据整理,进行必要的计算和分析。
实验结果:根据实验步骤进行测量,得到的数据为......
实验讨论:根据测量结果可以得出结论......
实验总结:本次实验通过使用数字万用表进行测量,掌握了数字万用表的使用方法和测量技巧。
实验结果表明......
注意事项:在进行测量时,需要注意选择适当的测量档位,避免对数字万用表造成损坏;同时,在进行测量时需保证电路稳定工作,避免测量误差的发生。
大学物理实验数字万用表分立元件组装
数字电表组装设计性实验一、实验目的通过研究数字万用表的基本组成部分,掌握组装的多量程数字电压表的原理、组成、及其测量特性;了解多量程数字电流表基本原理、组成和使用;并对利用数字毫伏表组装数字电阻表进行探索尝试。
通过电表改装实验,熟练掌握分压及分流电路的连接和计算。
二、实验仪器ATTEN APS3003S-3D直流电源一台三位半、四位半万用表各一ZX17-1型电阻箱4组2MΩ电阻(串联后固定在带有多个接线端的底座上)4只双刀双掷开关,单刀开关各一红、黑导线作为红黑表笔一组白/黄色导线(两端均为U形接线端子)若干三、实验原理数字化测量直观、快捷、准确、精度高,目前已成为现代化测量的趋势,在很多应用场合逐渐取代指针式仪表。
本实验的基础测量元件是量程为200mV的数字毫伏表。
通过本实验,学习掌握如何将其数字电压表功能进行扩展,实现对不同量程的电压、电流、电阻等物理量进行测量。
尤为重要的是,要研究测量仪器对待测量量的影响,清楚在不同测量条件下如何选取合适的测量仪器,提高测量的精确度。
1.数字电表的特性与指针式电表相比,数字电表有如下优良特性:⑴高准确度和高分辨力三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。
分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。
通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。
⑵数字电压表具有高的输入阻抗电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。
三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。
而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。
⑶测量速率快数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。
数字万用表的组装与调试实验报告doc
数字万用表的组装与调试实验报告篇一:万用表组装_设计性实验报告北京交通大学大学物理实验设计性实验实验题目学院班级学号姓名首次实验时间年月日指导教师签字目录一.实验任务 ................................................ ................................................... .. (4)1.分析研究万用表电路,设计并组装一个简单的万用表。
(4)二.实验要求 ................................................ ................................................... .. (4)1.分析常用万用表电路,说明各挡的功能和设计原理 ................................................4 2.设计组装并校验具有下列四挡功能的万用............ 4 3.给出将X100电阻挡改造为X10电阻挡的电路 ................................................ .. (4)三.实验主要器材 ................................................ ................................................... ........................... 4 四.实验方案 ................................................ ................................................... .. (5)1.测定给定的微安表头的量程I0和Rg。
.............................................. ....................... 5 2.按照如图所示电路进行分流,制作出1mA直流电流表。
DT-830B数字万用表实验报告
DT-830B数字万用表实验报告一、实验目的通过数字万用表的安装与调试实训,了解数字万用表的特点,熟悉装配数字万用表的基本工艺过程,掌握基本的装配技艺,学习整机的装配工艺;培养动手能力及严谨的工作作风。
二、项目要求:学习了解DT803B数字万用表,熟悉它的工作原理。
然后安装并调试数字万用表。
通过对DT803B数字万用表的安装与调试实训,了解数字万用表的特点,熟悉装配数字万用表的基本工艺过程、掌握基本的装配技艺、学习整机的装配工艺、培养自身的动手能力以及培养严谨的学习工作作风。
三、工作原理DT803B数字万用表的电路原理图如下图所示,它是3位半数字万用表。
图2 原理图数字万用表的核心是以ICL7106A/D转化器为核心的数字万用表。
A/D转化器将0~2V范围的模拟电压变成三位半的BCD码数字显示出来。
将被测直流电压、交流电压、直流电流及电阻的物理量变成0~2V的直流电压,送到ICL7106的输入端,即可在数字表上进行检测。
为检测大于2V的直流电压,在输入端引入衰减器,将信号变为0~2V,检测显示时再放大同样的倍数。
检测交流电压,首先必须将被测输入信号做衰减,与上述直流电压测量时相同的。
衰减之后的交流电压还要进行精密整流,变成直流电压后才能进入A/D转换器。
检测直流电流,首先必须将被测电流变成0~2V的直流电压即实现衰减与I/V变换。
衰减是有精密电阻构成的具有不同分流系数的分流器完成。
电阻的检测是利用电流源在电阻上产生压降。
因为被测电阻上通过的电流是恒定的,所以在被测电阻上产生的压降与其阻值成正比,然后将得到的电压信号送到A/D转换器进行检测。
三、实验内容1、安装工艺DT803B由机壳熟料件(包括上下盖和旋钮)、印制板部件(包括插口)、液晶屏及表笔等组成,组装成功关键是装配印制板部件。
因为一旦被划伤或有污迹,将对整机的性能产生很大的影响。
整机安装的流程图如下所示:图1 安装流程图2、实验步骤(1)印制板的安装(a)将“DT830B元件清单”上所有元件顺序插焊到印制电路板相应的位置上。
数字万用表设计性实验
数字万⽤表设计性实验数字万⽤表设计性实验⼀、实验内容:1)制作量程200mA的微安表(表头);2)设计制作多量程直流电压表;3)设计制作多量程直流电流表;⼆、实验仪器:WS-I数字万⽤表设计性实验仪三位半数字万⽤表三、实验原理1.数字万⽤表的组成数字万⽤表的组成见图1。
Array图1 数字万⽤表的组成数字万⽤表其核⼼是⼀个三位半数字表头,它由数字表专⽤A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输⼊端,包括2个测量电压输⼊端(IN+、IN-)、2个基准电压输⼊端(V REF +、V REF -)和3个⼩数点驱动输⼊端。
2.直流数字电压表头“三位半数字表头”电路单元的功能:将输⼊的两个模拟电压转换成数字,并将两数字进⾏⽐较,将结果在显⽰屏上显⽰出来。
利⽤这个功能,将其中的⼀个电压输⼊作为公认的基准,另⼀个作为待测量电压,这样就和所有量具或仪器的测量原理⼀样,能够对电压进⾏测量了。
见图2。
图1 200mV(199.9mV)直流数字电压表头及校准电路3.多量程直流数字电压表在数字电压表头前⾯加⼀级分压电路(分压器),可以扩展直流电压测量的量程。
如图3所⽰,U 0为电压表头的量程(如200mV),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。
图3 分压电路原理图4多量程分压器原理电路数字电压表 0~U 00~U i0 r 1r 2 r IN+IN-U多量程分压器原理电路见图4。
图5 实⽤分压器电路采⽤图4的分压电路虽然可以扩展电压表的量程,但在⼩量程档明显降低了电压表的输⼊阻抗,这在实际使⽤中是所不希望的。
所以,实际数字万⽤表的直流电压档电路为图5所⽰,它能在不降低输⼊阻抗的情况下,达到同样的分压效果。
4. 多量程直流数字电流表测量电流的原理是:根据欧姆定律,⽤合适的取样电阻把待测电流转换为相应的电压,再进⾏测量。
如图6。
由于r>>R ,取样电阻R 上的电压降为i i RI U =即被测电流为 R U I i i /=,多量程分流器电路原理见图7。
《数字万用表的使用》实验报告
目录概括----------------------------------------------------------------------------- 3 理论----------------------------------------------------------------------------- 3 材料、工具-------------------------------------------------------------------- 3 过程、步骤-------------------------------------------------------------------- 4 分析与结论-------------------------------------------------------------------- 5 一、概括:此实验是为了学会如何用数字万用表次电阻的阻值,同时测量直流电压。
二、理论:1.直流电压的测量测量之前,先将黑表笔插进“com”孔,红表笔插进“VΩ”。
把旋钮旋到比估计值大的量程。
接着把表笔接电源或电池两端;保持接触稳定。
数值可以直接从显示屏上读取,若显示为“1”,则表明量程太小,那么就要加大量程后测量。
2.电阻的测量将表笔插进“COM”和“VΩ”孔中,把旋钮打旋到“Ω”中所需的量程,用表笔接在电阻两端金属部位,测量中可以用手接触电阻,但不要把手同时接触电阻两端,这样会影响测量精确度的----人体是电阻很大但是有限大的导体。
读数时,要保持表笔和电阻有良好的接触。
三、材料、工具:见表1-1表1-3四、过程、步骤:1.直流电压的测量将数字万用表按照实验原理接好红黑表笔,选择好适当量程。
通过实验台的直流稳压模块输出一个电压值。
对输出电压进行测量并记录测量结果,并与实验台上显示的电压作比较,计算误差。
记录表格1-2.表1-22.电阻的测量将数字万用表按照实验原理3接好红黑表笔,选择合适量程。
数字万用表装配实验分析报告
一:实验目的1、通过DT830B 数字万用表装配实验,进一步加深对数字万用表电路原理的认识,能熟练的测量各种物理量。
2、了解ICL7106的各个引脚和他的数模转换功能。
3、了解液晶显示的原理和使用方法。
4、初步学会通过电路图焊接电路板。
掌握一些简单的电路焊接工艺。
5、了解各种测试仪器的用法并样品进行测试和矫正二:实验器材1、DT830型31/2位数字万用表的各种零配件和相关的材料说明。
见DT830B元件清单(一)和DT830B元件清单(二)。
2、焊接电路板所需的烙铁和锡以及松香。
3、一个标准的数字万用表、螺丝刀、镊子、刀片等。
三:实验原理1、ICL7106原理介绍ICL7106是目前广泛应用的一种3½位A/D转换器,能构成3½位液晶显示的数字电压表。
一、ICL7106的工作原理1. ICL7106的性能特点(1)采用+7V~+15V单电源供电,可选9V叠层电池,有助于实现仪表的小型化。
低功耗(约16mW),一节9V叠层电池能连续工作200小时或间断使用半年左右。
(2)输入阻抗高(1010Ω)。
内设时钟电路、+2.8V基准电压源、异或门输出电路,能直接驱动3½位LCD显示器。
(3)属于双积分式A/D转换器,A/D转换准确度达±0.05%,转换速率通常选2次/秒~5次/秒。
具有自动调零、自动判定极性等功能。
通过对芯片的功能检查,可迅速判定其质量好坏。
(4)外围电路简单,仅需配5只电阻、5只电容和LCD显示器,即可构成一块DVM。
其抗干扰能力强,可靠性高。
(5)工作温度范围是0~+70℃,但受LCD限制,仪表环境温度一般为0~+40℃,相对湿度不超过80%。
2. ICL7106的引脚功能ICL7106采用DIP-40封装,引脚排列如上图所示。
U+、U-分别接9V电源(E)的正、负极。
COM为模拟信号的公共端,简称模拟地,使用时应与IN-、U REF-端短接。
TEST是测试端,该端经内部500Ω电阻接数字电路的公共端(GND),因二者呈等电位,故亦称做数字地。
实验1_数字万用表的应用实验报告
电子测实验报告实验名称:数字万用表的应用姓名:学号:班级:学院:指导老师:实验一数字万用表的应用、实验目的1理解数字万用表的工作原理;2熟悉并掌握数字万用表的主要功能和使用操作方法。
、实验内容1用数字万用表检测元器件一一电阻测量、电容测量、二极管检测、三极管检测;2用数字万用表测量电压和电流一一直流电压及电流的测量、交流电压及电流的测量。
三、实验仪器及器材1低频信号发生器 1 台2数字万用表 1 块3功率放大电路实验板 1 块4实验箱 1 台54700Pf 、IN4007、9018 各1 个四、实验要求1要求学生自己查阅有关数字万用表的功能和相关工作原理,了解数字万用表技术指标;2要求学生能适当了解一些科研过程,培养发现问题、分析问题和解决问题的能力;3要求学生独立操作每一步骤;4熟练掌握万用表的使用方法。
五、万用表功能介绍(以UT39E型为例)1 概述UT39E型数字万用表是一种功能齐全、性能稳定、结构新颖、安全可靠、高精度的手持式四位半液晶显示小型数字万用表。
它可以测量交、直流电压和交、直流电流,频率,电阻、电容、三极管6值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程,共有28档。
本万用表最大显示值为士 19999,可自动显示“ 0”和极性,过载时显示“ 1”,负极性显示“―”,电池电压过低时,显示“C W"标志,短路检查用蜂鸣器。
2技术特性A直流电压:量程为200mV 2V、20V、200V和1000V五档,200mV档的准确度为土(读数的0.05 %+ 3个字),2V、20V和200V档的准确度为土(读数的0.1 %+ 3个字),1000V档的准确度为土(读数的0.15 %+ 5 个字);输入阻抗,所有直流档为10MQ。
B交流电压量程为2V、20V、200V和750V四档,2V、20V和200V档的准确度为土(读数的0.5 %+ 10个字),750V档的准确度为土(读数的0.8%+ 15个字);输入阻抗,所有量程约为2MQ;频率范围为40Hz~400Hz;显示:正弦波有效值(平均值响应)。
设计万用表实验报告
设计万用表实验报告
为了尽可能地提高实验测量的准确度和灵敏度,本实验旨在研究使用万用表来以准确程度最高的灵敏度和精度进行实验测量。
二、实验材料
1. 万用表:测量电压、电流、阻值、电阻、电容等
2.源:提供电压用于测量
3.接电缆:连接电源和测量设备
4.字显示:显示测量结果
三、实验步骤
1.据测量内容选择万用表的工作模式,如测量电压的AC/DC模式等
2.万用表的正负极连接到电源上,将需要测量的被测对象接入相应的端口
3.整万用表为测量模式,开启电源,查看数字显示屏显示的数值
4.数字显示的原理,根据所测量的电压值进行计算,并记录结果
四、实验结果
通过上述步骤,用万用表测量出的结果如下:
电压:12V
电流:0.1A
阻值:100Ω
电阻:1KΩ
电容:10μF
五、讨论
1.过实验结果可以看出,万用表测量的精度很高,数字显示准确、可靠,从而提高了实验测量准确度和灵敏度
2. 万用表具有多种测量模式,适用于多种工作环境,测量结果准确可靠,是一款性能高的实验设备。
六、总结
本实验证明,使用万用表进行测量能够准确可靠地获取实验测量结果,从而提高实验测量的准确度和灵敏度。
万用表具有多种测量模式,从而满足了多种工作环境的测量要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字万用表设计实验By 金秀儒物理三班Pb05206218实验题目:数字万用表设计实验 学号:pb05206218姓名:金秀儒实验目的:1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用实验仪器:1. DM-Ⅰ数字万用表设计性实验仪2. 三位半或四位半数字万用表实验原理:数字万用表的基本组成图1 数字万用表的基本组成模数(A/D )转换与数字显示电路数字信号与模拟信号不同,其幅值(大小)是不连续的。
将被测量与最小量化单位比较,并把结果四舍五入取整后变为十进制起段显码显示出来。
一般N ≥1000即可满测量精度要求。
常见数字表头最大示数为1999,称为三位半(213)数字表。
数字测量仪表的核心是模/数(A/D )转换、译码显示电路。
A/D 转换一般又可分为量化、编码两个步骤。
本实验用实验仪,核心为一个三位半数字表头,由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。
数字显示屏(LED 或液晶)模数转换,译码驱动基准电压 小数点驱动(配合被测量与量程)过压过流保护过压过流保护分档电阻(量程转换)分压器(量程转换)分流器(量程转换)交流直流变换器 (放大、整流、滤波)直流 被测量 输 入交流V REF电流电压电阻 V IN直流电压测量电路在数字电压表头前加分压器,可扩展直流电压测量的量程。
如图:分压比为 2120rr r U U i += 扩展后的量程为 02210U r r r U i +=考虑到电压表的输入阻抗,设计实用分压电路如图:R 总=R1 +R2 +R3 +R4 +R5各档的分压比为:200mV:( R1 +R2 +R3 +R4 +R5)/ R 总=12 V:( R2 +R3 +R4 +R5)/ R 总=0.1 20V:( R3 +R4 +R5)/ R 总=0.01 200V:( R4 +R5)/ R 总=0.0012000V: R5/ R 总=0.0001出于耐压和安全考虑,最高电压限为 1000V 。
基本原理电路同3,只是在分压器之后加入了一级交流直流交换器,原理如图:数字电压表 r 1r 2 r 0~U 00 2000V 数 字 电压表 1k9k90k 900k 9MR 5 R 4 R 3 R 2 R 1 U i 200mV 2V200V 20VIN+IN - A 交流电压输入直流电 压输出 图2 AC-DC 变换器原理简图 交流电 压校准实验步骤:设计制作多量程直流数字电压表(1)组装直流数字电压表:使用电路单元:三位半数字表头,直流电压校准,直流电压电流,分压器1。
按图(11)接线,参考电压V REF 输入端接直流电压校准电位器。
(2)校准电压表头:用一只成品数字万用表(称为标准表)置于直流电压20V 量程进行监测,调节直流电压电流单元电路中电位器,使之输出一150--200mV 左右的校准电压,然后将标准表表笔(输入)与组装表表笔并联,均置于直流电压200mV 挡,测量直流电压电流单元输出电压,调整“直流电压校准”旋钮使表头读数与标准表读数一致(允许误差±0.5mV )。
(3)绘制组装表的电压校准曲线:调节直流电压电流单元电路中电位器,使之分别输出0.2V 、0.4V 、0.6V 、0.8V 、1.0V 、1.2V 、1.4V 、1.6V 、 1.8V 、2.0V 的直流电压。
将标准数字万用表表笔与组装表表笔(输入)并联,标准表、组装表均置于直流电压2V 挡,同时测量直流电压电流单元输出电压,列表记录之。
并绘出组装表的电压校准曲线。
设计制作多量程交流数字电压表 (1)组装多量程交流数字电压表:使用电路单元:三位半数字表头,直流电压校准交流电压校准(AC-DC 变换器),分压器1,量程转换与测量输入。
在上述200mV 直流数字电压表头的基础上,增加交流-直流(AC-DC )变换器,制成交流数字电压表⑴并校准。
按图(13)接线,在200mV 直流数字电压表头(已校准)前面接入AC-DC 变换器,然后进行交流电压校准。
(2)交流电压校准:用标准表置于交流电压20V量程进行监测,接通交流电压电流单元电路,使之输出一150--200mV 左右的交流电压。
然后将标准表表笔与组装表表笔并联,均置于交流电压200mV 挡,测量交流电压电流单元输出电压,调整“交流电压校准”旋钮使表头读数与标准表读数一致(允许误差±1.5mV )。
(3)绘制组装表交流2V 档的电压校准曲线: 接通交流电压电流单元电路,使之分别输出0.2V 、0.4V 、0.6V 、0.8V 、1.0V 、1.2V 、1.4V 、1.6V 、1.8V 、2.0V 的交流电压。
将标准数字万用表表笔与组装表表笔(输入)并联,标准表、组装表均置于交流电压2V 挡,同时测量交流电压电流单元输出电压,列表记录之。
并绘出组装表交流2V 档的电压校准曲线。
三位半数字表头IN+ IN- dp1 dp2 dp3 V REF+ V REF-直流电压校准接动片11k99k 分压器交流电压VA AC-DC 变换器 交流电压校准数字万用表交流200mV 档(标准表) ~ 200mV 直流数字电压表头数据处理及结论:1.直流电压2V 校准点: 标准表读数V 1(/V )自制表读数V 2(/V )差值V 1-V 2(/V )0.2132 0.213 0.0002 0.4103 0.410 0.0003 0.6058 0.606 -0.0002 0.8021 0.802 0.00001 0.9985 0.999 -0.0005 1.1952 1.195 0.0002 1.3906 1.391 -0.0004 1.6213 1.621 0.0003 1.81781.818-0.00020.00.20.40.60.81.01.21.41.61.82.0-0.0006-0.0004-0.00020.00000.00020.0004V /VV2/V直流数字万用表校准曲线说明:上图中,横轴是组装表的读数(V2),纵轴是标准表的读数与组装表表的读数之差(△V )。
2.交流电压2V 校准点: 标准表读数V 1(/V )自制表读数V 2(/V )差值V 1-V 2(/V )0.2073 0.206 0.0013 0.3876 0.399 -0.0114 0.6014 0.613 -0.0116 0.8069 0.805 0.0019 1.0212 1.040 -0.0188 1.2304 1.220 0.0104 1.4124 1.414 -0.0016 1.6263 1.615 0.0113 1.80391.806-0.00210.00.20.40.60.81.01.21.41.61.82.0-0.020-0.015-0.010-0.0050.0000.0050.0100.015V /VV2/V交流数字万用表校准曲线说明:上图中,横轴是组装表的读数(V2),纵轴是标准表的读数与组装表表的读数之差(△V )。
实验小结及建议:该实验用高等级仪器校准低等级仪器,实验操作比较复杂,相对而言,数据处理则比较简单。
从本次实验的结果来看,比较两张校准曲线,交流电压误差较大,应该是由于直流变交流处理后电流仍然不稳定所导致,且在读取数据时,交流电压数据晃动也大于直流电压数据晃动,故读数误差也较大。
总体上,实验目的基本达到,实验比较成功。
另外,实验测量时发现有的同学用200mV档测九个点作校准曲线,而实验要求用2V档测九个点作校准曲线;但200mV 校准貌似也是可以的,具体为什么用2V档,实验原理中并没有具体说明。
小建议:我对本次实验有下述几点建议:1 实验讲义中的电路图是用的简化画法,我们物理系由于学过模电所以能够看懂,而对其他系而言可能在读图上有难度,建议以后把讲义的电路图改成基本的形式。
2 当数字表头最高位显示“1”(或“-1”)而其余位都不亮时,表明输入信号过大,即超量程。
此时应尽快换大量程挡或减小输入信号,避免长时间超量程。
比较保险的办法是关闭开关,以免仪器损坏。
3 在接线过程中,可以按功能分别接线,以直流测量为例,先接小数点驱动dp1,dp2,dp3部分,再接参考电压输入部分,再接分压器部分,再接直流电压校准,最后表笔接入电路,不可随意接线,以免接错线路。
再有就是接地要特别注意。
总之,预习实验一定要细致认真,以免做实验时手忙脚乱。
思考题:1、简述如何用3位半表头扩展量程为多量程交直流电压表。
答:三位半数字表将电信号转变为量化的数字信号,最小量化单位△,则数字信号的大小为△的整数倍其最大实数1999,最小实数-1999。
设△=0.1mV,则数字表示数为被测电压除以△取整。
若将小数点定于最末位前,则显示以为单位的被测电压U的大小。
使用电路单元:三位半数字表头,直流电压校准,分压器1或分压器2,量程转换与测量输入。
数字电压表内阻应远远大于各分压电阻。
根据分压比U0 /U i0= r2/(r1+r2)可得扩展后的量程为U i0= U0∙(r1+r2)/r2扩展为多量程直流电压表时,可采用多级分压电路。
扩展为多量程交流电压表时,只需在直流电压测量电路的基础上,在分压器后加入一级交流-直流变换器即可。
2、简述操作调试过程。
答:首先按照电路图接线,接线完毕后检查线路,开启电源,将一只标准表置于相应挡位测量待测直流或交流电压,记录数据,将制成的数字表置于相应挡位测量同一电压,调整相应的校准旋钮,使数字表示数与标准表读数一致即可完成校准调试过程。
具体过程可以直流电压表校准为例:利用待测直流电压源和分压电阻获得150mV左右的校准电压,把一只成品数字万用表(称为标准表)置于直流200mV挡与表头输入端并联,调整“直流电压校准”旋钮使表头读数与标准表读数一致(允许误差±0.5mV)。
200mV挡校准以后,就可以用2V挡取0.2V-2V中九个点,画校准曲线了。
物理三班金秀儒2006.12.8。