2020_2021学年新教材高中数学模块质量检测新人教A版必修第一册
高中数学模块综合检测新人教A版选择性必修第一册
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x ,y ∈R ,向量a =(x,1,1),b =(1,y,1),c =(2,-4,2),a ⊥c ,b ∥c ,则|a +b |=( )A .2 2B .10C .3D .4【答案】C【解析】∵b ∥c ,∴y =-2.∴b =(1,-2,1).∵a ⊥c ,∴a ·c =2x +1·()-4+2=0,∴x =1.∴a =(1,1,1).∴a +b =(2,-1,2).∴|a +b |=22+-12+22=3.2.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD →+12(BC →-BD →)等于( )A .AD →B .FA →C .AF →D .EF →【答案】C【解析】∵BC →-BD →=DC →,12(BC →-BD →)=12DC →=DF →,∴AD →+12(BC →-BD →)=AD →+DF →=AF →.3.若直线l 1:mx +2y +1=0与直线l 2:x +y -2=0互相垂直,则实数m 的值为( ) A .2 B .-2 C .12 D .-12【答案】B【解析】直线l 1:y =-m 2x -12,直线l 2:y =-x +2,又∵直线l 1与直线l 2互相垂直,∴-m2×(-1)=-1,即m =-2.4.已知直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,则a =( )A .-9B .1C .1或-2D .1或-9【答案】D【解析】由条件得圆的半径为3,圆心坐标为(1,-2),因为直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,所以9-⎝ ⎛⎭⎪⎫422=⎝ ⎛⎭⎪⎫|1+4+a -1|52,所以a 2+8a -9=0,解得a =1或a =-9.5.已知M (x 0,y 0)是双曲线C :x 2a 2-y 2b2=1上的一点,半焦距为c ,若|MO |≤c (其中O 为坐标原点),则y 20的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,b 4c 2 B .⎣⎢⎡⎦⎥⎤0,a 4c 2C .⎣⎢⎡⎭⎪⎫b 4c 2,+∞ D .⎣⎢⎡⎭⎪⎫a 2c 2,+∞ 【答案】A【解析】因为|MO |≤c ,所以|MO |≤a 2+b 2,所以x 20+y 20≤a 2+b 2,又因为x 20a 2-y 20b2=1,消去x 2得0≤y 20≤b 4a 2+b 2,所以0≤y 20≤b 4c2.6.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,直线l :y =24x 与椭圆C 相交于A ,B 两点,若|AB |=2c ,则椭圆C 的离心率为( )A .32B .34C .12D .14【答案】A【解析】设直线与椭圆在第一象限内的交点为A (x ,y ),则y =24x ,由|AB |=2c ,可知|OA |=x 2+y 2=c ,即x 2+⎝⎛⎭⎪⎫24x 2=c ,解得x =223c ,所以A ⎝ ⎛⎭⎪⎫223c ,13c .把点A 代入椭圆方程得到⎝ ⎛⎭⎪⎫223c 2a2+⎝ ⎛⎭⎪⎫13c 2b2=1,整理得8e 4-18e 2+9=0,即(4e 2-3)(2e 2-3)=0,因为0<e <1,所以可得e =32. 7.在空间直角坐标系Oxyz 中,O (0,0,0),E (22,0,0),F (0,22,0),B 为EF 的中点,C 为空间一点且满足|CO →|=|CB →|=3,若cos 〈EF →,BC →〉=16,则OC →·OF →=( )A .9B .7C .5D .3【答案】D【解析】设C (x ,y ,z ),B (2,2,0),OC →=(x ,y ,z ),BC →=(x -2,y -2,z ),EF →=(-22,22,0),由cos 〈EF →,BC →〉=EF →·BC→|EF →||BC →|=-22,22,0·x -2,y -2,z 4×3=16,整理可得x -y =-22,由|CO →|=|CB →|=3,得x 2+y 2=x -22+y -22,化简得x +y =2,以上方程组联立得x =24,y =324,则OC →·OF →=(x ,y ,z )·(0,22,0)=22y =3. 8.已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A .22B .1-22C .1+22D .2+ 2【答案】D【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义,得点M 到准线的距离为|MF |,点N 到准线的距离为|NF |.由梯形的中位线定理,得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab a +b 2=1-2-2aba +b 2≥1-2-2ab 2ab2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时取得最小值2+2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,下列说法正确的是( ) A .当a =-1时,直线l 与直线x +y =0垂直 B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等 【答案】AC【解析】对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在x 轴、y 轴上的截距分别是-1,1,所以不正确.故选AC .10.已知F 1,F 2是双曲线C :y 24-x 22=1的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段F 1F 2为直径的圆经过点M ,则下列说法正确的是( )A .双曲线C 的渐近线方程为y =±2xB .以F 1F 2为直径的圆的方程为x 2+y 2=2 C .点M 的横坐标为± 2 D .△MF 1F 2的面积为2 3 【答案】ACD【解析】由双曲线方程y 24-x 22=1知a =2,b =2,焦点在y 轴,渐近线方程为y =±abx =±2x ,A 正确;c =a 2+b 2=6,以F 1F 2为直径的圆的方程是x 2+y 2=6,B 错误;由⎩⎨⎧x 2+y 2=6,y =2x ,得⎩⎨⎧x =2,y =2或⎩⎨⎧x =-2,y =-2,由对称性知点M 横坐标是±2,C 正确;S △MF 1F 2=12|F 1F 2||x M |=12×26×2=23,D 正确.故选ACD .11.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( )A .(0,2)B .(1,2-1)C .(2,0)D .(2-1,1)【答案】AC【解析】如图所示,原点到直线l 的距离为d =212+12=1,则直线l 与圆x 2+y 2=1相切.由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值.连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ 为正方形,所以|OA |=2|OP |=2.设A (t ,2-t ),由两点间的距离公式,得|OA |=t 2+2-t2=2,整理得2t 2-22t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0).故选AC .12.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有OP →=16OA →+512OB →+512OC →,则P ,A ,B ,C 四点共面C .设{}a ,b ,c 是空间中的一组基底,则{2a ,-b ,c }也是空间的一组基底D .若a ·b <0,则〈a ,b 〉是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有OP →=16OA →+13OB →+12OC →,因为16+512+512=1,所以P ,A ,B ,C 四点一定共面,所以是正确的;对于C 中,由{}a ,b ,c 是空间中的一组基底,则向量a ,b ,c 不共面,可得向量2a ,-b ,c 也不共面,所以{2a ,-b ,c }也是空间的一组基底,所以是正确的;对于D 中,若a ·b <0,又由〈a ,b 〉∈[0,π],所以〈a ,b 〉∈⎝ ⎛⎦⎥⎤π2,π,所以不正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是__________;|OM |=________.【答案】(1,1,-1)3【解析】在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是M ′(1,1,-1),|OM |=12+-12+12=3.14.(2021年惠州期末)圆C :(x -1)2+y 2=1关于直线l :x -y +1=0对称的圆的方程为______________.【答案】(x +1)2+(y -2)2=1【解析】圆C :(x -1)2+y 2=1圆心C (1,0),半径r =1,设圆C 关于直线l :x -y +1=0的对称点C ′(a ,b ),则⎩⎪⎨⎪⎧a +12-b2+1=0,ba -1=-1,解得a =-1,b =2,即圆C 的圆心关于直线l 的对称圆心为C ′(-1,2),而圆关于直线对称得到的圆的半径不变,所以所求的圆的方程为(x +1)2+(y -2)2=1.15.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为________.【答案】32【解析】如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),C (0,1,0),D 1(0,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0).∴AM →=⎝⎛⎭⎪⎫0,1,12,AC→=(-1,1,0),AD 1→=(-1,0,1).设平面ACD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-x +y =0,-x +z =0,令x =1,则y =z =1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d =|AM →·n ||n |=32.又∵MN →綉12AD 1→,∴MN ∥平面ACD 1.∴直线MN 到平面ACD 1的距离为32.16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为该双曲线上一点且2|PF 1|=3|PF 2|,若∠F 1PF 2=60°,则该双曲线的离心率为________.【答案】7【解析】2|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,故|PF 1|=6a ,|PF 2|=4a .在△PF 1F 2中,利用余弦定理得4c 2=36a 2+16a 2-2·6a ·4a cos60°,化简整理得到c =7a ,故e =7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5). (1)求顶点B ,C 的坐标; (2)求CA →·BC →.解:(1)设点O 为坐标原点,OB →=OA →+AB →=(2,-5,3)+(4,1,2)=(6,-4,5), 则B (6,-4,5).OC →=OB →+BC →=(6,-4,5)+(3,-2,5)=(9,-6,10),则C (9,-6,10).(2)AC →=AB →+BC →=(7,-1,7),则CA →=(-7,1,-7),又因为BC →=(3,-2,5),所以CA →·BC →=-7×3+1×(-2)+(-7)×5=-58. 18.(12分)菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.解:(1)k BC =-5--16-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4),即2x -y +15=0. (2)k AC =-5-76--4=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.19.(12分)已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11. 圆C 2的圆心C 2(5,6),半径r 2=4.两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11, ∴|r 1-r 2|<d <r 1+r 2. ∴圆C 1和圆C 2相交.(2)解:圆C 1和圆C 2的方程相减, 得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.20.(12分)如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=-4.(1)求抛物线C 的标准方程;(2)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,R ,Q 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.解:(1)由题意,设直线MN 的方程为y =kx +p2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2-2pkx -p 2=0,由题意知x 1,x 2是方程两根,所以x 1x 2=-p 2=-4, 所以p =2,抛物线的标准方程为x 2=4y .(2)设R (x 3,y 3),Q (x 4,y 4),T (0,t ),因为点T 在RQ 的垂直平分线上,所以|TR |=|TQ |, 得x 23+(y 3-t )2=x 24+(y 4-t )2.因为x 23=4y 3,x 24=4y 4,所以4y 3+(y 3-t )2=4y 4+(y 4-t )2, 即4(y 3-y 4)=(y 3+y 4-2t )(y 4-y 3), 所以-4=y 3+y 4-2t .又因为y 3+y 4=1,所以t =52,故T ⎝ ⎛⎭⎪⎫0,52.于是S △MNT =12|FT ||x 1-x 2|=34|x 1-x 2|.由(1)得x 1+x 2=4k ,x 1x 2=-4, 所以S △MNT =34|x 1-x 2|=34x 1+x 22-4x 1x 2=3416k 2-4×-4=3k 2+1≥3. 所以当k =0时,S △MNT 有最小值3.21.(12分)如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 上的点.(1)求证:平面EAC ⊥平面PBC ; (2)二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值.(1)证明:∵PC ⊥底面ABCD ,AC ⊂底面ABCD , ∴PC ⊥AC .∵AB =2,AD =CD =1,∴AC =BC =2. ∴AC 2+BC 2=AB 2,∴AC ⊥BC . 又∵BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解:如图,以C 为原点,取AB 中点F ,CF →,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0). 设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE →=⎝ ⎛⎭⎪⎫12,-12,a 2,设m =(x 1,y 1,z 1)为平面PAC 的法向量, 由⎩⎪⎨⎪⎧m ·CA →=x 1+y 1=0,m ·CP →=az 1=0,所以可取x 1=1,y 1=-1,z 1=0,即m =(1,-1,0). 设n =(x 2,y 2,z 2)为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,x 2-y 2+az 2=0,取x 2=a ,y 2=-a ,z 2=-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝⎛⎭⎪⎫-1,32.(1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于A ,B 两点,试问在x 轴上是否存在定点Q 使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.解:(1)由题意可得32=c a ,1a 2+34b2=1, 又因为a 2-b 2=c 2, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称,理由如下: 设直线l 的方程为x +my -3=0,与椭圆C 联立,整理得(4+m 2)y 2-23my -1=0. 设A (x 1,y 1),B (x 2,y 2),定点Q (t,0)(依题意t ≠x 1,t ≠x 2),则由韦达定理可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2. 直线QA 与直线QB 恰关于x 轴对称,等价于AQ ,BQ 的斜率互为相反数. 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又因为x 1+my 1-3=0,x 2+my 2-3=0, 所以y 1(3-my 2-t )+y 2(3-my 1-t )=0, 整理得(3-t )(y 1+y 2)-2my 1y 2=0. 从而可得(3-t )·23m 4+m 2-2m ·-14+m2=0,11 即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称成立.特别地,当直线l 为x 轴时,Q ⎝ ⎛⎭⎪⎫433,0也符合题意. 综上所述,存在x 轴上的定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称.。
2020-2021学年数学新教材人教A版必修第一册:5.2.3 同角三角函数的基本关系(2)
为( C )
A.-
3 2
B.±
3 2
C.-
5 2
D.±
5 2
解析:∵A为三角形的一个内角,且sinAcosA=-18,
∴A为钝角.∴cosA-sinA<0.
∴cosA-sinA=- cosA-sinA2
=- sin2A+cos2A-2sinAcosA=-
1+14=-
5 2.
8.已知θ是第三象限角,且sin4θ+cos4θ=
16 5
.
解析:tan2xsin2x=tan2x(1-cos2x)=tan2x-tan2xcos2x=tan2x- sin2x=156.
11.若0<α<π2,则 α
果是 2cos2 .
1-2sinα2cosα2+
1+2sinα2cosα2的化简结
解析:由0<α<2π,得0<α2<4π,
所以0<sinα2<cosα2.
故原式= sinα2-cosα22+ =cosα2-sinα2+sinα2+cosα2
sinα2+cosα22
=2cosα2.
三、解答题(共25分) 12.(12分)已知tanα=3,求下列各式的值: (1)34ssiinnαα+-5ccoossαα; (2)sin2α-4co2ss2inαα-co3ssαin-2αcos2α; (3)34sin2α+12cos2α.
-
sinα+cosα sin2α-cos2α
=
sin2α sinα-cosα
-
cos2αsinα+cosα sin2α-cos2α
=
sin2α sinα-cosα
-
cos2α
sinαco-s2cαosα=ssinin2αα--ccoossα2α=sinα+cosα=右边,∴原式成立.
2020-2021学年数学新教材人教A版必修第一册:5.2.2 同角三角函数的基本关系(1)
1 A.2
B.-12
C.2
D.-2
解析:由sin2x+cos2x=1得cos2x=1-sin2x,得cos2x=(1- sinx)(1+sinx),得1+cossixnx=1-cossixnx,所以sicnoxs-x 1=-1-cossixnx=- -12=12.故选A.
6.若α为第三象限角,则 1c-ossαin2α+ 12-sicnoαs2α的值为( B ) A.3 B.-3 C.1 D.-1
解析:∵α为第三象限角,∴cosα<0,sinα<0, ∴原式=-ccoossαα-2ssiinnαα=-3.
7.已知ssiinnθθ+ -ccoossθθ=2,则sinθcosθ的值是( C )
3 A.4
B.±130
3 C.10
D.-130
解析:由条件得sinθ+cosθ=2sinθ-2cosθ,即3cosθ=sinθ, ∴tanθ=3,∴sinθcosθ=sins2inθθ+cocsoθs2θ=1+tatnaθn2θ=1+3 32=130.
13.(13分)证明下列三角恒等式:tatnanαα-sisniαnα=tatnaαnα+sisninαα.
sin2α 证明:左边=csoinsααco-sαsinα=sinα-sisni2nααcosα =sin1α-1c-osc2oαsα=1+sicnoαsα=si1nα+csoinsαα=si1nα+ta1nα =tatnaαnα+sisninαα=右边,所以原等式成立.
解析:原式=cosα 1+csoins22αα+sinα 1+csoins22αα =cosα co1s2α+sinα sin12α=cosα-c1osα+sinαsi1nα=0.
三、解答题(共25分)
2020-2021学年新教材人教A版高一数学必修第一册 第五章 三角函数 单元测试
2020-2021学年新教材高一数学人教A 版必修第一册第五章 三角函数 单元测试题一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知扇形的圆心角为2 rad ,弧长为4 cm ,则这个扇形的面积是( )A .4 cm 2B .2 cm 2C .4π cm 2D .1 cm 22.已知a =tan 5π12,b =cos 3π5,c =cos ⎝ ⎛⎭⎪⎫-17π4,则( )A .b >a >cB .a >b >cC .b >c >aD .a >c >b3.要得到函数y =cos ⎝⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度4.已知sin ⎝ ⎛⎭⎪⎫π3-x =35,则cos ⎝ ⎛⎭⎪⎫x +7π6等于( ) A.35 B.45C .-35D .-455.函数f (x )=x sin x 的图象大致是( )6.化简⎝ ⎛⎭⎪⎫1sin α+1tan α(1-cos α)的结果是( )A .sin αB .cos αC .1+sin αD .1+cos α7.如图所示,某摩天轮设施,其旋转半径为50米,最高点距离地面110米,开启后按逆时针方向匀速旋转,转一周大约21分钟.某人在最低点的位置坐上摩天轮的座舱,并开始计时,则第7分钟时他距离地面的高度大约为( )A .75米B .85米C .(50+253)米D .(60+253)米8.已知函数f (x )=sin x -sin 3x ,x ∈[0,2π],则函数f (x )的所有零点之和等于( )A .4πB .5πC .6πD .7π二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,最小正周期为π,且为偶函数的有( )A .y =tan ⎝ ⎛⎭⎪⎫x +π3B .y =sin ⎝ ⎛⎭⎪⎫2x -π2C .y =sin|2x |D .y =|sin x |10.已知sin θ=-23,且cos θ>0,则( )A .tan θ<0B .tan 2θ>49C .sin 2θ>cos 2θD .sin 2θ>011.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,则下列结论正确的是( )A .函数f (x )的最小正周期为πB .函数f (x )在[0,π]上有三个零点C .当x =π8时,函数f (x )取得最大值D .为了得到函数f (x )的图象,只要把函数y =2sin ⎝ ⎛⎭⎪⎫x +π4图象上所有点的横坐标变为原来的2倍(纵坐标不变)12.若函数f (x )=1+4sin x -t 在区间⎝ ⎛⎭⎪⎫π6,2π上有2个零点,则t 的可能取值为( )A .-2B .0C .3D .4三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.tan 15°=________.14.如图,某港口一天中6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此可知,这段时间水深(单位:m)的最大值为________.15.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),则A =________.16.已知函数f (x )=3sin 3x -a cos 3x +a ,且f ⎝ ⎛⎭⎪⎫29π=3,则实数a =________,函数f (x )的单调递增区间为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系xOy 中,锐角α的顶点在坐标原点O ,始边与x 轴非负半轴重合,终边与单位圆交于点A ,且点A 的纵坐标为45.(1)求cos α和sin α; (2)求tan 2α的值.18.(12分)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.19.(12分)(1)已知cos ⎝ ⎛⎭⎪⎫π2+α=2sin ⎝ ⎛⎭⎪⎫α-π2,求sin 2(π-α)+2sinαsin ⎝ ⎛⎭⎪⎫3π2-α+1的值; (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=13,求cos ⎝ ⎛⎭⎪⎫5π6+θ+2sin ⎝ ⎛⎭⎪⎫5π3-θ的值.20.(12分)在①tan α=43,②7sin 2α=2sin α,③cos α2=277这三个条件中任选一个,补充在下面问题中,并解决问题.已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,cos(α+β)=-13,________,求cosβ.注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.(1)求f (x )的单调递增区间;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最值,并求出取最值时x 的值;(3)求不等式f (x )≥2的解集.22.(12分)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|≤π2的部分图象如图所示.(1)求函数y =f (x )的表达式;(2)将函数y =f (x )的图象向左平移π6个单位长度得到函数g (x )的图象,若关于x 的方程f (x )+g (x )-a =0在⎣⎢⎡⎦⎥⎤0,π2上有实数解,求实数a的取值范围.三角函数单元测试参考答案1.解析:设半径为R ,由弧长公式得4=2R ,即R =2 cm ,则S =12×2×4=4 (cm 2),故选A.答案:A2.解析:a =tan 5π12>1,b =cos 3π5<0,1>c =cos ⎝ ⎛⎭⎪⎫-17π4=cosπ4>0.∴a >c >b .则12<t -14<1或-1<t -14<0,解得3<t <5或-3<t <1,故选ABD. 答案:ABD13.解析:tan 15°=tan(45°-30°)=1-tan 30°1+tan 30°=1-331+33=2- 3.答案:2- 314.解析:由图象可知:当sin ⎝ ⎛⎭⎪⎫π6x +φ=-1时,y min =k -3=2,∴k =5,当sin ⎝ ⎛⎭⎪⎫π6x +φ=1时,y max =5+3=8. 答案:8 15.解析:由sin(2π-A )=-2sin(π-B ),得sin A =2sin B ①. 由3cos A =-2cos(π-B ),得3cos A =2cos B ②. 由①2+②2得:sin 2A +3cos 2A =2,即2cos 2A =1.由②和A ,B 为三角形的内角,可知角A ,B 均为锐角,则cos A =22.所以A =π4.答案:π416.解析:①因为f ⎝ ⎛⎭⎪⎫29π=3,所以f ⎝ ⎛⎭⎪⎫2π9=3sin 2π3-a cos 2π3+a =3,解得:a =1;②将a =1代入,得f (x )=3sin 3x -cos 3x +1,化简得f (x )=2sin ⎝ ⎛⎭⎪⎫3x -π6+1,故-π2+2k π≤3x -π6≤π2+2k π,k ∈Z。
新教材2020-2021学年高中数学人教A版第一册学案:3.2.1 第1课时函数的单调性含解析
新教材2020-2021学年高中数学人教A版必修第一册学案:3.2.1 第1课时函数的单调性含解析3.2函数的基本性质3.2。
1单调性与最大(小)值第1课时函数的单调性[目标]1.记住函数的单调性及其几何意义,会证明简单函数的单调性;2。
会用函数的单调性解答有关问题;3.记住常见函数的单调性.[重点] 函数的单调性定义及其应用;常见函数的单调性及应用;函数单调性的证明.[难点]函数单调性定义的理解及函数单调性的证明.知识点一增函数与减函数的定义[填一填]一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1〈x2时,都有f(x1)〈f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.如果∀x1,x2∈D,当x1<x2时,都有f(x1)〉f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.[答一答]1.在增函数与减函数的定义中,能否把“∀x1,x2∈D"改为“∃x1,x2∈D”?提示:不能,如图所示:虽然f(-1)〈f(2),但原函数在[-1,2]上不是增函数.2.设x1、x2是f(x)定义域某一个子区间M上的两个变量,如果f(x)满足以下条件,该函数f(x)是否为增函数?(1)对任意x1〈x2,都有f(x1)<f(x2);(2)对任意x1,x2,都有[f(x1)-f(x2)](x1-x2)〉0;(3)对任意x1、x2都有错误!>0.提示:是增函数,它们只不过是增函数的几种等价命题.3.由2推广,能否写出减函数的几个等价命题?提示:减函数(x1,x2∈M)⇔任意x1<x2,都有f(x1)>f(x2)⇔错误! <0⇔[f(x1)-f(x2)]·(x1-x2)〈0.知识点二函数的单调性与单调区间[填一填]如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.[答一答]4.函数的单调区间与其定义域是什么关系?提示:函数的单调性是对函数定义域内的某个子区间而言的,故单调区间是定义域的子集.5.函数f(x)=错误!的单调减区间是(-∞,0)∪(0,+∞)吗?提示:不是.例如:取x1=1,x2=-1,则x1>x2,这时f(x1)=f (1)=1,f(x2)=f(-1)=-1,故有f(x1)〉f(x2).这样与函数f(x)=错误!在(-∞,0)∪(0,+∞)上单调递减矛盾.事实上,f(x)=错误!的单调减区间应为(-∞,0)和(0,+∞).知识点三常见函数的单调性[填一填]1.设一次函数的解析式为y=kx+b(k≠0),当k〉0时,函数y =kx+b在R上是增函数;当k<0时,函数y=kx+b在R上是减函数.2.设二次函数的解析式为y=ax2+bx+c(a≠0).若a>0,则该函数在错误!上是减函数,在错误!上是增函数.若a<0,则该函数在错误!上是增函数,在错误!上是减函数.3.设反比例函数的解析式为y=错误!(k≠0).若k〉0,则函数y=错误!在(-∞,0)上是减函数,在(0,+∞)上也是减函数;若k 〈0,则函数y=错误!在(-∞,0)上是增函数,在(0,+∞)上也是增函数.[答一答]6.函数y=x2-x+2的单调区间如何划分?提示:函数在错误!上是减函数,在错误!上是增函数.类型一判断或证明函数的单调性[例1]证明:函数y=x+错误!在(0,3]上递减.[证明]设0<x1<x2≤3,则有y1-y2=错误!-错误!=(x1-x2)-错误!=(x1-x2)错误!。
2020-2021学年高中数学新教材人教A版必修第一册学案:4.3.2对数的运算含解析
4.3.2对数的运算必备知识·探新知基础知识知识点1对数的运算性质条件a>0,且a≠1,M>0,N>0性质log a(MN)=__log a M+log a N__log aMN=__log a M-log a N__log a M n=__n log a M__(n∈R)思考1:在积的对数运算性质中,三项的乘积式log a(MNQ)是否适用?你能得到一个怎样的结论?提示:适用,log a(MNQ)=log a M+log a N+log a Q,积的对数运算性质可以推广到真数是n 个正数的乘积.知识点2换底公式若a>0,且a≠1;b>0;c>0,且c≠1,则有log a b=__log c blog c a__.思考2:(1)对数的换底公式用常用对数、自然对数表示什么形式?(2)你能用换底公式和对数的运算性质推导出结论log Nn M m=mn log N M吗?提示:(1)log a b=lg blg a,log a b=ln bln a.(2)log N n M m=lg M mlg N n=m lg Mn lg N=mn·lg Mlg N=mn log N M.基础自测1.若a>0,a≠1,x>0,y>0,x>y,下列式子中正确的个数是(A)①log a x·log a y=log a(x+y);②log a x-log a y=log a(x-y);③log axy=log a x÷log a y;④log a (xy )=log a x ·log a y . A .0 B .1 C .2D .3[解析] 由对数运算法则知,均不正确.故选A . 2.log 62+log 63等于( A ) A .1 B .2 C .5D .6[解析] log 62+log 63=log 6(2×3)=log 66=1.3.(2020·天津和平区高一期中测试)计算:log 25·log 32·log 59=__2__. [解析] 原式=lg5lg2·lg2lg3·lg9lg5=lg5lg2·lg2lg3·2lg3lg5=2. 4.求下列各式的值: (1)log 3(27×92);(2)lg5+lg2; (3)ln3+ln 13;(4)log 35-log 315.[解析] (1)方法一:log 3(27×92)=log 327+log 392=log 333+log 334=3log 33+4log 33=3+4=7;方法二:log 3(27×92)=log 3(33×34)=log 337=7log 33=7. (2)lg5+lg2=lg(5×2)=lg10=1. (3)ln3+ln 13=ln(3×13)=ln1=0.(4)log 35-log 315=log 3515=log 313=log 33-1=-1.关键能力·攻重难题型探究题型一 对数的运算性质的应用例1 用log a x ,log a y ,log a z 表示:(1)log a (xy 2);(2)log a (x y );(3)log a3x yz 2. [解析] (1)log a (xy 2)=log a x +log a y 2=log a x +2log a y . (2)log a (x y )=log a x +log a y =log a x +12log a y .(3)log a3x yz 2=13log a x yz 2=13[log a x -log a (yz 2)] =13(log a x -log a y -2log a z ). [归纳提升] 对对数式进行计算、化简时,一要注意准确应用对数的性质和运算性质.二要注意取值范围对符号的限制.【对点练习】❶ 用log a x 、log a y 、log a z 表示下列各式: (1)log a (x 3y 5); (2)log ax yz. [解析] (1)log a (x 3y 5)=log a x 3+log a y 5 =3log a x +5log a y . (2)log axyz=log a x -log a (yz ) =log a x 12-(log a y +log a z )=12log a x -log a y -log a z . 题型二 利用对数的运算性质化简、求值例2 化简下列各式: (1)log 2(23×45); (2)lg3+2lg2-1lg1.2;(3)lg14-2lg 73+lg7-lg18;(4)log 28+43+log 28-43; (5)log 2(1+2+3)+log 2(1+2-3).[分析] 熟练掌握对数的运算性质并能逆用性质是解题的关键.进行对数运算,要注意法则的正用和逆用.在化简变形的过程中,要善于观察、比较和分析,从而选择快捷、有效的运算方案.[解析] (1)log 2(23×45)=log 223+log 245=3+5log 24=3+5×2=13.(2)lg3+2lg2-1lg1.2=lg3+lg4-1lg1.2=lg1.2lg1.2=1.(3)方法一:lg14-2lg 73+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0. 方法二:lg14-2lg 73+lg7-lg18=lg14-lg(73)2+lg7-lg18=lg14×7(73)2×18=lg1=0.(4)log 28+43+log 28-4 3=log 2[(8+43)(8-43)]=log 264-48=log 24=2.(5)log 2(1+2+3)+log 2(1+2-3) =log 2[(1+2)2-(3)2]=log 2(3+22-3) =log 222=log 2232=32. [归纳提升] 利用对数运算性质化简与求值的原则 (1)正用或逆用公式,对真数进行处理.(2)选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. 【对点练习】❷ 计算下列各式的值:(1)(2020·湖南衡阳高一期末测试)log 327+lg 25-lg4;(2)(2020·江苏、苏州市高一期中测试)(lg5)2+lg2×lg50. [解析] (1)原式=log 3332 +lg 254=32+lg 110=32+lg10-1 =32-1=12.(2)原式=(lg5)2+lg2×lg(5×10) =(lg5)2+lg2×(1+lg5) =(lg5)2+lg2+lg2·lg5 =lg5(lg5+lg2)+lg2 =lg5+lg2=lg10=1. 题型三 换底公式的应用例3 (1)计算log 2125·log 318·log 519;(2)若log 34·log 48·log 8m =log 42,求m 的值.[分析] (1)对数的底数不同,如何将其化为同底的对数?(2)等式左边前一个对数的真数是后面对数的底数,利用换底公式很容易进行约分求解m 的值.[解析] (1)原式=lg 125lg2·lg 18lg3·lg 19lg5=(-2lg5)·(-3lg2)·(-2lg3)lg2·lg3·lg5=-12.(2)由题意,得lg4lg3·lg8lg4·lg m lg8=lg m lg3=12,∴lg m =12lg3,即lg m =lg312 ,∴m = 3.[归纳提升] 关于换底公式的用途和本质:(1)换底公式的主要用途在于将一般对数式化为常用对数或自然对数,然后查表求值,以此来解决对数求值的问题.(2)换底公式的本质是化异底为同底,这是解决对数问题的基本方法.(3)在运用换底公式时,若能结合底数间的关系恰当选用一些重要的结论,如log a b =1log b a ;log a a n =n ,log am b n =nmlog a b ;lg2+lg5=1等,将会达到事半功倍的效果.【对点练习】❸ 计算下列各式的值: (1)log 89·log 2732; (2)log 927;(3)log 21125·log 3132·log 513.[解析] (1)log 89·log 2732=lg9lg8·lg32lg27=lg32lg23·lg25lg33=2lg33lg2·5lg23lg3=109.(2)log 927=log 327log 39=log 333log 332=3log 332log 33=32.(3)log 21125·log 3132·log 513=log 25-3·log 32-5·log 53-1 =-3log 25·(-5log 32)·(-log 53) =-15·lg5lg2·lg2lg3·lg3lg5=-15.误区警示忽视真数大于零致误例4 解方程:log 2(x +1)-log 4(x +4)=1. [错解] 原方程变形为log 2(x +1)-12log 2(x +4)=1,∴log 2(x +1)-log 2x +4=1,∴log 2x +1x +4=log 22, ∴x +1x +4=2,∴x 2-2x -15=0,∴x =-3或x =5, 故原方程的解为x =-3或x =5.[错因分析] 解题过程中忽视对数log a N 中真数N 必须大于0时对数才有意义.实际上,在解答此类题时,要时刻关注对数本身是否有意义.另外,在运用对数运算性质或相关公式时也要谨慎,以防出错.[正解] ∵log 2(x +1)-log 4(x +4)=1, ∴log 4(x +1)2x +4=1,∴⎩⎪⎨⎪⎧x+1>0,x+4>0,(x+1)2x+4=4,解得x=5或x=-3(舍去).∴方程log2(x+1)-log4(x+4)=1的解为x=5.[方法点拨]在将对数方程化为代数方程的过程中,未知数的范围扩大或缩小就容易产生增根.故解对数方程必须把所求的解代入原方程进行检验,否则易产生增根,造成解题错误.也可以像本题的求解过程这样,在限制条件下去求解.学科素养转化与化归思想的应用与综合分析解决问题的能力例5 (1)设3x=4y=36,求2x+1y的值;(2)已知log23=a,3b=7,求log1256.[分析](1)欲求2x+1y的值,已知3x=36,4y=36,由此两式怎样得到x,y,容易想到对数的定义——故可用等式两端取同底的对数(指对互化)来解决.(2)已知条件中有指数式,也有对数式,而待计算式为对数式,因此可将指数式3b=7化为对数式解决.观察所给数字特征、条件式中为2、3、7,又12=3×22,56=7×23,故还可以利用换底公式的推论log a n b m=mn log a b,将条件中的对数式log23=a化为指数式解答.[解析](1)由已知分别求出x和y,∵3x=36,4y=36,∴x=log336,y=log436,由换底公式得:x=log3636log363=1log363,y=log3636log364=1log364,∴1x=log363,1y=log364,∴2x+1y=2log363+log364=log36(32×4)=log3636=1.(2)解法一:因为log23=a,所以2a=3.又3b=7,故7=(2a)b=2ab,故56=23+ab,又12=3×4=2a×4=2a+2,从而log 1256=log 2a +223+ab =3+aba +2. 解法二:因为log 23=a ,所以log 32=1a .又3b =7,所以log 37=b .从而log 1256=log 356log 312=log 37+log 38log 33+log 34=log 37+3log 321+2log 32=b +3·1a 1+2·1a =ab +3a +2.[归纳提升] 1.应用换底公式应注意的事项 (1)注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式,注意转化与化归思想的运用.2.对数式的条件求值问题要注意观察所给数字特征,分析找到实现转化的共同点进行转化.3.利用换底公式计算、化简、求值的一般思路:思路一:用对数的运算法则及性质进行部分运算→换成同一底数. 思路二:一次性统一换为常用对数(或自然对数)→化简、通分、求值.课堂检测·固双基1.2log 510+log 50.25的值为( C ) A .0 B .1 C .2D .4[解析] 原式=log 5100+log 50.25 =log 5(100×0.25)=log 525=log 552=2.2.(2019·北京丰台区高一期末测试)lg25+lg4+(19)-12的值为( B )A .73B .5C .313D .13[解析]原式=lg(25×4)+(3-2)-12=lg100+3 =2+3=5.3.12log 612-log 62=__12__. [解析] 原式=12log 612-12log 62=12log 6122=12log 66=12. 4.计算下列各式的值: (1)2lg5+lg4+e ln2+log 222; (2)(log 23+log 89)(log 34+log 98+log 32).[解析] (1)原式=2lg5+2lg2+2+3=2(lg5+lg2)+5=7. (2)原式=(log 23+log 29log 28)(log 322+log 38log 39+log 32)=(log 23+23log 23)(2log 32+32log 32+log 32)=53log 23×92log 32=152.。
2020-2021学年数学新教材人教A版必修第一册:4.4.2 对数函数的图象与性质(1)
=
2 2.
11.若实数 a 满足 loga2>1,则 a 的取值范围为 (1,2).
解析:当 a>1 时,loga2>1=logaa,∴2>a.∴1<a<2. 当 0<a<1 时,loga2<0,不满足题意. 故 a 的取值范围是(1,2).
三、解答题(共 25 分) 12.(12 分)已知函数 y=f(x)的图象与 g(x)=logax(a>0,且 a≠1) 的图象关于 x 轴对称,且 g(x)的图象过点(9,2). (1)求函数 f(x)的解析式; (2)若 f(3x-1)>f(-x+5)成立,求 x 的取值范围.
5.函数 y=log2(x+1)的图象大致是( C )
解析:y=log2(x+1)是由 y=log2x 的图象向左平移一个单位长 度得到的,图象过(0,0)点,定义域为(-1,+∞),且在定义域上 为增函数,故选 C.
6.为了得到函数 f(x)=log2x 的图象,只需将函数 g(x)=log28x的 图象( A )
解析:将函数 y=lgx 的图象沿 y 轴翻转 180°得到 y=lg|x|的图 象,再向右平移 1 个单位长度得到 y=lg|x-1|的图象,故选项 A 正确.
8.函数 f(x)=lg
x2+11+x的奇偶性是( A
)
A.奇函数
B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数
解 析 : f(x) 的 定 义 域 为
第四章 指数函数与对数函数
4.4 对数函数 第37课时 对数函数的图象与性质(1)
课时作业基设础训计练(45分钟)
——作业目标—— 1.熟练掌握对数函数的图象及变换; 2.能够运用单调性比较大小,解简单的对数不等式; 3.能够利用单调性求解参数的有关问题.
2020-2021学年新教材人教A版选择性必修第一册 第三章 圆锥曲线的方程 单元测试
章末质量检测(三) 圆锥曲线的方程一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 212-y 2b 2=1,(b >0)的一条渐线为2x +3y =0,则b =( )A .3B .2 C. 3 D .2 22.抛物线y =4ax 2的准线方程是( ) A .y =a B .y =-aC .y =116aD .y =-116a3.中国是世界上最古老的文明中心之一,中国古代对世界上最重要的贡献之一就是发明了瓷器,中国陶瓷是世界上独一无二的.它的发展过程蕴藏着十分丰富的科学和艺术,陶瓷形状各式各样,从不同角度诠释了数学中几何的形式之美,现有一椭圆形明代瓷盘,经测量得到图中数据,则该椭圆瓷盘的焦距为( )A .8 3B .2 3C .4 3D .44.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y24=1 C.x 220-3y 25=1 D.3x 25-y 220=15.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),过M 的右焦点F (3,0)作直线交椭圆于A ,B 两点,若AB 中点坐标为(2,1),则椭圆M 的方程为( )A.x 29+y 26=1B.x 24+y 2=1 C.x 212+y 23=1 D.x 218+y 29=16.曲线x 216+y 225=1与曲线x 216-k +y 225-k=1(k <16)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等7.抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线x 24-y22=1的渐近线相交于A 、B 两点,若△ABF 的周长为42,则p =( )A .2B .2 2C .8D .48.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点B 为抛物线的焦点,点P 在抛物线上且满足|P A |=m |PB |,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( )A.-2+12B.2+1C.5-12 D.5-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.双曲线C :x 29-y 216=λ(λ≠0),当λ变化时,以下说法不正确的是( )A .焦点坐标不变B .顶点坐标不变C .渐近线不变D .离心率不变10.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆C 上一点.下列说法中正确的是( )A .a =2b 时,满足∠F 1PF 2=90°的点P 有2个B .a >2b 时,满足∠F 1PF 2=90°的点P 有4个C .△PF 1F 2的周长小于4aD .△PF 1F 2的面积小于等于a 22.11.已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( )A .双曲线C 的方程为x 23-y 2=1B .双曲线C 的离心率为63C .曲线y =e x +2-1经过C 的一个焦点D .直线x -2y -1=0与C 有两个公共点 12.已知斜率为3的直线l 经过抛物线C :y 2=2px (p >0)的焦点F ,与抛物线C 交于点A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AB |=8,则以下结论正确的是( )A.1|AF |+1|BF |=1 B .|AF |=6C .|BD |=2|BF | D .F 为AD 中点三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知双曲线x 29-y 2a =1的右焦点为(13,0),则该双曲线的渐近线方程为________.14.过椭圆x 216+y 29=1的焦点F 的弦中最短弦长是________.15.椭圆y 225+x 29=1与双曲线y 215-x 2=1有公共点P ,则点P 与双曲线两焦点连线构成的三角形的面积为________.16.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC →=3FB →,则直线AB 的方程________.|AB |=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)焦点分别为(0,52)和(0,-52)的椭圆截直线y =3x -2所得弦的中点的横坐标为12,求此椭圆的方程.18.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线C 过点(1,2). (1)求抛物线C 的标准方程;(2)斜率为k 的直线l 与抛物线C 交于A 、B 两点,点M (3,2)是线段AB 的中点,求直线l 的方程,并求线段AB 的长.19.(本小题满分12分)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,A (2,0)是椭圆的右顶点,过F 且垂直于x 轴的直线交椭圆于P ,Q 两点,且|PQ |=3.(1)求椭圆的方程;(2)过点A 的直线l 与椭圆交于另一点B ,垂直于l 的直线l ′与直线l 交于点M ,与y 轴交于点N ,若FB ⊥FN 且|MO |=|MA |,求直线l 的方程.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上. (1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知抛物线E :x 2=2py (p >0)的焦点为F ,点M 是直线y =x 与抛物线E 在第一象限内的交点,且|MF |=5.(1)求抛物线E 的方程.(2)直线l 与抛物线E 相交于两点A ,B ,过点A ,B 分别作AA 1⊥x轴于A 1,BB 1⊥x 轴于B 1,原点O 到直线l 的距离为1.求1|AA 1|+1|BB 1|的最大值.22.(本小题满分12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),F 为左焦点,A 为上顶点,B (2,0)为右顶点,若7|AF→|=2|AB →|,抛物线C 2的顶点在坐标原点,焦点为F .(1)求C 1的标准方程;(2)是否存在过F 点的直线,与C 1和C 2交点分别是P ,Q 和M ,N ,使得S △OPQ =12S △OMN ?如果存在,求出直线的方程;如果不存在,请说明理由.圆,且c =a 2-b 2=(25-k )-(16-k )=3,所以焦距为2c =6,所以两曲线的焦距是相等的,故选D.答案:D7.解析:双曲线x 24-y 22=1渐近线方程为y =±22x ,抛物线y 2=2px (p >0)的准线方程为x =-p 2,则A ⎝ ⎛⎭⎪⎫-p 2,24p ,B ⎝ ⎛⎭⎪⎫-p 2,-24p ,∴|AB |=22p ,|F A |=|FB |=p 2+⎝ ⎛⎭⎪⎫24p 2=324p ,又∵△ABF 的周长为42,∴|F A |+|FB |+|AB |=324p +324p +22p =42, ∴p =2. 故选A. 答案:A 8.解析:如图所示,PN ⊥准线,故|PN |=|BP |因为|P A |=m |PB |,所以1m =|PB ||P A |,sin ∠P AN =|PN ||P A |=|PB ||P A |=1m当m 取最大值时,sin ∠P AN 取得最小值. 当且仅当P A 与抛物线相切于点P 时取得. 设直线P A 的方程为y =kx -1,代入x 2=4y ,可得 x 2=4(kx -1), 即x 2-4kx +4=0 ∴Δ=16k 2-16=0和曲线有两个公共点,所以该选项正确.故选ACD. 答案:ACD 12.解析:根据题意作出其图像,过A ,B 分别作准线的垂线,垂足分别为A 1,B 1如右图直线l 的斜率为3,即∠xF A =60°,则∠FDA 1=30°,设BD =x ,则Rt △DBB 1,Rt △DAA 1中,可得|BB 1|=x 2,|AA 1|=4+x2所以|BB 1|=|BF |=x 2,|AA 1|=|AF |=4+x2|AB |=|AF |+|BF |=4+x 2+x2=4+x =8,解得x =4 所以|BF |=2,|AF |=6,,所以B 正确.所以1|AF |+1|BF |=16+12≠1,所以A 不正确. 所以|BD |=4,满足|BD |=4=2|BF |,所以C 正确. 而|DF |=|BD |+|BF |=4+2=6=|AF |,所以D 正确. 故选BCD. 答案:BCD13.解析:由已知得c =13,9+a =13,∴a =4,则双曲线方程为x 29-y 24=1,其渐近线方程为y =±23x .答案:y =±23x14.解析:由方程知a 2=16,b 2=9,所以c =7,因为在过焦点的弦中,当弦与长轴垂直时,弦长最短,所以设弦的端点为A (x 1,y 1),B (x 1,y 2),则x 1=7,代入方程可得y =±94,所以弦长l =|y 1-y 2|=92.答案:9215.解析:由已知得椭圆与双曲线具有共同的焦点F 1(0,4)和F 2(0,-4),又由椭圆与双曲线的定义,得⎩⎨⎧|PF 1|+|PF 2|=10,||PF 1|-|PF 2||=215,所以|PF 1|=5+15,|PF 2|=5-15,或|PF 1|=5-15,|PF 2|=5+15.在△PF 1F 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(5+15)2+(5-15)2-822×(5+15)(5-15)=45,所以sin ∠F 1PF 2=35.因此△PF 1F 2的面积 S =12|PF 1|·|PF 2|sin ∠F 1PF 2 =12×(5+15)×(5-15)×35=3. 答案:316.解析:由题意得F (1,0),准线方程为x =-1, 过点B 作准线的垂线,垂足为E ,则|BE |=|FB |, ∵FC →=3FB →, ∴|BC |=2|BE |,由勾股定理得:|CE |=3|BE |, ∴直线AB 的斜率k =3,所以直线AB 的方程为y =3(x -1),。
新教材2020-2021学年高中数学人教A版必修第一册:2.2 第1课时 基本不等式
关键能力·攻重难
题型探究 题型一 利用基本不等式判断命题真假
例 1 下列不等式一定成立的是( C )
A. x2+14> x(x>0)
B.x+1x≥2(x≠0)
C.x2+1≥2|x|(x∈R)
D.x2+1 1>1(x∈R)
[解析] 选项 A 中,x2+41≥x(当且仅当 x=12时,x2+14=x),故选项 A 不正确;选项 B 中,x+1x≥2(x>0),x+1x≤-2(x<0),故选项 B 不正确; 选项 C 中,x2-2|x|+1=(|x|-1)2≥0(x∈R),故选项 C 正确;选项 D 中, x2+1≥1,则 0<x2+1 1≤1,故选项 D 不正确.
第二章
一元二次函数、方程和不等式
2.2 基本不等式
【素养目标】 1.了解基本不等式的代数和几何背景.(数学抽象) 2.理解并掌握基本不等式及其变形.(逻辑推理) 3.会用基本不等式解决简单的最大(小)值问题.(数学运算) 4.会用基本不等式进行代数式大小的比较及证明不等式.(逻辑推 理) 5.会用基本不等式求最值问题和解决简单的实际问题.(数学运算)
理的拆、凑、配等变换.
基础自测
1.判断正误(对的打“√”,错的打“×”)
(1) 两 个 不 等 式
a2 + b2≥2ab
与
a+b 2
≥
ab 成 立 的 条 件 是 相 同
的.( × )
(2)当 a>0,b>0 时,a+b≥2 ab.( √ )
(3)当 a>0,b>0 时,ab≤(a+2 b)2.( √ )
(4)函数 y=x+1x的最小值是 2.( × )
[解析] (1)不等式 a2+b2≥2ab 成立的条件是 a,b∈R;不等式a+2 b ≥ ab成立的条件是 a>0,b>0.
2020-2021学年高一数学必修第一册(人教A版(2019))(试卷+答案)
2020-2021学年高一数学必修一单元测试卷第5章 三角函数(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=αsin 54,则=βsin (A .53B .54C .53-D .-54 2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α< C .sin 20α>D .sin 20α<3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A .43B .34C .-34D .-434. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .2π B .3π C 2 D 35.若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=( ) A .23- B .23C .43-D .436.(2020全国III 卷)已知2tan tan()74πθθ-+=,则tan θ=( )A .2-B .1-C .1D .27.若2cos 23πα⎛⎫-= ⎪⎝⎭,则()cos 2πα-=( )A . 29- B .29 C . 59- D . 598 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )A .sin()3x π+B .sin(2)3x π-C .)62cos(π-xD .5cos(2)6x π-9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .5B .23C .13D 510. 设函数()sin()3)f x x x ωϕωϕ=++(0,2πωϕ><)的最小正周期为π,且()f x 为偶函数,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A .33B .-33C .539D .-69 12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .πB .3π4C .3π2D .7π4二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13. (2020江苏卷)将函数3sin(2)4y x π=+的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .14. (2020北京) 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15. (2020江苏卷)已知22sin ()43πα+=,则sin2α的值是________.16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<,4sin 5α=. (1)求tan α及sin 2α的值;(2)求πcos 2sin()2αα++的值.18.(12分)已知f(α)=.(1)化简f(α);(2)若f(α)=,且<α<,求cosα-sinα的值;(3)若α=-,求f(α)的值.19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数; (2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?20.(12分)【2020·天津高三二模】已知函数()()21cos 3sin cos 2f x x x x x =+-∈R (1)求()f x 的最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性;21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=35. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.22.(12分) 已知函数f(x)=sin2x -2sin2x.(1)求函数f(x)的最大值; (2)求函数f(x)的零点的集合.2020-2020学年高一数学必修一第一册提优卷 第5章 三角函数(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=αsin 54,则=βsin (A .53B .54C .53-D .-54 答案D【解析】角与均以Ox 为始边,且它们的终边关于x 轴对称,=αsin βsin , 又=αsin 54,∴=βsin -54. 故选:D .2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α<C .sin 20α>D .sin 20α<答案:D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<故选D .3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=15x ,则tan α=( ) A .43 B .34C .-34D .-43答案:D【解析】:α是第二象限角,所以x<0,r =x 2+16, 所以cos α=x x 2+16=15x ,所以x 2=9,所以x =-3, 所以tan α=-43. 故选D .4. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .2π B .3π CD【答案】C【解析】:设圆内接正方形的边长为a ,所以弧长等于a的圆弧所对的圆心角为l rα===,故选C . 5.若4sin cos 3θθ-=,且3π,π4θ⎛⎫∈ ⎪⎝⎭,则sin(π)cos(π)θθ---=() A .3-B .3C .43-D .43【答案】A【解析】由题意,416sin cos 12sin cos 39θθθθ-=⇒-=, 则72sin cos 09θθ=-<,由于3π,π4θ⎛⎫∈ ⎪⎝⎭, 22sin(π)cos(π)sin cos (sin cos )12sin cos 3θθθθθθθθ---=+=-+=-+=-故选A .6.(2020全国III 卷)已知2tan tan()74πθθ-+=,则tan θ=( )A .2-B .1-C .1D .2答案:D【解析】由题可知1tan 2tan 71tan θθθ+-=-,化解得:22tan 2tan 1tan 77tan θθθθ---=-,解得tan 2θ=.故选D .7.若2cos 23πα⎛⎫-= ⎪⎝⎭,则()cos 2πα-=( )A . 29-B .29C . 59-D .59【答案】C【解析】2cos sin 23παα⎛⎫-== ⎪⎝⎭, ()2225cos 2cos22sin 12139πααα⎛⎫-=-=-=⨯-=- ⎪ ⎪⎝⎭.选C . 8 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )A .sin()3x π+B .sin(2)3x π-C .)62cos(π-x D .5cos(2)6x π- 【答案】:B 、 【解析】由图易知22362T πππ=-=,则T π=,22T πω==,由题意结合图像知,26πϕπ⨯+=,故23πϕ=,则2sin(2)sin(2)sin(2)333y x x x ππππ=+=+-=- sin(2)cos(2)266x x πππ=++=+.故选B .9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )A .B .23 C .13D 【答案】:A【解析】由3cos28cos 5αα-=,得23(2cos 1)8cos 5αα--=, 得23cos 4cos 40αα--=,化为(3cos 2)(cos 2)0αα+-=,得2cos 3α=-,那么sin 3α=.故选A .10. 设函数()sin())f x x x ωϕωϕ=++(0,2πωϕ><)的最小正周期为π,且()f x 为偶函数,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】C【解析】()2sin 3f x x πωϕ⎛⎫=+- ⎪⎝⎭,周期为2,2T ππωω===,函数为偶函数,故,326πππϕϕ-=-=-,故()cos2f x x =-,所以函数在(0,)2π上单调递增. 故选C .11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( )A .33 B .-33 C .539 D .-69【答案】C【解析】:根据条件可得α+π4∈⎝ ⎛⎭⎪⎫π4,34π,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin ⎝ ⎛⎭⎪⎫α+π4=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63, 所以cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.故选C .12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .πB .3π4C .3π2D .7π4【答案】D【解析】:由题意x ∈⎣⎢⎡⎦⎥⎤0,9π8,则2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π2, 画出函数的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2得x =π8; 由2x +π4=3π2得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称;点(x 2,a )和点(x 3,a )关于x =5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4,故选D .二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13. (2020江苏卷)将函数3sin(2)4y x π=+的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 . 【答案】524x π=- 【解析】因为()3sin(2)4f x x π=+,将函数()3sin(2)4f x x π=+的图象向右平移6π个单位长度得()()3sin(2)3sin(2)63412g x f x x x ππππ=-=-+=-,则()y g x =的对称轴为2122x k πππ-=+,k Z ∈,即7242k x ππ=+,k Z ∈,0k =时,724x π=,1k =-时,524x π=-,所以平移后的图象中与y 轴最近的对称轴的方程是524x π=-. 14. (2020北京)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 15. (江苏卷)已知22sin ()43πα+=,则sin2α的值是________.【答案】:13【解析】因为22sin ()43πα+=,由2112sin ()(1cos(2))(1sin2)42223ππααα+=-+=+=,解得1sin 23α=16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________【答案】①③【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确; 51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<,4sin 5α=. (1)求tan α及sin 2α的值;(2)求πcos 2sin()2αα++的值.【答案】(1)4tan 3α=,24sin 225α=;(2)825.【解析】(1)因为π02α<<,4sin 5α=,所以3cos 4α=,所以sin 4tan cos 3ααα==,4324sin 22sin cos 25525ααα=⋅=⋅⋅=.(2)原式223382cos 1cos 2()15525αα=-+=⋅-+=.18.(12分)已知f(α)=.(1)化简f(α);(2)若f(α)=,且<α<,求cosα-sinα的值;(3)若α=-,求f(α)的值.【答案】(1)f(α)=sinα·cosα.(2)cosα-sinα=-.(3)-【解析】(1)f(α)==sinα·cosα.(2)由f(α)=sinαcosα=可知(cosα-sinα)2=cos 2α-2sinαcosα+sin 2α=1-2sinαcosα=1-2×=.又∵<α<,∴cosα<sinα,即cosα-sinα<0.∴cosα-sinα=-.(3)∵α=-=-6×2π+,∴f(-)=cos(-)·sin(-)=cos(-6)·sin(-6)=cos ·sin =cos(2π-)·sin(2π-)=cos ·=·(-)=-. 19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数; (2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?【答案】(1)()22sin 1036t h t ππ⎛⎫=-+≥ ⎪⎝⎭;(2)有1s 时间点P 距水面的高度超过2米. 【解析】(1)设水轮上圆心O 正右侧点为A ,y 轴与水面交点为B ,如图所示:设()sin h a t b ωϕ=++,由1OB =,2OP =,可得03BOP π∠=,所以06AOP π∠=.2a ∴=,1b =,6πϕ=-,由题意可知,函数2sin 16h t πω⎛⎫=-+ ⎪⎝⎭的最小正周期为3T =,223T ππω∴==, 所以点P 距离水面的高度h 关于时间t 的函数为()22sin 1036t h t ππ⎛⎫=-+≥ ⎪⎝⎭; (2)由22sin 1236t h ππ⎛⎫=-+>⎪⎝⎭,得21sin 362t ππ⎛⎫-> ⎪⎝⎭, 令[]0,3t ∈,则211,3666t ππππ⎡⎤-∈-⎢⎥⎣⎦, 由256366t ππππ<-<,解得1322<<t ,又31122-=,所以在水轮转动的任意一圈内,有1s 时间点P 距水面的高度超过2米.20.(12分)【2020·天津高三二模】已知函数()()21cos 3cos 2f x x x x x =-∈R (1)求()f x 的最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性;【答案】(1)π;(2)()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上单调递增;在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】(1)依题意,()211cos 231cos 3sin cos 2sin 222226x f x x x x x x +π⎛⎫=+-=+-=+ ⎪⎝⎭所以2T ωπ==π.(2)依题意,令222262k x k πππ-+π≤+≤+π,k ∈Z , 解得36k x k ππ-+π≤≤+π,所以()f x 的单调递增区间为,36k k ππ⎡⎤-+π+π⎢⎥⎣⎦,k ∈Z .设,44A ππ⎡⎤=-⎢⎥⎣⎦,,36B k k ππ⎡⎤=-+π+π⎢⎥⎣⎦,易知,46A B ππ⎡⎤=-⎢⎥⎣⎦,所以当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上单调递增;在区间,64ππ⎡⎤⎢⎥⎣⎦上单调递减.21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=35. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.【答案】(1)5314(2)4+12335 【解析】 (1)∵α为锐角,sin α=17, ∴cos α=1-sin 2α=437,∴sin ⎝ ⎛⎭⎪⎫α+π6=sin αcos π6+cos αsin π6 =17×32+437×12=5314.(2)∵α,β为锐角,∴α+β∈(0,π),由cos(α+β)=35得,sin(α+β)=1-cos 2(α+β)=45,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=35×437+45×17=4+12335.22.(12分)已知函数f(x)=sin2x-2sin2x.(1)求函数f(x)的最大值;(2)求函数f(x)的零点的集合.【答案】(1)1 (2){x|x=kπ或x=kπ+,k∈Z}【解析】(1)因为f(x)=sin 2x-(1-cos 2x)=2sin(2x+)-1,所以,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z时,函数f(x)取得最大值1.(2)法一:由(1)及f(x)=0得sin(2x+)=,所以2x+=2kπ+或2x+=2kπ+,k∈Z,即x=kπ或x=kπ+,k∈Z.故函数f(x)的零点的集合为{x|x=kπ或x=kπ+,k∈Z}.法二:由f(x)=0得2sin xcos x=2sin2x,于是sin x=0或cos x=sin x即tan x=. 由sin x=0可知x=kπ;由tan x=可知x=kπ+.故函数f(x)的零点的集合为{x|x=kπ或x=kπ+,k∈Z}.。
2020-2021学年高中数学新人教A版必修第一册 1
【思路导引】(1)依据a∈A,则 1 ∈A(a≠1),求集合A中的元素,同时注
1 a
意集合中元素的互异性.
(2)转化为判断a= 1 是否有实数解.
1 a
【变式探究】
本例前提条件不变,求证以下两个问题:
(1)若3∈A,则A中必还有另外两个元素. (2)若a∈A,则1- 1 ∈A.
a
角度2 与集合相等有关的问题 【典例】设a,b∈R,集合A中含有三个元素a, b ,1,集合B中含有三个元
类型二 元素与集合的关系(逻辑推理)
【题组训练】
1.下列元素与集合的关系表示正确的是 ( )
①0∈N*.②
2
∉Z.③
3 2
∈Q.④π∈Q.
A.①② B.②③ C.①③ D.③④
2.由形如x=3k+1,k∈Z的数组成集合A,则下列表示正确的是 ( )
A.-1∈A
B.-11∈A
C.15∈A
D.32∈A
2.设M是所有偶数组成的集合,则
()
A.3∈M
B.1∈M
C.2∈M
D.0∉M
【解析】选C.因为2是偶数,所以2是集合M中的元素,即2∈M.
3.英文短语“open the door to...”中的字母构成一个集合,该集合的元素
个数是 ( )
A.7
B.8
C.9
D.10
【解析】选B.根据集合中元素的互异性可知,“open the door to...”中的
3.常见的数集及表示符号
数集
非负整数集 (自然数集)
正整 数集
整数集
有理 数集
实数集
符号
_N_
_N_*_或__N_+
Z
2020-2021学年数学新教材人教A版必修第一册精品练习:第一章 单元测试卷 Word版含解析
第一章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知集合A ={-1,0,1,2},B ={x |0≤x <2},则A ∩B =( ) A .{-1,0,1} B .{0,1,2} C .{0,1} D .{1,2} 2.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3} D .{1,4}3.命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为( )A .∀x ∈(0,+∞),x 2+1>2xB .∀x ∈(0,+∞),x 2+1≤2xC .∀x ∈(-∞,0],x 2+1≤2xD .∀x ∈(-∞,0],x 2+1>2x 4.集合A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4},则A ∩B =( ) A .{3,7} B .{(3,7)}C .(3,7)D .{x =3,y =7}5.已知全集U ={0,1,2,3},∁U A ={0,2},则集合A 的真子集共有( )A .3个B .4个C .5个D .6个6.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( )A .{a |a ≤-1}B .{a |a ≥1}C .{a |-1≤a ≤1}D .{a |a ≤-1或a ≥1}8.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( )A .1B .0C .-1D .±1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面四个说法中错误的是( ) A .10以内的质数组成的集合是{2,3,5,7} B .由1,2,3组成的集合可表示为{1,2,3}或{3,1,2}(1)求A∩B,A∪B;(2)求(∁R A)∩B.19.(本小题满分12分)设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A={x∈Z|-2≤x≤5},求A的非空真子集的个数;(2)若A∩B=B,求实数m的取值范围.20.(本小题满分12分)设集合A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分不必要条件,试求满足条件的实数a 组成的集合.21.(本小题满分12分)是否存在实数p,使“4x+p<0”是“x2-x -2>0”的充分条件?如果存在,求出p的取值范围.22.(本小题满分12分)设集合A={x|x2+4x=0},B={x|x2+2(a +1)x+a2-1=0}.(1)若-1∈B,求a的值;(2)若B⊆A,求a的值.第一章单元测试卷1.解析:A ={-1,0,1,2},B ={x |0≤x <2},∴A ∩B ={0,1}.故选C.答案:C2.解析:由题意得,B ={1,4,7,10},所以A ∩B ={1,4}. 答案:D3.解析:由存在量词命题的否定为全称量词命题,可得命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为“∀x ∈(0,+∞),x 2+1>2x ”,故选A.答案:A4.解析:联立A 与B 中方程得:⎩⎪⎨⎪⎧y =3x -2,y =x +4,消去y 得:3x -2=x +4,解得:x =3, 把x =3代入得:y =9-2=7,∴方程组的解为⎩⎪⎨⎪⎧x =3,y =7,∵A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4}, ∴A ∩B ={(3,7)},故选B. 答案:B5.解析:全集U ={0,1,2,3},∁U A ={0,2},则A ={1,3},故集合A 的真子集共有22-1=3个.故选A.答案:A6.解析:∵x >1,∴x 3>1.又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件,故选C.答案:C7.解析:由P ∪M =P ,可知M ⊆P ,即a ∈P ,因为集合P ={x |-1≤x ≤1},所以-1≤a ≤1.答案:C8.解析:∵b a 为分式,∴a ≠0,∵⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},∴ba=0,即b =0,∴{a,0,1}={a 2,a,0},∴当⎩⎪⎨⎪⎧a 2=1,a =a 时,a =-1或a=1,当a =1时,即得集合{1,0,1},不符合元素的互异性,故舍去,当a =-1时,即得集合{-1,0,1},满足.当⎩⎪⎨⎪⎧a =1a 2=a 时,a =1,即得集合{1,0,1},不符合元素的互异性,故舍去,综上,a =-1,b =0.∴a 2 019+b 2 019=(-1)2 019+02 019=-1,故选C. 答案:C9.解析:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,1,2}表示同一集合,故B 正确;方程x 2-2x +1=0的所有解组成的集合是{1},故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.答案:CD10.解析:∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8}, ∴B ∩C ={1,8}∴A ⊆(B ∩C )⇒A ⊆(1,8),故选AC. 答案:AC 11.解析:根据venn 图,可直接得出结果.由venn 图可知,ABCD 都是充要条件.故选ABCD. 答案:ABCD12.解析:A 中,-1∈B,1∈B ,但是-1-1=-2∉B ,B 不是“完美集”,故A 说法不正确;B 中,有理数集满足“完美集”的定义,故B 说法正确;C 中,0∈A ,x 、y ∈A ,∴0-y =-y ∈A ,那么x -(-y )=x +y ∈A ,故C 说法正确;D 中,对任意一个“完美集”A ,任取x 、y∈A,若x、y中有0或1时,显然xy∈A,若x、y均不为0、1,而1xy=12xy+12xy=1(x+y)2-x2-y2+1(x+y)2-x2-y2,x、x-1∈A,那么1x-1-1x=1x(x-1)∈A,∴x(x-1)∈A,进而x(x-1)+x=x2∈A.同理,y2∈A,则x2+y2∈A,(x+y)2∈A,∴2xy=(x+y)2-(x2+y2)∈A.∴1(x+y)2-x2-y2∈A,结合前面的算式,知xy∈A,故D说法正确;故选:BCD.答案:BCD13.解析:因为A={x|-1<x<2},B={x|x>0},所以A∩B={x|0<x<2},(∁R B)∪A={x|x<2}.答案:{x|0<x<2}{x|x<2}14.答案:必要不充分15.解析:因为集合A={m+2,2m2+m},且3∈A,所以⎩⎪⎨⎪⎧m+2=3,2m2+m≠3,或⎩⎪⎨⎪⎧2m2+m=3,m+2≠3.解得m=-32.答案:-3216.解析:由M∪N=M得N⊆M,当N=∅时,2t+1≤2-t,即t≤13,此时M∪N=M成立.当N≠∅时,由下图可得⎩⎪⎨⎪⎧2-t<2t+1,2t+1≤5,2-t≥-2,解得13<t≤2.综上可知,实数t的取值范围是{t|t≤2}.答案:{t|t≤2}17.解析:(1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意的”的否定为“存在一个”,因此,綈p:存在一个x∈R,使x2+x+1≠0成立,即“∃x∈R,使x2+x+1≠0成立”;(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,綈p :对任意一个x 都有x 2+2x +5≤0,即“∀x ∈R ,x 2+2x +5≤0”.18.解析:(1)由题意,集合A ={x |-2<x <4},B ={x |-1<x ≤5}, 所以A ∩B ={x |-1<x <4},A ∪B ={x |-2<x ≤5}.(2)由题意,可得∁R A ={x |x ≤-2或x ≥4},所以(∁R A )∩B ={x |4≤x ≤5}.19.解析:(1)∵A ={-2,-1,0,1,2,3,4,5},∴A 的非空真子集有28-2=254(个).(2)∵A ∩B =B ,∴B ⊆A .当B =∅时,m +1>2m -1,∴m <2;当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,∴⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.综上可知,实数m 的取值范围是{m |m ≤3}.20.解析:∵A ={x |x 2-3x +2=0}={1,2},又“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A . 当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12. 21.解析:x 2-x -2>0的解集是{x |x >2或x <-1},由4x +p <0得x <-p4.要想使x <-p4时,x >2或x <-1成立,必须有-p4≤-1,即p ≥4.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.22.解析:(1)由题意,因为-1∈B ,即x =-1是方程x 2+2(a +1)x +a 2-1=0的根,可得1-2(a +1)+a 2-1=0,即a 2-2a -2=0,解得a =1±3; (2)由题意,集合A ={x |x 2+4x =0}={0,-4},因为B ⊆A ,可得①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或{-4}时,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={x |x 2=0}={0}满足题意;③当B ={0,-4}时,则⎩⎪⎨⎪⎧-2(a +1)=-4a 2-1=0,解得a =1,综上可得,a =1或a ≤-1.。
2020-2021学年新教材人教A版必修第一册 第一章 集合与常用逻辑用语 单元测试
第一章检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.设集合A={x|-1<x<2},集合B={x|-1<x≤1},则A∩B=( B )A.{x|-1≤x≤1} B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1≤x<2}解析:∵A={x|-1<x<2},B={x|-1<x≤1},∴A∩B={x|-1<x≤1}.故选B.2.已知集合A={x|0≤x≤4,x∈Z},B={y|y=m2,m∈A},则A∩B=( A )A.{0,1,4}B.{0,1,6}C.{0,2,4}D.{0,4,16}解析:因为A={x|0≤x≤4,x∈Z}={0,1,2,3,4},所以B={y|y=m2,m∈A}={0,1,4,9,16},则A∩B={0,1,4}.故选A.3.已知全集U=R,集合M={x|x≤-2或x≥1},N={x|-1≤x≤2},则(∁U M)∩N=( C )A.{x|-2≤x≤-1}B.{x|-1≤x≤2}C.{x|-1≤x<1}D.{x|1≤x≤2}解析:因为全集U=R,集合M={x|x≤-2或x≥1},所以∁U M={x|-2<x<1}.又N={x|-1≤x≤2},所以(∁U M)∩N={x|-1≤x<1}.故选C.4.已知集合A={x∈Z|-1≤x<2},则集合A的子集的个数为( B )C.15D.16解析:∵-1≤x<2,x∈Z,∴x=-1,0,1,∴A={-1,0,1},∴集合A的子集的个数为23=8.故选B.5.毛泽东同志在《清平乐·六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”,假设诗句的前一句为真命题,则“到长城”是“好汉”的( B )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:方法1:由“不到长城非好汉”可知,要想成为好汉必须到过长城,因此“到长城”是“好汉”的必要不充分条件.方法2:设綈p为不到长城,推出綈q非好汉,到綈p⇒綈q,由原命题与其逆否命题等价可知q⇒p,即好汉⇒到长城,故“到长城”是“好汉”的必要不充分条件.故选B.6.“∃m,n∈Z,m2=n2+1 998”的否定是( C )A.∀m,n∈Z,m2=n2+1 998B.∃m,n∈Z,m2≠n2+1 998C.∀m,n∈Z,m2≠n2+1 998D.以上都不对解析:这是一个存在量词命题,其否定为全称量词命题,形式是:∀m,n∈Z,m2≠n2+1 998.7.下列命题中假命题的个数为( B )①∀x∈R,x2+1≥1;②∃x∈R,2x+1=3;③∃x∈Z,x能被2和3整除;④∃x∈R,x2+2x+3=0.C.2D.4解析:①∀x∈R,x2≥0,∴x2+1≥1,正确;②x=1时,2x+1=3,正确;③x=6时,x能被2和3整除,正确;④∵Δ=4-12=-8<0,∴x2+2x+3=0无实数根,不正确.综上可知,只有④是假命题.故选B.8.“∃x>0,使得a+x<b”是“a<b”成立的( C )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:因为∃x>0,使得a+x<b,所以a<a+x<b,所以a<b,所以充分性成立;必要性:因为a<b,所以b-a>0,所以∃x∈{x|0<x<b-a},使得a+x<b,所以必要性成立.所以命题“∃x>0,使得a+x<b”是“a<b”成立的充要条件.故选C.9.设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( D ) A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A解析:将(2,1)代入x-y≥1,ax+y>4与x-ay≤2中,可得2a+1>4,2-a≤2同时成立,即a>32时,(2,1)∈A.结合各选项,知D正确.10.若x∈A,则1x∈A,就称A是伙伴关系集合,集合M=的所有非空子集中具有伙伴关系的集合的个数是( B )A.31B.7C.3D.111.若“0≤x≤4”是“a≤x≤a+2”的必要不充分条件,则实数a的取值范围是( B )A.{a|0<a<2}B.{a|0≤a≤2}C.{a|-2≤a≤0}D.{a|-2<a<0}解析:本题考查必要不充分条件的判定.“0≤x≤4”是“a≤x≤a+2”的必要不充分条件,∴集合{x|a≤x≤a+2}是集合{x|0≤x≤4}的子集.由集合的包含关系知Error!(其中等号不同时成立),解得0≤a≤2,故选B.12.设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是( B ) A.(y,z,w)∈S,(x,y,w)∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S解析:题目中x<y<z,y<z<x,z<x<y恰有一个成立说明x,y,z是互不相等的三个正整数,可用特殊值法求解,不妨取x=1,y=2,z =3,w=4满足题意,且(2,3,4)∈S,(1,2,4)∈S,从而(y,z,w)∈S,(x ,y ,w )∈S 成立.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.命题“∀x ∈R ,|x |+x 2≥0”的否定是∃x 0∈R ,|x 0|+x 20<0.解析:因为全称量词命题的否定是存在量词命题,所以命题“∀x∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.14.命题“∃x 0∈{x |x 是正实数},使x 0<x 0”的否定为假命题.(填“真”或“假”)解析:原命题的否定为“∀x ∈{x |x 是正实数},使x ≥x ”,是假命题.15.若不等式|x -1|<a 成立的一个充分条件是0<x <4,则实数a 的取值范围是{a |a ≥3}.解析:由|x -1|<a ,得-a +1<x <a +1.因为不等式|x -1|<a 成立的一个充分条件是0<x <4,所以Error!得a ≥3,所以实数a 的取值范围是{a |a ≥3}.16.已知集合A ={x |0<x <2},集合B ={x |-1<x <1},集合C ={x |mx +1>0},若(A ∪B )⊆C ,则实数m 的取值范围是-12≤m ≤1.解析:由A ={x |0<x <2},B ={x |-1<x <1},得A ∪B ={x |-1<x <2}.∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①当m <0时,x <-1m ,∴-1m≥2,∴m ≥-12,∴-12≤m <0;②当m=0时,成立;③当m>0时,x>-1m ,∴-1m≤-1,∴m≤1,∴0<m≤1,综上所述,-12≤m≤1.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知p:-1<x<3,若-a<x-1<a是p的一个必要条件但不是充分条件,求使a>b恒成立的实数b的取值范围.解:由于p:-1<x<3,-a<x-1<a⇔1-a<x<1+a(a>0).依题意,得{x|-1<x<3} {x|1-a<x<1+a}(a>0),所以Error!解得a>2,则使a>b恒成立的实数b的取值范围是b≤2,即{b|b≤2}.18.(12分)已知p:x∈A,且A={x|a-1<x<a+1},q:x∈B,且B={x|x≤1或x≥3}.(1)若A∩B=∅,A∪B=R,求实数a的值;(2)若p是q的充分条件,求实数a的取值范围.解:A={x|a-1<x<a+1},B={x|x≤1或x≥3}.(1)由A∩B=∅,A∪B=R,得Error!解得a=2,所以满足A∩B=∅,A∪B=R的实数a的值为2.(2)若p是q的充分条件,则A⊆B,又A≠∅,所以a+1≤1或a-1≥3,解得a≤0或a≥4,所以实数a的取值范围是{a|a≤0或a≥4}.19.(12分)设集合A={x|-3<x<1},集合B={x||x+a|<1}.(1)若a=3,求A∪B;(2)设p:x∈A,q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.解:(1)当a=3时,由|x+3|<1,解得-4<x<-2,即B={x|-4<x<-2}.A={x|-3<x<1},所以A∪B={x|-4<x<1}.(2)因为p是q成立的必要不充分条件,所以集合B是集合A的真子集.又集合A={x|-3<x<1},B={x|-a-1<x<-a+1}.所以Error!或Error!解得0≤a≤2,即实数a的取值范围是{a|0≤a≤2}.20.(12分)已知集合A={x|-1≤x≤3,x∈R},集合B={x|m-2≤x≤m+2,x∈R,m∈R}.(1)若A∩B={x|0≤x≤3},求实数m的值;(2)若A⊆(∁R B),求实数m的取值范围.解:由已知得,集合A={x|-1≤x≤3},集合B={x|m-2≤x≤m+2}.(1)因为A∩B={x|0≤x≤3},所以Error!解得m=2.(2)∁R B={x|x<m-2或x>m+2},因为A⊆∁R B,所以m-2>3或m+2<-1,所以m>5或m<-3.21.(12分)已知命题p:方程x2-22x+m=0有两个不相等的实数根;命题q:m<1.(1)若p为真命题,求实数m的取值范围;(2)若p,q中一真一假,求实数m的取值范围.解:(1)若p为真命题,则应有Δ=8-4m>0,解得m<2.(2)若q为真命题,即m<1,又p,q一真一假,∴①当p真q假时,有Error!得1≤m<2;②当p假q真时,有Error!无解.综上,m的取值范围是1≤m<2.22.(12分)已知集合A={x|x<-3或x>2},B={x|-4<x-2<2}.(1)求A∩B,(∁R A)∪(∁R B);(2)若集合M={x|2k-1≤x≤2k+1}是集合A的真子集,求实数k的取值范围.解:(1)∵B={x|-4<x-2<2}={x|-2<x<4},且A={x|x<-3或x>2},∴A∩B={x|2<x<4},∴(∁R A)∪(∁R B)=∁R(A∩B)={x|x≤2或x≥4}.(2)①若M=∅,则2k-1>2k+1,不存在这样的实数k;②若M≠∅,则2k+1<-3或2k-1>2,解得k<-2或k>32.综上,实数k的取值范围是Error! .。
2020-2021学年高中数学新教材人教A版必修第一册学案:3.4函数的应用(一)含解析
3.4函数的应用(一)【素养目标】1.了解函数模型(如一次函数、二次函数、幂函数、分段函数等是现实生活中普遍使用的函数模型)的广泛应用.(数学抽象)2.能够利用给定的函数模型或建立确定的函数模型解决实际问题.(数学建模)【学法解读】1.学生应理解如何用函数描述客观事物的变化规律,体会函数与现实世界的联系.2.会用已学过的一次函数、二次函数、幂函数、分段函数处理有关实际应用问题.必备知识·探新知基础知识知识点1一次函数模型形如y=kx+b的函数为__一次函数模型__,其中k≠0.知识点2二次函数模型(1)一般式:y=ax2+bx+c(a≠0).(2)顶点式:y=a(x+b2a)2+4ac-b24a(a≠0).(3)两点式:y=a(x-x1)(x-x2)(a≠0).知识点3幂函数型模型(1)解析式:y=axα+b(a,b,α为常数,a≠0,α≠1).(2)单调性:其增长情况由xα中的α的取值而定.基础自测1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品日销量m(单位:件)与每件的销售价x(单位:元)满足m=120-2x.若要获得最大日销售利润,则每件商品的售价应定为(B)A.30元B.45元C.54元D.越高越好[解析]设日销售利润为y元,则y=(x-30)(120-2x),30≤x≤60,将上式配方得y =-2(x -45)2+450,所以当x =45时,日销售利润最大.2.A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地.(1)试把汽车与A 地的距离y (单位:千米)表示为时间x (单位:小时)的函数;(2)根据(1)中的函数解析式,求出汽车距离A 地100千米时x 的值.[解析] (1)y =⎩⎪⎨⎪⎧ 60x ,x ∈[0,52],150,x ∈(52,72],150-50(x -72),x ∈(72,132]. (2)当y =100时,60x =100或150-50(x -72)=100,解得x =53或x =92.即当x =53或x =92时汽车距离A 地100千米.关键能力·攻重难题型探究题型一 一次函数模型例1 某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(30天)里有20天每天可以卖出报纸400份,其余10天每天只能卖出250份.若每天从报社买进报纸的数量相同,则每天应该从报社买进多少份报纸,才能使每月所获得的利润最大?最大利润为多少元?[分析] 设每天从报社买进报纸的数量为x 份,若使每月所获得的利润最大,则250≤x ≤400,每月所赚的钱数=卖报收入的总价-付给报社的总价,而收入的总价分为三部分:①在可卖出的400份的20天里,收入为(0.5x ×20)元;②在可卖出250份的10天里,在x 份报纸中,有250份报纸可卖出,收入为(0.5×250×10)元;③没有卖掉的[(x -250)×10]份报纸可退回报社,报社付的钱数为[(x -250)×0.08×10]元.注意要写清楚函数的定义域.[解析] 设每天应从报社买进x 份报纸,由题意知250≤x ≤400,设每月所获得的利润为y 元,根据题意得:y =0.5x ×20+0.5×250×10+(x -250)×0.08×10-0.35x ×30=0.3x +1 050,x ∈[250,400].因为y =0.3x +1 050是定义域上的增函数,所以当x =400时,y max =120+1 050=1 170(元).故每天应该从报社买进400份报纸,才能使每月所获得的利润最大,最大为1 170元.[归纳提升] 建立一次函数模型,常设为y =kx +b (k ≠0),然后用待定系数法求出k ,b 的值,再根据单调性求最值,或利用方程、不等式思想解题.【对点练习】❶ 一辆匀速行驶的汽车90 min 行驶的路程为180 km ,则这辆汽车行驶的路程y (km)与时间t (h)之间的函数解析式是( D )A .y =2tB .y =120tC .y =2t (t ≥0)D .y =120t (t ≥0)[解析] 因为90 min =1.5 h ,所以汽车的速度为180÷1.5=120 km/h ,则路程y (km)与时间t (h)之间的函数解析式是y =120t (t ≥0).题型二 二次函数模型例2 A ,B 两城相距100 km ,拟在两城之间距A 城x km 处建一发电站给A ,B 两城供电,为保证城市安全,发电站距城市的距离不得小于10 km.已知供电费用等于供电距离(单位:km)的平方与供电量(单位:亿度)之积的0.25倍,若每月向A 城供电20亿度,每月向B 城供电10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成关于x 的函数;(3)发电站建在距A 城多远处,能使供电总费用y 最少?[分析] 根据发电站与城市的距离不得少于10 km 确定x 的取值范围,然后根据正比例关系确定y 关于x 的函数解析式,最后利用配方法求得最小值.[解析] (1)x 的取值范围为{x |10≤x ≤90}.(2)y =0.25×x 2×20+0.25×(100-x )2×10=5x 2+52(100-x )2(10≤x ≤90). (3)由于y =5x 2+52(100-x )2=152x 2-500x +25 000=152(x -1003)2+50 0003,则当x =1003时,y 取得最小值,y min =50 0003. 故发电站建在距A 城1003km 处,能使供电总费用y 最小. [归纳提升] 二次函数模型的应用根据实际问题建立二次函数模型后,可利用配方法、判别式法、换元法以及函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题. 【对点练习】❷ (2019·江苏省徐州市高一期中)某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R (x )=5x -12x 2(0≤x ≤5),其中x 是年产量(单位:百台).(1)将利润表示为关于年产量的函数;(2)年产量是多少时,企业所得利润最大?[解析] (1)依题意得,利润函数G (x )=(5x -12x 2)-(0.5+0.25x )=-12x 2+4.75x -0.5(0≤x ≤5).(2)利润函数G (x )=-12x 2+4.75x -0.5(0≤x ≤5),当x =4.75时,G (x )有最大值.故当年产量为4.75百台时,企业所得利润最大.题型三 幂函数模型 例 3 某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资额x 的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,最大收益是多少万元?[解析] (1)设稳健型与风险型产品的收益与投资额x 的函数关系式分别为f (x )=k 1x (x ≥0),g (x )=k 2x (x ≥0),结合已知得f (1)=18=k 1,g (1)=12=k 2, 所以f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资稳健型产品x 万元,则投资风险型产品(20-x )万元,依题意得获得收益为y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20),令t =20-x (0≤t ≤25),则x =20-t 2, 所以y =20-t 28+t 2=-18(t -2)2+3, 所以当t =2时,即x =16时,y 取得最大值,y max =3.故当投资稳健型产品16万元,风险型产品4万元时,可使投资获得最大收益,最大收益是3万元.[归纳提升] 幂函数模型有两个:y =kx n (k ,n 是常数),y =a (1+x )n (a ,n 是常数),其中y =a (1+x )n 也常常写作y =N (1+p )x (N ,p 为常数),这是一个应用范围更广的函数模型,在复利计算、工农业产值、人口增长等方面都会用到该函数模型,我们平时用这两个函数模型时注意区分.【对点练习】❸ 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)假设气体在半径为3 cm 的管道中,流量速率为400 cm 3/s.求该气体通过半径为r cm 的管道时,其流量速率R 的解析式;(3)已知(2)中的气体通过的管道半径为5 cm ,计算该气体的流量速率.(结果保留整数)[解析] (1)由题意,得R =kr 4(k 是大于0的常数).(2)由r =3 cm ,R =400 cm 3/s ,得k ·34=400.所以k =40081,流量速率的解析式为R =40081r 4. (3)因为R =40081r 4, 所以当r =5 cm 时,R =40081×54≈3 086(cm 3/s). 题型四 分段函数模型例4 (2019·南京一中期中)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益(单位:元)函数为R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的产量(单位:台). (1)将利润f (x )(单位:元)表示为产量x 的函数(利润=总收益-总成本);(2)当产量x 为多少时,公司所获利润最大?最大利润是多少?[分析] (1)利润=收益-成本,由已知分0≤x ≤400和x >400两段求出利润函数的解析式;(2)分段求最大值,两者中大者为所求利润最大值.[解析] (1)当0≤x ≤400时,f (x )=400x -12x 2-100x -20 000=-12x 2+300x -20 000;当x >400时,f (x )=80 000-100x -20 000=60 000-100x .所以f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12x 2+300x -20 000=-12(x -300)2+25 000, 当x =300时,f (x )max =25 000.当x >400时,f (x )=60 000-100x <f (400)=20 000<25 000.所以当x =300时,f (x )max =25 000.故当产量为300台时,公司所获利润最大,最大利润为25 000元.[归纳提升] 应用分段函数时的三个注意点(1)分段函数的“段”一定要分得合理,不重不漏(关键词:“段”).(2)分段函数的定义域为对应每一段自变量取值范围的并集(关键词:定义域).(3)分段函数的值域求法为:逐段求函数值的范围,最后再下结论(关键词:值域).【对点练习】❹ 某市居民自来水收费标准如下:每户每月用水量不超过4 t 时,每吨3元,当用水量超过4 t 时,超过部分每吨4元.现甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x t,3x t.(1)求y 关于x 的函数关系式;(2)若甲、乙两户该月共交水费40元,分别求出甲、乙两户该月的用水量和水费.[解析] (1)当甲户用水量不超过4 t ,即5x ≤4时,乙户用水量也不超过4 t ,y =(5x +3x )×3=24x ;当甲户的用水量超过4 t 而乙户的用水量不超过4 t ,即5x >4且3x ≤4时,y =4×3+3x ×3+4×(5x -4)=29x -4;当甲、乙两户的用水量均超过4 t ,即3x >4时,y =4×3×2+(5x -4)×4+(3x -4)×4=32x -8.故y =⎩⎪⎨⎪⎧ 24x ,0≤x ≤45,29x -4,45<x ≤43,32x -8,x >43.(2)由于函数y =f (x )在各段区间上均单调递增,所以当x ∈[0,45]时,y ≤f (45)=19.2<40. 当x ∈(45,43]时,y ≤f (43)=3423<40. 故x ∈(43,+∞).令32x -8=40,解得x =1.5, 所以5x =7.5,甲户用水量为7.5 t ,应付水费y 1=4×3+(7.5-4)×4=26(元);3x =4.5,乙户用水量为4.5 t ,应付水费y 2=4×3+(4.5-4)×4=14(元).误区警示忽视实际问题中的定义域例5 东方旅社有100张普通客床,当每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出.依此情况变化下去,为了投资少而获租金最多,每床每夜应提高租费多少元?[错解] 设每床每夜提高租费x (x ∈N +)次2元,则可租出(100-10x )张客床,可获得利润y 元,依题意有y =(10+2x )·(100-10x ),即y =-20(x -52)2+1 125. 所以当x =52时,y max =1 125. [错因分析] 本题忽略了变量参数的实际意义x ∈N +.[正解] 设每床每夜提高租费x (x ∈N +)次2元,则可租出(100-10x )张客床,可获得利润y 元,依题意有y =(10+2x )·(100-10x ),即y =-20(x -52)2+1 125. 因为x ∈N +,所以当x =2或x =3时,y max =1 120.当x =2时,需租出客床80张;当x =3时,需租出客床70张.因为x =3时的投资小于x =2时的投资,所以取x =3,此时2x =6.即当每床每夜提高租费6元时,投资少且又能获得最高租金.[方法点拨] 解函数应用题时,我们不仅要关注函数的定义域,更要关注其中有关参数的限制条件,并使所有的量都有实际意义.学科素养数学建模——函数模型的选择例6 某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好、款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受订单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份x ,产量为y 给出三种函数模型:y =ax +b ,y =ax 2+bx +c ,y =ab x +c ,你将利用哪一种模型去估算以后几个月的产量?[分析] 本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型.[解析] 由题意,知将产量随时间变化的离散量分别抽象为A (1,1),B (2,1.2),C (3,1.3),D (4,1.37)这4个数据.(1)设模拟函数为y =ax +b 时,将B ,C 两点的坐标代入函数式,得⎩⎪⎨⎪⎧ 3a +b =1.32a +b =1.2,解得⎩⎪⎨⎪⎧a =0.1b =1.所以有关系式y =0.1x +1. 由此可得结论为:在不增加工人和设备的条件下,产量会每月上升1 000双,这是不太可能的.(2)设模拟函数为y =ax 2+bx +c 时,将A ,B ,C 三点的坐标代入函数式,得⎩⎪⎨⎪⎧ a +b +c =14a +2b +c =1.29a +3b +c =1.3,解得⎩⎪⎨⎪⎧ a =-0.05b =0.35c =0.7.所以有关系式y =-0.05x 2+0.35x +0.7.结论为:由此法计算4月份的产量为1.3万双,比实际产量少700双,而且由二次函数性质可知,产量自4月份开始将每月下降(图象开口向下,对称轴为x =3.5),不合实际.(3)设模拟函数为y =ab x +c 时,将A ,B ,C 三点的坐标代入函数式,得⎩⎪⎨⎪⎧ ab +c =1,①ab 2+c =1.2,②ab 3+c =1.3.③由①,得ab =1-c ,代入②③,得 ⎩⎪⎨⎪⎧ b (1-c )+c =1.2b 2(1-c )+c =1.3,则⎩⎪⎨⎪⎧ c =1.2-b 1-b c =1.3-b 21-b 2,解得⎩⎪⎨⎪⎧ b =0.5c =1.4.则a =1-c b =-0.8. 所以有关系式y =-0.8×0.5x +1.4.结论为:当把x =4代入得y =-0.8×0.54+1.4=1.35.比较上述三个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,如:增产的趋势和可能性.经过筛选,以指数函数模拟为最佳,一是误差小,二是由于厂房新建,随着工人技术和管理效益逐渐提高,一段时间内产量会明显上升,但经过一段时间之后,如果不更新设备,产量必然趋于稳定,而指数函数模型恰好反映了这种趋势.因此选用指数函数y =-0.8×0.5x +1.4模拟比较接近客观实际.[归纳提升] 本题是对数据进行函数模拟,选择最符合客观实际的模拟函数.一般思路为:先画出散点图,然后作出模拟函数的图象,选择适当的几种函数模型后,再加以验证.函数模型的建立是最大的难点,另外运算量较大,须借助计算器或计算机进行数据处理,函数模型的可靠性与合理性既需要数据检验,又必须符合实际.课堂检测·固双基1.某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒(D)A.2 000套B.3 000套C.4 000套D.5 000套[解析]设利润z=12x-(6x+30 000),所以z=6x-30 000,由z≥0,解得x≥5 000,故至少日生产文具盒5 000套.2.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是(D)A.投资3天以内(含3天),采用方案一B.投资4天,不采用方案三C.投资6天,采用方案一D.投资12天,采用方案二[解析]由图可知,投资3天以内(含3天),方案一的回报最高,A正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D错误.3.用长度为24 m的材料围成一矩形场地,如果在中间加两道隔墙,要使矩形面积最大,则隔墙的长度应为(A)A.3 m B.4 mC .6 mD .12 m[解析] 设矩形的长为x ,则宽为14(24-2x ),则矩形的面积为 S =14(24-2x )x =-12(x 2-12x )=-12(x -6)2+18,所以当x =6时,矩形的面积最大,此时隔墙的长度应为3 m.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧c x ,x <A ,c A ,x ≥A ,(A ,c 为常数). 已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是( D )A .75,25B .75,16C .60,25D .60,16[解析] 由题意知,组装第A 件产品所需时间为c A =15,故组装第4件产品所需时间为c 4=30,解得c =60,将c =60代入c A=15,得A =16.。
2020-2021学年数学新教材人教A版必修第一册:5.1.1 任意角
二、填空题(每小题5分,共15分) 9.已知角α终边所在的位置,请你完成下表:
10.-1 485°角是第 四 象限的角,与其终边相同的角中最 大的负角是 -45° .
解析:因为-1 485°=-5×360°+315°, 而315°∈(270°,360°),所以-1 485°是第四象限角. 又-360°+315°=-45°,最大的负角是-45°.
11.终边在直线y= 33x上的角的集合S=
{β|β=30°+k·180°,k∈Z}
.
解析:
在0°~360°范围内,终边在直线y=
3 3
x上的角有两个:30°、
210°(如图),
所以终边在y= 33x上的角的集合是 S={β|β=30°+k·360°,k∈Z}∪{β|β=210°+k·360°,k∈Z} ={β|β=30°+2k·180°,k∈Z}∪{β|β=30°+180°+2k·180°,k∈Z} ={β|β=30°+2k·180°,k∈Z}∪{β|β=30°+(2k+1)·180°,k∈Z} ={β|β=30°+k·180°,k∈Z}.
——基础巩固——
一、选择题(每小题5分,共40分)
1.如果角α的终边上有一点P(0,-3),那么α( D )
A.是第三Байду номын сангаас限角
B.是第四象限角
C.是第三或第四象限角 D.不属于任何象限角
解析:因为点P在y轴的负半轴上,即角α的终边落在y轴的非
正半轴上,因此α不属于任何象限角.
2.若手表时针走过4小时,则时针转过的角度为( B )
解:(1)由k=4n,4n+1,4n+2,4n+3(n∈Z),知在给定的角的 集合中终边不相同的角共有四种.
(2)由-360°<k·90°+45°<360°,得-92<k<72. 又k∈Z,故k=-4,-3,-2,-1,0,1,2,3. 所以在给定的角的集合中在区间(-360°,360°)内的角共有8 个. (3)其中的第三象限角为k·360°+225°,k∈Z.
2021_2022学年新教材高中数学本册检测含解析新人教A版必修第一册
本 册 检 测考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={1,2},B ={2,2k },若B ⊆A ,则实数k 的值为( D )A .1或2B .12C .1D .2[解析] ∵集合A ={1,2},B ={2,2k},B ⊆A ,∴由集合元素的互异性及子集的概念可知2k=1,解得k =2.故选D.2.(2021·全国高考乙卷理科)已知命题p :∃x ∈R ,sin x <1;q :∀x ∈R ,则e |x |≥1,则下列命题中为真命题的是( A )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈(p ∨q )[解析] 由于sin0=0,所以命题p 为真命题;由于y =e x 在R 上为增函数,|x |≥0,所以e |x |≥e 0=1,所以命题q 为真命题; 所以p ∧q 为真命题,綈p ∧q 、p ∧綈q 、綈(p ∨q )为假命题. 故选A.3.sin1,cos1,tan1的大小关系为( A ) A .tan1>sin1>cos1 B .sin1>tan1>cos1 C .sin1>cos1>tan1D .tan1>cos1>sin1[解析] ∵sin1>sin π4=22,cos1<cos π4=22,tan1>tan π4=1,∴tan1>sin1>cos1.4.lg2-lg 15-e ln2-(14)-12+(-2)2的值为( A )A .-1B .12C .3D .-5[解析] 原式=lg2+lg5-2-2+2=lg10-2=1-2=-1.故选A. 5.设角α=-35π6,则2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+sin (π-α)-cos 2(π+α)的值为( D )A .12B .32C .22D . 3[解析] 因为α=-35π6,所以2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+sin (π-α)-cos 2(π+α)=2sin αcos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos αsin α=cos (-35π6)sin (-35π6)=cosπ6sinπ6= 3.故选D.6.若关于x 的方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象可以是( D )[解析] 因为关于x 的方程f (x )-2=0在(-∞,0)内有解,所以函数y =f (x )与y =2的图象在(-∞,0)内有交点,观察题中图象可知只有D 中图象满足要求.7.定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (13)=0,则满足f (log18x )>0的x的取值范围是( B )A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12)[解析] 由题意知f (x )=f (-x )=f (|x |),所以f (|log18x |)>f (13).因为f (x )在[0,+∞)上单调递增,所以|log18x |>13,又x >0,解得0<x <12或x >2.8.(2021·四川绵阳高一检测)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )在一个周期内的图象如图所示,则要得到y =f (x )的图象可由函数y =cos x 的图象(纵坐标不变)( B )A .先把各点的横坐标缩短到原来的12,再向左平移π6个单位长度B .先把各点的横坐标缩短到原来的12,再向右平移π12个单位长度C .先把各点的横坐标伸长到原来的2倍,再向左平移π6个单位长度D .先把各点的横坐标伸长到原来的2倍,再向右平移π12个单位长度[解析] 由函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )在一个周期内的图象可得A =1,14T =14·2πω=π12+π6,解得ω=2.把点(π12,1)的坐标代入函数的解析式可得1=sin(2×π12+φ), 即sin(π6+φ)=1.再由|φ|<π2,可得φ=π3,故函数f (x )=sin(2x +π3).把函数y =cos x 的图象上各点的横坐标缩短到原来的12,可得y =cos2x 的图象,再向右平移π12个单位长度可得y =cos2(x -π12)=cos(2x -π6)=sin[π2-(2x -π6)]=sin(2π3-2x )=sin[π-(π3+2x )]=sin(2x +π3)=f (x )的图象.故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.将函数y =sin(x -π4)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向左平移3π4个单位长度得g (x )的图象,则下列说法正确的是( ACD ) A .g (x )是奇函数B .x =π3是g (x )图象的一条对称轴C .g (x )的图象关于点(3π,0)对称D .2g (0)=1[解析] 将函数y =sin(x -π4)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得y =sin(x 3-π4)的图象,再向左平移3π4个单位长度得g (x )=sin ⎣⎡⎦⎤13⎝⎛⎭⎫x +3π4-π4=sin x3的图象,所以A 正确;因为g (π3)≠±1,所以B 错;因为g (3π)=sin π=0,所以C 正确;又g (0)=0,所以2g (0)=1,所以D 正确.综上,ACD 正确.10.已知0<a <b <1<c ,则下列不等式不成立的是( BD ) A .a c <b c B .c b <c a C .log a c >log b cD .sin a >sin b[解析] 取a =14,b =12,c =2,则(14)2<(12)2,A 成立;212>214,B 不成立;log142=-12,log122=-1,∴log142>log122,C 成立;∵0<a <b <1<π2,∴sin a <sin b ,D 不成立.故选BD.11.函数f (x )=sin2x -3(cos 2x -sin 2x )的图象为C ,如下结论正确的是( ABC ) A .f (x )的最小正周期为πB .对任意的x ∈R ,都有f (x +π6)+f (π6-x )=0C .f (x )在(-π12,5π12)上是增函数D .由y =2sin2x 的图象向右平移π3个单位长度可以得到图象C[解析] f (x )=sin2x -3cos2x =2sin(2x -π3),f (x )的最小正周期为π,故A 正确;f (π6)=2sin(2×π6-π3)=0,故图象关于(π6,0)对称,B 正确;当x ∈(-π12,5π12)时,2x -π3∈(-π2,π2),所以f (x )在(-π12,5π12)上是增函数,C 正确;由y =2sin2x 向右平移π3个单位长度得到y =2sin2(x -π3)=2sin(2x -2π3)的图象,故D 错误.故选ABC.12.下列命题正确的是( CD ) A .∀x ∈(2,+∞),都有x 2>2xB .“a =12”是函数“y =cos 22ax -sin 22ax 的最小正周期为π”的充要条件C .命题p :∃x 0∈R ,f (x 0)=ax 20+x 0+a =0是假命题,则a ∈(-∞,-12)∪(12,+∞)D .已知α,β∈R ,则“α=β”是“tan α=tan β”的既不充分也不必要条件[解析] A 错,当x =4时,42=24,故不等式不成立;B 错,y =cos 22ax -sin 22ax =cos4ax ,当a =12时,y =cos2x ,其最小正周期为2π2=π;当a =-12时,y =cos(-2x )=cos2x ,其最小正周期为π,故说法不正确;C 正确,因为p 为假命题,所以綈p 为真命题,即不存在x 0∈R ,使f (x 0)=0,故Δ=1-4a 2<0,且a ≠0,解得a >12或a <-12;D 正确,如果两个角为直角,那么它们的正切值不存在,反过来,如果两个角的正切值相等,那么它们可能相差k π(k ∈Z ),故反之不成立.综上,CD 正确.三、填空题(本大题共4小题,每小题5分,共20分)13.化简2+cos20°-sin 210°[解析]2+cos20°-sin 210°=2+2cos 210°-1-sin 210°=3cos 210°=3cos10°.14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 130 元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的7折,则x 的最大值为 15 .[解析] (1)x =10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元. (2)设顾客一次购买水果的促销前总价为y 元,y <120元时,李明得到的金额为y ×80%,符合要求.y ≥120元时,有(y -x )×80%≥y ×70%恒成立, 即8(y -x )≥7y ,x ≤y 8,即x ≤(y8)min =15元,所以x 的最大值为15.15.已知函数g (x )=f (x )+x 2是奇函数,当x >0时,函数f (x )的图象与函数y =log 2x 的图象关于直线y =x 对称,则g (-1)+g (-2)= -11 .[解析] ∵当x >0时,f (x )的图象与函数y =log 2x 的图象关于直线y =x 对称, ∴当x >0时,f (x )=2x , ∴当x >0时,g (x )=2x +x 2,又g (x )是奇函数,∴g (-1)+g (-2)=-[g (1)+g (2)]=-(2+1+4+4)=-11.16.函数f (x )=a 2-x -1(a >0,a ≠1)的图象恒过定点 (2,0) ,当a >1时,f (x 2)的单调递增区间为 (-∞,0] .[解析] 由2-x =0得x =2,此时,f (2)=0,∴f (x )恒过定点(2,0);当a >1时,f (x 2)=a2-x 2-1,由复合函数同增异减可知,f (x )的递增区间为(-∞,0].四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)如图,以Ox 为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于P ,Q 两点,已知点P 的坐标为(-35,45).(1)求sin2α+cos2α+11+tan α的值;(2)若cos αcos β+sin αsin β=0,求sin(α+β)的值. [解析] (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵cos αcos β+sin αsin β=cos(α-β)=0,且0<β<α<π, ∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,log ax ,x >0,且点(4,2)在函数f (x )的图象上.(1)求函数f (x )的解析式,并在如图所示的平面直角坐标系中画出函数f (x )的图象;(2)求不等式f (x )<1的解集;(3)若方程f (x )-2m =0有两个不相等的实数根,求实数m 的取值范围. [解析] (1)∵点(4,2)在函数的图象上,∴f (4)=log a 4=2,解得a =2.∴f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,log 2x ,x >0.函数的图象如图所示.(2)不等式f (x )<1等价于⎩⎨⎧x >0,log 2x <1或⎩⎪⎨⎪⎧x ≤0,x +2<1,解得0<x <2或x <-1,∴原不等式的解集为{x |0<x <2或x <-1}. (3)∵方程f (x )-2m =0有两个不相等的实数根,∴函数y =2m 的图象与函数y =f (x )的图象有两个不同的交点. 结合图象可得2m ≤2,解得m ≤1. ∴实数m 的取值范围为(-∞,1].19.(本小题满分12分)已知函数f (x )=cos(π3+x )·cos(π3-x ),g (x )=12sin2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合.[解析] (1)f (x )=(12cos x -32sin x )·(12cos x +32sin x )=14cos 2x -34sin 2x =1+cos2x 8-3(1-cos2x )8=12cos2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x ) =12cos2x -12sin2x =22cos(2x +π4), 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为{x |x =k π-π8,k ∈Z }.20.(本小题满分12分)某工厂现有职工320人,平均每人每年可创利20万元,该工厂打算购进一批智能机器人(每购进一台机器人,将有一名职工下岗).据测算,如果购进智能机器人不超过100台,每购进一台机器人,所有留岗职工(机器人视为机器,不作为职工看待)在机器人的帮助下,每人每年多创利2千元,每台机器人购置费及日常维护费用折合后平均每年2万元,工厂为体现对职工的关心,给予下岗职工每人每年4万元补贴;如果购进智能机器人数量超过100台,则工厂的年利润y =8 202+lg x 万元(x 为机器人台数且x <320).(1)写出工厂的年利润y 与购进智能机器人台数x 的函数关系;(2)为获得最大经济效益,工厂应购进多少台智能机器人?此时工厂的最大年利润是多少?(参考数据:lg2≈0.301 0)[解析] (1)当购进智能机器人台数x ≤100时, 工厂的年利润y =(320-x )(20+0.2x )-4x -2x =-0.2x 2+38x +6 400,∴y =⎩⎪⎨⎪⎧-0.2x 2+38x +6 400,0≤x ≤100,x ∈N ,8 202+lg x ,100<x <320,x ∈N .(2)由(1)知,当0≤x ≤100时,y =-0.2(x -95)2+8 205, 当x =95时,y max =8 205;当x >100时,y =8 202+lg x 为增函数,8 202+lg x <8 202+lg320=8 202+1+5lg2≈ 8 204.505<8 205.综上可得,工厂购进95台智能机器人时获得最大经济效益,此时的最大年利润为8 205万元.21.(本小题满分12分)已知f (x )=sin(2x +π3)+sin(2x -π3)+2cos 2x ,x ∈R .(1)求f (x )的最小正周期; (2)求f (x )的单调减区间;(3)若函数g (x )=f (x )-m 在区间[-π4,π4]上没有零点,求m 的取值范围.[解析] (1)f (x )=12sin2x +32cos2x +12sin2x -32cos2x +2cos 2x =sin2x +cos2x +1=2sin(2x +π4)+1.∵ω=2,∴T =π.(2)由π2+2k π≤2x +π4≤3π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z , ∴f (x )的单调减区间为[k π+π8,k π+5π8],k ∈Z .(3)作出函数y =f (x )在[-π4,π4]上的图象如图所示.函数g (x )无零点,即方程f (x )-m =0无解,亦即函数y =f (x )与y =m 的图象在x ∈[-π4,π4]上无交点,从图象可看出f (x )在[-π4,π4]上的值域为[0,2+1],则m >2+1或m <0.所以m 的取值范围为{x |m >2+1或m <0}.22.(本小题满分12分)已知定义域为R 的函数f (x )=-2x +a2x +1是奇函数.(1)求实数a 的值;(2)判断并用定义证明该函数在定义域R 上的单调性;(3)若方程f (4x -b )+f (-2x +1)=0在(-3,log 23)内有解,求实数b 的取值范围.[解析] (1)依题意得f (0)=-1+a2=0,故a =1,此时f (x )=-2x +12x +1,对任意x ∈R 均有f (-x )=-2-x +12-x +1=-1+2x1+2x =-f (x ),∴f (x )=-2x +a2x +1是奇函数,∴a =1.(2)f (x )在R 上是减函数,证明如下:任取x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=-2x 1+12x 1+1--2x 2+12x 2+1=(-2x 1+1)(2x 2+1)-(2x 1+1)(-2x 2+1)(2x 1+1)(2x 2+1)=2(2x 2-2x 1)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2, ∴2x 2-2x 1>0, ∴f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2).∴该函数在定义域R 上是减函数.(3)由函数f (x )为奇函数知,f (4x -b )+f (-2 x +1)=0⇔f (4x -b )=f (2x +1). 又函数f (x )是单调递减函数,从而4x -b =2x +1. 即方程b =4x -2x +1在(-3,log 23)内有解. 令y =g (x )=4x -2x +1,只要b 在g (x )的值域内即可. ∵g (x )=22x -2·2x =(2x -1)2-1,且2x ∈(18,3),∴g (x )∈[-1,3).∴当b ∈[-1,3)时,原方程在(-3,log 23)内有解.。
2021新教材人教版高中数学A版必修第一册模块练习题--2.1 等式性质与不等式性质
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质基础过关练题组一用不等式(组)表示不等关系1.下列说法正确的是()A.某人的月收入x元不高于2000元可表示为“x<2000”B.小明身高x cm,小华身高y cm,则小明比小华矮可表示为“x>y”C.某变量x至少是a可表示为“x≥a”D.某变量y不超过a可表示为“y≥a”2.(2020福建莆田二中期末)某同学参加期末模拟考试,考后对自己的语文和数学成绩进行了估计:语文成绩x高于85分,数学成绩y不低于80分,用不等式组可以表示为()A.{x>85y≥80B.{x<85y≥80C.{x≤85y>80D.{x>85y<803.(2020山东威海期中)一辆汽车原来每天行驶x km,如果该汽车现在每天行驶的路程比原来多19km,那么现在在8天内它的行程将超过2 200km,用不等式表示为.题组二实数的大小比较4.(2020河北正定一中期中)已知a1,a2∈{x|0<x<1},记M=a1a2,N=a1+a2-1,则M与N的大小关系是()A.M<NB.M>NC.M=ND.不确定5.(2020安徽六安中学月考)若x≠-2且y≠1,则M=x2+y2+4x-2y的值与-5的大小关系是()A.M>-5B.M<-5C.M ≥-5D.M ≤-5 6.若x ∈R,则x 1+x 2与12的大小关系为 .7.设P=√2,Q=√7-√3,R=√6-√2,则将P,Q,R 按从大到小的顺序排列为 .8.某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案.甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠.乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果这两家旅行社一张全票的票价相同,那么该家庭选择哪家旅行社外出旅游合算?题组三 不等式的性质及应用9.(2020北京人大附中高二期中)已知a<0<b,则下列不等式恒成立的是( )A.a+b<0B.a b<1 C.b a>1 D.1a >1b10.(2020天津南开高一期末)“1a <1b”是“b<a<0”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.(2020广东东莞高一期末)已知实数a,b,c 满足0<a<b,0<c<1,则下列选项一定成立的是( ) A.a+c>b+cB.ac>bc C.ac<b D.bc<a12.若1a <1b<0,则下列结论不正确的是( ) A.a 2<b 2 B.ab<b 2 C.a+b<0 D.|a|+|b|>|a+b|13.若a<0,-1<b<0,则下列各式中正确的是( ) A.a>ab>ab 2 B.ab>a>ab 2 C.ab 2>ab>a D.ab>ab 2>a 题组四 求代数式的取值范围14.(2020北京师大附中高二期中)设实数x,y 满足3<x<4,1<y<2,则M=2x-y 的取值范围是( ) A.4<M<6 B.4<M<7 C.5<M<6 D.5<M<7 15.已知12<a<60,15<b<36,则ab 的取值范围为.16.已知2<a<4,3<b<5,那么M=2a+b 的取值范围是 . 17.已知-3<b<a<-1,-2<c<-1,求(a-b)c 2的取值范围.能力提升练题组一 实数的大小比较1.(2020吉林长春榆树一中五校高二期末,)实数x,y,z 满足x+y+z=0,xyz>0,若T=1x +1y +1z,则( ) A.T>0 B.T<0 C.T=0 D.T ≥0 2.()若p=√a +6-√a +4,q=√a +5-√a +3,其中a ≥0,则p,q 的大小关系是( ) A.p<q B.p=q C.p>q D.不确定3.(2020吉林省实验中学高二期中,)已知a,b,x 均为正数,且a>b,则b ab+xa+x.(填“>”“<”或“=”) 4.(2020辽宁大连二十四中高三模拟,)已知a+b>0,则ab2+b a 2与1a +1b的大小关系是 . 5.(2019山东济宁一中高二阶段检测,)已知a,b 都是正数,并且a ≠b,求证:a 5+b 5>a 2b 3+a 3b 2.题组二 不等式的性质及应用 6.(2020北京朝阳高一期末,)下列命题为真命题的是( )A.若a>b>0,则ac 2>bc 2B.若a>b,则a 2>b 2C.若a<b<0,则a 2<ab<b 2D.若a<b<0,则1a >1b7.(多选)(2020山东济南高一期末,)若a>b>0,d<c<0,则下列不等式成立的是( ) A.ac>bc B.a-d>b-cC.1d <1cD.a 3>b 3 8.(多选)(2020福建三明一中高一期中,)已知实数a,b,c 满足c<b<a且ac<0,则下列不等式一定成立的是( ) A.ab>ac B.c(b-a)>0 C.ac(a-c)<0 D.cb 2<ab 2 9.(多选)()设a,b 为正实数,则下列命题正确的是( )A.若a 2-b 2=1,则a-b<1B.若1b -1a=1,则a-b<1C.若|√a -√b |=1,则|a-b|<1D.若|a|≤1,|b|≤1,则|a-b|≤|1-ab| 10.(2020陕西咸阳中学高一检测,)已知不等式:①a 2b<b 3;②1a>0>1b;③a 3<ab 2.若a>0>b 且a 2>b 2,则其中正确的不等式的个数是 .题组三 求代数式的取值范围 11.()已知2<a+b<5,0<a-b<1,某同学得出了如下结论:①1<a<3;②1<b<2;③12<b<52;④-4<a-2b<-2;⑤-3<a-2b<-1;⑥1<2a-b<4.则以上结论中正确的是( ) A.①③④ B.①②④ C.①②⑤ D.①③⑥12.(2020浙江绍兴一中高一月考,)已知实数x,y 满足-4≤x-y ≤-1,-1≤4x-y ≤5,则M=9x-y 的取值范围是( ) A.-7≤M ≤26 B.-1≤M ≤20 C.4≤M ≤15 D.1≤M ≤15 13.()若实数m,n 满足{-1≤2m +3n ≤2,-3<m -n ≤1,求3m+4n 的取值范围.答案全解全析 基础过关练1.C 对于A,x 应满足x ≤2 000,故A 错误;对于B,x,y 应满足x<y,故B 错误;C 正确;对于D,y 与a 的关系应满足y ≤a,故D 错误.2.A ∵语文成绩x 高于85分,∴x>85. ∵数学成绩y 不低于80分,∴y ≥80, ∴{x >85,y ≥80,故选A. 3.答案 8(x+19)>2 200解析 ∵汽车原来每天行驶x km,现在每天行驶的路程比原来多19 km,∴现在汽车每天行驶的路程为(x+19)km,则现在在8天内它的行程为8(x+19)km,又8天内它的行程将超过2 200 km,则满足8(x+19)>2 200.故答案为8(x+19)>2 200.4.B 由题意得0<a 1<1,0<a 2<1,∴M-N=a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1)>0,故M>N.故选B.5.A M-(-5)=x 2+y 2+4x-2y+5=(x+2)2+(y-1)2.∵x ≠-2,y ≠1,∴(x+2)2>0,(y-1)2>0,因此(x+2)2+(y-1)2>0.故M>-5. 6.答案x 1+x2≤12解析 ∵x1+x2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,∴x1+x2≤12. 7.答案 P>R>Q解析 ∵P-R=√2-(√6-√2)=2√2-√6>0,∴P>R. R-Q=√6-√2-(√7-√3)=(√6+√3)-(√7+√2), ∵(√6+√3)2=9+2√18,(√7+√2)2=9+2√14, ∴√6+√3>√7+√2,∴R>Q,∴P>R>Q,故答案为P>R>Q.8.解析 设该家庭除户主外,还有x(x ∈N *)人参加旅游,甲、乙两家旅行社收费总金额分别为y 1元、y 2元,一张全票的票价为a 元,则只需按两家旅行社的优惠方案分别计算出y 1,y 2的值,再比较y 1,y 2的大小即可.∵y 1=a+0.55ax,y 2=0.75(x+1)a,而y 1-y 2=a+0.55ax-0.75(x+1)a=0.2a(1.25-x), ∴当x>1.25时,y 1<y 2;当x<1.25时,y 1>y 2.又x 为正整数,所以当x=1时,y 1>y 2,即两口之家应选择乙旅行社;当x>1(x ∈N *)时,y 1<y 2,即三口之家或多于三口的家庭应选择甲旅行社. 9.B 因为a<0<b,所以ab<0,所以ab<1.故选B.10.B 取a=2,b=1,1a <1b成立,但b<a<0不成立,则“1a <1b”⇒/ “b<a<0”.若b<a<0,则-b>-a>0,由不等式的性质得-1a>-1b,∴1a <1b,即“b<a<0”⇒“1a <1b”.因此,“1a <1b”是“b<a<0”的必要不充分条件.故选B.11.C 因为0<a<b,0<c,所以ac<bc,又因为0<c<1,所以bc<b,所以ac<b.故选C.12.D ∵1a <1b <0,∴b<a<0,∴b 2>a 2,ab<b 2,a+b<0,∴A,B,C 中的结论均正确.∵b<a<0,∴|a|+|b|=-a-b=-(a+b)=|a+b|,故D 中的结论错误,故选D. 13.D ∵-1<b<0,∴1>b 2>0>b>-1,即b<b 2<1.又∵a<0,∴ab>ab 2>a. 14.B 由已知得6<2x<8,-2<-y<-1, 故4<2x-y<7.故选B. 15.答案 {ab |13<ab<4}解析 由0<15<b<36得0<136<1b <115,而0<12<a<60,根据不等式的性质可得12×136<a ·1b <115×60,即13<a b<4,所以ab的取值范围为{a b |13<ab <4}.16.答案 {M|7<M<13}解析 ∵2<a<4,3<b<5,∴4<2a<8,故7<2a+b<13,即7<M<13. 17.解析 ∵-3<b<a<-1, ∴-3<b<-1,-3<a<-1,b<a, ∴1<-b<3,a-b>0,∴-3+1<a-b<-1+3,即-2<a-b<2,∴0<a-b<2.∵-2<c<-1,∴1<c 2<4,∴0×1<(a-b)c 2<2×4,∴0<(a-b)c 2<8.能力提升练 1.B 因为x+y+z=0且xyz>0,不妨设x>0,则y<0,z<0,则T=1x +1y+1z=xy+yz+xz xyz=y(x+z)+xz xyz=-y 2+xzxyz.因为x>0,z<0,所以xz<0.又-y 2<0,所以-y 2+xz<0.又xyz>0,所以T<0.故选B.2.A 由题意知p-q=√a +6+√a +3-(√a +4+√a +5). ∵(√a +6+√a +3)2-(√a +4+√a +5)2 =2√(a +3)(a +6)-2√(a +4)(a +5), 且(a+3)(a+6)-(a+4)(a+5)=-2<0,a ≥0,∴2√(a +3)(a +6)-2√(a +4)(a +5)<0,即(√a +6+√a +3)2-(√a +4+√a +5)2<0,∴p-q=√a +6+√a +3-(√a +4+√a +5)<0,故p<q. 3.答案 < 解析 b a -b+x a+x=ab+bx -ab -ax a(a+x)=(b -a)xa(x+a).因为a>0,a>b,x>0,所以x+a>0,b-a<0, 所以(b -a)x a(x+a)<0,所以b a <b+xa+x.4.答案 ab2+ba2≥1a +1b 解析a b 2+ba 2-(1a +1b )=a -b b 2+b -aa 2=(a-b)·(1b 2-1a 2)=(a+b)(a -b)2a 2b 2.∵a+b>0,(a-b)2≥0,a 2b 2>0, ∴(a+b)(a -b)2a 2b 2≥0,∴ab2+ba2≥1a +1b.5.证明 (a 5+b 5)-(a 2b 3+a 3b 2)=(a 5-a 3b 2)+(b 5-a 2b 3)=a 3(a 2-b 2)-b 3(a 2-b 2)=(a 3-b 3)(a 2-b 2) =(a+b)(a-b)2(a 2+ab+b 2).∵a,b 都是正数,∴a+b>0,a 2+ab+b 2>0, 又∵a ≠b,∴(a-b)2>0,∴(a+b)(a-b)2(a 2+ab+b 2)>0, 即a 5+b 5>a 2b 3+a 3b 2.6.D 对于A,当c=0时,ac 2=bc 2,所以A 不是真命题;对于B,当a=0,b=-2时,a>b,但a 2<b 2,所以B 不是真命题;对于C,当a=-4,b=-1时,a<b<0,a 2>ab>b 2,所以C 不是真命题;对于D,若a<b<0,则1a >1b ,所以D是真命题.故选D.7.BD 因为c<0,a>b,所以ac<bc,故A 错误;由d<c<0得-d>-c>0,又a>b,所以a-d>b-c,故B 正确;由于d<c<0,所以1d>1c ,故C 错误;因为a>b>0,所以a 3>b 3,故D 正确.8.ABC 因为c<b<a 且ac<0,故c<0,a>0,所以ab>ac,故A 一定成立; 又b-a<0,所以c(b-a)>0,故B 一定成立;又a-c>0,ac<0,所以ac(a-c)<0,故C 一定成立;当b=0时,cb 2=ab 2,当b ≠0时,有cb 2<ab 2,故D 不一定成立. 9.AD 对于A,若a,b 为正实数,则a 2-b 2=1⇒a-b=1a+b⇒a-b>0⇒a>b>0,故a+b>a-b>0,假设a-b ≥1,则1a+b≥1⇒a+b ≤1,这与a+b>a-b>0相矛盾,故a-b<1成立,所以A 正确;对于B,取a=5,b=56,则1b -1a=1,但a-b=5-56>1,所以B 不正确;对于C,取a=4,b=1,则|√a -√b |=1,但|a-b|=3>1,所以C 不正确;对于D,因为|a|≤1,|b|≤1,所以(a-b)2-(1-ab)2=a 2+b 2-1-a 2b 2=(a 2-1)(1-b 2)≤0,即|a-b|≤|1-ab|,所以D 正确.故选AD. 10.答案 2解析 因为a>0>b 且a 2>b 2,所以a>|b|>0.①化简a 2b<b 3得a 2>b 2,显然正确;②1a>0>1b显然正确;③化简a 3<ab 2得a 2<b 2,显然不正确.故正确的不等式是①②,共2个.故答案为2.11.D a=12(a+b)+12(a-b). ∵2<a+b<5,∴1<12(a+b)<52. ∵0<a-b<1,∴0<12(a-b)<12,则1<a<3,①正确;b=12(a+b)-12(a-b),而1<12(a+b)<52, 0<12(a-b)<12,即-12<-12(a-b)<0,则12<b<52,②错误,③正确;a-2b=-12(a+b)+32(a-b),而-52<-12(a+b)<-1,0<32(a-b)<32,则-52<a-2b<12,④⑤错误;2a-b=12(a+b)+32(a-b),而1<12(a+b)<52,0<32(a-b)<32,则1<2a-b<4,⑥正确.故正确的结论是①③⑥,故选D.12.B 令m=x-y,n=4x-y,则{x =n -m 3,y =n -4m 3, 则9x-y=83n-53m. ∵-4≤m ≤-1,∴53≤-53m ≤203. ∵-1≤n ≤5,∴-83≤83n ≤403. 因此-1≤83n-53m ≤20,即-1≤9x-y ≤20,故选B. 13.解析 令3m+4n=x(2m+3n)+y(m-n)=(2x+y)m+(3x-y)n,则{2x +y =3,3x -y =4,解得{x =75,y =15, 因此3m+4n=75(2m+3n)+15(m-n). 由-1≤2m+3n ≤2得-75≤75(2m+3n)≤145. 由-3<m-n ≤1得-35<15(m-n)≤15, 所以-75-35<3m+4n ≤145+15, 即-2<3m+4n ≤3.。
2021新教材人教版高中数学A版必修第一册模块练习题--4.2.2 指数函数的图象和性质
4.2.2指数函数的图象和性质基础过关练题组一指数函数的图象特征1.(2020山西大学附中高一上期中)在同一坐标系中,函数y=ax+a与y=a x的图象大致是()2.(2020北京丰台高一上期中联考)函数y=(12)|x|的图象是()3.(2020湖南衡阳八中高一上期中)设a,b,c,d均大于0,且均不等于1,y=a x,y=b x,y=c x,y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序为()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d4.(2020山西长治二中高一上期中)函数f(x)=a x-2+1(a>0,且a ≠1)的图象恒过定点( ) A.(2,2) B.(2,1) C.(3,1) D.(3,2)5.已知函数f(x)=ax,g(x)=(1a)x(a>0,且a ≠1), f(-1)=12.(1)求f(x)和g(x)的函数解析式;(2)在同一坐标系中画出函数f(x)和g(x)的图象; (3)若f(x)<g(x),请直接写出x 的取值范围.题组二 指数函数的单调性及其应用 6.方程4x -3×2x +2=0的解构成的集合为( ) A.{0} B.{1} C.{0,1} D.{1,2}7.(2020山东师大附中高一上第一次学分认定考试)设y1=40.9,y2=80.61,y3=(12)-1.5,则()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y18.(2020广东湛江一中高一上第一次大考)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是()A.(12,1] B.(0,12]C.[0,1]D.(0,1]9.若不等式2x2+1≤(14)x-2的解集是函数y=2x的定义域,则函数y=2x的值域是()A.[18,2) B.[18,2]C.(-∞,18] D.[2,+∞)10.(2020广东珠海高一上期末)已知函数f(x)满足f(x+1)的定义域是[0,31),则f(2x)的定义域是()A.[1,32)B.[-1,30)C.[0,5)D.(-∞,30]11.(2020甘肃兰州一中高一月考)函数y=(12)8-2x-x2的单调递增区间为.12.(2020浙江嘉兴一中高一上期中)已知集合A={x|12≤2x-4< 4},B={x|x2-11x+18<0}.(1)求∁R(A∩B);(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.题组三指数函数性质的综合应用13.(2020浙江温州十五校联合体高一上期中联考)函数f(x)=√x+12x-1的定义域为()A.[-1,0)∪(0,+∞)B.(-1,+∞)C.[-1,+∞)D.(0,+∞)14.已知函数f(x)=3x-(13)x,则f(x)是()A.奇函数,且在R上是增函数B.偶函数,且在R上是增函数C.奇函数,且在R上是减函数D.偶函数,且在R上是减函数15.(2019湖南醴陵一中高一上期中)函数f(x)=13x+1+a是奇函数,则实数a的值是()A.0B.12C.-12D.116.已知a>0,且a≠1,若函数f(x)=2a x-4在区间[-1,2]上的最大值为10,则a=.17.(2020浙江杭州高级中学高一上期末)函数y=(14)-|x|+1的单调递增区间为;奇偶性为(填“奇函数”“偶函数”或“非奇非偶函数”).18.(2020山东泰安一中高一上期中)已知函数f(x)=a+22x-1.(1)求函数f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.能力提升练题组一指数函数的图象特征1.(2020福建厦外高一上期中,)已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()2.(2020陕西西安中学高一上期中,)已知实数a,b满足等式2019a=2 020b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有()A.1个B.2个C.3个D.4个3.(2020河北唐山一中高一上期中,)若函数y=(12)|1-x|+m的图象与x轴有公共点,则m的取值范围是.题组二指数函数的单调性及其应用4.(2020湖南长郡中学高一上模块检测,)已知a=√0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a5.()函数f(x)=-a2x-1+5a x-8(a>0,且a≠1)在[2,+∞)上单调递减,则实数a 的取值范围为(易错)A.(0,1)∪[52,+∞) B.[45,1)∪(1,+∞) C.(0,1)∪(1,52] D.(1,52]6.()若函数f(x)=√2x 2+2ax -a -1的定义域为R,则实数a 的取值范围是 .7.(2020黑龙江大庆实验中学高一上月考,)已知函数f(x)=ba x (其中a,b 为常数,a>0,且a ≠1)的图象经过A(1,6),B(2,18)两点.若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 .8.(2020福建福州八县(市)一中高一上期末联考,)已知定义在R 上的偶函数f(x)满足:当x ≥0时, f(x)=2x +a 2x , f(1)=52. (1)求实数a 的值;(2)用定义法证明f(x)在(0,+∞)上是增函数; (3)求函数f(x)在[-1,2]上的值域.题组三 指数函数性质的综合应用 9.(2020安徽安庆高一上期末,)某数学课外兴趣小组对函数f(x)=2|x-1|的图象与性质进行了探究,得到下列四条结论:①函数f(x)的值域为(0,+∞);②函数f(x)在区间[0,+∞)上单调递增;③函数f(x)的图象关于直线x=1对称;④函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点.则其中正确结论的个数为(深度解析)A.1B.2C.3D.410.(2020浙江温州十五校联合体高一上期中联考,)已知a>0,设函数f(x)=2 019x+1+32 019x+1(x∈[-a,a])的最大值为M,最小值为N,那么M+N=()A.2025B.2022C.2020D.201911.(2020浙江浙北G2高一上期中联考,)已知实数a>0,定义域为R的函数f(x)=3xa +a3x是偶函数.(1)求实数a的值;(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;(3)是否存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立?若存在,求出m的取值范围;若不存在,请说明理由.答案全解全析 基础过关练1.B 函数y=ax+a 的图象经过(-1,0)和(0,a)两点,选项D 错误;在图A 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得0<a<1,选项A 错误;在图B 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得a>1,选项B 正确;在图C 中,由指数函数y=a x 的图象得0<a<1,由y=ax+a 的图象得a>1,选项C 错误.故选B.2.D y=(12)|x|={(12)x,x ≥0,2x ,x <0.因此,当x ≥0时,y=(12)|x|的图象与y=(12)x的图象相同;当x<0时,y=(12)|x|的图象与y=2x 的图象相同,故选D. 3.C 作出直线x=1,如图所示.直线x=1与四个函数图象的交点从下到上依次为(1,b),(1,a),(1,d),(1,c),因此a,b,c,d 的大小顺序是b<a<d<c,故选C. 4.A ∵a 0=1,∴令x-2=0,得y=a 0+1=2, ∴x=2时,y=2,因此函数f(x)的图象恒过定点(2,2),故选A. 5.解析 (1)因为f(-1)=a -1=1a =12,所以a=2,所以f(x)=2x,g(x)=(12)x.(2)在同一坐标系中画出函数f(x)和g(x)的图象如图所示:(3)由图象知,当f(x)<g(x)时,x 的取值范围是{x|x<0}.6.C 令2x =t,则4x =(2x )2=t 2,原方程可化为t 2-3t+2=0,解得t=1或t=2. 当t=1时,2x =1=20,解得x=0, 当t=2时,2x =2=21,解得x=1.因此原方程的解构成的集合为{0,1}. 故选C.7.B 由题意知,y 1=40.9=22×0.9=21.8,y 2=80.61=23×0.61=21.83,y 3=(12)-1.5=21.5,∵y=2x 在R 上是增函数,∴y 2>y 1>y 3.故选B.8.D 由f(x)=-x 2+2ax=-(x-a)2+a 2在区间[1,2]上是减函数得a ≤1;由g(x)=(a+1)1-x=(1a+1)x -1在区间[1,2]上是减函数得0<1a+1<1,因此a+1>1,解得a>0.因此a 的取值范围是(0,1],故选D. 9.B 由2x 2+1≤(14)x -2得2x 2+1≤2-2x+4,即x 2+1≤-2x+4,解得-3≤x ≤1,∴函数y=2x 的定义域为[-3,1].由于函数y=2x 在R 上单调递增,故当x=-3时取得最小值18,当x=1时取得最大值2,所以函数的值域为[18,2].故选B.10.C ∵f(x+1)的定义域是[0,31),即0≤x<31,∴1≤x+1<32,∴f(x)的定义域是[1,32),∴f(2x )有意义必须满足20=1≤2x <32=25,∴0≤x<5. 11.答案 [-1,+∞)解析 设t=8-2x-x 2,则y=(12)t,易知y=(12)t在R 上单调递减,又知t=8-2x-x 2在(-∞,-1]上单调递增,在[-1,+∞)上单调递减, 所以由y=(12)t与t=8-2x-x 2复合而成的函数y=(12)8-2x -x 2的单调递增区间为[-1,+∞).12.解析 由12≤2x-4<4得2-1≤2x-4<22,∴-1≤x-4<2,即3≤x<6,∴A=[3,6).由x 2-11x+18<0得2<x<9,∴B=(2,9).(1)∵A=[3,6),B=(2,9), ∴A ∩B=[3,6),∴∁R (A ∩B)=(-∞,3)∪[6,+∞).(2)由C ⊆B 得{a ≥2,a +1≤9,解得2≤a ≤8,故实数a 的取值集合为{a|2≤a ≤8}.13.A 依题意得{x +1≥0,2x -1≠0,即{x ≥-1,x ≠0.故函数f(x)的定义域为[-1,0)∪(0,+∞),故选A.14.A 由题知x ∈R,且f(-x)=3-x-(13)-x=(13)x-3x =-f(x),所以f(x)是奇函数;又y=3x是增函数,且y=(13)x是减函数,所以f(x)=3x-(13)x是R 上的增函数,故选A. 15.C 函数f(x)=13x +1+a 的定义域为R,且f(x)是奇函数,因此f(0)=0,即130+1+a=0,解得a=-12.此时f(x)=13x +1-12=1-3x2(3x +1)符合题意,故选C.16.答案 √7或17解析 若a>1,则函数y=a x 在区间[-1,2]上是单调递增的,当x=2时, f(x)取得最大值,则f(2)=2a 2-4=10,即a 2=7,又a>1,所以a=√7. 若0<a<1,则函数y=a x 在区间[-1,2]上是单调递减的, 当x=-1时, f(x)取得最大值,则f(-1)=2a -1-4=10,所以a=17.综上所述,a 的值为√7或17.17.答案 [0,+∞);偶函数 解析 设u=-|x|+1,则y=(14)u.易知u=-|x|+1的单调递减区间为[0,+∞),y=(14)u是减函数,∴y=(14)-|x|+1的单调递增区间为[0,+∞).∵f(-x)=(14)-|-x|+1=(14)-|x|+1=f(x),∴f(x)是偶函数.18.解析 (1)由2x -1≠0,可得x ≠0, ∴函数f(x)的定义域为{x|x ≠0}. (2)∵f(x)为奇函数,∴f(-x)=-f(x). 又∵f(-x)=a+22-x -1=a+2×2x 1-2x=a-2(2x -1)+22x -1=(a-2)-22x -1,-f(x)=-a-22x -1,∴a-2=-a,解得a=1. 因此f(x)=1+22x -1.∴当x>0时,2x -1>0,f(x)>1; 当x<0时,-1<2x -1<0,f(x)<-1. ∴f(x)的值域为(-∞,-1)∪(1,+∞).能力提升练1.A 由函数f(x)的图象知,b<-1<0<a<1. ∴g(x)=a x +b 的图象是单调递减的.又g(0)=a 0+b=1+b<0,∴图象与y 轴交于负半轴,故选A.2.B 在同一平面直角坐标系中作出y=2 019x 与y=2 020x 的图象如图所示.设2 020b =2 019a =t, 当t>1时,0<b<a,①正确; 当t=1时,a=b=0,⑤正确;当0<t<1时,a<b<0,②正确,③④不成立. 故选B.3.答案 [-1,0) 解析 作出函数g(x)=(12)|1-x|={(12)x -1,x ≥1,2x -1,x <1的图象如图所示.由图象可知0<g(x)≤1,则m<g(x)+m ≤1+m,即m<f(x)≤1+m, 要使函数y=(12)|1-x|+m 的图象与x 轴有公共点,则{1+m ≥0,m <0,解得-1≤m<0. 故答案为[-1,0). 4.A a=√0.3=0.30.5.∵f(x)=0.3x 在R 上单调递减, ∴0.30.5<0.30.2<0.30⇒a<c<1. 又b=20.3>20=1,∴a<c<b,故选A.5.A 设y=f(x)=-1a ·a 2x +5a x -8,令a x =u(u>0),则y=-1a u 2+5u-8=-1a (u -5a2)2+25a4-8(u>0).∴y=-1au 2+5u-8在(0,5a2]上单调递增,在[5a2,+∞)上单调递减.①当0<a<1时,u=a x 是减函数, ∵x ≥2,∴0<u ≤a 2<5a2,此时y=-1au 2+5u-8是增函数,从而f(x)是减函数,符合题意. ②当a>1时,u=a x 是增函数, ∵x ≥2,∴u ≥a 2,由f(x)在[2,+∞)上单调递减,得a 2≥5a2,又a>0,∴a ≥52,即当a ≥52时,f(x)是减函数.综上所述,实数a 的取值范围是(0,1)∪[52,+∞),故选A.易错警示 解决与指数函数有关的复合函数的单调性问题时,一要注意底数的取值对单调性的影响,必要时进行分类讨论;二要注意中间变量的取值范围. 6.答案 [-1,0] 解析 依题意得2x2+2ax -a-1≥0恒成立,即x 2+2ax-a ≥0恒成立.∴Δ=4a 2+4a ≤0,解得-1≤a ≤0, 故实数a 的取值范围是[-1,0]. 7.答案 76解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式(23)x+(12)x-m ≥0在x ∈(-∞,1]上恒成立,设g(x)=(23)x+(12)x-m,显然函数g(x)=(23)x+(12)x-m 在(-∞,1]上单调递减,∴g(x)≥g(1)=23+12-m=76-m,故76-m ≥0,即m ≤76,∴实数m 的最大值为76.8.解析 (1)由题意得f(1)=2+a 2=52,∴a=1.(2)证明:由(1)知a=1,∴f(x)=2x +12x ,任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 1)-f(x 2)=(2x 1+12x 1)-(2x 2+12x 2)=(2x 1-2x 2)+2x 2-2x 12x 1·2x 2=(2x 1-2x 2)·(2x 1+x 2-1)2x 1+x 2.∵0<x 1<x 2,∴1<2x 1<2x 2,2x 1+x 2>1, ∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.(3)易得f(0)=2, f(2)=174, f(-1)=52, f(x)在[-1,0]上为减函数,在[0,2]上为增函数,∴f(x)的值域为[2,174].9.B 函数f(x)的值域为[1,+∞),①错误;函数f(x)在区间[0,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f(x)的图象关于直线x=1对称,③正确;因为y=-a 2≤0,所以函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点,④正确.正确结论的个数为2,故选B.解题模板 研究指数型复合函数的性质,借助图象是常见的手段,画出简图很多问题可迎刃而解. 10.B f(x)=2 019x+1+2 019-2 0162 019x +1=2 019-2 0161+2 019x,∴f(-x)=2 019-2 0161+2 019-x=2 019-2 016×2 019x 2 019x +1.因此f(x)+f(-x) =4 038-2 016(11+2 019x+2 019x2 019x +1)=4 038-2 016=2 022. 又f(x)在[-a,a]上是增函数,∴M+N=f(a)+f(-a)=2 022,故选B.11.解析 (1)定义域为R 的函数f(x)=3xa+a3x 是偶函数,则f(-x)=f(x)恒成立,即3-xa+a3-x =3xa+a 3x ,故(1a-a)(3x -3-x )=0恒成立.因为3x -3-x 不可能恒为0,所以当1a-a=0时,f(-x)=f(x)恒成立,而a>0,所以a=1.(2)函数f(x)=3x +13x 在(0,+∞)上单调递增,证明如下:设任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=(3x 1+13x 1)-(3x 2+13x 2)=(3x 1-3x 2)+(13x 1-13x 2)=(3x 1-3x 2)+3x 2-3x 13x 1·3x 2=(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2.因为0<x 1<x 2,所以3x 1<3x 2,3x 1>1,3x 2>1, 所以(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2<0,即f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故函数f(x)=3x +13x 在(0,+∞)上单调递增.(3)不存在.理由如下:由(2)知函数f(x)在(0,+∞)上单调递增,而函数f(x)是偶函数,则函数f(x)在(-∞,0)上单调递减.若存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立,则|t-2|<|2t-m|恒成立,即(t-2)2<(2t-m)2,即3t2-(4m-4)t+m2-4>0对任意的t∈R恒成立,则Δ=[-(4m-4)]2-12(m2-4)<0,得到(m-4)2<0,故m∈⌀,所以不存在.。
【新教材】2020-2021学年高中数学人教A版必修第一册课时素养评价 1.1.2 集合的表示
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时素养评价二集合的表示(15分钟30分)1.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}【解析】选D.A是列举法;C是描述法;对于B要留意集合的代表元素是y,但实质上表示的都是0,故与A,C相同;而D表示该集合含有一个元素,即方程“x=0”.2.(2022·哈尔滨高一检测)设集合B={x|x2-4x+m=0},若1∈B,则B=( )A. B.C. D.【解析】选A.由于集合B={x|x2-4x+m=0},1∈B,所以1-4+m=0,解得m=3.所以B={x|x2-4x+3=0}={1,3}.3.已知集合A={2,-1},集合B={m2-m,-1},且A与B相等,则实数m等于( ) A.2 B.-1 C.2或-1 D.4【解析】选C.由于A={2,-1},B={m2-m,-1},且A与B相等,所以m2-m=2,解得m=-1或m=2.4.(2022·承德高一检测)若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B为_______.【解析】由题意可知集合B是由A中元素的平方构成的,故B={4,9,16}.答案:{4,9,16}【补偿训练】用列举法表示集合{(x,y)|(x+1)2+|y-1|=0,x,y∈R}为_______.【解析】由于(x+1)2≥0,|y-1|≥0,所以(x+1)2=0且|y-1|=0,故有x=-1且y=1,因此答案为{(-1,1)}.答案:{(-1,1)}5.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.【解析】(1)用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)用描述法表示为{x|x=n2,n∈N}.(4)用列举法表示为{0,1,2,10,12,20,21,102,120,210,201}.(20分钟40分)一、单选题(每小题5分,共15分)1.下面对集合{1,5,9,13,17}用描述法表示,其中正确的一个是 ( )A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,k<5}C.{x|x=4t-3,t∈N,t<5}D.{x|x=4s-3,s∈N*,s<6}【解析】选D.集合中的元素除以4余1,故元素可以用4k+1(0≤k≤4,k∈Z)或4k-3(1≤k≤5,k∈Z)来表示.2.(2022·济宁高一检测)设集合A={x|x2-x-2=0},B={x||x|=y+2,y∈A},则集合B是( )A.{-4,4}B.{-4,-1,1,4}C.{0,1}D.{-1,1}【解析】选B.解集合A中方程x2-x-2=0,得到x=2或x=-1,由于y∈A,即y=2或y=-1,得|x|=y+2=4或|x|=y+2=1,故x=±4或x=±1,所以集合B={-4,-1,1,4}.3.(2022·鹤壁高一检测)定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的全部元素之和为( )A.21B.18C.14D.9【解析】选C.由于A*B={x|x=x1+x2,x1∈A,x2∈B},A={1,2,3},B={1,2},所以A*B={2,3,4,5},所以A*B中的全部元素之和为:2+3+4+5=14.【补偿训练】若A={1,2,3},B={3,5},用列举法表示A B={2a-b|a∈A,b∈B}=_______. 【解析】由于A={1,2,3},B={3,5},又A B={2a-b|a∈A,b∈B},所以A B={-3,-1,1,3}.答案:{-3,-1,1,3}二、多选题(共5分,全部选对得5分,选对但不全的得3分,有选错的得0分)4.下列各组中的M,P表示同一集合的是 ( )A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=-1},P={t|t=-1}D.集合M={m|m+1≥5},P={y|y=x2+2x+5,x∈R}【解析】选CD.在A中,M={3,-1}是数集,P={(3,-1)}是点集,二者不是同一集合;在B中,M={(3,1)},P={(1,3)}表示的不是同一个点的集合,二者不是同一集合;在C中,M={y|y=-1}={y|y≥-1},P={t|t=-1}={t|t≥-1},二者表示同一集合;在D中,M={m|m≥4,m∈R},即M中元素为大于或等于4的全部实数,P={y|y=(x+1)2+4},y=(x+1)2+4≥4,所以P中元素也为大于或等于4的全部实数,故M,P表示同一集合.三、填空题(每小题5分,共10分)5.已知集合A={x|x2+px+q=0}={2},则p=_______,q=_______.【解析】由得答案:-4 46.(2022·济南高一检测)设a,b,c为非零实数,m=+++,则m的全部值组成的集合为_______.【解题指南】依据a,b,c三个数中负数的个数分类争辩.【解析】当a,b,c 均为负数时,,,,均为-1,故m=-4;当a,b,c 只有一个为正数时,,,,中必有两个为1,两个为-1,故m=0;当a,b,c 有两个为正数时,,,,中必有两个为1,两个为-1,故m=0;当a,b,c 均为正数时,,,,均为1,故m=4,所以由m=+++的全部值组成的集合的元素有0,-4,4,则所求集合为{-4,0,4}.答案:{-4,0,4}四、解答题7.(10分)设A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a的值.【解析】由于5∈A,且5∉B,所以解得故a=-4. 关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块质量检测一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x <3},B ={x |2x>4},则A ∩B =( ) A .∅ B .{x |0<x <3} C .{x |1<x <3} D .{x |2<x <3}2.函数f (x )=e x+2x -3的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)3.函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 4.下列函数在(0,1)为减函数的是( ) A .y =lg x B .y =2x C .y =cos x D .y =12x -15.现有四个函数:①y =x ·sin x ;②y =x ·cos x ;③y =x ·|cos x |;④y =x ·2x的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③ B.①④③② C .④①②③ D.③④②①6.某商家准备在2020年春节来临前连续2次对某一商品销售价格进行提价且每次提价10%,然后在春节活动期间连续2次对该商品进行降价且每次降价10%,则该商品的最终售价与原来价格相比( )A .略有降低B .略有提高C .相等D .无法确定 7.下列命题中正确的是( )A .y =cos x 的图象向右平移π2个单位长度得到y =sin x 的图象B .y =sin x 的图象向右平移π2个单位长度得到y =cos x 的图象C .当φ<0时,y =sin x 的图象向左平移|φ|个单位长度可得y =sin(x +φ)的图象D .y =sin ⎝⎛⎭⎪⎫2x +π3的图象是由y =sin 2x 的图象向左平移π3个单位长度得到的 8.若函数f (x )=⎩⎪⎨⎪⎧2x+2,x ≤1,log 2x -1,x >1在(-∞,a ]上的最大值为4,则a 的取值范围为( )A .[0,17]B .(-∞,17]C .[1,17]D .[1,+∞)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题是真命题的是( )A .若幂函数f (x )=x α过点⎝ ⎛⎭⎪⎫12,4,则α=-12B .∃x ∈(0,1),⎝ ⎛⎭⎪⎫12x>log 12xC .∀x ∈(0,+∞),log 12x >log 13xD .命题“∃x ∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1” 10.已知0<a <b <1,则下列不等式成立的是( )A.⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12bB .ln a >ln b C.1a >1b D.1ln a >1ln b11.已知函数f (x )=a x-⎝ ⎛⎭⎪⎫1ax 其中a >0且a ≠1,则下列结论正确的是( )A .函数f (x )是奇函数B .函数f (x )在其定义域上有零点C .函数f (x )的图象过定点(0,1)D .当a >1时,函数f (x )在其定义域上为单调递增函数12.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,下列四个结论正确的是( )A .f (x )是以π为周期的函数B .当且仅当x =π+k π(k ∈Z )时,f (x )取得最小值-1C .f (x )图象的对称轴为直线x =π4+k π(k ∈Z )D .当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.若扇形圆心角为120°,扇形面积为43π,则扇形半径为________.14.已知a >0,且a ≠1,log a 2=x ,则a x=________;a 2x+a -2x=________.15.已知lg x +lg y =2,则1x +1y的最小值是________.16.在角θ1、θ2、θ3、…、θ30的终边上分别有一点P 1、P 2、P 3、…、P 30,如果点P k的坐标为(sin(15°-k °),sin(75°+k °)),1≤k ≤30,k ∈N ,则cos θ1+cos θ2+cosθ3+…+cos θ30=________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.18.(12分)在平面直角坐标系xOy 中,角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,45,以角α的终边为始边,逆时针旋转π4得到角β. (1)求tan α的值; (2)求cos(α+β)的值.19.(12分)某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2 500万元,每生产x 百件,需另投入成本c (x )(单位:万元),当年产量不足30百件时,c (x )=10x 2+100x ;当年产量不小于30百件时,c (x )=501x +10 000x-4 500;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润y (万元)关于年产量x (百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?20.(12分)已知f (x )=log(3x+1)+12kx (x ∈R )是偶函数.(1)求k 的值;(2)若函数y =f (x )的图象与直线y =12x +a 有公共点,求a 的取值范围.21.(12分)在①函数f ⎝ ⎛⎭⎪⎫x -π3为奇函数;②当x =π3时,f (x )=3;③2π3是函数f (x )的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2,f (x )的图象相邻两条对称轴间的距离为π,________.(1)求函数f (x )的解析式;(2)求函数f (x )在[0,2π]上的单调递增区间.22.(12分)已知实数a >0,定义域为R 的函数f (x )=e xa +ae x 是偶函数,其中e 为自然对数的底数.(1)求实数a 值;(2)判断该函数f (x )在(0,+∞)上的单调性并用定义证明;(3)是否存在实数m ,使得对任意的t ∈R ,不等式f (t -2)<f (2t -m )恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.模块质量检测1.解析:依据函数y =2x是增函数,可得B ={x |2x>4}={x |x >2},则A ∩B ={x |2<x <3}. 答案:D2.解析:f (x )=e x+2x -3,函数单调递增,计算得到f (0)=-2<0;f (1)=e -1>0,故函数在(0,1)有唯一零点.答案:C3.解析:由函数y =1-x22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1. 答案:D4.解析:对数函数,底数大于1时,在x >0上增函数,不满足题意;指数函数,底数大于1时,在x >0上增函数,不满足题意;余弦函数,从最高点往下走,即x ∈[0,π]上为减函数;反比例型函数,在⎝ ⎛⎭⎪⎫-∞,12与⎝ ⎛⎭⎪⎫12,+∞上分别为减函数,不满足题意.故选C. 答案:C5.解析:①y =x ·sin x 为偶函数,它的图象关于y 轴对称,故第一个图象即是;②y =x ·cos x 为奇函数,它的图象关于原点对称,它在⎝ ⎛⎭⎪⎫0,π2上的值为正数,在⎝ ⎛⎭⎪⎫π2,π上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.答案:A6.解析:设现价为b ,原价为a ,则b =a (1+10%)2(1-10%)2=(1-0.01)2a <a ,故选A.答案:A7.解析:y =cos x 的图象向右平移π2个单位长度得到y =cos ⎝ ⎛⎭⎪⎫x -π2=sin x 的图象,故A 正确;y =sin x 的图象向右平移π2个单位长度得到y =sin ⎝ ⎛⎭⎪⎫x -π2=-cos x 的图象,故B 错误;y =sin x 的图象向左平移|φ|个单位长度得到y =sin(x +|φ|)=sin(x -φ)的图象,故C 错误;y =sin 2x 的图象向左平移π3个单位长度得到y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3=sin ⎝⎛⎭⎪⎫2x +2π3的图象,故D 错误.答案:A8.解析:易知f 1(x )=2x+2,x ≤1在(-∞,1]上单调递增,f 2(x )=log 2(x -1),x >1在(1,+∞)上单调递增.因为f (1)=4,f (17)=4,所以a 的取值范围为[1,17].答案:C9.解析:f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=4,∴α=-2,A 错误;在同一平面直角坐标系上画出y =⎝ ⎛⎭⎪⎫12x与y =log 12x 两函数图象,如图1所示.图1 图2由图可知∃x ∈(0,1),⎝ ⎛⎭⎪⎫12x>log 12x ,故B 正确;在同一平面直角坐标系上画出y =log 13x与y =log 12x 两函数图象,如图2所示.由图可知,当x ∈(0,1)时,log 12x >log 13x ,当x =1时,log 12x =log 13x ,当x ∈(1,+∞)时,log 12x <log 13x ,故C 错误;根据特称命题的否定为全称命题可知,命题“∃x ∈R ,sin x+cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1”,故D 正确.故选BD.答案:BD10.解析:因为0<a <b <1,y =⎝ ⎛⎭⎪⎫12x 为减函数,所以⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b,因为0<a <b <1,y =ln x为增函数,所以ln a <ln b <0,又因为y =1x在区间(-∞,0)上为减函数,在区间(0,+∞)上也为减函数,所以1ln a >1ln b ,同理可得,1a >1b,故选ACD.答案:ACD11.解析:f (x )=a x -⎝ ⎛⎭⎪⎫1a x =a x -a -x ,定义域为R ,f (-x )=a -x -a x=-f (x ),∴f (x )为奇函数,且f (0)=0,故选项A ,B 正确,选项C 错误;a >1,0<1a<1,y =a x,y =-⎝ ⎛⎭⎪⎫1a x 在R上均为增函数,f (x )在其定义域上为单调递增函数,所以选项D 正确.故选ABD.答案:ABD12.解析:函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x 的最小正周期为2π,画出f (x )在一个周期内的图象,可得当2k π+π4≤x ≤2k π+5π4,k ∈Z 时,f (x )=cos x ,当2k π+5π4<x ≤2k π+9π4,k ∈Z 时,f (x )=sin x ,可得f (x )的对称轴方程为x =π4+k π,k ∈Z ,当x =2k π+π或x =2k π+3π2,k ∈Z 时,f (x )取得最小值-1;当且仅当2k π<x <π2+2k π(k ∈Z )时,f (x )>0,f (x )的最大值为f ⎝ ⎛⎭⎪⎫π4=22,可得0<f (x )≤22, 综上可得,正确的有CD. 答案:CD13.解析:依题意可知,圆心角的弧度数为2π3,设扇形半径为r ,则12×2π3r 2=4π3,r=2.答案:214.解析:①由指对数的互化,log a 2=x ⇒a x=2;②a 2x+a -2x=(a x )2+1ax 2=22+122=174. 答案:217415.解析:由lg x +lg y =2得:xy =100,所以1x +1y =1100xy ⎝ ⎛⎭⎪⎫1x +1y =1100(x +y )≥150xy=15,当且仅当x =y =10时,取等号,故填15. 答案:1516.解析:P k (sin(15°-k °),sin(75°+k °)),即P k (sin(15°-k °),cos(15°-k °))由三角函数定义知cos θk =sin(15°-k °)cos θ1+cos θ2+cos θ3+…+cos θ30=sin 14°+sin 13°+…+sin(-14°)+sin(-15°)=sin 14°+sin 13°+…-sin 14°-sin 15° =-sin 15° =-sin(45°-30°)=cos 45°sin 30°-sin 45°cos 30° =2-64. 答案:2-6417.解析:由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 18.解析:(1)∵角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,45,∴tan α=45-35=-43. (2)以角α的终边为始边,逆时针旋转π4得到角β,∴β=α+π4.由(1)利用任意角的三角函数的定义可得cos α=-35,sin α=45,∴sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.∴cos(α+β)=cos ⎝ ⎛⎭⎪⎫2α+π4=cos 2αcos π4-sin 2αsin π4=22(cos 2α-sin 2α)=17250.19.解析:(1)当0<x <30时,y =500x -10x 2-100x -2 500=-10x 2+400x -2 500; 当x ≥30时,y =500x -501x -10 000x+4 500-2 500=2 000-⎝⎛⎭⎪⎫x +10 000x;∴y =⎩⎪⎨⎪⎧-10x 2+400x -2 500,0<x <30,2 000-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥30.(2)当0<x <30时,y =-10(x -20)2+1 500,∴当x =20时,y max =1 500;当x ≥30时,y =2 000-⎝⎛⎭⎪⎫x +10 000x≤2 000-2x ·10 000x=2 000-200=1 800,当且仅当x =10 000x,即x =100时,y max =1 800>1 500,∴年产量为100百件时,该企业获得利润最大,最大利润为1 800万元. 20.解析:(1)∵y =f (x )是偶函数,∴f (-x )=f (x ), ∴log 3(3-x +1)-12kx =log 3(3x+1)+12kx ,化简得log 3⎝ ⎛⎭⎪⎫3-x+13x +1=kx ,即log 313x =kx ,∴log 33-x =kx ,∴-x =kx ,即(k +1)x =0对任意的x ∈R 都成立,∴k =-1; (2)由题意知,方程log 3(3x+1)-12x =12x +a 有解,亦即log(3x+1)-x =a ,即log 3⎝ ⎛⎭⎪⎫3x+13x =a 有解, ∴log 3⎝ ⎛⎭⎪⎫1+13x =a 有解, 由13x >0,得1+13x >1,∴log 3⎝ ⎛⎭⎪⎫1+13x >0,故a >0,即a 的取值范围是(0,+∞). 21.解析:∵函数f (x )的图象相邻对称轴间的距离为π, ∴T =2πω=2π,∴ω=1,∴f (x )=2sin(x +φ).方案一:选条件①∵f ⎝ ⎛⎭⎪⎫x -π3=2sin ⎝⎛⎭⎪⎫x +φ-π3为奇函数, ∴f ⎝ ⎛⎭⎪⎫-π3=2sin ⎝⎛⎭⎪⎫φ-π3=0, 解得:φ=π3+k π,k ∈Z . (1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎪⎫x +π3; (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z , 得-56π+2k π≤x ≤π6+2k π,k ∈Z , ∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6, ∴函数f (x )在[0,2π]上的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6,⎣⎢⎡⎦⎥⎤76π,2π; 方案二:选条件②f ⎝ ⎛⎭⎪⎫π3=2sin ⎝ ⎛⎭⎪⎫π3+φ=3,∴sin ⎝ ⎛⎭⎪⎫π3+φ=32, ∴φ=2k π,k ∈Z 或φ=π3+2k π,k ∈Z , (1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎪⎫x +π3; (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z , 得-56π+2k π≤x ≤π6+2k π,k ∈Z , ∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6, ∴函数f (x )在[0,2π]上的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6,⎣⎢⎡⎦⎥⎤76π,2π. 方案三:选条件③ ∵23π是函数f (x )的一个零点, ∴f ⎝ ⎛⎭⎪⎫23π=2sin ⎝ ⎛⎭⎪⎫23π+φ=0, ∴φ=k π-2π3,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3; (2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z , 得-56π+2k π≤x ≤π6+2k π,k ∈Z , ∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6. ∴函数f (x )在[0,2π]上的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6,⎣⎢⎡⎦⎥⎤76π,2π. 22.解析:(1)因为定义域为R 的函数f (x )=e x a +a ex 是偶函数,则f (-x )=f (x )恒成立, 即e -x a +a e -x =ex a +a e x ,故⎝ ⎛⎭⎪⎫1a -a (e x -e -x )=0恒成立, 因为e x -e -x 不可能恒为0,所以当1a-a =0时,f (-x )=f (x )恒成立, 而a >0,所以a =1.(2)该函数f (x )=e x +1ex 在(0,+∞)上递增,证明如下 设任意x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫e x 1+1e x 1-⎝ ⎛⎭⎪⎫e x 2+1e x 2 =(e x 1-e x 2)+⎝ ⎛⎭⎪⎫1e x 1-1e x 2 =(e x 1-e x 2)+e x 2-e x 1e x 1e x 2=e x 1-e x 2e x 1e x 2-1e x 1e x 2, 因为0<x 1<x 2,所以e x 1<e x 2,且e x 1>1,e x 2>1;所以e x 1-e x 2e x 1e x 2-1e x 1e x 2<0,即f (x 1)-f (x 2)<0,即f (x 1)<f (x 2); 故函数f (x )=e x +1ex 在(0,+∞)上递增. (3)由(2)知函数f (x )在(0,+∞)上递增,而函数f (x )是偶函数,则函数f (x )在(-∞,0)上递减.若存在实数m ,使得对任意的t ∈R ,不等式f (t -2)<f (2t -m )恒成立.则|t -2|<|2t -m |恒成立,即|t -2|2<|2t -m |2,即3t 2-(4m -4)t +m 2-4>0对任意的t ∈R 恒成立,则Δ=(4m -4)2-12(m 2-4)<0,得到(m -4)2<0,故m ∈∅,所以不存在.。