数字图像处理实验报告--直方图规定化 0528

合集下载

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直方图均衡化

数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。

直方图均衡化是最常见的间接对比度增强方法。

直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

南理工数字图象处理报告

南理工数字图象处理报告

数字图像处理实验报告姓名:学号:班级:指导老师: 王欢实验一1.实验目的对一幅图像的直方图进行均衡化,即产生一幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的目的2.实验原理(1).直方图的理论基础:a.直方图概念:灰度直方图表示图像中每种灰度出现的频率。

b.直方图的作用:反映一幅图像的灰度分布特性c.直方图的计算:(2).直方图的优点直方图具有很多的优点,直方图能反映图像的概貌,比如图像中有几类目标,目标和背景的分布如何;通过直方图可以直接计算图像中的最大亮度、最小亮度、平均亮度、对比度以及中间亮度等。

使用直方图可以完成图像分割、目标检索等。

因为不同的目标具有不同的颜色分布。

使用归一化直方图作目标匹配,还不易受到目标翻转和目标大小变化的影响。

在图像查询的系统中,直方图有很大的应用,用它存储目标的特征占有空间小,且执行速度快。

(3).均衡化原理∑==ki ik nn r P 0)(根据熵理论可知当H[0],H[1]…,H[n-1]相等时,图像信息量Hi 都相等,即把原始图的直方图变换为均匀分布的形式,这样就增加了象素值的范围,增强了图像的对比效果。

令A0是图像面积,N 是有效亮度级的个数,对于一个完全平坦的直方图来说,应该在每一个亮度级上A0/N 个象素。

设g 是原来的灰度级,G 是变换后的灰度级,则可描述为:G=F(g)。

实际应用中,有两种情况需要考虑:(1)多个至一个:若有连续n 个灰级的频数之和级等于A/N, 则必导致它们合并成一个灰度级。

(2)一个到多个:若有某个灰级的频数是A0 /N 的R 倍,则必须将其分为R 个不同的灰阶级,每一个上都是A0 /N 。

情况(1)导致的灰度级的合并是简单的(是多到一的映射关系),但情况(2)时的分解是不容易的(是一到多的关系) ,因为确实难以判定g 在图像的不同位置,到底如何分解才是最好。

假设灰度级g 要映射到[GL, GR]中,有3种规则可以遵循: (1)规则1:总是将g 映射为(GL+GR)/2。

数字图像的直方图规定化处理实验

数字图像的直方图规定化处理实验

XX 大学实验报告
(一) 掌握数字图像的直方图规定化处理的算法和方法。

(二) 熟悉数字图像的直方图规定化处理的算法原理。

按照实验内容及参考程序,独立完成此次实验,记下不懂的知识点,查阅资料或者向老 师咨询。

直方图规定化是用于产生处理后有特殊直方图的图像方法。

学院:
专业: 班级: 姓名 实验时间 实验项目名称
实验二:数字图像的直方图规定化处理

p r (r )和Pz (z )分别为原始图像和期望图像的灰度概率密度函数。

和期望图像均作直方图均衡化处理,应有:
r
s T (r ) 0 p r (r )dr ,V G (Z )
对原始图像
z 0
P z
(z )dz ,z
G
1
(V)
由于都是作直方图均衡化处理,所以处理后的原图像的灰度概率密度函数
p S (s )及理
想图像的灰度概率密度函数 P V (V )是相等的。

因此,可以用变换后的原始图像灰度级
S
代替上式中的V, 即Z G 1[T (r )]。

利用此式可以从原始图像得到希望的图像灰度级。

对离散图像,有
P Z (ZJ
虹,V i G (乙)^P z (Z i ), Z i
G 1(S i ) G 1[T(r i )]
n
i 0
综上所述,数字图像的直方图规定化就是将直方图均衡化后的结果映射到期望的理想直 方图上,使图像按人的意愿去变换。

数字图像的直方图规定的算法如下:
(一)将原始图像作直方图均衡化处理, 求出原图像中每一个灰度级 r i 所对应的变
学号 指导教师
实验组 成绩。

(精品)数字图像处理实验报告--直方图规定化

(精品)数字图像处理实验报告--直方图规定化

数字图像处理实验报告直方图匹配规定化直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。

实际上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。

这时可以采用比较灵活的直方图规定化。

一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果。

所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。

所以,直方图修正的关键就是灰度映像函数。

直方图匹配方法主要有3个步骤(这里设M和N分别为原始图和规定图中的灰度级数,且只考虑N≤M的情况):(1) 如同均衡化方法中,对原始图的直方图进行灰度均衡化:(2) 规定需要的直方图,并计算能使规定的直方图均衡化的变换:(3) 将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直方图,也就是将所有pf(fi)对应到pu(uj)去。

一、A图直方图规定B图Matlab程序:%直方图规定化clear allA=imread('C:\Users\hp\Desktop\A.tif'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])C=imread('C:\Users\hp\Desktop\B.tif');%读入B图像imshow(C) %显示出来title('输入的B图像')%绘制直方图[m,n]=size(C); %测量图像尺寸D=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255D(k+1)=length(find(C==k))/(m*n); %计算每级灰度出现的概率,将其存入D中相应位置endfigure,bar(0:255,D,'g'); %绘制直方图title('B图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=D(j)+S1(i); %计算B灰度图累计直方图endendcounts=Bfigure,bar(0:255,counts,'r')title('A图像直方图 ')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对比直方图,找到相差最小的灰度级for i=1:256for j=1:255if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确定变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:255if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+D(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('A规定B后的直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.6])%显示规定图PA=C; %将各个像素归一化后的灰度值赋给这个像素for i=1:mfor j=1:nfor k=2:255if T(k-1)<=C(i,j)&C(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('A规定B后图像')imwrite(PA,'guidinghua.bmp');二、用已知直方图规定A图规定灰度为[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zeros(1,49 ),0.2,zeros(1,49),0.1]Matlab程序:clear allA=imread('C:\Users\hp\Desktop\B.tif'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=B(j)+S1(i); %计算原灰度图累计直方图endendcounts=[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zer os(1,49),0.2,zeros(1,49),0.1];%规定化直方图figure,bar(1:300,counts,'r')title('规定化直方图')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对比直方图,找到相差最小的灰度级for i=1:256for j=1:256if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确定变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:256if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+B(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('规定化后的直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.6])%显示规定图PA=A; %将各个像素归一化后的灰度值赋给这个像素for i=1:mfor j=1:nfor k=2:256if T(k-1)<=A(i,j)&A(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('规定化后图像')imwrite(PA,'guidinghua.bmp');。

数字图像处理-直方图-实验报告

数字图像处理-直方图-实验报告

实验三直方图一、实验目的掌握基本的图象增强方法,观察图象增强的效果,加深对灰度直方图及直方图均衡化的理解,掌握直方图均衡化方法。

二、实验内容将一张彩色图片转换成灰色图片,画灰度直方图和均衡化后的直方图,并将灰度图和均衡化后的图片对比。

三、实验原理灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其所出现的频度。

通常,灰度直方图的横坐标表示灰度值,纵坐标为像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。

直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。

从而达到清晰图像的目的。

四、实验程序1.函数功能,画出图像的直方图,并对图像进行直方图均衡2.直接读图像football.jpg,读到I中3.graydis是原始直方图各灰度级像素个数4.原始直方图graydispro,利用原始直方图计算原始累计直方图graydispro5.t[]计算和原始灰度对应的新的灰度t[],建立映射关系,t坐标代表原始的灰度,t[]代表对应原始坐标的新坐标6.new_graydis是统计新直方图各灰度级像素个数7.计算新的灰度直方图new_graydispro,利用新的直方图计算新的累计直方图new_graydispro8.计算直方图均衡后的新图new_J程序如下:I=imread('football.jpg'); %读入图片J=rgb2gray(I); %将彩色图片转换为灰度图Imshow(J);graydis=zeros(1,256); %设置矩阵大小graydispro=zeros(1,256);new_graydis=zeros(1,256);new_graydispro=zeros(1,256);[h w]=size(J);new_J=zeros(h,w);%计算原始直方图各灰度级像素个数graydisfor x=1:hfor y=1:wgraydis(1,J(x,y))=graydis(1,J(x,y))+1;endend%计算原始直方图graydisprograydispro=graydis./sum(graydis);subplot(1,2,1);plot(graydispro);title('灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算原始累计直方图for i=2:256graydispro(1,i)=graydispro(1,i)+graydispro(1,i-1);end%计算和原始灰度对应的新的灰度t[],建立映射关系for i=1:256t(1,i)=floor(254*graydispro(1,i)+0.5);end%统计新直方图各灰度级像素个数new_graydisfor i=1:256new_graydis(1,t(1,i)+1)=new_graydis(1,t(1,i)+1)+graydis(1,i); end%计算新的灰度直方图new_graydispronew_graydispro=new_graydis./sum(new_graydis);subplot(1,2,2);plot(new_graydispro);title('均衡化后的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算直方图均衡后的新图new_J for x=1:hfor y=1:wnew_J(x,y)=t(1,J(x,y));endendfigure,imshow(J,[]);title('原图');figure,imshow(new_J,[]);title('直方图均衡化后的图');。

数字图像处理实验报告 直方图均衡化

数字图像处理实验报告 直方图均衡化

课程设计课程名称数字图像处理题目名称直方图均衡化学生学院信息工程学院专业班级 10级电信2班学号学生姓名指导教师曹江中2013年 1 月日设计题目:直方图均衡化1、直方图的理论基础:(1)直方图概念:灰度直方图表示图像中每种灰度出现的频率。

(2)直方图的作用: 反映一幅图像的灰度分布特性(3)直方图的计算: 式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。

2、设计目的: 产生一幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的目的。

3、直方图均衡化的效果 :1)变换后直方图趋向平坦,灰级减少,灰度合并。

2)原始象含有象素数多的几个灰级间隔被拉大了,压缩的只是象素数少的几个灰度级,实际视觉能够接收的信息量大大地增强了,增加了图象的反差。

同时,也增加了图象的可视粒度。

4、离散情况下的直方图均衡化的算法:A 、列出原始图像的灰度级B 、统计各灰度级的像素数目C 、计算原始图像直方图各灰度级的频数D 、计算累积分布函数F 、应用以下公式计算映射后的输出图像的灰度级,P 为输出图像灰度级的个数,其中INT 为取整符号:G 、用的映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像。

5、主要代码///////////////////////////////////////////////////////////////////画两个直方图坐标轴/////////////////////////////////////////////////////////////////// void CImageView::OnDraw(CDC* pDC){1,,1,0,-=L j f j 1,,1,0,-=L j n j 1,,1,0,/)(-==L j n n f P j j f 1,,,1,0,)()(0-==∑=L k j f P f C k j j f ]5.0)()[(min min max ++-=g f C g g INT g i nn r p k k =)(1,,2,1,010-=≤≤l k r kCImageDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true) //判断是否加载图像{//获取图像宽和高int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight(); ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true){int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI) ;}if(m_bHist==true){//绘画直方图CString str;int nh=m_dib.GetDIBHeight();int i;// 绘制坐标轴pDC->MoveTo(10,nh+20); //(10,nh+20 )是直方图的左上角坐标// 垂直轴pDC->LineTo(10,nh+200);//(10,nh+200 )是直方图的左下角坐标// 水平轴pDC->LineTo(310,nh+200);//(310,nh+200 )是直方图的右下角坐标// 写X轴刻度值str.Format("0");pDC->TextOut(10, nh+200+10, str);str.Format("50");pDC->TextOut(60, nh+200+10, str);str.Format("100");pDC->TextOut(110, nh+200+10, str);str.Format("150");pDC->TextOut(160, nh+200+10, str);str.Format("200");pDC->TextOut(210, nh+200+10, str);str.Format("255");pDC->TextOut(265, nh+200+10, str);str.Format("原图直方图归一化");pDC->TextOut(100, nh+230+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(305,nh+200-5);pDC->LineTo(310,nh+200);pDC->LineTo(305,nh+200+5);// 绘制y轴箭头pDC->MoveTo(10,nh+20);pDC->LineTo(5,nh+20+5);pDC->MoveTo(10,nh+20);pDC->LineTo(15,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_yuantu[i]>max)max=m_yuantu[i];for(i=0;i<256;i++){pDC->MoveTo(10+i,nh+200);pDC->LineTo(10+i,nh+200-(m_yuantu[i]*160/max));}}/******************///TEST 第二个直方图if(m_bHist==true){//绘画直方图CString str;int nh=m_dib.GetDIBHeight();int i;// 绘制坐标轴pDC->MoveTo(160+nw,nh+20); //(10,nh+20 )是直方图的左上角坐标// 垂直轴pDC->LineTo(160+nw,nh+200);//(10,nh+200 )是直方图的左下角坐标// 水平轴pDC->LineTo(460+nw,nh+200);//(310,nh+200 )是直方图的右下角坐标// 写X轴刻度值str.Format("0");pDC->TextOut(415, nh+200+10, str);str.Format("50");pDC->TextOut(465, nh+200+10, str);str.Format("100");pDC->TextOut(515, nh+200+10, str);str.Format("150");pDC->TextOut(565, nh+200+10, str);str.Format("200");pDC->TextOut(615, nh+200+10, str);str.Format("255");pDC->TextOut(670, nh+200+10, str);str.Format("直方图均衡化后归一化");pDC->TextOut(505, nh+230+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 420, nh+200-2);pDC->LineTo(i + 415, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 420, nh+200-2);pDC->LineTo(i + 420, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(710,nh+200-5);pDC->LineTo(715,nh+200);pDC->LineTo(710,nh+200+5);// 绘制y轴箭头pDC->MoveTo(415,nh+20);pDC->LineTo(410,nh+20+5);pDC->MoveTo(415,nh+20);pDC->LineTo(420,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_hist[i]>max)max=m_hist[i];for(i=0;i<256;i++){pDC->MoveTo(415+i,nh+200);pDC->LineTo(415+i,nh+200-(m_hist[i]*160/max));}}/*************/// 显示图像(具体的参数见CDIB类的该函数说明)m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI);}}/////////////////////////////////////////////////////////////////////直方图均衡化及直方图归一化坐标轴赋值程序///////////////////////////////////////////////////////////////////// void CImageView::OnZhifangtu(){//判断图像是否打开,没打开,则弹出提示框并退出函数if(!m_dib.m_bLoaded){AfxMessageBox("图像还打开,请先打开图像!");return;}//获取图像宽和高及定义成员变量int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int i,j;int *arr=new int [nw*nh];int n[256]={0};float p[256]={0.0},c[256]={0.0};BYTE* pdata=m_dib.m_pdata;for(i=0;i<256;i++) //初始化直方图数组m_yuantu[i]=0;if(1)//m_dib.m_nImType==24){for(j=0;j<nh;j++)for(i=0;i<nw;i++){BYTE temp=pdata[j*nw+i];m_yuantu[temp]++;}}m_bHist=true;//直方图归一化计算for(i=0;i<nh;i++){for(j=0;j<nw;j++){n[m_dib.m_pdata[i*nw+j]]++;}}for(i=0;i<256;i++){(float)p[i]=(float)n[i]/(float)(nw*nh); }//归一化后累计计算for(i=0;i<256;i++){for(j=0;j<=i;j++){c[i]+=p[j];}}//找到灰度值最大值最小值int max=m_dib.m_pdata[0],min=m_dib.m_pdata[0]; for(i=0;i<nh;i++){for(j=0;j<nw;j++){if(max<m_dib.m_pdata[i*nw+j]){max=m_dib.m_pdata[i*nw+j];}else if(min>m_dib.m_pdata[i*nw+j]){min=m_dib.m_pdata[i*nw+j];}}}//套公式直方图均衡化计算赋值给arr[]一维数组for(i=0;i<nh;i++){for(j=0;j<nw;j++){arr[i*nw+j]=int(c[m_dib.m_pdata[i*nw+j]]*(max-min)+min+0.5); }}//一维数组arr[]赋值给新图像for( j=0;j<nh;j++){for(i=0;i<nw;i++){m_dib.m_pdata[j*nw+i]=arr[j*nw+i];}}//将修改的m_pdata的数据赋值给m_pDIBData,以显示修改的结果m_dib.UpdateData();//刷新屏幕Invalidate();for(i=0;i<256;i++) //初始化直方图数组m_hist[i]=0;if(1)//m_dib.m_nImType==24){for(j=0;j<nh;j++)for(i=0;i<nw;i++){BYTE temp=pdata[j*nw+i];m_hist[temp]++;}}m_bHist=true;// TODO: Add your command handler code here}6、实验结果。

数字图像处置实验报告直方图规定化

数字图像处置实验报告直方图规定化

数字图像处置实验报告实验名称:直方图规定化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2021年5月24日直方图匹配(规定化)能够自动增强整个图像的对照度,但它的具体增强成效不容易操纵,处置的结果老是取得全局均匀化的直方图。

事实上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对照度。

这时能够采纳比较灵活的直方图规定化。

一样来讲正确地选择规定化的函数能够取得比直方图均衡化更好的成效。

所谓直方图规定化,确实是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。

因此,直方图修正的关键确实是灰度映像函数。

直方图匹配方式要紧有3个步骤(那个地址设M和N别离为原始图和规定图中的灰度级数,且只考虑N≤M的情形):(1) 犹如均衡化方式中,对原始图的直方图进行灰度均衡化:(2) 规定需要的直方图,并计算能使规定的直方图均衡化的变换:(3) 将第1个步骤取得的变换反转过来,即将原始直方图对应映射到规定的直方图,也确实是将所有pf(fi)对应到pu(uj)去。

一、A图直方图规定B图Matlab程序:%直方图规定化clear allA=imread('C:\Users\hp\Desktop\'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建寄存灰度显现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度显现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('显现概率')axis([0,260,0,])C=imread('C:\Users\hp\Desktop\');%读入B图像imshow(C) %显示出来title('输入的B图像')%绘制直方图[m,n]=size(C); %测量图像尺寸D=zeros(1,256); %预创建寄存灰度显现概率的向量for k=0:255D(k+1)=length(find(C==k))/(m*n); %计算每级灰度显现的概率,将其存入D中相应位置endfigure,bar(0:255,D,'g'); %绘制直方图title('B图像直方图')xlabel('灰度值')ylabel('显现概率')axis([0,260,0,])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=D(j)+S1(i); %计算B灰度图累计直方图endendcounts=Bfigure,bar(0:255,counts,'r')title('A图像直方图')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对照直方图,找到相差最小的灰度级for i=1:256for j=1:255if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确信变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:255if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+D(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('A规定B后的直方图')xlabel('灰度值')ylabel('显现概率')axis([0,260,0,])%显示规定图PA=C; %将各个像素归一化后的灰度值赋给那个像素for i=1:mfor j=1:nfor k=2:255if T(k-1)<=C(i,j)&C(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('A规定B后图像')imwrite(PA,'');二、用已知直方图规定A图规定灰度为[zeros(1,49),,zeros(1,49),,zeros(1,49),,zeros(1,49),,zeros(1,49),,zeros(1,4 9),]Matlab程序:clear allA=imread('C:\Users\hp\Desktop\'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建寄存灰度显现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度显现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('显现概率')axis([0,260,0,])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=B(j)+S1(i); %计算原灰度图累计直方图endend counts=[zeros(1,49),,zeros(1,49),,zeros(1,49),,zeros(1,49),,zeros(1,49),,zeros(1,49),];%规定化直方图figure,bar(1:300,counts,'r')title('规定化直方图')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对照直方图,找到相差最小的灰度级for i=1:256for j=1:256if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确信变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:256if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+B(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('规定化后的直方图')xlabel('灰度值')ylabel('显现概率')axis([0,260,0,])%显示规定图PA=A; %将各个像素归一化后的灰度值赋给那个像素for i=1:mfor j=1:nfor k=2:256if T(k-1)<=A(i,j)&A(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('规定化后图像')imwrite(PA,'');。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。

本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。

实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。

实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。

在Python中,我们可以使用OpenCV库来实现图像的读取和显示。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。

常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。

直方图均衡化及直方图规定化

直方图均衡化及直方图规定化

《数字图像处理》实验报告(二)学号:____________ 姓名:__________ 专业:____ 课序号:__________计算机科学与技术学院实验2直方图均衡化一、实验学时:4学时(本部分占实验成绩的40%)二、实验目的:1、理解直方图均衡化的原理及步骤;2、编程实现图像(灰度或彩色)的直方图均衡化。

三、必须学习和掌握的知识点:直方图均衡化是一种快速有效且简便的图像空域增强方法,在图像处理中有着非常重要的意义,因此要求掌握。

四、实验题目:编程实现灰度图像的直方图均衡化处理。

要求给出原始图像的直方图、均衡化图像及其直方图和直方图均衡化时所用的灰度级变换曲线图。

五、思考题:(选做,有加分)实现对灰度图像的直方图规定化处理。

六、实验报告:请按照要求完成下面报告内容并提交源程序、可执行程序文件和实验结果图像。

1、请详细描述本实验的原理:1.直方图均衡化概述图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。

直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。

直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化的英文名称是Histogram Equalization.直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

2基本思想直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。

使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。

从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。

1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。

数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。

数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。

数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。

数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。

1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。

点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。

区处理法,邻域处理法。

它依据输入图像的小邻域的像素值,按某些函数得到输出像素。

区处理法主要用于图象平滑和图像的锐化。

叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。

数字图像处理直方图均衡实验报告

数字图像处理直方图均衡实验报告

数字图像报告班级:姓名:学号:一、直方图均衡:直方图均衡化也叫做直方图平坦化,是一种常用的灰度增强算法。

目的:曾强对比度目标:均匀分度原理:假设灰度级为归一化至范围[0,1]内的连续量,并令Pr (r)表示某给定图像中的灰度级的概率密度函数(PDF),其下标用来区分输入图像和输出图像的PDF。

假设我们对输入灰度级执行如下变换,得到(处理后的)输出灰度级s:S=T(r)=∫0r Pr(w)dw式中w 是积分的哑变量。

可以看出,输出灰度级的概率密度函数是均匀的,即a.当0≤s≤1 时,Ps(s)=1b.当s 为其他时,Ps(s)=0换言之,前述变换生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1]。

灰度级均衡化处理的最终结果是一幅扩展了动态范围的图像,它具有较高的对比度。

该变换函数只不过是一个累积分布函数(CDF)。

二、直方图均衡程序:clc主程序:picture=input('please input the filename:','s');fid=fopen(picture);dat=fread(fid);d=dat';B=reshape(d,256,256);h=length(d);newname=input('输入新的文件名:','s');zhi(h,newname,B,d);子程序:function y=zhi(h,newname,B,d)figure(1);imshow(uint8(B'));N=zeros(1,256);for i=0:255for j=1:hif i==d(j)N(i+1)=N(i+1)+1;endendendi=0:255;p=N/h;figure(2)stem(i,p,'.')title('原始直方图')m=zeros(1,256);for k=1:256if k==1m(k)=p(k);elsem(k)=m(k-1)+p(k);endendfor k=1:256r=round(m*255);ends=zeros(1,256);for a=1:256for b=1:256if r(a)==r(b)s(a)=N(a)+N(b);endendendq=s/h;for j=1:256k(j)=r(j);endfigure(3);stem(k,q,'.');title('均衡直方图');M=zeros(1,h);for i=1:hk=d(i);M(i)=r(k+1);endR=reshape(M,256,256);figure(4);imshow(uint8(R'));jht=fopen(newname,'wb');g=fwrite(jht,M);fclose('all');原图像原始直方图均衡直方图均衡后的图像:三、体会:通过本次设计,让我学会了从问题的高度来考虑设计的方方面面,对程序的设计和研究有了更深刻的体会;让我了解到程序的设计是建立在对理论知识了解的基础上的,特别是对直方图均衡化的原理要有较为详细的了解,此外对直方图均衡化算法也要进行了解;在编写程序时,进行模块化设计,以严谨的态度进行编程,避免出现低级错误。

数字图像处理实验报告

数字图像处理实验报告

数字图象处理实验报告主要是图象的几何变换的编程实现,详细包括图象的读取、改写,图象平移,图象的镜像,图象的转置,比例缩放,旋转变换等.详细要求如下:1.编程实现图象平移,要求平移后的图象大小不变;2.编程实现图象的镜像;3.编程实现图象的转置;4.编程实现图象的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图象发展旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.本实验的目的是使学生熟悉并掌握图象处理编程环境,掌握图象平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图象文件的读、写操作,及图象平移、镜像、转置和旋转等几何变换的程序实现.3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开辟工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创立高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软根抵类库(MFC)和活动模板类库(ATL),因此它是软件开辟人员不可多得的开辟工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开辟,正由于VC具有明显的优势,于是我选择了它来作为数字图象几何变换的开辟工具.在本程序的开辟过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的表达和灵便的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图象BMP(BIT MAP )位图的文件构造:详细组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或者更少256色DIB有256个表项或者更少真彩色DIB没有调色板每一个表项长度为4字节(32位)像素按照每行每列的顺序罗列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIBPixels DIB图象数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部份组成.2. BMP文件头BMP文件头数据构造含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保存字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每一个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有假设干个表项,每一个表项是一个RGBQUAD类型的构造,定义一种颜色.详细包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows一个扫描行所占的字节数必须是 4的倍数(即以long为单位),缺乏的以0填充.3.3 BMP(BIT MAP )位图的显示:①普通显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创立显示用位图, 用函数创立兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形发展淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图象所用颜色要少的设备上显示彩色图象.BMP位图显示方法如下:1. 翻开视频函数,普通放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在 函数中 显示位图5. 关闭视频函数 ,普通放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或者打印机上显示DIB. 在显示时不发展缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式发展控制,可以指定每一个像素颜色的位数,而且可以指定是否发展压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创立GDI位图.5. CreateDIBSection函数:该函数能创立一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits的函数.它的最主要的优点是可以使用颤动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图象的几何变换图象的几何变换,通常包括图象的平移、图象的镜像变换、图像的转置、图象的缩放和图象的旋转等.实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图象处理的一些根本算法程序,来稳固和掌握图象处理技术的根本技能,提高实际动手能力,并通过实际编程了解图象处理软件的实现的根本原理。

数字图像处理实验报告(直方图均衡化、直方图匹配)

数字图像处理实验报告(直方图均衡化、直方图匹配)

实验二报告一.实验内容:⑴直方图均衡化(Histogram equalization),⑵直方图匹配(Histogram matching),二.实验结果:1.将mountain.jpg图像文件读入Matlab,对其作直方图均衡化,结果如下:2、对mountain.jpg图像做直方图匹配运算3、利用mountain.jpg图像的直方图(imhist函数可生成),编写直方图均衡化函数。

function [ imeq ] = Fhisteq( space,h )%FHISTEQ 此处显示有关此函数的摘要% 此处显示详细说明% 原始图像space 必须是[0 1]之间的%直方图均衡化函数L=length(h);pdf=h/numel(space);cdf=cumsum(pdf);f=zeros(1,L);for i=1:Lf(i)=cdf(i)*255;end[dimx,dimy]=size(space);imeq=zeros(dimx,dimy);for i=1:dimxfor j=1:dimyimeq(i,j)=f(round(space(i,j)*255)+1);endendend结果如下:4、直方图均衡化分析:直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。

它的主要思想是扩展图像原有灰度级分布,使图像能够在更大的灰度级范围内分布,从而提高了对比度和灰度色调的变化,使图像更加清晰。

从上面的图像可以清楚的看到原有的mountain图像整体偏暗,直方图集中在灰度级偏小的一侧。

但是直方图均衡化后每个灰度级上的图像点数量有了明显提高,直方图中间部分的数值也有了明显的增强,图像的视觉效果也明显变好了。

而使用直方图匹配的算法则能够更好的让原有图像朝着我们预期的直方图分布去变换,这对于有特定的显示要求来说是一种比较好的选择。

数字图像直方图规定化处理实验(matlab)

数字图像直方图规定化处理实验(matlab)

.XX 大学实验报告学院:专业: 班级:~~~ 学号 ~~~~ 实验组 ~~~实验时间 ~~~~~指导教师~~~成绩实验项目名称实验二:数字图像的直方图规定化办理实验(一)掌握数字图像的直方图规定化办理的算法和方法。

目(二)熟习数字图像的直方图规定化办理的算法原理。

的 实验 依据实验内容及参照程序, 独立达成此次实验,记下不懂的知识点,查阅资料或许向老 要 师咨询。

求直方图规定化是用于产生办理后有特别直方图的图像方法。

令p r (r)和p z (z)分别为原始图像和希望图像的灰度概率密度函数。

对原始图像和希望图像均作直方图均衡化办理,应有:rz1p r (r)dr ,VG(Z)ST(r)p z (z)dz ,Z G (V)因为都是作直方图均衡化办理,所以办理后的原图像的灰度概率密度函数P S (S)及理实验 想图像的灰度概率密度函数P V (V)是相等的。

所以,能够用变换后的原始图像灰度级S原取代上式中的V ,即ZG1[T(r)]。

利用此式能够从原始图像获取希望的图像灰度级。

理 对失散图像,有n i,V ik1G 1(S i )G 1[T(r i )]P Z (Z i )G(Z i )P Z (Z i ),Z ini0综上所述,数字图像的直方图规定化就是将直方图均衡化后的结果映照到希望的理想直方图上,使图像按人的意向去变换。

数字图像的直方图规定的算法以下:(一)将原始图像作直方图均衡化办理,求出原图像中每一个灰度级r i 所对应的变.换函数S i。

(二)对给定直方图作近似计算,获取理想图像中每一个灰度级Z i所对应的变换函数V i。

(三)找出V i S i的点对,并映照到Z i。

(四)求出P i(Z i)。

实1.准备好的图片,并保留好或许选好MATLAB的工作路径验2.将参照程序稍做改正,并运转。

步3.结果分析。

骤程序以下:1.文件名:fc.mA=imread('123.jpg');I=rgb2gray(A);J=histeq(I);figure,imshow(A)figure,imshow(I);title('原灰色图像');figure,imhist(I);title('原图像的灰度直方图');实figure,imhist(J);title('均衡化图像的直方图');验figure,imshow(J);内title('均衡化图像');容2.文件名:ff.mI=imread('tire.tif');J=histeq(I,32);[counts,x]=imhist(J);Q=imread('123.jpg');figure;imshow(Q);title('原图像');A=rgb2gray(Q);figure;imhist(A);title('原图像直方图');M=histeq(A,counts);.figure;imshow(M);title('直方图规定化后的图像');figure;imhist(M);title('规定直方图');实验数据将上程序稍做变动后所得结果加:Figure;subplot(1,2,1);imhist(I,64);subplot(1,2,2);imhist(J,64);得图:.2...实验1.对程序要充分的认识,合适变动程序,比较程序和直方图之间的关系。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告一、引言数字图像处理是计算机科学与工程领域中的一个重要研究方向。

通过使用数字化技术,对图像进行采集、传输、存储和处理,可以实现对图像的增强、恢复、分析和识别等功能。

本实验旨在通过对数字图像处理算法的实践应用,探索图像处理的原理和方法。

二、实验目的本实验的主要目的是掌握数字图像处理的基本概念和算法,并通过实际操作加深对图像处理原理的理解。

具体目标包括:1. 学习使用图像处理软件,如Photoshop或Matlab等。

2. 掌握图像增强的方法,如直方图均衡化、滤波和锐化等。

3. 理解图像压缩和编码的原理,如JPEG和PNG等格式。

4. 了解图像分割和边缘检测的基本算法,如阈值分割和Canny边缘检测等。

三、实验过程1. 图像增强图像增强是指通过一系列算法和技术,改善图像的质量和视觉效果。

在实验中,我们可以使用直方图均衡化算法来增强图像的对比度和亮度。

该算法通过将图像的像素值映射到一个更大的范围内,使得图像的亮度分布更加均匀。

2. 图像滤波图像滤波是指通过一系列滤波器对图像进行处理,以实现去噪、平滑和锐化等效果。

在实验中,我们可以使用平滑滤波器(如均值滤波器和高斯滤波器)来去除图像中的噪声。

同时,我们还可以使用锐化滤波器(如拉普拉斯滤波器和Sobel滤波器)来增强图像的边缘和细节。

3. 图像压缩和编码图像压缩是指通过减少图像的数据量来减小图像文件的大小,从而实现存储和传输的效率提升。

在实验中,我们可以使用JPEG和PNG等压缩算法来对图像进行压缩和编码。

JPEG算法通过对图像的频域进行离散余弦变换和量化,实现对图像的有损压缩。

而PNG算法则采用无损压缩的方式,通过对图像的差值编码和哈夫曼编码,实现对图像的高效压缩。

4. 图像分割和边缘检测图像分割是指将图像分成若干个区域,以实现对图像的目标提取和图像分析的目的。

而边缘检测是指通过检测图像中的边缘和轮廓,实现对图像的形状分析和目标识别。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是计算机科学与技术领域中的一个重要分支,它涉及到对图像进行获取、处理、分析和显示等一系列操作。

在本次实验中,我们将学习和探索数字图像处理的基本概念和技术,并通过实验来加深对这些概念和技术的理解。

首先,我们需要了解数字图像的基本概念。

数字图像是由像素组成的二维矩阵,每个像素代表图像中的一个点,像素的灰度值或颜色值决定了该点的亮度或颜色。

在实验中,我们将使用灰度图像进行处理,其中每个像素的灰度值表示了该点的亮度。

在数字图像处理中,最基本的操作之一是图像的获取和显示。

我们可以通过摄像头或者从文件中读取图像数据,然后将其显示在计算机屏幕上。

通过这种方式,我们可以对图像进行观察和分析,为后续的处理操作做好准备。

接下来,我们将学习一些常见的图像处理操作。

其中之一是图像的灰度化处理。

通过将彩色图像转换为灰度图像,我们可以减少图像数据的维度,简化后续处理的复杂度。

灰度化处理的方法有多种,例如将彩色图像的RGB三个通道的像素值取平均值,或者使用加权平均值的方法来计算灰度值。

另一个常见的图像处理操作是图像的平滑处理。

图像平滑可以减少图像中的噪声,并使得图像更加清晰。

常用的图像平滑方法包括均值滤波和高斯滤波。

均值滤波通过计算像素周围邻域像素的平均值来平滑图像,而高斯滤波则使用一个高斯核函数来加权平均邻域像素的值。

除了平滑处理,图像的锐化处理也是数字图像处理中的一个重要操作。

图像的锐化可以增强图像的边缘和细节,使得图像更加清晰和鲜明。

常用的图像锐化方法包括拉普拉斯算子和Sobel算子。

这些算子通过计算像素周围邻域像素的差异来检测边缘,并增强边缘的灰度值。

此外,我们还将学习一些图像的变换操作。

其中之一是图像的缩放和旋转。

通过缩放操作,我们可以改变图像的尺寸,使其适应不同的显示设备或应用场景。

而旋转操作可以将图像按照一定的角度进行旋转,以达到某种特定的效果。

最后,我们将学习一些图像的特征提取和分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验报告--直方图规定化
数字图像处理实验报告
实验名称:直方图规定化
姓名:
班级:
学号:
专业:电子信息工程(2+2)
指导教师:陈华华
实验日期:2012年5月24日
直方图匹配(规定化)
直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。

实际上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。

这时可以采用比较灵活的直方图规定化。

一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果。

所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。

所以,直方图修正的关键就是灰度映像函数。

直方图匹配方法主要有3个步骤(这里设M和N分别为原始图和规定图中的灰度级数,且只考虑N≤M的情况):
(1) 如同均衡化方法中,对原始图的直方图进行灰度均衡化:
(2) 规定需要的直方图,并计算能使规定的直方图均衡化的变换:
(3) 将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直方图,也就是将所有pf(fi)对应到pu(uj)去。

一、A图直方图规定B图
Matlab程序:
%直方图规定化
clear all
A=imread('C:\Users\hp\Desktop\A.tif');
%读入A图像
imshow(A)
%显示出来
title('输入的A图像')
%绘制直方图
[m,n]=size(A);
%测量图像尺寸
B=zeros(1,256);
%预创建存放灰度出现概率的向量
for k=0:255
算每级灰度出现的概率,将其存入B中相应位置end
figure,bar(0:255,B,'g'); %绘制直方图
title('A图像直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.015])
C=imread('C:\Users\hp\Desktop\B.tif');%读入B 图像
imshow(C)
%显示出来
title('输入的B图像')
%绘制直方图
[m,n]=size(C);
%测量图像尺寸
D=zeros(1,256);
%预创建存放灰度出现概率的向量
for k=0:255
算每级灰度出现的概率,将其存入D中相应位置
end
figure,bar(0:255,D,'g'); %绘制直方图
title('B图像直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.015])
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=D(j)+S1(i); %计算B灰度图累计直方图
end
end
counts=B
figure,bar(0:255,counts,'r')
title('A图像直方图')
S2=zeros(1,256);
for i=1:256
for j=1:i
S2(i)=counts(j)+S2(i);
end
end;
%"累计"规定化直方图
%对比直方图,找到相差最小的灰度级
for i=1:256
for j=1:255
if S1(j)<=S2(i)&S1(j+1)>=S2(i)
if
abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;
else T(i)=j+1;
end
end
end
end
%确定变换关系,重组直方图
H=zeros(1,256);
H(1)=S2(1);
for i=2:255
if T(i-1)>0
for k=(T(i-1)+1):T(i)
H(i)=H(i)+D(k);
end
else H(i)=0;
end
end
figure,bar(0:255,H,'g') %显示规定化后的直方图
title('A规定B后的直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.6])
%显示规定图
PA=C; %将各个像素归一化后的灰度值赋给这个像素
for i=1:m
for j=1:n
for k=2:255
if T(k-1)<=C(i,j)&C(i,j)<=T(k)
PA(i,j)=k;
break;
end
end
end
end
figure,imshow(PA)
%显示规定化后的图像
title('A规定B后图像')
imwrite(PA,'guidinghua.bmp');
二、用已知直方图规定A图
规定灰度为
[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zeros(1,4 9),0.2,zeros(1,49),0.1]
Matlab程序:
clear all
A=imread('C:\Users\hp\Desktop\B.tif');
%读入A图像
imshow(A)
%显示出来
title('输入的A图像')
%绘制直方图
[m,n]=size(A);
%测量图像尺寸
B=zeros(1,256);
%预创建存放灰度出现概率的向量
for k=0:255
B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置end
figure,bar(0:255,B,'g'); %绘制直方图
title('A图像直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.015])
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=B(j)+S1(i); %计算原灰度图累计直方图
end
end
counts=[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49 ),0.2,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0. 1];%规定化直方图
figure,bar(1:300,counts,'r')
title('规定化直方图')
S2=zeros(1,256);
for i=1:256
for j=1:i
S2(i)=counts(j)+S2(i);
end
end;
%"累计"规定化直方图
%对比直方图,找到相差最小的灰度级
for i=1:256
for j=1:256
if S1(j)<=S2(i)&S1(j+1)>=S2(i)
if
abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;
else T(i)=j+1;
end
end
end
end
%确定变换关系,重组直方图
H=zeros(1,256);
H(1)=S2(1);
for i=2:256
if T(i-1)>0
for k=(T(i-1)+1):T(i)
H(i)=H(i)+B(k);
end
else H(i)=0;
end
end
figure,bar(0:255,H,'g') %显示规定化后的直方图
title('规定化后的直方图')
xlabel('灰度值')
ylabel('出现概率')
axis([0,260,0,0.6])
%显示规定图
PA=A; %将各个像素归一化后的灰度值赋给这个像素
for i=1:m
for j=1:n
for k=2:256
if T(k-1)<=A(i,j)&A(i,j)<=T(k)
PA(i,j)=k;
break;
end
end
end
end
figure,imshow(PA)
%显示规定化后的图像
title('规定化后图像')
imwrite(PA,'guidinghua.bmp');。

相关文档
最新文档