小学奥数简单的排列问题精选练习例题含答案解析(附知识点拨及考点)
四年级奥数-排列组合(1)
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有2112520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
奥数题排列组合问题附答案
奥数题排列组合问题附答案
奥数题排列组合问题附答案
小学生想要学好数学,做题是最好的办法,但想要奏效,还得靠自己的积累。
多做些典型题,并记住一些题的解题方法。
以下是小学频道为大家提供的二年级奥数题排列组合问题附答案,供大家复习时使用!
1、有10把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?
2、上体育课时,同学们站好了队,1、2报数,然后让报1的学生退出队列;再1、2报数,让报1的学生退出队列;从第三次开始每次报数后,一律让报2的学生退出队列,直到最后一个人为止,问剩下的一个人最初在队列的第几位?
1、解析:
第1把锁,试9次可以确定所配的`钥匙;第2把锁,试8次可以确定所配的钥匙;第3把锁,试7次可以确定所配的钥匙……第9把锁,试1次可以确定所配的钥匙;第10把锁不用试。
9+8+7+6+5+4+3+2+1=45次。
2、解析:
1、2、3、4、5、6、7、8、9、10、11、12、13、14……
第1次:留下的是2、4、6、8、10、12……
第2次:留下的是4、8、12、16……
第3次:留下的是4、12、20、28……
第4次:留下的是4、20、……
第5次:留下的是4……
从第3次开始,报2的退出,那么最后一个人总是第4位。
小学奥数 简单的排列问题 精选练习例题 含答案解析(附知识点拨及考点)
1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法;……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .模块一、排列之计算教学目标例题精讲知识要点7-4-1.简单的排列问题【例 1】 计算:⑴ 25P ;⑵ 4377P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 由排列数公式121m n P n n n n m =---+()()()知:⑴ 255420P =⨯=⑵ 477654840P =⨯⨯⨯=,37765210P =⨯⨯=,所以4377840210630P P -=-=.【答案】⑴20 ⑵630【巩固】 计算:⑴ 23P ;⑵ 32610P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴ 23326P =⨯= ⑵ 326106541091209030P P -=⨯⨯-⨯=-=.【答案】⑴6 ⑵30【巩固】 计算:⑴321414P P -; ⑵53633P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴32141414131214132002P P -=⨯⨯-⨯=;⑵536333(65432)3212154P P -=⨯⨯⨯⨯⨯-⨯⨯=.【答案】⑴2002 ⑵2154模块二、排列之排队问题【例 2】 有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况? (照相时3人站成一排)【考点】简单排列问题 【难度】2星 【题型】解答【解析】 由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.由排列数公式,共可能有:3443224P =⨯⨯=(种)不同的拍照情况.也可以把照相的人看成一个位置,那么共可能有:44432124P =⨯⨯⨯=(种)不同的拍照情况.【答案】24【巩固】 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?【考点】简单排列问题 【难度】2星 【题型】解答【解析】 4个人到照相馆照相,那么4个人要分坐在四个不同的位置上.所以这是一个从4个元素中选4个,排成一列的问题.这时4n =,4m =.由排列数公式知,共有44432124P =⨯⨯⨯=(种)不同的排法.【答案】24【巩固】 9名同学站成两排照相,前排4人,后排5人,共有多少种站法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有99P 种不同站法.而问题中,9个人要站成两排,这时可以这么想,把9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.方法一:由全排列公式,共有99987654321362880P =⨯⨯⨯⨯⨯⨯⨯⨯=(种)不同的排法.方法二:根据乘法原理,先排四前个,再排后五个.45 95987654321362880p p⋅=⨯⨯⨯⨯⨯⨯⨯⨯=【答案】362880【巩固】5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?【考点】简单排列问题【难度】3星【题型】解答【解析】由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且4n=.由全排列公式,共有44432124P=⨯⨯⨯=(种)不同的站法.【答案】24【巩固】丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,5人并排站成一排,奶奶要站在正中间,有多少种不同的站法?【考点】简单排列问题【难度】3星【题型】解答【解析】由于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n=4.由全排列公式,共有44432124P=⨯⨯⨯=(种)不同的站法.【答案】24【例 3】5个同学排成一行照相,其中甲在乙右侧的排法共有_______种?【考点】简单排列问题【难度】3星【题型】填空【关键词】学而思杯,4年级,第8题【解析】5个人全排列有5!120=种,其中甲在乙右侧应该正好占一半,也就是60种【答案】60种【例 4】一列往返于北京和上海方向的列车全程停靠14个车站(包括北京和上海),这条铁路线共需要多少种不同的车票.【考点】简单排列问题【难度】3星【题型】解答【解析】2141413182P=⨯=(种).【答案】182【例 5】班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问:有多少种不同的分工方式?【考点】简单排列问题【难度】3星【题型】解答【解析】55120P=(种).【答案】120【例 6】有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?【考点】简单排列问题【难度】3星【题型】解答【解析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关,而且与不同旗子所在的位置有关,所以是排列问题,且其中5n=,3m=.由排列数公式知,共可组成3554360P=⨯⨯=(种)不同的信号.【答案】60【巩固】有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?【考点】简单排列问题 【难度】3星 【题型】解答【解析】23326P =⨯=. 【答案】6【巩固】 在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 方法一:这里三面不同颜色的旗子就是三个不同的元素,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,也就是从三个元素中选三个的全排列的问题.由排列数公式,共可以组成333216P =⨯⨯=(种)不同的信号.方法二:首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3216⨯⨯=(种).【补充说明】这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.【答案】6模块三、排列之数字问题【例 7】 用1、2、3、4、5、6、7、8可以组成多少个没有重复数字的四位数?【考点】简单排列问题 【难度】2星 【题型】解答【解析】 这是一个从8个元素中取4个元素的排列问题,已知8n =,4m =,根据排列数公式,一共可以组成4887651680P =⨯⨯⨯=(个)不同的四位数.【答案】1680【巩固】 由数字1、2、3、4、5、6可以组成多少没有重复数字的三位数?【考点】简单排列问题 【难度】2星 【题型】解答【解析】36120P =. 【答案】120【例 8】 用0、1、2、3、4可以组成多少个没重复数字的三位数?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 (法1)本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1、2、3、4这四个数字中选择一个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由乘法原理得,此种三位数的个数是:24448P ⨯=(个).(法2):从0、1、2、3、4中任选三个数字进行排列,再减去其中不合要求的,即首位是0的.从0、1、2、3、4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:32545434348P P -=⨯⨯-⨯=(个).本题不是简单的全排列,有一些其它的限制,这样要么先全排列再剔除不合题意的情况,要么直接在排列的时候考虑这些限制因素.【答案】48【例 9】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【考点】简单排列问题【难度】3星【题型】解答【解析】个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n=,2m=,根据排列数公式,一共可以组成255420P=⨯=(个)符合题意的三位数.【答案】20【巩固】用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?【考点】简单排列问题【难度】3星【题型】解答【解析】由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有255420P=⨯=(种)选法.由乘法原理,一共可以组成32060⨯=(个)不同的偶数..【答案】60【例 10】由0,2,5,6,7,8组成无重复数字的数,四位数有多少个?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:先考虑从六个数字中任取四个数字的排列数为466543360P=⨯⨯⨯=,由于0不能在千位上,而以0为千位数的四位数有3554360P=⨯⨯=,它们的差就是由0,2,5,6,7,8组成无重复数字的四位数的个数,即为:36060300-=个.方法二:完成这件事——组成一个四位数,可分为4个步骤进行,第一步:确定千位数;第二步:确定百位数;第三步:确定十位数;第四步:确定个位数;这四个步骤依次完成了,“组成一个四位数”这件事也就完成了,从而这个四位数也完全确定了,思维过程如下:根据乘法原理,所求的四位数的个数是:5543300⨯⨯⨯=(个).【答案】300【例 11】用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?【考点】简单排列问题【难度】4星【题型】解答【解析】按位数来分类考虑:⑴一位数只有1个3;⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P=⨯=(个)不同的两位数,共可组成248⨯=(个)不同的两位数;⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成3 33216P=⨯⨯=(个)不同的三位数,共可组成6424⨯=(个)不同的三位数;⑷四位数:可由1,2,4,5这四个数字组成,有44432124P=⨯⨯⨯=(个)不同的四位数;⑸五位数:可由1,2,3,4,5组成,共有5554321120P=⨯⨯⨯⨯=(个)不同的五位数.由加法原理,一共有182424120177++++=(个)能被3整除的数,即3的倍数.【答案】177【例 12】用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?【考点】简单排列问题【难度】4星【题型】解答【解析】可以分两类来看:⑴把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有4 4432124P=⨯⨯⨯=(种)放法,对应24个不同的五位数;⑵把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P=种选择.由乘法原理,可以组成33654⨯⨯=(个)不同的五位数.由加法原理,可以组成245478+=(个)不同的五位数.【答案】78【巩固】用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?【考点】简单排列问题【难度】4星【题型】解答【解析】从高位到低位逐层分类:⑴千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0~9中除千位已确定的数字之外的9个数字中选择,因为数字不重复,也就是从9个元素中取3个的排列问题,所以百、十、个位可有39987504P=⨯⨯=(种)排列方式.由乘法原理,有45042016⨯=(个).⑵千位上排5,百位上排0~4时,千位有1种选择,百位有5种选择,十、个位可以从剩下的八个数字中选择.也就是从8个元素中取2个的排列问题,即288756P=⨯=,由乘法原理,有1556280⨯⨯=(个).⑶千位上排5,百位上排6,十位上排0,1,2,3,4,7时,个位也从剩下的七个数字中选择,有116742⨯⨯⨯=(个).⑷千位上排5,百位上排6,十位上排8时,比5687小的数的个位可以选择0,1,2,3,4共5个.综上所述,比5687小的四位数有20162804252343+++=(个),故5687是第2344个四位数.【答案】2344【例 13】用数字l~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有___种组成方法.【考点】简单排列问题【难度】4星【题型】填空【关键词】走美杯,六年级,初赛,第7题【解析】l~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.【答案】144种【例 14】 由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在 个.【考点】简单排列问题 【难度】4星 【题型】解答【解析】 比2008小的4位数有2000和2002,比2008小的3位数有23318⨯⨯=(种),比2008小的2位数有236⨯=(种),比2008小的1位数有2(种),所以2008排在第21862129++++=(个). 【答案】29【例 15】 千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有多少个?【考点】简单排列问题 【难度】4星 【题型】解答【解析】 千位数字大于十位数字,千位数字的取值范围为29,对应的十位数字取07,每确定一个千位数字,十位数字就相应确定了,只要从剩下的8个数字中选出2个作百位和个位就行了,因此总共有288P ⨯个这样的四位数.⑵千位数字小于十位数字,千位数字取17,十位数字取39,共有287P ⨯个这样的四位数.所以总共有228887840P P ⨯+⨯=个这样的四位数.【答案】840模块四、排列之策略问题【例 16】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【考点】简单排列问题 【难度】4星 【题型】解答【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【答案】56【例 17】 幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 在这个问题中,只要把3把椅子看成是3个位置,而6名小朋友作为6个不同元素,则问题就可以转化成从6个元素中取3个,排在3个不同位置的排列问题.由排列数公式,共有:36654120P =⨯⨯=(种)不同的坐法.【答案】120【巩固】 幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 与例5不同,这次是椅子多而人少,可以考虑把6把椅子看成是6个元素,而把3名小朋友作为3个位置,则问题转化为从6把椅子中选出3把,排在3名小朋友面前的排列问题.由排列公式,共有:36654120P=⨯⨯=(种)不同的坐法.【答案】120【巩固】10个人走进只有6辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?【考点】简单排列问题【难度】3星【题型】解答【解析】把6辆碰碰车看成是6个位置,而10个人作为10个不同元素,则问题就可以转化成从10个元素中取6个,排在6个不同位置的排列问题.共有6101098765151200P=⨯⨯⨯⨯⨯=(种)不同的坐法.【答案】151200【例 18】一个篮球队有五名队员A,B,C,D,E,由于某种原因,E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:此题先确定做中锋的人选,除E以外的四个人任意一个都可以,则有4种选择,确定下来以后,其余4个人对应4个位置,有44432124P=⨯⨯⨯=(种)排列.由乘法原理,42496⨯=,故一共有96种不同的站位方法.方法二:五个人分配到五个位置一共有5554321120P=⨯⨯⨯⨯=(种)排列方式,E能做中锋一共有4 4432124P=⨯⨯⨯=(种)排列方式,则E不能做中锋一共有54541202496P P-=-=种不同的站位方法.【答案】96【例 19】小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?【考点】简单排列问题【难度】3星【题型】解答【解析】我们将10块大白兔奶糖从左至右排成一列,如果在其中9个间隙中的某个位置插入“木棍”,则将lO块糖分成了两部分.我们记从左至右,第1部分是第1天吃的,第2部分是第2天吃的,…,如:○○○|○○○○○○○表示第一天吃了3粒,第二天吃了剩下的7粒:○○○○ | ○○○| ○○○表示第一天吃了4粒,第二天吃了3粒,第三天吃了剩下的3粒.不难知晓,每一种插入方法对应一种吃法,而9个间隙,每个间隙可以插人也可以不插入,且相互独立,故共有29=512种不同的插入方法,即512种不同的吃法.【答案】512。
小学奥数之排列组合问题
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
小学六年级奥数题及答案-排列大小
解答:因为组成的三位数能同时被2,5整除,所以个位数字为0。根据三位数能被3整除的特征,数字和2+7+0与5+7+0都能被3整除,因此所求的这些数为270,570,720,750。
同学们学习奥数有利于我们数学思维的提升所以我们要多做题勤加练习才能在成绩上有更大的提高今天小编为同学们带来一道有趣的题希望同学们认真完成
小学六年级奥数题及答案-排列大小
导语:同学们学习奥数有利于我们数学思维的提升,所以我们要多做题,勤加练习才能在成绩上有更大的提高,今天小编为同学们带来一道有趣的题,希望同学们认真完成。
小学奥数排列和组合试题及答案
小学奥数排列和组合试题及答案
(总3页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
小学四年级奥数排列组合练习
1.由数字0、1、2、3、4可以组成多少个
①三位数②没有重复数字的三位数
③没有重复数字的三位偶数④小于1000的自然数
2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种
①某两人必须入选;
②某两人中至少有一人入选;
③某三人中恰入选一人;
④某三人不能同时都入选.
3.如右图,两条相交直线上共有9个点,问:
一共可以组成多少个不同的三角形?
4.如下图,计算
①下左图中有多少个梯形
②下右图中有多少个长方体?
5.七个同学照相,分别求出在下列条件下有多少种站法
①七个人排成一排;
②七个人排成一排,某两人必须有一人站在中间;
③七个人排成一排,某两人必须站在两头;
④七个人排成一排,某两人不能站在两头;
⑤七个人排成两排,前排三人,后排四人,某两人不在同一排. 答案:
1.①100;②48;③30;④124.
2.①C313=286;②C515-C513=1716;
③C13·C412=1485;④C515-C212=2937.
·C23+C26·C13=60;或C39-C36-C34=60.
4.①C26×C26=225;②C25×C26×C25=1500.
5.①P77=5040;②2P66=1440;
③2P55=240;④5×4×P55=2400;
⑤2×3×4×P55=2880.。
四年级奥数排列组合题及答案
四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
小学数学奥林匹克辅导及练习找出数列的排列规律二含答案
小学数学奥林匹克辅导及练习找出数列的排列规律二含答案Happy First, written on the morning of August 16, 2022找出数列的排列规律二这一讲我们利用前面学习的等差数列有关知识和找规律的思想方法;解决数学问题..一例题指导例1. 如果按一定规律排出的加法算式是3+4;5+9;7+14;9+19;11+24;……;那么第10个算式是 + ;第80个算式中两个数的和是多少分析与解:第一个加数如下排列:3;5;7;9;11……;这是一个等差数列;公差是2;第二个加数排列如下:4;9;14;19;24;……;这也是一个等差数列;公差是5..根据等差数列的通项公式可以分别求出第10个算式的两个加数..所以第10个算式是2149..要求第80个算式的和;只要求出第80个算式的两个加数;再相加即可;当然也可以找一找和的规律..想一想:第几个加法算式中两个数的和是707例2. 有一列数:1;2;3;5;8;13;……;这列数中的第200个数是奇数还是偶数分析与解:要想判断这列数中第200个数是奇还是偶;必须找出这列数中奇、偶数的排列规律..不难看出;这列数是按照“奇偶奇”的顺序循环重复排列的;即每过3个数循环一次..那么到第200个数一次循环了66次还余2..这说明到第200个数时;已做了66次“奇偶奇”的循环;还余下2个数..也就是说余下的两个数依次为“奇偶”;所以第200个数是偶数..例3. 下面的算式是按某种规律排列的:1+1;2+3;3+5;4+7;1+9;2+11;3+13;4+15;1+17;……问:1第1998个算式是 + ;2第个算式的和是2000..分析与解:1第1个加数依次为1、2、3、4;1、2、3、4……每4个数循环一次;重复出现..199844992÷=……;所以第1998个算式的第1个加数是2..第二个加数依次为1;3;5;7;9;11……是公差为2的等差数列..根据等差数列的通项公式可求出第1998个算式的第2个加数为()11998123995+-⨯=;所以第1998个算式是23995+..2由于每个算式的第二个加数都是奇数;所以和是2000的算式的第1个加数一定是奇数;不会是2和4..只有12000x..其+=x或32000+=中x是1、3、5、7、9……中的某个数..若12000+=x ;则x =1999..根据等差数列的项数公式得:()199********-÷+=;这说明1999是数列1、3、5、7、9……中的第1000个数;因为10004250÷=;说明第1000个算式的第1个加数是4;与假设12000+=x 矛盾;所以x ≠1999;若32000+=x ;则x =1997..与上同理;()1997121999-÷+=;说明1997是等差数列1、3、5、7、9……中的第999个数;由于99942493÷=……;说明第999个算式的第一个加数是3;所以;第999个算式为319972000+=..例4. 将1到200的自然数;分成A 、B 、C 三组:A 组:1 6 7 12 13 18……B 组:2 5 8 11 14 17……C 组:3 4 9 10 15 16……根据分组的规律;请回答:1B 组中一共有 个自然数;2A 组中第24个数是 ;3178是 组里的第 个数..分析与解:1B 组中的数成等差数列;其首项是2;公差是3;从整个数表看;竖着数是每3个数一组;因为2003662÷=……;所以200是B 组中的最后一个数;根据等差数列的项数公式..()-÷+=..所以;B20023167组中一共有67个自然数..2观察A组中数的排列规律;由于24是偶数;所以应特别注意偶数位置上的数的排列规律..第几个数就是3的几倍;第24个数就是3的24倍;所以A组第24个数是32472⨯=..3观察A、B、C三组数竖看;每2列为一组6个数;178629÷=……4;说明重复29次;还剩下4个数;这4个数重新排列一下可知;178排在C 组..每一组含有C组的2个数..最后余下的4个数;在C组又排了2个;所以178在C组中是第292260⨯+=个数..答题时间:40分钟二尝试体验1. 如下图所示;黑珠、白珠共102个;穿成一串;这串珠子中;最后一个珠子是颜色的;这种颜色的珠子共有个..○●○○○●○○○●○○○……2. 有红、白、黑三种纸牌共158张;按5张红色;后3张白色;再4张黑色的次序排列下去;最后一张是色;第140张是色..3. 节日的校园内挂起了一盏盏小电灯;小明看出每两个白灯之间有红、黄、绿各一盏彩灯;小明想;第73盏一定是色灯..4. 下面的算式是按一定的规律排列的:4+2;5+8;6+14;7+20……;那么;第100个算式的得数是 ..5. 找规律;按规律填数..6. 自然数按一定规律排成下表形式;问:第10行第5个数是多少试题答案二尝试体验1. 如下图所示;黑珠、白珠共102个;穿成一串;这串珠子中;最后一个珠子是颜色的;这种颜色的珠子共有个..○●○○○●○○○●○○○……除去第一个珠子;剩下的()-=棵珠子是按照“一黑三白”的1021101次序循环重复的..说明循环了25次后还多出一个黑珠子;所以最后一个珠子是黑色的;黑色的珠子共有26个..2. 有红、白、黑三种纸牌共158张;按5张红色;后3张白色;再4张黑色的次序排列下去;最后一张是色;第140张是色..这是按“5红3白4黑”循环排列的;它的循环周期是12..所以最后一张是红色;第140张是白色..3. 节日的校园内挂起了一盏盏小电灯;小明看出每两个白灯之间有红、黄、绿各一盏彩灯;小明想;第73盏一定是色灯..把排列的顺序写出来是:白、红、黄、绿、白、红、黄、绿、白、红、……是按“白、红、黄、绿”循环排列的..所以第73盏灯一定是白色的..4. 下面的算式是按一定的规律排列的:4+2;5+8;6+14;7+20……;那么;第100个算式的得数是 ..第一个加数这样排列:4;5;6;7;……公差是1的等差数列第二个加数这样排列:2;8;14;20;……公差是6的等差数列根据等差数列的通项公式得:所以;第100个算式的得数是103596699+=5. 找规律;按规律填数..第一个等号前的两个因数是两个相邻的奇数;第二个等号后面的因数介于前面两个奇数之间..如第3式:5和7之间只有一个自然数6..除此之外;第一个等式的第一个因数是一个公差为2的等差数列1;3;5;7……根据以上规律可得:第60式中未知数较多;只要求出第一个等号前的第一个因数就好填了..根据等差数列的通项公式可得:()+-⨯=16012119所以第60式为:()()()()()⨯+==⨯1191211144001201206. 自然数按一定规律排成下表形式;问:第10行第5个数是多少第一行1个数;第二行2个数;第3行有3个数……;第几行就有几个数;我们先求出到第九行结束一共有多少个数;然后再继续数出5个就可以了..所以;第10行的第5个数是50..。
小学奥数思维训练-排列组合(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
小学奥数排列和组合试题及答案
小学奥数排列和组合试题及答案第一篇:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-------------------答案:1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-------------------第二篇:小学奥数经典专题点拨:排列与组合排列与组合【有条件排列组合】例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。
(哈尔滨市第七届小学数学竞赛试题)讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的排列问题教学目标1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.知识要点一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中取出m(m n )个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n )个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做 P n m.根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2 :从剩下的( n 1)个元素中任取一个元素排在第二位,有(n 1)种方法;步骤m :从剩下的 [n (m 1)]个元素中任取一个元素排在第m个位置,有 n (m 1) n m 1 (种)方法;由乘法原理,从n 个不同元素中取出m个元素的排列数是 n(n 1)(n 2)(n m 1),即P n m(n n 1)(. n 2)(n m 1),这里,m n,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n的情况,排列数公式变为 P n n n(n 1)(n 2) 3 2 1 .表示从n个不同元素中取n个元素排成一列所构成排列的排列数.这种n个排列全部取出的排列,叫做n个不同元素的全排列.式子右边是从n开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为 n!,读做n的阶乘,则 P n n还可以写为: P n n n! ,其中 n! n(n 1)(n 2) 3 2 1 .例题精讲模块一、排列之计算巩固】 4 名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法? 考点】简单排列问题 【难度】 2 星 【题型】解答 解析】 4 个人到照相馆照相,那么 4 个人要分坐在四个不同的位置上.所以这是一个从 4 个元素中选 4个,排成一列的问题.这时 n 4, m 4 .由排列数公式知,共有 P 444 3 2 1 24 (种 )不同的排法. 答案】 24巩固】 9名同学站成两排照相,前排 4人,后排 5 人,共有多少种站法? 考点】简单排列问题【难度】 3 星 【题型】解答 解析】 如果问题是 9名同学站成一排照相, 则是 9个元素的全排列的问题, 有P 99种不同站法. 而问题中, 9 个人要站成两排,这时可以这么想,把 9 个人排成一排后,左边 4个人站在前排,右边 5 个人站在后 排,所以实质上,还是 9 个人站 9 个位置的全排列问题.方法一:由全排列公式,共有 P 999 8 7 6 5 4 3 2 1 362880 (种 )不同的排法. 方法二:根据乘法原理 ,先排四前个,再排后五个. 【考简单排列问题 【难度】 1 星 【 题型】解答【解析】 由 排列数公式 P n m (n n 1)(. n 2)( n m1)知: 2 ⑴ P 5 4 20⑵ P 74 7 6 5 4 840 ,P 73 7 6 5 210 ,所以 P 74 P 73 840 210 630 .【答案】 ⑴ 20 ⑵ 630【巩固】 计算:⑴ P 32 ;⑵ 32 P 6 P 10 . 【考点】 简单排列问题 【难度】 1 星 【 题型】解答【解析】 2 ⑴ P 3 2 6 32 ⑵ P 63 P 120 6 5 4 10 9 120 90 30 . 【答案】 ⑴6 ⑵ 30 【巩固】 计算:⑴ P 134 P 124 ; ⑵ 3P 65 P 33 . 【考点】 简单排列问题 【难度】 1 星 【 题型】解答【解析】32 ⑴ P 134 P 142 14 13 12 14 13 2002 ; 53 ⑵ 3P 65 P 33 3 (6 5 4 3 2) 3 2 1 2154 . 【答案】 ⑴ 2002 ⑵ 2154模块二 、排列之排队问题【例 2】 有 4 个同学一起去郊游, 照相时,必须有一名同学给其他 3 人拍照,共可能有多少种拍照情况? 相时 3 人站成一排 )【考点】 简单排列问题 【难度】 2 星 【 题型】解答【解析】 由于 4 人中必须个人拍照,所以,每张照片只能有 3 人,可以看成有 3个位置由这 3 人来站 .由 于要选一人拍照,也就是要从四个人中选 3 人照相,所以,问题就转化成从四个人中选 3人,排在 3 个位置中的排列问题.要计算的是有多少种排法. 由排列数公式,共可能有: P 434 3 2 24 (种)不同的拍照情况. 也可以把照相的人看成一个位置,那么共可能有: P 444 3 2 1 24 (种) 不同的拍照情况.答案】 24例 1】 计算:⑴ P 52 ;⑵ P 74 P 73. (45p 9 p 5 9 8 7 6 5 4 3 2 1 362880答案】 362880巩固】 5 个人并排站成一排,其中甲必须站在中间有多少种不同的站法? 考点】简单排列问题【难度】 3 星 【题型】解答 解析】 由 于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且 n 4 .由全排列公式,共有 P 444 3 2 1 24 (种)不同的站法. 答案】 24 巩固】 丁丁和爸爸、妈妈、奶奶、哥哥一起照 “全家福 ”, 5人并排站成一排,奶奶要站在正中间,有多少 种不同的站法?考点】简单排列问题 【难度】 3 星 【题型】解答 解析】 由 于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且 n=4 .4 由全排列公式,共有 P 444 3 2 1 24 (种)不同的站法.答案】 24 例 3】 5 个同学排成一行照相,其中甲在乙右侧的排法共有 _ 种?考点】简单排列问题 【难度】 3 星 【题型】填空 关键词】学而思杯, 4 年级,第 8 题解析】 5个人全排列有 5! 120种,其中甲在乙右侧应该正好占一半,也就是 60 种 答案】 60 种 例 4】 一列往返于北京和上海方向的列车全程停靠 不同的车票. 考点】简单排列问题 【难度】 3 星解析】 P 124 14 13 182 (种 ). 答案】 182 例 5】 班集体中选出了5 名班委, 他们要分别担任班长, 有多少种不同的分工方式? 考点】简单排列问题 【难度】 3 星 解析】 P 55120 (种).答案】 120 例 6】 有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信 号?考点】简单排列问题 【难度】 3 星 【题型】解答解析】 这 里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的 问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关, 而且与不同旗子所在的位置有关,所以是排列问题,且其中 n 5 , m3. 由排列数公式知,共可组成 P 535 4 3 60 (种)不同的信号. 答案】 60巩固】 有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少 种不同的信号?【考点】简单排列问题 【难度】 3 星 【题型】解答2【解析】 P 323 2 6 . 【答案】 614 个车站 (包括北京和上海 ),这条铁路线共需要多少种题型】解答学习委员、 生活委员、 宣传委员和体育委员. 问【巩固】在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?【考点】简单排列问题【难度】 3 星【题型】解答【解析】方法一:这里三面不同颜色的旗子就是三个不同的元素,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,也就是从三个元素中选三个的全排列的问题.由排列数公式,共可以组成 P333 2 1 6 (种)不同的信号.方法二:首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有 3 种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2 种方法.剩下那面旗子,放在最低位置.根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是: 3 2 16(种).【补充说明】这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.【答案】 6模块三、排列之数字问题【例7】用 1、2、3、4、5、6、7、8 可以组成多少个没有重复数字的四位数?【考点】简单排列问题【难度】 2 星【题型】解答【解析】这是一个从 8个元素中取4个元素的排列问题,已知 n 8, m 4 ,根据排列数公式,一共可以组成 P848 7 6 5 1680 (个)不同的四位数.【答案】 1680【巩固】由数字1、2、3、4、5、 6可以组成多少没有重复数字的三位数?【考点】简单排列问题【难度】 2 星【题型】解答【解析】 P63120 .【答案】 120【例8】用0、1、2 、 3 、4可以组成多少个没重复数字的三位数?【考点】简单排列问题【难度】 3 星【题型】解答【解析】(法1)本题中要注意的是 0 不能为首位数字,因此,百位上的数字只能从1、2、3、4这四个数字中选择一个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有 P42种方法.由乘法原理得,此种三位数的个数是: 4 P4248 (个).(法2):从 0、1、2、3、4中任选三个数字进行排列,再减去其中不合要求的,即首位是 0 的.从320 、1 、2 、 3 、4 这五个数字中任选三个数字的排列数为P53,其中首位是 0 的三位数有 P42个.三位数的个数是:32P53P425 4 3 4 3 48 (个).本题不是简单的全排列,有一些其它的限制,这样要么先全排列再剔除不合题意的情况,要么直接在排列的时候考虑这些限制因素.答案】 48例9】用 1、2、3、4、5、6 可以组成多少个没有重复数字的个位是5的三位数?考点】简单排列问题【难度】 3 星【题型】解答解析】个位数字已知,问题变成从从 5 个元素中取2个元素的排列问题,已知 n 5 ,m 2 ,根据排列数公式,一共可以组成 P525 4 20 (个)符合题意的三位数.答案】 20巩固】用 1、2、 3、4、5、6 六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?考点】简单排列问题【难度】 3 星【题型】解答解析】由于组成偶数,个位上的数应从2,4, 6中选一张,有 3种选法;十位和百位上的数可以从剩下的5 张中选二张,有 P525 4 20 (种)选法.由乘法原理,一共可以组成 3 20 60 (个)不同的偶数..答案】 60例10】由0,2, 5, 6, 7 , 8组成无重复数字的数,四位数有多少个?考点】简单排列问题【难度】 3 星【题型】解答解析】方法一:先考虑从六个数字中任取四个数字的排列数为P646 5 4 3 360 ,由于 0不能在千位上,而以 0为千位数的四位数有 P535 4 3 60 ,它们的差就是由 0,2,5,6,7,8组成无重复数字的四位数的个数,即为: 360 60 300 个.方法二:完成这件事——组成一个四位数,可分为4个步骤进行,第一步:确定千位数;第二步:确定百位数;第三步:确定十位数;第四步:确定个位数;这四个步骤依次完成了,“组成一个四位数”这件事也就完成了,从而这个四位数也完全确定了,思维过程如下:根据乘法原理,所求的四位数的个数是: 5 5 4 3 300 (个).答案】 300例11】用1、2、 3、4 、 5这五个数字,不许重复,位数不限,能写出多少个3的倍数?考点】简单排列问题难度】 4 星题型】解答解析】按位数来分类考虑:⑴ 一位数只有1个 3 ;⑵ 两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成P222 1 2(个)不同的两位数,共可组成 2 4 8 (个)不同的两位数;⑶ 三位数:由1,2与 3;1, 3与 5;2,3与4; 3,4与5 四组数字组成,每一组可以组成3P333 2 1 6 (个)不同的三位数,共可组成 6 4 24(个)不同的三位数;⑷ 四位数:可由1,2,4, 5这四个数字组成,有 P444 3 2 1 24 (个)不同的四位数;⑸ 五位数:可由1,2,3,4, 5组成,共有 P555 4 3 2 1 120 (个)不同的五位数.由加法原理,一共有 1 8 24 24 120 177 (个)能被 3整除的数,即 3的倍数.答案】 177例12】用 1、2、3、4、5 这五个数字可组成多少个比 20000大且百位数字不是 3的无重复数字的五位数?考点】简单排列问题【难度】 4 星【题型】解答解析】可以分两类来看:⑴ 把 3 排在最高位上,其余 4 个数可以任意放到其余 4 个数位上,是 4 个元素全排列的问题,有P444 3 2 1 24(种)放法,对应 24 个不同的五位数;⑵ 把 2,4,5放在最高位上,有 3 种选择,百位上有除已确定的最高位数字和 3 之外的 3个数字可以选择,有 3 种选择,其余的 3 个数字可以任意放到其余 3个数位上,有 P336 种选择.由乘法原理,可以组成 3 3 6 54 (个)不同的五位数.由加法原理,可以组成 24 54 78 (个)不同的五位数.答案】 78巩固】用 0 到 9 十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687 是第几个数?考点】简单排列问题【难度】 4 星【题型】解答解析】从高位到低位逐层分类:⑴ 千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0 ~ 9中除千位已确定的数字之外的 9 个数字中选择,因为数字不重复,也就是从 9 个元素中取 3个的排列问题,所以百、十、个位可有 P939 8 7 504(种)排列方式.由乘法原理,有 4 504 2016 (个).⑵ 千位上排 5 ,百位上排 0 ~ 4 时,千位有1 种选择,百位有 5 种选择,十、个位可以从剩下的八个数字中选择.也就是从 8个元素中取2 个的排列问题,即 P828 7 56 ,由乘法原理,有 1 5 56 280 (个).⑶ 千位上排 5 ,百位上排 6 ,十位上排 0,1,2,3,4 , 7时,个位也从剩下的七个数字中选择,有 1 1 6 7 42 (个).⑷ 千位上排 5 ,百位上排 6 ,十位上排 8时,比 5687 小的数的个位可以选择 0,1,2,3,4共 5个.综上所述,比 5687 小的四位数有 2016 280 42 5 2343 (个),故 5687是第2344 个四位数.答案】 2344例13】用数字l~8各一个组成8 位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有___ 种组成方法.考点】简单排列问题【难度】 4 星【题型】填空关键词】走美杯,六年级,初赛,第 7 题解析】 l ~8中被三除余 1和余 2 的数各有 3个,被 3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以 3位周期”,所以 8个数字,第 1、4、7位上的数被 3除同余,第 2、5、8 位上的数被 3 除同余,第 3、6 位上的数被 3 除同余,显然第 3、6 位上的数被 3整除,第 1、4、7 位上的数被 3 除可以余 1 也可以余 2,第2、5、8 位上的数被 3 除可以余 2 可以余 1,余数的安排上共有 2 种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144 种方法.【答案】144种【例14】由数字 0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列. 2008 排在个.【考点】简单排列问题【难度】 4 星【题型】解答【解析】比 2008小的4位数有 2000和2002 ,比 2008小的3位数有 2 3 3 18 (种),比 2008小的2位数有2 3 6 (种),比 2008小的1位数有2(种),所以 2008排在第 2 18 6 2 1 29 (个).【答案】 29【例15】千位数字与十位数字之差为 2(大减小),且不含重复数字的四位数有多少个? 【考点】简单排列问题【难度】 4 星【题型】解答【解析】千位数字大于十位数字,千位数字的取值范围为 2: 9 ,对应的十位数字取 0: 7 ,每确定一个千位数字,十位数字就相应确定了,只要从剩下的8个数字中选出2 个作百位和个位就2行了,因此总共有 8 P82个这样的四位数.⑵千位数字小于十位数字,千位数字取 1: 7 ,十位数字取3: 9,共有 7 P82个这样的四位数.所以总共有 8 P827 P82840 个这样的四位数.【答案】 840模块四、排列之策略问题【例16】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0 数码组成,且四个数码之和是 9,那么确保打开保险柜至少要试几次?【考点】简单排列问题【难度】 4 星【题型】解答【解析】四个非 0数码之和等于 9 的组合有 1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3 六种.第一种中,可以组成多少个密码呢?只要考虑 6的位置就可以了, 6可以任意选择4个位置中的一个,其余位置放1,共有4 种选择;第二种中,先考虑放2,有4种选择,再考虑 5 的位置,可以有 3种选择,剩下的位置放1,共有4 3 12(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似, 3的位置有4种选择,其余位置放2,共有4 种选择.综上所述,由加法原理,一共可以组成 4 12 12 12 12 4 56(个)不同的四位数,即确保能打开保险柜至少要试 56 次.【答案】 56【例17】幼儿园里的 6 名小朋友去坐 3把不同的椅子,有多少种坐法?【考点】简单排列问题【难度】 3 星【题型】解答【解析】在这个问题中,只要把 3把椅子看成是 3个位置,而 6名小朋友作为 6 个不同元素,则问题就可以转化成从 6 个元素中取 3个,排在 3个不同位置的排列问题.由排列数公式,共有: P636 54 120(种)不同的坐法.【答案】 120【巩固】幼儿园里 3 名小朋友去坐 6 把不同的椅子(每人只能坐一把),有多少种不同的坐法?【考点】简单排列问题【难度】 3 星【题型】解答【解析】与例 5 不同,这次是椅子多而人少,可以考虑把 6 把椅子看成是 6个元素,而把 3名小朋友作为 3个位置,则问题转化为从 6把椅子中选出 3把,排在 3 名小朋友面前的排列问题.3由排列公式,共有: P636 5 4 120(种)不同的坐法.答案】 120巩固】 10个人走进只有 6 辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?考点】简单排列问题【难度】 3 星【题型】解答解析】把 6辆碰碰车看成是 6个位置,而 10 个人作为 10个不同元素,则问题就可以转化成从 10 个元素中取 6 个,排在 6 个不同位置的排列问题.共有 P10610 9 8 7 6 5 151200 (种)不同的坐法.答案】 151200例18】一个篮球队有五名队员A,B,C,D ,E ,由于某种原因,E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?考点】简单排列问题【难度】 3 星【题型】解答解析】方法一:此题先确定做中锋的人选,除E 以外的四个人任意一个都可以,则有4种选择,确定下来以后,其余4 个人对应4 个位置,有 P444 3 2 1 24(种)排列.由乘法原理, 424 96 ,故一共有 96 种不同的站位方法.方法二:五个人分配到五个位置一共有P555 4 3 2 1 120(种)排列方式,E 能做中锋一共有P444 3 2 1 24(种)排列方式,则E 不能做中锋一共有 P55P44120 24 96 种不同的站位方法.答案】 96例19】小明有 10 块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?考点】简单排列问题【难度】 3 星【题型】解答解析】我们将 10块大白兔奶糖从左至右排成一列 ,如果在其中 9个间隙中的某个位置插入“木棍”则,将 lO 块糖分成了两部分.我们记从左至右 ,第1部分是第 1天吃的,第 2部分是第 2天吃的 , ⋯,如 : ○○○ | ○○○表○示○第○一○天吃了 3 粒 ,第二天吃了剩下的 7 粒:○○○○ | ○○表○示第| 一○天○吃○了 4粒,第二天吃了 3 粒,第三天吃了剩下的 3粒.不难知晓 ,每一种插入方法对应一种吃法 ,而 9 个间隙 ,每个间隙可以插人也可以不插入 ,且相互独立,9故共有 29=512 种不同的插入方法 ,即 512 种不同的吃法.答案】 512。