八年级数学下册三角形证明知识点教学内容
北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.
最新北师大版八年级数学下册《直角三角形》精品教学课件
∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?
北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、三角形的证明1. 已知:点D 是△ABC 的边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且BF=CE .求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BDCD∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋?江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,AN=AB+AC=18.∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【思路点拨】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD=22213,∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3.在Rt△ABC中,AC=22AB BC=3,∴S△ABC=12×AC×BC=332.【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt△OCM与Rt△ODN中,依据ASA得出OC=OD;在Rt△OCP与Rt△ODP中,因为OP=OP,OC=OD得出Rt△OC P≌Rt△ODP(HL),所以∠C OP=∠DOP,即OP平分∠AOB.②可作出两个直角三角形,利用HL定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt△OCM和Rt△ODN中,COM DONOCM ODNOM ON∴△OCM≌△ODN(AAS),∴OC=OD,在△OCP与△ODP中,∵,OC OD OPOP∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt △OCE 与Rt △OD E 中,∵OC OD OEOE,∴Rt △OCE ≌Rt △ODE (HL ),∴∠EOC=∠EOD ,∴OE 为∠AOB 的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2015秋?麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,;∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2016秋?兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。
12.2.2三角形全等的判定-SAS(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“SAS全等判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS即“边角边”,当两个三角形中有两边和它们夹的角相等时,这两个三角形全等。这个判定方法是几何中非常重要的一部分,它帮助我们解决了很多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将看到SAS在实际中的应用,以及它如何帮助我们解决问题。
-举例解释:
-例如,给出两个三角形,其中一个三角形的两边和夹角与另一个三角形的部分元素相等,但不满足SAS条件,如只有两边相等。此时,教师需引导学生识别这种情况并不满足SAS判定,不能直接得出全等的结论。
-在解决实际问题时,教师可以指导学生先识别出已知的SAS条件,再进行判定。如在一个多边形内,已知两条边和一个角,教师需引导学生如何找出第三条边,以形成SAS条件。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的判定-SAS》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”比如,在拼接图形或制作模型时,我们需要确认两个三角形的尺寸和形状是否一致。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。
北师大版八年级数学下册课件.1直角三角形的性质与判定课件
1.2 直角三角形
第1课时 直角三角形的性质与判定
教学目标
1.了解直角三角形两锐角互余及互逆命题的转化 2.运用勾股定理逆定理判定直角三角形
重难点
1.熟练掌握勾股定理逆定理的证明方法 2.互逆命题的真假性判定
提出问题,导入新课
问题1 直角三角形的定义是什么? 有一个是直角的三角形叫直角三角形.
归纳新知
勾股定理:直角三角形两条直角边的平方和等于 斜边的平方.
定理:如果一个三角形两边的平方和等于第三边 的平方,那么这个三角形是直角三角形.
条件和结论互换
上面两个定理的条件和结论有什么关系吗? 与同伴交流.
探求新知
再视察下面三组命题:
如果两个角是对顶角,那么它们相等; 如果两个角相等,那么它们是对顶角.
知识回顾
勾股定理:直角三角形两条直角边的平方和等于斜边的 平方. 即 a2 + b2 = c2. 勾股定理在西方文献中又称为毕达 哥拉斯定理.
a
c
b
勾
弦
股
提出问题 探求新知
勾股定理是一个真命题,那么把这个命题的条件和结论颠 倒过来,形成一个新的命题:
如果一个三角形两边的平方和等于第三边的平方,那么这 个三角形是直角三角形.
解:(1)多边形是四边形.原命题是真,逆 命题是假.(2)同旁内角互补,两直线平行.原 命题是真,逆命题是真.(3)如果那么 a = 0, b = 0,那么 ab = 0.原命题是假,逆命题是真.
课堂小结
角的性质
直角三 角形
边的性质
定理1:直角三角形的两 个锐角互余 定理2:有两个角互余的 三角形是直角三角形
如果小明患了肺炎,那么他一定会发烧; 如果小明发烧,那么他一定患了肺炎.
八年级数学 三角形内角和定理的证明
八年级数学三角形内角和定理的证明●教学目标(一)教学知识点三角形的内角和定理的证明.(二)能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲.●教学重点三角形内角和定理的证明.●教学难点三角形内角和定理的证明方法.●教学方法实验、讨论法.●教具准备三角形纸片数张.投影片三张第一张:问题(记作投影片§6.5 A)第二张:实验(记作投影片§6.5 B)第三张:小明的想法(记作投影片§6.5 C)●教学过程Ⅰ.巧设现实情境,引入新课[师]大家来看一机器零件(出示投影片§6.5 A)Ⅱ.讲授新课[师]为了回答这个问题,先观察如下的实验(电脑实验,或实物实验)用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如图6-37),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?图6-37[生甲]当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.[生乙]三角形各内角的大小在变化过程中是相互影响的.[师]很好.在三角形中,最大的内角有没有等于或大于180°的?[生丙]三角形的最大内角不会大于或等于180°.[师]很好.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°.请同学们猜一猜:三角形的内角和可能是多少?[生齐声]180°[师]180°,这一猜测是否准确呢?我们曾做过如下实验:(出示投影片§6.5 B)[师]由实验可知:我们猜对了!三角形的内角之和正好为一个平角.但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.图6-39这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B 剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方.这时,∠A与∠ACE能重合吗?[生齐声]能重合.[师]为什么能重合呢?[生齐声]因为同位角∠ECD=∠B.所以CE∥B A.[师]很好,这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题.这是一个文字命题,证明时需要先干什么呢?[生]需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证.[师]对,下面大家来证明,哪位同学上黑板给大家板演呢?图6-40[生甲]已知,如图6-40,△AB C.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥AB.则∠ACE=∠A(两直线平行,内错角相等)∠ECD=∠B(两直线平行,同位角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠A+∠B+∠ACB=180°(等量代换)即:∠A+∠B+∠C=180°.[生乙]老师,我的证明过程是这样的:证明:作BC的延长线CD,作∠ECD=∠B.则:EC∥AB(同位角相等,两直线平行)∴∠A=∠ACE(两直线平行,内错角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠ACB+∠A+∠B=180°(等量代换)[师]同学们写得证明过程很好,在证明过程中,我们仅仅添画了一条射线CE,使处于原三角形中不同位置的三个角,巧妙地拼凑到一起来了.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.我们通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.小明也在证明三角形的内角和定理,他是这样想的.大家来议一议,他的想法可行吗?(出示投影片§6.5 C)[生甲]小明的想法可行.因为:∵PQ∥BC(已作)∴∠P AB=∠B(两直线平行,内错角相等)∠QAC=∠C(两直线平行,内错角相等)∵∠P AB+∠BAC+∠QAC=180°(1平角=180°)∴∠B+∠BAC+∠C=180°(等量代换)图6-42[生乙]也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C(如图6-42).[生丙]也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.图6-43即:如图6-43,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC交AB于F.∴四边形AFDE是平行四边形(平行四边形的定义)∠BDF=∠C(两直线平行,同位角相等)∠EDC=∠B(两直线平行,同位角相等)∴∠EDF=∠A(平行四边形的对角相等)∵∠BDF+∠EDF+∠EDC=180°(1平角=180°)∴∠A+∠B+∠C=180°(等量代换)[师]同学们讨论得真棒.接下来我们做练习以巩固三角形内角和定理.Ⅲ.课堂练习(一)课本P196随堂练习1、2.图6-441.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论.答案:90°60°如图6-44,在△ABC中,∠C=90°∵∠A+∠B+∠C=180°∴∠A+∠B=90°.图6-45如图6-45,△ABC是等边三角形,则:∠A=∠B=∠C.∵∠A+∠B+∠C=180°∴∠A=∠B=∠C=60°图6-462.如图6-46,已知,在△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°.证明:∵DE∥BC(已知)∴∠AED=∠C(两直线平行,同位角相等)∵∠C=70°(已知)∴∠AED=70°(等量代换)∵∠A+∠AED+∠ADE=180°(三角形的内角和定理)∴∠ADE=180°-∠A-∠AED(等式的性质)∵∠A=60°(已知)∴∠ADE=180°-60°-70°=50°(等量代换)(二)读一读P197.(三)看课本P195~196,然后小结.Ⅳ.课时小结这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它.Ⅴ.课后作业(一)课本P198习题6.6 1、2(二)1.预习内容P199~2002.预习提纲(1)三角形内角和定理的推论是什么?(2)三角形内角和定理的推论的应用.Ⅵ.活动与探究1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图6-47(1)),如果把这三个角“凑”到三角形内一点呢?(如图6-47(2))“凑”到三角形外一点呢?(如图6-47(3)),你还能想出其他证法吗?(1)(2)(3)图6-47[过程]让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路.[结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点.证明略.●板书设计。
八年级数学下册《直角三角形全等的判定》教案、教学设计
(一)导入新课
1.利用多媒体展示生活中常见的直角三角形应用,如楼梯、桥梁等,引导学生观察和思考直角三角形的特征及其在全等判定中的应用。
2.提问:“同学们,我们已经学过全等三角形的判定方法,那么直角三角形有哪些特殊的地方呢?如何判断两个直角三角形全等?”通过问题引导学生回顾旧知,为新课的学习做好铺垫。
3.引入本节课的教学目标,让学生明确学习直角三角形全等判定的意义和作用。
(二)讲授新知
1.通过具体的直角三角形例子,讲解SAS、ASA、AAS和HL四种判定方法,让学生理解并掌握这四种方法的含义和应用。
- SAS:已知两个直角三角形的两边和夹角相等,可以判定这两个三角形全等。
- ASA:已知两个直角三角形的夹角和两边相等,可以判定这两个三角形全等。
三、教学重难点和教学设想
(一)教学重难点
1.重点:直角三角形全等的判定方法(SAS、ASA、AAS和HL)的掌握和应用。
2.难点:
-理解并灵活运用不同的全等判定方法解决实际问题。
-在复杂几何图形中识别直角三角形全等的条件,并运用全等性质进行推理。
-将全等三角形的判定与几何图形的性质相结合,解决综合性的几何问题。
- AAS:已知两个直角三角形的两个角和一边相等,可以判定这两个三角形全等。
- HL:已知两个直角三角形的斜边和直角边相等,可以判定这两个三角形全等。
2.结合具体例题,逐一演示这四种判定方法的应用,让学生在实际操作中理解和掌握。
3.强调直角三角形全等判定中的关键步骤和注意事项,如正确识别对应边、对应角等。
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同探究解决问题的策略,提高学生的团队协作能力。
北师大2024八年级数学下册 1.2 第2课时 直角三角形全等的判定 教案
1.2 直角三角形第1课时直角三角形的性质与判定教学内容第1课时直角三角形的性质与判定课时1核心素养目标1.经历猜想、操作、观察、证明等活动,获得判定直角三角形全等的“斜边、直角边”定理,并运用“斜边、直角边”定理解决问题.2.经历探索直角三角形全等条件的过程,进一步掌握推理证明的方法,发展演绎推理能力.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识目标1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学重点探索并理解直角三角形全等的判定方法“HL”.教学难点会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知问题1 :我们学过哪些判定三角形全等的方法?问题2 :两边分别相等且其中一组等边的对角相等的两个三角形全等吗如果其中一组等边所对的角是直角呢?师生活动:学生举手回答问题.师追问:如何用数学语言来描述两边分别相等且其中一组等边的对角是直角的两个三角形全等吗?二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质问题:如果这两个三角形都是直角三角形,即∠B=∠E = 90°,且AC = DF,BC = EF,现在能判定△ABC≌△DEF吗?设计意图:从学生已有的知识出发,激发学生强烈的好奇心和求知欲.设计意图:教学时,如果有学生提出仿照七年级探索三角形全等条件的方法,通过赋予两边特殊值、画直角三角形、与同伴所画的直角三角形进行比较,进而归纳出结论,教师也应给予鼓励,同时,教师可由此引导学生考虑用尺规一般作出直角三角形,从而转入下面“做一做”环节.做一做:已知一条直角边和斜边,求作一个直角三角形.已知:如图,线段a,c (a<c),直角α.求作:Rt△ABC,使∠C = ∠α,BC = a,AB = c.(1) 先画∠MCN=∠α=90°.(2) 在射线CM上截取CB=a.(3) 以点B为圆心,线段c的长为半径作弧,交射线CN于点A.(4) 连接AB,得到Rt∠ABC.师生活动:学生先独立在纸上画图,然后小组交流想法,保证学生的参与度,最终派代表对问题进行讲解.验证结论:已知:如图,在∠ABC与∠A′B′C′ 中,∠C′ =∠C = 90°,AB = A′B′,AC = A′C′.求证:∠ABC∠∠A′B′C′证明:在∠ABC中,∠∠C=90°,∠ BC2=AB2-AC2 (勾股定理).同理,B'C' 2=A'B' 2-A'C' 2.∠AB=A'B',AC=A'C',∠ BC=B'C'.∠ ∠ABC∠∠A'B'C'( SSS ) .归纳总结;“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:设计意图:1.掌握三角形的尺规作图,从实践中体会三角形全等的条件.2.操作探究活动的设计不仅让学生直观地感受了“斜边、直角边”可以确定一个直角三角形的大小和形状,而且也让学生较好地感悟到“斜边、直角边可以判定两个直角三角形全等.3培养学生的识图能力,并规范证明过程的书写格式.设计意图:学生经历了定理的发现、提出和证明的全过程,感受了合情推理与演绎推理的紧密联系.设计意图:培养学生逻辑思维能力,学会用“HL”条件判定三角形全等.典例精析例1如图,AC∠BC,BD∠AD,垂足分别为C,D,AC = BD. 求证BC = AD.证明:∠ AC∠BC,BD∠AD,∠∠C与∠D都是直角.在Rt∠ABC和Rt∠BAD中,AB = BA,AC = BD.∠ Rt∠ABC∠Rt∠BAD (HL).∠ BC = AD.师生活动:教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算. 教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析.变式1:如图,∠ACB=∠ADB=90°,要证明∠ABC ∠∠BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1) AD=BC( HL )(2) BD=AC( HL )(3) ∠DAB=∠CBA( AAS)(4) ∠DBA=∠CAB( AAS)师生活动:学生独立思考,然后举手回答问题,老师针对有问题的给与解释,或者大家一起探讨错误的原因.例2 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相设计意图:巩固所学的“斜边、直角边”定理,使学生对本节课所形成的概念有更深刻的理解.三、当堂练习,巩固所学等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生活动:教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对“HL”判定方法证明三角形全等解决实际问题的认识.练一练1.如图,已知AD,AF分别是两个钝角∠ABC和∠ABE的高,若AD=AF,AC=AE,求证:BC=BE.证明:∠ AD,AF分别是两个钝角∠ABC和∠ABE的高,且AD=AF,AC=AE,∠ Rt∠ADC ∠ Rt∠AFE (HL).∠ CD=EF.∠ AD=AF,AB=AB,∠ Rt∠ABD∠Rt∠ABF (HL).∠ BD=BF.∠ BD-CD=BF-EF,即BC=BE.三、当堂练习,巩固所学1. 判断两个直角三角形全等的方法不正确的有( )A. 两条直角边对应相等B. 斜边和一锐角对应相等C. 斜边和一条直角边对应相等D. 两个锐角对应相等2.如图,∠ABC中,AB = AC,AD是高,则∠ADB与∠ADC(填“全等”或“不全等”),依设计意图:及时运用知识解决问题,提高学生分析问题和解决问题的能力,增强应用意识、参与意识,巩固所学的“斜边、直角边”定理.设计意图:规范使用“HL”判定方法证明三角形全等的书写格式.在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的理解.据是(用简写法).3.如图,在∠ABC中,已知BD∠AC,CE∠AB,BD = CE.求证:∠EBC∠∠DCB.能力拓展4. 如图,有一直角三角形ABC,∠C=90°,AC=10 cm,BC=5 cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时∠ABC才能和∠APQ全等?设计意图:考查对使用“HL”证明两个直角三角形全等的使用条件的运用.板书设计1.2.2 直角三角形的性质与判定“斜边、直角边”判定方法文字语言:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:课后小结。
新北师大版八年级数学下册知识点总结
新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。
一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。
定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。
基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
八年级数学下册第一章三角形的证明3线段的垂直平分线第2课时三角形三边垂直平分线的性质教案新版北师大版
八年级数学下册教案:第2课时三角形三边垂直平分线的性质1.能够证明三角形三边垂直平分线的相关结论.2.能够利用尺规作已经底边及底边上的高的等腰三角形.重点掌握三角形三边垂直平分线的性质.难点会用所学知识按要求作图.一、复习导入活动一:尺规作图作三角形三条边的垂直平分线.师:利用尺规作三角形三条边的垂直平分线,你发现了什么?(教师可用多媒体演示作图过程)引导学生得出:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.活动二:下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.师:这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义.这节课我们来学习探索和线段垂直平分线有关的结论.二、探究新知1.三角形三边垂直平分线的性质(1)教师引导学生分析,寻找证明方法.师:我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的.我们不妨再来看一下作图过程,或许你能从中受到启示.通过回顾作图过程,引导学生认同:两直线必交于一点,那么要想证明“三线共点”,只要证第三条直线过这个交点或者说这个点在第三条直线上即可.(2)师生共同分析,完成证明.处理方式:讨论结束后,学生书写证明过程.教师点评,注意几何符号语言的规范性.已知:在△ABC中,设AB,BC的垂直平分线交于点P,连接AP,BP,CP.求证:点P在AC的垂直平分线上.证明:∵点P在线段AB的垂直平分线上,∴PA=PB(线段垂直平分线上的点到线段两个端点的距离相等).同理PB=PC.∴PA=PC.∴点P在AC的垂直平分线上(到线段两个端点距离相等的点,在这条线段的垂直平分线上).∴AB,BC,AC的垂直平分线相交于点P.师:从证明三角形三边的垂直平分线交于一点,你还能得出什么结论? (交点P到三角形三个顶点的距离相等)(3)多媒体演示我们得出的结论:定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2.按要求作图(1)已知三角形的一条边及这条边上的高,你能作出满足条件的三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出满足条件的等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?(3)已知等腰三角形的底边及底边上的高,你能用尺规作出满足条件的等腰三角形吗?能作几个?处理方式:学生通过小组讨论得出结论,并尝试作出草图,验证自己的结论.解:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个.已知:三角形的一条边a和这边上的高h,求作:△ABC,使BC=a,BC边上的高为h.从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定,我们可将垂足取在线段BC上或其所在直线上的任意一点D,过此点作BC边的垂线,最后以D为端点在垂线上截取AD(或A1D),使AD=A1D=h,连接AB,AC(或A1B,A1C),所得△ABC(或△A1BC)都满足条件,所以这样的三角形有无数多个.观察还可以发现这些三角形不都全等.(2)如果已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有无数多个.根据线段垂直平分线的性质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因此只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.说明:不是底边垂直平分线上的任意一点都满足条件,如底边的中点在底边上,不能构成三角形,应将这一点从底边的垂直平分线上排除.(3)如果底边和底边上的高都一定,这样的等腰三角形只有两个,并且它们是全等的,分别位于已知底边的两侧.已知:线段a,h.求作:△ABC,使AB=AC,BC=a,高AD=h.作法:①作BC=a;②作线段BC的垂直平分线MN交BC于点D;③以点D为圆心,h长为半径作弧交MN于点A;④连接AB,AC.∴△ABC就是所求作的三角形(如图所示).三、练习巩固1.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是( ) A.三角形三条角平分线的交点B.三角形三条垂直平分线的交点C.三角形三条中线的交点D.三角形三条高的交点2.已知△ABC的三边的垂直平分线的交点在△ABC的边上,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.等腰Rt△ABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是________.4.如图,有A,B,C三个工厂,现要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置.(要求尺规作图,只保留作图痕迹,不写作法)四、课堂小结通过本节课的学习,你有什么收获?五、课外作业1.教材第26页“随堂练习”.2.教材第26~27页习题1.8第1~4题.本节课主要学习“三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等”和“已知等腰三角形的底边和高作出符合条件的等腰三角形”,在讲解的过程中从尺规作图、逻辑推理等多层次地理解并证明了定理,学生思维活跃,能够积极参与到学习中来,教学效果较好.。
最新北师版初中八年级数学下册知识点总结
第一章三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质SSS三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等SAS两边及其夹角分别相等的两个三角形全等ASA两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理等腰三角形的两底角相等。
简述为:等边对等角在△ABC中,若AB=AC,则∠B=∠C条件:边相等,即AB=AC结论:角相等,即∠B=∠C推论等腰三角形在△ABC,A条件:等腰三角顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一B=AC,AD⊥BC,则AD是BC边上的中线,且AD平分∠BAC形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也是其他两线※等腰三角形中的相等线段:1.等腰三角形两底角的平分线相等2.等腰三角形两腰上的高相等3.两腰上的中线相等4.底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。
它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC中,若∠B=∠C则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc,(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, < span=""></bc, <>※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;< span=""></b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;<>即:a>b <===> a-b>0a=b <===> a-b=0a a-b<0三. 不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
19-20学年八年级数学下册第一章三角形的证明1.3-4教学课件(3课时)
几何语言描述:
如图, ∵PA=PB(已知),
A
B
∴点P在AB的垂直平分线上(到一条线段
两个端点距离相等的点,在这条线段的
垂直平分线上). 提示:这个结论是经常用来证明点在直线上(或直线
经过某一点)的根据之一.
例1 已知:如图 ,在 △ABC 中,AB = AC,O 是 △ABC 内一点,且 OB = OC.
求证:直线 AO 垂直平分线段BC. 证明:∵AB=AC, ∴点A在线段BC的垂直平分线上(到一 条线段两个端点距离相等的点, 在这条线 段的垂直平分线上), 同理,点O在线段BC的垂直平分线上, ∴直线 AO 是线段BC的垂直平分线(两 点确定一条直线).
1.如图,已知AB是线段CD的 垂直平分线,E是AB上的一 点,如果EC=7 cm,那么ED=
变式2:若把∠BAC=∠EDF,改为 AC=DF,△ABC与△DEF全等吗?请 B 说明思路.
变式3:请你把例题中的∠BAC=∠EDF 改为另一个适当条件,使△ABC与 △DEF仍能全等,并给出证明.
E
A
PC D
QF
我们曾经利用折纸的方法得到:线段垂直平分线上的 点到这条线段两个端点的距离相等.你能证明这一结论 吗?
在△ABC中,AB= 2AC 4 2 . ∵AC=AE,∴BE= 4 2 4 .
∵ CD=DE,BE=DE,
∴CD= 4 2 4 (cm).
1.三角形三条角平分线的性质定理:三角形的三条角平分 线相交于一点,并且这一点到__三__条__边__的距离相等. 2.三角形三个内角平分线的交点只有一个,实际作图时,只 需作出两个角的平分线,第三个角的平分线必过这两条角 平分线的交点. 3.利用面积法求距离的方法:三角形角平分线的交点与三 个顶点的连线,把原三角形分割成了三个小三角形,利用小 三角形的面积之和等于原三角形的面积,是求角平分线交 点到三边距离的常用方法.
初二数学下册全部知识点
数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
1.1第2课时等边三角形的性质+教案++2023—2024学年北师大版数学八年级下册
1.1 等腰三角形教学内容第2课时等边三角形的性质课时1核心素养目标1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.接着研究等腰三角形中的相等线段,深化对等腰三角形轴对称性的认识,然后研究特殊的等腰三角形—等边三角形的性质.3.意在让学生借助等腰三角形的轴对称性探索并证明其中的相等线段,进一步培养学生的几何直观与推理能力,提高有条理地思考与表达的水平.知识目标1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;2.学习等边三角形的性质,并能够运用其解决问题.教学重点学习等边三角形的性质,并能够运用其解决问题.教学难点学习等边三角形的性质,并能够运用其解决问题.教学准备课件教学过程主要师生活动设计意图一、情境导入一、创设情境,导入新知在七下我们已经知道了“三边相等的三角形是等边三角形”,生活中有很多等边三角形,如交通图标、台球室的三角架等,它们都是等边三角形.思考:在上一节课我们证明了等腰三角形的两底角相等,那等边三角形的各角之间有什么关系呢?师生活动:让学生独自思考问题,尝试回答.设计意图:通过现实情境中识别出等边三角形,以提问的方法引入课题,让学生带着疑问去探讨.二、探究新知二、小组合作,探究概念和性质知识点一:等腰三角形的重要线段的性质在等腰三角形中画出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗? 能证明你的结论吗猜想1:底角的两条平分线相等猜想2:两条腰上的中线相等猜想3:两条腰上的高线相等师生活动:教师首先应当鼓励学生独立思考、大胆猜想,然后组织学生进行交流,在充分交流的基础上,梳理出若干需要证明的命题,并让学生分组进行证明.例1 证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC中,AB = AC,BD和CE是角平分线.求证:BD = CE.证明:∵AB = AC,∴∠ABC =∠ACB(等边对等角).又∵∠1 = 12∠ABC,∠2 =12∠ACB (已知),∴∠1 =∠2 (等式性质).在△BDC与△CEB中,∵∠DCB =∠EBC,BC = CB,∠1 =∠2,∴△BDC≌△CEB (ASA).∴BD = CE (全等三角形的对应边相等).例2 证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC中,AB = AC,BM,CN两腰上的中线.求证:BM = CN.设计意图:通过探索—发现—猜想—证明的过程证明等腰三角形的有关结论.设计意图:本例及其后所提的问题呈现了一些等腰三角形中的相等线段,要求学生进行证明.教学时可根据学生在课堂上实际提出的命题进行教学,在这一过程中,应让学生进一步体会:要说明一个结论成立,仅仅依靠观察或度量是不够的,证明是必要的.证明:∵ AB = AC (已知), ∴∠ABC =∠ACB .又∵ CM = 12 AC ,BN = 12AB ,∴ CM = BN . 在△BMC 与△CNB 中, ∵ BC = CB ,∠MCB =∠NBC ,CM = BN , ∴△BMC ≌△CNB (SAS ). ∴ BM = CN . 例3 证明:等腰三角形两腰上的高相等. 已知:如图,在 △ABC 中,AB = AC ,BP ,CQ 是 △ABC 两腰上的高.求证:BP = CQ . 证明:∵ AB = AC (已知), ∴∠QBC =∠PCB . 在△BQC 与△CPB 中, ∵∠BQC =∠CPB ,∠QBC =∠PCB ,BC = CB , ∴△BQC ≌△CPB (AAS ). ∴ BP = CQ . 师生活动:学生书写证明过程的时候教师进行巡视,寻找有代表性的做法安排板书. 师追问:还有其他的结论吗 议一议: 1. 已知:如图,在 △ABC 中,AB = AC ,点 DE 分别在边 AC 和 AB 上. (1) 如果∠ABD = 13∠ABC ,∠ACE =13∠ACB , 那么 BD = CE 吗?BD = CE (2) 如果∠ABD = 14∠ABC ,∠ACE = 14∠ACB 呢?设计意图:思想方法归纳:这里的两个问题都是由特殊结论得出更一般的结论,这是我们研究数学问题常用的一种思想方法,它会使我们得到意想不到的效果.例如通过对这两个问题的研究,我们可以发现等腰三角形中,相等的线段有无数组.这和等腰三角形是轴对称图形这个性质是密不可分的.BD = CE(3) 如果∠ABD = 1n∠ABC,∠ACE =1n∠ACB,那么BD = CE吗?BD = CE师生活动:以上证明都由特殊结论猜想出了一般结论. 在学生解决问题的基础上,教师还应注意揭示蕴含其中的思想方法. 请同学们把一般结论的证明过程完整地书写出来. (教师可巡视指导)下面我们来讨论第(3)问,请小组代表发言.由此你能得到一个什么结论?结论:如图,在△ABC中,如果AB = AC,∠ABD = ∠ACE,那么BD = CE.2.已知:如图,在△ABC中,AB = AC,点DE分别在边AC和AB上.(1)如果AD = 13AC,AE = 13AB,那么BD = CE吗?为什么?BD = CE(2) 如果AD = 14AC,AE =14AB,那么BD = CE吗?为什么?BD = CE(3) 如果AD = 1n AC,AE =1n AB,那么BD = CE吗?为什么?BD = CE由此你能得到一个什么结论结论:如图,在△ABC中,如果AB = AC,AD = AE,那么BD = CE.师生活动:鼓励学生尽可能用规范的数学语言表述得到的结论,并要求学生书写证明过程.学习提示:在完成上述教学活动后,可以引导学生进行一定的回顾与思考:为什么等腰三角形有这样的特殊性质?一般的三角形有类似的性质吗?使学生进一步体会轴对称图形的美妙.知识点二:等边三角形的性质想一想:等边三角形是特殊的等腰三角形,那么等边三角形的内角有什么特征呢?学习提示:教学时,教师可以先让学生说说等边三角形作为一种等腰三角形所具有的性质,由此探索等边三角形所具有的特殊性质,并进行证明.定理:等边三角形的三个内角都相等,并且每个角都等于60°.提问1:怎样证明这一定理呢?预设:可以利用等腰三角形的性质进行证明.已知:如图,在△ABC中,AB = AC = BC.求证:△A =△B =△C = 60°.证明:在△ABC中,△AB=AC(已知),△△B=△C(等边对等角).同理△A=△B.又△△A+△B+△C=180°,(三角形的内角和等于180°),△△A=△B=△C=60°.师生活动:学生书写证明过程的时候教师进行巡视,寻找有代表性的做法安排板书.典例精析例4 如图,等边三角形ABC中,BD是AC边上的中线,BD = BE,求△EDA的度数.解:△△ABC是等边三角形,△△CBA = 60°.△ BD是AC边上的中线,△△BDA = 90°,△DBA = 30°.△ BD = BE,设计意图:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质,此外它还具有一些特殊性质.设计意图:在定理证明的基础上进行难度更高的推论证明,巩固学生知识的运用,并培养学生发散思维,把几何问题转化为代数问题的能力.三、当堂练习,巩固所学△△BDE = (180°-△DBA)÷2= (180°-30°)÷2 = 75°.△△EDA = 90°-△BDE = 90°-75° = 15°.三、当堂练习,巩固所学1.如图,△ABC和△ADE都是等边三角形,若△ABC的周长为18 cm,EC = 2 cm,则△ADE的周长是cm.2. 如图所示,△ACM和△BCN都为等边三角形,连接AN、BM,求证:AN = BM.3. 如图,A、O、D三点共线,△OAB和△OCD是两个全等的等边三角形,求△AEB的大小.变式:如图,若把“两个全等的等边三角形”换成“不全等的两个等边三角形”,其余条件不变,你还能求出△AEB的大小吗?设计意图:考查对等边三角形性质的掌握.设计意图:考查对等边三角形和全等三角形的综合运用.设计意图: 在上题的基础上的变换,考查对等边三角形和全等三角形的综合运用.设计意图:通过变式,使学生对所学知识进行整合,使学生的学习思路清晰有序,培养学生的分析能力.板书设计1.1.1等边三角形等腰三角形:底角的两条平分线相等;两条腰上的中线相等;两条腰上的高线相等.等边三角形:等边三角形的三个内角都相等,并且每个角都等于60°.课后小结等腰三角形两底角上的角平分线、两腰上的高、两腰上的中线的相关性质:底角的两条平分线相等;两条腰上的中线相等;两条腰上的高线相等.定理:等边三角形的三个内角都相等,并且每个角都等于60°.教学反思本节课涉及的问题和命题较多,若全部都要求学生写下来时间是完全不够用的,所以在教学中除了要求学生规范几何语言表述外,我还鼓励学生大胆发言,将证明思路清晰地向老师、同学阐述. 如教师示范证明第一个命题,学生完整写下第二个命题证明过程,学生口述证明第三个命题,第四个命题. 特别地,在议一议环节鼓励学生大胆发言,用归纳、类比的推理形式得到一般结论.在逻辑推理核心素养的过程中,学生需要能够表述论证的过程,增加数学交流的能力.。
八年级下册数学《三角形》等边三角形及其判断--知识点整理
八年级下册数学《三角形》等边三角形及
其判断--知识点整理
等边三角形是指三条边的长度相等的三角形。
下面整理了关于等边三角形及其判断的知识点:
1. 定义:等边三角形的三条边相等,每个角度均为60度。
2. 性质:
- 三条边相等,即任意两边之间的角度也相等。
- 每个角度均为60度,即任意两个角度之和都等于180度。
- 等边三角形的高、中线、角平分线、垂心、重心、外心和内心都重合于同一点。
3. 判断等边三角形的条件:
- 三边的长度相等。
- 三个角度均为60度。
4. 判断方法:
- 观察三条边的长度,若三条边长度相等,则是等边三角形。
- 观察三个角度的度数,若三个角度均为60度,则是等边三角形。
5. 等边三角形的应用:
- 在建筑设计中,等边三角形可以用于计算坡度和斜率。
- 在艺术设计中,等边三角形可以作为创作元素,营造平衡和稳定感。
- 在几何学证明中,等边三角形常常作为证明基础。
这些是关于等边三角形及其判断的基本知识点,请根据上述内容进行学习和探索。
北师大版八年级下册数学1.2直角三角形全等的判定(HL定理)说课稿
在教学过程中,我预见到学生可能对HL定理的理解和应用存在困难,以及部分学生可能在学习过程中出现注意力不集中的问题。对于HL定理的理解困难,我将通过几何画板等教学工具进行直观展示,以及提供更多的练习机会让学生熟能生巧。对于注意力不集中的问题,我将采取互动提问、小组讨论等方式,提高学生的课堂参与度。课后,我将通过课后作业和学生的反馈来评估教学效果,并根据学生的掌握情况调整教学方法和节奏。具体的反思和改进措施包括:对于学生掌握较好的部分,可以适当加快教学进度;对于学生掌握困难的部分,可以重复讲解或提供额外的辅导资源。同时,我也会定期与学生沟通,了解他们的学习需求和困难,以便更好地调整教学策略。
(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生总结本节课所学的内容,回顾自己的学习过程,反思自己的学习效果。然后,我会根据学生的回答,给予肯定和鼓励,并对学生的学习方法和学习态度提出建议和改进意见。最后,我会布置课后作业,让学生在课后巩固所学知识。
(五)作业布置
二、学情分析导
(一)学生特点
本节课面向的学生是八年级的学生,他们正处于青春期的转折点,思维活跃,好奇心强,具备一定的逻辑思维能力。学生在之前的数学学习中,已经掌握了三角形的基本性质,全等三角形的判定方法(SSS、SAS、ASA、AAS),具备了观察、分析、归纳的能力。然而,对于HL定理的理解和运用,部分学生可能会感到困难,需要教师的引导和帮助。
(三)互动方式
在师生互动环节,我计划采用问题引导法和问答法。通过提出问题,引导学生思考,激发学生的思维碰撞。在生生互动环节,我计划采用小组合作学习法和讨论法。将学生分成若干小组,让学生在小组内讨论问题,共同解决问题。这些互动方式的目的是促进学生的参与和合作,培养学生的沟通能力,提高学生的团队协作能力。同时,教师要积极参与学生的互动,给予及时的指导和建议,引导学生正确思考。
1.2直角三角形全等的判定(HL定理)(教案)
-理解HL定理的适用条件:仅适用于直角三角形,非直角三角形不适用。
-识别全等证明中的已知条件和未知条件,特别是如何从题目中提取关键信息。
-理解全等证明的逻辑顺序,如何从已知条件出发,逐步推导出全等关系。
-解决实际问题时,如何构建直角三角形模型,并将HL定理应用于问题求解。
举例:在解决一个直角三角形的斜边和一条直角边长度已知的问题时,学生可能难以直接联想到使用HL定理。难点在于如何引导学生从问题中识别出这是一个直角三角形全等的问题,并应用HL定理来求解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解和掌握直角三角形全等的判定方法——HL定理。首先,通过日常生活中的例子导入新课,我发现学生的兴趣被成功激发,他们对于几何学的实际应用表现出了浓厚的兴趣。这一点让我感到欣慰,也让我认识到,将理论知识与生活实际相结合是提高学生学习兴趣的有效途径。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形全等的判定方法——HL定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形全等的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版八年级下册数学《1.1 第4课时 等边三角形的判定及含30°角的直角三角形的性质》教案
北师大版八年级下册数学《1.1 第4课时等边三角形的判定及含30°角的直角三角形的性质》教案一. 教材分析等边三角形的判定及含30°角的直角三角形的性质是北师大版八年级下册数学第1.1节的内容。
这一节主要让学生了解等边三角形的判定方法,以及含30°角的直角三角形的性质。
在教材中,通过图片和实例引出等边三角形的判定方法,以及通过几何图形和推理介绍含30°角的直角三角形的性质。
二. 学情分析学生在学习这一节内容前,已经学习了三角形的性质,角的度量等基础知识。
对于这部分内容,学生可能已经有一定的了解,但需要进一步引导他们通过几何图形和推理来深入理解等边三角形的判定方法和含30°角的直角三角形的性质。
三. 教学目标1.了解等边三角形的判定方法,能够判断一个三角形是否为等边三角形。
2.掌握含30°角的直角三角形的性质,能够运用这些性质解决实际问题。
3.培养学生的空间想象能力和逻辑推理能力。
四. 教学重难点1.等边三角形的判定方法。
2.含30°角的直角三角形的性质及其应用。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等。
通过引导学生观察实例,提出问题,引导学生通过几何图形和推理来解决问题,培养学生的空间想象能力和逻辑推理能力。
六. 教学准备1.PPT课件2.几何图形板七. 教学过程1.导入(5分钟)通过展示一些等边三角形的图片,引导学生观察等边三角形的特点,引发学生的兴趣。
同时,提出问题:“你们知道等边三角形的判定方法吗?”2.呈现(15分钟)利用PPT课件,展示等边三角形的判定方法。
通过几何图形和推理,引导学生理解等边三角形的判定方法。
同时,展示含30°角的直角三角形的性质,引导学生理解并能够运用这些性质。
3.操练(15分钟)让学生分组合作,利用几何图形和直尺,尝试判断一些给定的三角形是否为等边三角形,并运用含30°角的直角三角形的性质解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节. 等腰三角形
1. 性质:等腰三角形的两个底角相等(等边对等角).
2. 判定:有两个角相等的三角形是等腰三角形(等角对等边).
3. 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”).
4. 等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.
判定定理:(1)有一个角是60°的等腰三角形是等边三角形;
(2)三个角都相等的三角形是等边三角形.
第二节.直角三角形
1. 勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方.
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
2. 含30°的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.
3.直角三角形斜边上的中线等于斜边的一半。
要点诠释:勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.
4.斜边和一条直角边分别相等的两个直角三角形全等。
第三节. 线段的垂直平分线
1. 线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等.
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
2.三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.该点就是三角形的外心。
以此外心为圆心,可以将三角形的三个顶点组成一个圆。
3.如何用尺规作图法作线段的垂直平分线:
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN就是线段AB 的垂直平分线。
第四节. 角平分线
1. 角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.
2. 三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心
通用篇
1.真命题与假命题
真命题:真命题就是正确的命题,即如果命题的条件成立,那么结论一定成立。
假命题:条件和结果相矛盾的命题是假命题,
命题与逆命题
命题包括已知和结论两部分;逆命题是将原命题的已知和结论交换;
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题。
其中一个命题称为另一个命题的逆命题。
一个命题是真命题,它的逆命题不一定是真命题。
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理。
这两个定理称为互逆定理。
2、证明命题的一般步骤:
(1)理解题意:分清命题的条件(已知),结论(求证);
(2)根据题意,画出图形;
(3)结合图形,用数学语言写出“已知”和“求证”;
(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因“
(5)依据思路,运用数学语言条理清晰地写出证明过程;
(6)检查表达过程是否正确,完整.
3、用反证法证明几何命题的步骤:
(1)假设命题的结论不成立.
(2)由假设作为条件,根据已知条件及学过的定义、定理、公理进行逐步的推导直至与假设或与某个己知条件或与学过的某个定义、定理、公理出现矛盾.
(3)从而判断假设错误,原命题成立。