动叶可调式轴流风机动叶调节原理图1

合集下载

电站轴流式风机的失速喘振与防治

电站轴流式风机的失速喘振与防治
1 轴流风机的失速与喘振现象
轴流式风机当调节叶片(动叶调节风机为动叶片,静叶调节风机为入口调节叶片)角度固定在某一位置时,在正常工作区域内,风机的压力随风机流量的减小而增加,当流量减小到某一值时压力达到最大、当流量进一步减小时,风机压力和运行电流突然降低,振动和噪音增大这一现象被称为风机失速。 风机失速后有两种不同表现,一是风机仍能稳定运行,即压力、风量、电流保持相对稳定,但噪音增加;风机及其进、出口气流压力承周期性脉动;风机振动常常比正常运行高。这种现象称之为旋转失速。另一是风机即压力、风量、电流大幅度波动,噪音异常之大,风机不能稳定运行,风机可能很快遭受灭性损坏,这种现象称之为喘振。
图8 轴流风机防失速装置
图9 轴流风机有无防失速装置性能曲线比较
9 防止运行中轴流风机失速措施
1)运行人员应了解风机所在系统的阻力构成,特别是那些阻力较大又易于堵塞的设备(如预热器、暖风器、消声器等)的正常阻力范围。 2)在实际运行中若这些设备阻力超出了范围可能导致风机失速时,应控制该风机的出力,并及时采取措施消除堵塞。
从两次风机失速时的开度均大于停磨后两风机稳定运行时的开度(参见下表)说明:风机失速主要原因是在停磨过程中,在减小磨煤机通风量的同时,未能及时将一次风机的出力降到应有值,即一次风机入口门调节不到位,造成总一次风量低于两台一次风机当时开度下的失速流量,从而导致一台风机失速。
停磨过程中一次风机失速时与停磨后稳定运行时风机有关参数比较
2) 在轴流风机的进出口之间加旁路再循环风(烟)道;当风机失速时,打开旁路风道门,使一部分风(烟)量从风机出口流向风机入口,即使一部分风(烟)量在风机内循环,以增加风机的风(烟)量,使风机脱离失速区运行。但这增加了风机的耗功,是很不经济的。
加装防失速装置 为消除轴流风机的失速,多年来学者们进行了大 量的研究和实验工作,并提出了一些能把失速区向小 风量方向推移,戓者把压力曲线上的波谷减弱直到完 全消除的办法。但戓因结构复杂,戓因对风机效率影 响大,或噪音问题而未能得到广泛应用。直到1974年 原苏联伊万诺夫提出了一种简单有效的装置--空气分 流器来消除旋转失速,并在矿井局扇上获得广泛应 用。取得了美、英、法、原西德、印度、丹麦等多国 专利后,在轴流风机上加装防失速装置才在静调轴流 风机上得到较广泛使用。如德国kkk公司的KSE、我国 淮南煤碳学院和西安热工院均成功地设计出了类似的 防丢速装置并分别应用到矿井和电站轴流风机上。下 面以西安热工院开发的该型防失速装置为例进行介绍

浅析动叶可调轴流引风机并联运行抢风问题及解决措施

浅析动叶可调轴流引风机并联运行抢风问题及解决措施

浅析动叶可调轴流引风机并联运行抢风问题及解决措施摘要:动叶可调轴流式锅炉引风机是烟风道系统中的关键组成部分,其高质量的运行对锅炉高质量、高效率的运行具有重要的意义。

在锅炉引风机运行的过程中,一旦出现抢风现象,会对系统内部的相关设备造成严重的损伤,严重制约锅炉及整个系统的稳定运行,对火电厂的平稳发展带来很大的影响。

文章对火电厂锅炉引风机抢风问题进行了分析,并阐述了几点具有针对性的解决途径,意在为促进火电厂更稳定的发展提供参考与借鉴。

关键词:火电厂;动叶可调轴流引风机;并联运行抢风问题;解决途径前言:动叶可调轴流式锅炉引风机是火电厂实际运行中的一种回转设备系统,目前由于其效率高,便于调节的优点已经在火电厂得到了广泛的应用,其主要是凭借着机械中叶片的旋转做功提高气体压力并进行烟气的排送,进而为烟风道系统提供充足的动力支撑,为火电厂的高质量、高效率的运行创造有利条件。

但是,在运行的过程中,一旦出现抢风问题,会导致设备运行状态不稳定的出现,设备会出现振动加剧、噪音升高,出力不足等问题,严重影响了锅炉及整个电厂系统的稳定运行。

现阶段,火电厂如何采取与有效途径,解决动叶可调轴流式锅炉引风机的抢风问题,已逐渐成为火电厂发展过程中面临的巨大挑战。

1、动叶可调轴流式引风机抢风的原理要理解动叶可调轴流式引风机为什么会出现抢风的问题,就必须从其原理上进行分析。

下图为某项目动叶可调轴流式引风机的性能曲线图,可调轴流式引风机由于其运行曲线为驼峰形曲线,这一特点决定了风机存在不稳定区。

图中的马鞍形曲线我们称之为失速线,之所以称其为失速线,是因为落在该失速线左上方的工况点,都是不稳定工况,风机会出现振动加剧、噪音升高,出力不足等问题。

所谓抢风,是指并联运行的两台引风机,突然的其中1台引风机电流上升,另一台电流突然下降。

在这个时候,如果关小流量变大的那台引风机的叶片开度想要平衡风量时,会使得另一台之前流量偏小的风机跳到更大流量运行,根本无法使两台引风机的风量达到平衡状态。

动叶可调轴流引风机的工作原理

动叶可调轴流引风机的工作原理

第四节引风机一引风机的结构特点动叶可调轴流式送风机一般包括:进口消音器、进口膨胀节、进口风箱、机壳、转子、扩压器、联轴器及其保护罩、调节装置及执行机构、液压及润滑供油装置和测量仪表、风机出口膨胀节、进、出口配对法兰。

电动机通过中间轴传动风机主轴。

1 进气箱、扩压器进气箱和进气管道,扩压器和排气管道分别通过挠性进气膨胀节和排气膨胀节连接;进气箱和机壳、机壳与扩压器间用挠性围带连接。

这种连接方式可防止振动的传递和补偿安装误差和热胀冷缩引起的偏差。

进气箱中心线以下为成弧形结构,减小进气箱进气损失,并相对减小了气流的脉动,有利于提高风机转子的做功效率。

进气箱、扩压器、机壳保证相对轴向尺寸,形成较长的轴向直管流道,使风机气流流动平稳,减少了流动损失,提高了抗不稳定性能,保证了风机装置效率。

进气箱和扩压器均设有人孔门,便于检修。

进气箱有疏水管。

2 机壳机壳具有的水平中分面以及机壳前后的挠性围带连接,很容易拆卸机壳上半,便于安装和检修转子部。

3 转子转子由叶轮、轴承箱、中间轴、液压调节装置等组成。

轴承箱为整体结构,借助两个与主轴同心的由圆柱面内置于机壳内筒中的下半法兰上,轴承箱两个法兰的下半部分与机壳内圆筒的相应法兰用螺栓固定。

机壳上半内筒的法兰紧压轴承箱相应法兰。

在主轴的两端各装一个滚柱轴承用以承受径向力,为了承受轴向力,在近联轴器端装有一个向心推力球轴承,承担逆气流方向的轴向力。

轴承外侧装有氟橡胶制的径向轴密封,防止漏油。

轴承的润滑和冷却借助于轴承箱体内的油池和外置的液压润滑联合油站。

为防止烟气温度的影响,对主轴承箱外表面及油管进行附加冷却,在风机一侧装有冷却(密封风机)。

置于整体式轴承箱中的主轴承为油池强制循环润滑。

当轴承箱油位超过最高油位时,润滑油将通过回油管流回油站。

润滑油和液压油均由25 l/min的公用油站供油。

叶轮叶轮轮壳采用低碳合金钢(后盘及承载环为锻件)通过多次焊接后成型,强度、刚度高,叶轮悬臂装在轴承箱的轴端。

轴流式一次风机动叶故障分析及其预防处理措施

轴流式一次风机动叶故障分析及其预防处理措施
4、在此过程中及时调整二次风,维持差压正常。可以切至定压运行或者手动控制汽机主控手操器,保持压力的相对平稳。
5、待负荷下降至150MW左右,准备停运1A一次风机前手动开大#1B一次风机动叶,与副值保持联系,注意汽包水位。(汽包水位因1A一次风机停运后炉膛燃烧减弱会迅速下降,之后因1B一次风机出力炉膛燃烧增加水位会上升,通过曲线看出#1B一次风机出风后水位的上升很快,因此在手动增大#1B一次风机动叶时不到大幅度增大,防止水位上升太多),提高凝结水压力设定值,防止备用凝泵自启。
CRT上停运一次风机后,立刻增大1B一次风机动叶开度,保证一次风压正常(必要时就地手动关严#1A一次风机出口电动挡板),维持炉膛燃烧稳定。控制汽包水位正常。
6、待汽包水位,负荷、主汽压力、一次风压力稳定后,做好相应安措,联系检修处理。
若在以上操作过程中,在停1A一次风机前,1A一次风机应“过电流保护动作”跳闸,应立刻增大1B一次风机动叶开度(注意#1B一次风机参数如振动,电流、温度上升速度等)维持燃烧稳定,注意控制汽包水位。同时RB动作后要及时将减温水调节阀开启,防止超温。
异常现象及处理经过:
事件回顾分析:
(1)1月3日,#1A一次风机动叶执行机构曲柄脱落,与电动执行机构分离,就地动叶输出轴已开至最大,因此导致#1A一次风机电流上升至166A,最大时达到185A;1A一次风机跳闸,一次风机RB动作,负荷降至144MW左右各参数相对稳定后复位一次风机RB,后负荷稳定在165MW左右。
3结论
2、液压缸反馈原理
当液压缸向右移动时,定位轴被带动同时向右移动。但由于滑块不动,单面齿条向左移动。这样又使伺服阀将油道兰色与红色油道的油孔关闭,液压油缸随之处在新的平衡位置不再移动。而动叶片亦在关小的状态下工作,这就是反馈过程。在反馈时齿轮带动指示轴旋转,将动叶片关小的角度显示出来。

动叶调节原理

动叶调节原理

动叶调节原理目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。

豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-詛油孔 13-液压缸连接盘14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳 21-连接螺栓(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。

国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W 形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。

调节阀芯:它是一负遮盖换向阀。

在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。

动叶调节轴流风机动调机构详解

动叶调节轴流风机动调机构详解

目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。

豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉2-旋转油封3-拉叉接头4-限位螺栓5-调节阀阀芯6-调节臂部7-错油孔8-错油孔9-弹簧10-活塞11-液压缸缸体12-诅油孔13-液压缸连接盘14-调节盘15-滑动衬套16-旋转油封连接螺栓17-端盖18-连接螺栓19-调节阀阀体20-风机机壳21-连接螺栓(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。

国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。

调节阀芯:它是一负遮盖换向阀。

在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。

动叶可调轴流风机检修

动叶可调轴流风机检修

添加 标题
添加 标题
添加 标题
添加 标题
调节杆和曲柄的 配合面必需清理 干净,压紧螺栓 也应拧紧到规定 的力矩,此部位 为重点部位,因 为它是造成叶片
漂移的根源.
滑块在滑块的端 部装有弹簧卡环
自锁螺母的螺纹 不做处理,但在 安装时应加稀油, 自锁螺母最多只
能拧紧两次.
调节杆和叶柄配 合面在安装时应 用丙酮溶液将其 擦拭干净,去除 表面的油污,以
叶柄支撑用于平衡叶轮转动中产生的离心力.
导向轴承保证叶柄的对中性,同时还能承受一定的离心 力.支撑和导向轴承应能灵活转动,如个别支撑轴承损坏后 将不能平衡离心力,那样可能造成叶轮与风壳发生摩擦,它 们还对叶片开度的调节有影响,在修理过程中,也应把它们 纳入重点检查项目,如有异常的应及时更换.
○ 叶柄螺母内装有叶柄支撑轴承为FAG滚珠推力轴承,
在叶柄轴衬下方 有一道FEY密 封环,用于轴衬 和轮毂间的密封
此凹槽和叶片底 部突起部分配合, 起限位作用
叶柄轴衬与叶柄盘配 合处,在装配时应涂 一薄层抗咬丝扣脂
M 12X1.25X40 叶片螺孔
添加标题
一次风机叶片,叶片周 向上没有设置密封槽
添加标题
在安装叶片时,在此放置 一道聚四氟乙烯和O形圈, 来构成密封系统,且聚四 氟乙烯在O形圈之上
端盖连接螺栓M16X60,10.9工作等级
○ 第一级叶轮 在第一级叶轮上有用于传递原动力的弹性联轴器,它具有平衡作 用,能够平衡运行时所引起的轴挠度和轴向变形所带来的误差 此联轴器的型号为01Form2501, ¢470, Y向开口为 31.5mm
○ 联轴器传动盖连接螺栓M24X70,拧紧力矩700NM
导向轴承的回装
碟形弹簧的回装

风机动叶调节机构及工作原理

风机动叶调节机构及工作原理

风机动叶调节机构及工作原理我公司#5、6炉引、送风机均采用动叶可调轴流式风机。

#7、8炉送风机也采用动叶可调轴流式风机。

为了充分掌握动叶可调轴流式风机的动叶调节机构和工作原理,首先我们要了解动叶可调轴流式风机的有关特性。

一.引、送风机的结构:引、送风机由吸入烟风道、进气室、扩压器、叶轮、主轴、动叶调节机构、传动组、自动控制机构等部分组成。

二.引送风机的工作原理:引送风机的工作原理是基于机翼型理论:当气体以一个攻角α进入叶轮,在翼背上产生一个升力,同时必定在翼腹上产生一个大小相等方向相反的作用力使气体排出叶轮呈螺旋形沿轴向向前运动。

与此同时,风机进口处由于差压的作用,使气体不断地被吸入。

动叶可调轴流式风机,攻角越大,翼背的周界越大,则升力越大,风机的压差越大,风量则小。

当攻角达到临界值时,气体将离开翼背的型线而发生涡流,此时风机压力大,幅度下降,产生失速现象。

三.引送风机相关参数:四.引、送风机液压油系统图:五.引、送风机动叶调节机构工作原理:从液压调节机构来看,液压调节结构可分为两部分:一部分为控制头,它不随轴转动。

另一部分为油缸及活塞,它们与叶轮一起旋转,但活塞没有轴向位移,叶片装在叶柄的外端。

每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一定角装设,两者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。

液压调节机构的调节原理大致如下:1.当讯号从控制轴输入要求“+”向位移时分配器左移、压力油从进油管A经过通路2送到活塞左边的油缸,由于活塞无轴向位移,油缸左侧的油压就上升,使油缸向左移动,带动调节连杆偏移,使动叶片向“+”向位移。

与此同时,调节杆(反馈杆)也随着油缸左移,而齿条将带动控制轴的扇齿轮反时针转动,但分配器带动的齿条却要求控制轴的扇齿做顺时针转动因而调节杆就起到“弹簧”的限位作用。

当调节力大时,“弹簧”限不住位置,所以叶片仍向“+”向位移,即为叶片调节正终端位置,但由于“弹簧”的牵制作用,在一定时间后油缸的位移自动停止,由此可以避免叶片调节过大,防止小流量时风机进入失速区。

轴流风机的运行调节详解

轴流风机的运行调节详解

H 风机在不同开度下的性能曲线
风道性能曲线
Q 图2:风道性能曲线图
3.轴流风机的调节

轴流风机利用动叶安装角的变化,使风机的性能曲 线移位。Q-H性能曲线与不同动叶安装角与风道性能曲线, 从图中可以看出得出一系列的工作点。若需要流量及压头 增大,只需要增大动叶安装角;反之只需要减小动叶安装 角。 • 轴流风机的动叶调节,调节效率高,而且又能使调节后的 风机处于高效率工作区工作。采用动叶调节的轴流风机还 可以避免在小流量工况下落在不稳定工况区内。
P
B
A
G
K
C E
D
F
Q QB QE QA QF
风机喘振原理图说明:
当风机在曲线单向下降部分时,其工作是稳定的,一直到工作 点K。但当风机负荷点低于QK时,进入不稳定区工作。此时,只要 有微小扰动使管路压力稍稍提升,则由于风机流量大于管道流量 (QK>QG),管路工作点向右移动到A点。当管路压力超过风机正 向输送的最大压力PK时,风机工作点改变到B点(A、B等压), 风机抵抗管路压力产生的倒流做功。此时,管路中的气体向两个方 向输送,一方面供给负荷需要,一方面倒送给风机,故管路压力迅 速降低,到D点时停止倒流。但由于D点风机流量仍小于管路流量 (QC<QD),所以管路压力仍下降到E点,风机的工作点瞬间跳至 F点(E、F等压),此时风机输出正向流量QF。由于QF大于管路 输出流量,此时管路风压升高,直至K点,上述现象则重复发生, 形成风机的喘振。
2、喘振
轴流风机在不稳定工况区运行时,还会发生流量、全压和电流的 大幅波动,气流会发生往复流动,风机及管道会产生强烈的振动,噪 声显著增高,这种不稳定工况称为喘振。 喘振的发生会破坏风机与管道设备,威胁风机及整个系统的安全 性。 对于节流调节的风机或系统阻力过大时的,风机产生的风量无法 满足的风道的需求,此时,风机压头会下降,而由于系统较大,在这 一瞬间风道中的压力仍较大,且比风机产生的压头高,于是气流发生 倒流,由风道流向风机。随后,风道中的压力开始迅速下降,当风道 中的压力足够低时,风机又开始输出风量,风压升高。但很快又会回 到当初的工作状态,接着又发生气流的倒流,如此往复循环,这种循 环频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了 喘振。 风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机 发生强烈的振动,噪声增大,而风压不断晃动。风机的容量与压头越 大,则喘振时的危害也越大。

浅谈锅炉动叶可调轴流式一次风机的并列运行

浅谈锅炉动叶可调轴流式一次风机的并列运行

的风机将 使效 率受 损 ,选 容量小 的风 机又 不能满 足 负荷 的要 求 。动 叶可调 式轴 流 风机能 以入 口动 叶的 角度 变化 来适 应风量 及风压 的变 化 ,并 同时保证 风
机 高效率 运行 。
双级 ,卧式布置 ) 。一 次风机人 口接大气 ,出 口分
成 2路 ,一 路经 三分仓 回转 式 空气预 热器 至热 风母 管 ,另一 路 直 接接 至 冷 风母 管 ,每 台磨煤 机 从 冷 、 热风母 管 中获得 所需 参数 的一 次风 。通过调 整 一次 风风量 来控 制磨 煤机 出力 ;调 整 一次 风 的冷 、热风 配 比控 制磨 煤 机 出 口温 度 ,随着 锅 炉 负荷 的增 加 、 煤 量 的增 加 ,动 叶可调 轴 流式一 次风 机 的出力 逐渐
第1 5 卷( 2 0 1 3 年 第7 期)
支持 轴承轴 向定 位 ,只能旋 转 。叶柄通 过调节 杆与 液压 机构 的液压 缸相 连 。液压 调节 机构 分为 不随轴 转动 的控 制头及 液压 缸和 活塞 2部分 。液压缸 和活 塞及 叶 轮一起旋 转 ,活塞 由轴套 及活塞 的 凸肩被轴 向定位 而不能 轴 向移 动 ,而液压 缸可 以在活塞 上轴
第l 5 卷( 2 0 1 3 年 第7 期)
电力安全技术
A而
浅 谈锅炉动 叶可调轴流式一次风机 的 并列运行
梁俊 龙
( 大唐 景泰 发 电厂 ,甘肃 白银 7 3 0 4 0 8 )
[ 摘
要] 针对 轴流风 机运行特 点、 动叶调 节原理和 动叶调 节机构容 易 出现 的问题 ,汇总 了一
一 一
2 动叶可调式轴 流风机 的特点
( 1 )流量大、风压低,为高 比速风机。它利用

电厂锅炉动叶可调轴流送风机失速分析及处理

电厂锅炉动叶可调轴流送风机失速分析及处理
岛式 布置 。锅 炉 2台送 风机 为沈 阳鼓 风机 厂生 产 的 动 叶可 调 轴 流风 机 , 号 为 A N一2 7/4 0 流 量 型 S 1010 , 191 /, 压 86 0P , 速 l 0r n 电机 额 6.6m3 全 s 4 a转 49 mi, /
a 0 ) 图 1a 所 示 的流 向流 入时 , 分成 上 下两 =。 按 () 它
42
广 西 电 力
GUANGXI EL CT C P W ER E RI O
21 0 2年 6月
Vol3 N O. -5 3
受损 。如果作用在叶片上 的交变力频率接近或等于 叶片的固有频率 , 将发生共振 , 导致叶片断裂。 为此 , 轴流式风机一般均装设有失速监测和报警装置。
风机的压头 、 流量 、 电流只会大幅降低 , 不会脉动。 但 是, 两者又是相关的, 失速与喘振都发生在流量 一压 力性能 曲线峰值 以左的不稳定 区域 ,出现喘振 的不
稳定运行工况 内必定伴有失速 。 由于失速叶片的前后压力发生变化 ,并在叶片 上 产生 交 变作 用力 ,这 种交 变 力会 使 叶片 产生 疲 劳
2 1 年 6月 02
V0 .5 1 NO 3 3 .
广 西 电 力
GUANGXI EI T C P 正C RI OW E R
41
理 电厂锅炉动叶可调轴流送风机失速分析及处
An ls n rame to p e oso ol du tbe M o i ayi a d T e t n fS ed L s fB i r A j s l s e a v ng
s e dl s f e a .nod r o rv n l a n r M se dls o js be o g l eaM o d c e r c e t a sd p e s o n I re e e tI b om e s f du t l m  ̄n a o t f h tp te p o a a b d x f wf o r u e h i a i n ue l a re n t tp c d c

ASN动叶可调轴流式送风机动调卡涩原因分析

ASN动叶可调轴流式送风机动调卡涩原因分析

tr f dutbem vbe l eai o re rf f ,aa zsa dd a i tc fm vbeba e ueo 1 ajs l oa l —ba xa f w f cdda n nl e n el wt s ko oal l A a d l l o ta y s h u d ajs r f h re rffnadw rsot es l peet em aue s e r c rt a p focd dut ef cdda n ok u ai e r n v esrs f e ef esmet eo f e e ot o t a f b v i a re n o h y r
Ca s n ls f v beba esu k o N a jsa l u ea ayi o a l ld tc fAS du tbe s mo
mo a l v b e—bl de a i lfo f r e r f a a x a w o c d d a tf n l
个 沿轴 向的推力 。此 叶 片 的推力 对 空 气做 功 , 空 使 气 的能 量增 加 并 沿 轴 向排 出 。叶 片 连续 旋 转 使轴 流式 风机 连续工 作 , 风机结构 如 图 1 示 。 送 所
第3 2卷
第 5期
黑 龙 江 电 力
21 00年 l O月
A N动 叶可 调 轴流 式 送风 机 动调 卡涩原 因分 析 S
马士 东
( 徽 华 电宿 州 发 电有 限公 司 ,安徽 宿 州 24 0 ) 安 3 1 1

要 :介绍 了送风机在电厂发挥的作用 , 阐述了某 电厂 1 A动叶调整式 轴流避风机 的工作 原理 、 结构 , 并针对该送
风 机 动Leabharlann 叶 调节 机 构 出现 的卡 涩 现 象 进 行 了 分 析 和 处 理 , 订 了 切 实 可 行 的 预 防 措 施 , 制 以供 使 用 同类 型 送 风机 者 参

火电轴流风机动叶调节原理(目前看过最通俗易懂的)

火电轴流风机动叶调节原理(目前看过最通俗易懂的)

TLT 轴流式风机动叶片液压调节机构的工作原理1.叶片角度的调整若将风机的设计角度作为0º,把叶片角度转在-5º的位置(即叶片最大角度和最小角度的中间值,叶片的可调角为+20º~-30º)。

这时将曲柄轴心和叶柄轴心调到同一水平位置,然后用螺丝将曲柄紧固在叶柄上,按回转方向使曲柄滑块滞后于叶柄的位置(曲柄只能滞后而不能超前叶柄),全部叶片一样装配。

这时当装上液压缸时,叶片角处于中间位置,以保证叶片角度开得最大时,液压缸活塞在缸体的一端;叶片角关得最小时,液压缸活塞移动到缸体的另一端。

否则当液压缸全行程时可能出现叶片能开到最大,而不能关到最小位置;或者相反只能关到最小而不能开到最大。

液压缸与轮毂组装时应使液压缸轴心与风机的轴心同心,安装时偏心度应调到小于0.05mm,用轮毅中心盖的三角顶丝顶住液压缸轴上的法兰盘进行调整。

当轮毂全部组装完毕后进行叶片角度转动范围的调整,当叶片角度达到+20º时,调整液压缸正向的限位螺丝,当叶片达到-30º,调整液压缸负向的限位螺丝,这样叶片只能在-30º~ +20º的范围内变化,而液压缸的行程约为78~80mm。

当整个轮毂组装完毕再在低速(320r/min)动平衡台上找动平衡,找好动平衡后进行整机试转时,其振动值一般为0.01mm左右。

2.平衡块的工作原理TLT 风机在每个叶柄上都装有约6kg 的平衡块,它的作用是保证风机在运行时产生一个与叶片自动旋转力相反、大小相等的力。

平衡块的计算相当复杂,设计计算中总是按叶片全关时(-30º)来计算叶片的应力,因为叶片全关时离心力最大,即应力最大。

所以叶片在运行时总是力求向离心力增大的方向变化。

有些未装平衡块的送风机关时容易,启动时打不开就是这个原因。

平衡块在运行中也是力求向离心力增大的方向移动,但平衡块离心力增加的方向正好与叶片离心力增加的方向相反而大小相等,这样就能使叶片在运行时无外力的作用,可在任何一个位置保持平衡,开大或关小叶片角度时的力是一样的。

锅炉风机学习

锅炉风机学习

二、一次风机与送风机的不同
一次风机选用双级动 叶可调轴流式风机
三、引风机
我公司一期引风机选用的是成都电力机械厂的AN系列静叶可 调子午加速轴流风机,系引进德国KKK公司技术 。
1—联轴器 2—轴承座 3—主轴 4—进气箱 5—进口导叶调节器 6—进口集流器 7—机壳 8—叶轮 9—后导叶 10—扩压器
一、轴流式风机的工作原理及结构
轴流式风机是由于流体从轴向流入叶轮并沿轴向流出而得 名。其工作原理是基于叶翼型理论:
气体由一个攻角α 进入叶轮,在翼背上产生一个升力,同 时在翼腹上产生一个大小相等方向相反的作用力,使气体排出 叶轮呈螺旋形沿轴向向前运动。与此同时,风机进口处由于压 差的作用,使气体不断地被吸入。
每个主轴承的测温系统各由三只铂热电阻温度计,可以 现场观察和遥测,温度控制带有报警装置功能,当轴承 温度高于设定值时,可立即发出报警信号,及时保护轴 承不致烧损。在主轴承箱壳体上装有振动检测传感器, 可以把风机振动值反映到中控室,使运行人员随时掌握 风机的运行状态。
5.联轴器
TLT风机的半挠性联轴器(三叠片式)是一种能补偿安 装与运行偏差(轴偏差和轴向变动等)且起自平衡作用的 联轴器。
扩压筒
3.叶轮
叶轮是风机的主要部件之一,气体通过叶轮的旋 转获得能量,然后离开叶轮作螺旋线的轴向运动。
该风机叶轮为焊接结构,这种叶轮比起铸造轮毂 可承受较大的离心应力,因而可以提高转速,缩小风 机尺寸。叶轮结构如图 9-3-2所示,由动叶片、轮毂、 叶柄、推力轴承、滑块、平衡
叶轮(示意)
前导叶调节机构
风机的失速和喘振
风机的失速:
当风机处于正常工况工作时,冲角等于零,而绕翼型的 气流保持其流线形状,当气流与叶片进口形成正冲角时,随 着冲角的增大,在叶片后缘点附近产生涡流,而且气流开始 从上表面分离。当正冲角超过某一临界值时,气流在叶片背 部的流动遭到破坏,升力减小,阻力却急剧增加,这种现象 称为“旋转脱流”或“失速”。如果脱流现象发生在风机的 叶道内,则脱流将对叶道造成堵塞,使叶道内的阻力增大, 同时风压也随之而迅速降低。

豪顿动叶可调轴流风机介绍

豪顿动叶可调轴流风机介绍
有各种应用的经验。 在C-位增压风机处于世界领先水平。 (在电厂中最困难的风机:
214
德国:
252
日本:
133
美国:
211
大同 电厂
600 MW燃煤机组, 水平A-位轴流增压 风机。 ANN-5300/2500
5300
1900
提问?
特殊设计要求
提高对在美国运行的28个大型引风机的调查,风机的可利用率 达到99.8%以上。这是对风机运行超过100万个小时的统计。
工厂试验
• 轴承总成进行全速/全负荷性能 试验
• 调节试验 • 调节装置试验 • 轮毂平衡 • 每个叶片进行平衡 • 液压缸压力试验
经验
1951年第一台轴流风机. 至今为止超过2100台轴流风机. 在日本,美国,中国,欧洲等35个国家 有业绩。
98 7
1 2 6 54 3
不同的风机性能计算标准
模型风机尺寸 参照面积 放大因子 测量误差 制造误差
AMCA
VDI2044
所有豪顿的轴流风机所采用的标准是AMCA
BS848
风机型号
AN N - 4000 / 2000 B ; 710
转速以 rpm 表示 轮毂形式 轮毂直径 mm 叶轮直径 mm N = 单级 ; T = 双级 AN = 轴流,加大的入口箱 AS = 轴流,标准的入口箱
轴流风机的形式
Variax® ANN 单级风机
压力从 300 到 12000 Pa 流量从 25 到 1100 m3/s
Variax® ANT 双级风机
压力从 1500 到 25000 Pa 流量从 15 到 1175 m3/s
单级轴流风机
扩压器
叶轮外壳
叶片

动叶可调轴流式风机振动大的原因分析及控制措施

动叶可调轴流式风机振动大的原因分析及控制措施

动叶可调轴流式风机振动大的原因分析及控制措施摘要:动叶可调轴流式风机在电力生产中的应用非常普遍,也起到非常重要的作用,但在风机运行过程中,经常存在风机振动过大的问题,这不仅影响风机的效率,缩短设备的使用寿命,更加影响电力生产的安全稳定。

因此本文首先分析了动叶可调轴流式风机振动大的原因,进而有针对性地提出相应的故障处理与解决措施,进一步提高风机的可靠性,确保风机安全、高效运行。

关键词:轴流式风机;振动大;措施1.前言动叶可调轴流式风机的叶片大多采用机翼扭曲型,其工作原理是当叶轮旋转时,气体从进风口轴向进入叶轮,受到叶轮上叶片的推挤而使气体的能量升高,然后流入导叶。

导叶将偏转气流变为轴向流动,同时将气体导入扩压管,进一步将气体动能转换为压力能,最后引入工作管路。

动叶可调轴流式风机能够根据实际负荷的需求调节叶片的开度,以满足不同工况下对风量的需求。

其优点是适用于低压头大流量工况,体积小,占地少;在额定工况下,效率比其他类型风机高;如果采用动叶可调的,则在不同工况下也具有较高的效率。

但动叶可调轴流式风机在运行过程中,经常发生振动大的问题,给风机运行带来较大的威胁。

下文重点对其原因进行了分析,并提出解决方案。

2.振动大的原因分析2.1 质量不平衡导致的风机振动过大动叶可调轴流式风机振动过大的原因多种多样,其中最主要的原因是转子质量不平衡。

由于质量不平衡导致风机转子产生了重心的移动,此时转子质量中心与几何中心不重合,产生的离心力无法相互抵消,致使转子发生振动。

在风机金属部件的传播下,轴流式风机会产生设备的整体振动,同时伴有一定幅度的晃动与噪声。

轴流式风机质量不平衡问题产生的主要因素在于以下方面:(1)风机叶片磨损或者由于腐蚀与其他形式的损耗,导致的叶片形状、密度或质量发生变化,产生叶片质量不均匀而造成风机大幅度振动;(2)风机叶片表面积压灰尘、油垢或者其他物质,导致风机叶片质量发生变化,产生质量不均匀问题;(3)风机叶片较薄,在设备运转的过程中,由于承受了过大的负荷与压力,导致风机叶片发生松脱,或者叶片无法承受高速运转的压力,产生形变问题,导致质量不平衡而产生较大的振动[1];(4)轴流式风机叶片没有紧固产生的质量失衡问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动叶可调式轴流风机动叶调节原理图
改变动叶安装角是通过动叶调节机构来执行的,它包括液压调节装置和传动机构。

液压缸内的活塞由轴套及活塞轴的凸肩被轴向定位的,液压缸可以在活塞上左右移动,但活塞不能产生轴向移动。

为了防止液压缸在左、右移动时通过活塞与液压缸间隙的泄漏,活塞上还装置有两列带槽密封圈。

当叶轮旋转时,液压缸与叶轮同步旋转,而活塞由于护罩与活塞轴的旋转亦作旋转运动。

所以风机稳定在某工况下工作时,活塞与液压缸无相对运动。

活塞轴的另一端装有控制轴,叶轮旋转时控制轴静止不动,但当液压缸左右移动时会带动控制轴一起移动。

控制头等零件是静止并不作旋转运动的。

叶片装在叶柄的外端,每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一规定的角度装设,二者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。

动叶调节机构被叶轮及护罩所包围,这样工作安全,避免脏物落入调节机构,使之动作灵活或不卡涩。

当轴流送风机在某工况下稳定工作时,动叶片
也在相应某一安装角下运转,那么伺服阀将油道①与②的油孔堵住,活塞左右两侧的工作油压不变,动叶安装角自然固定不变。

当锅炉工况变化需要减小调节风量时,电信号传至伺服马达使控制轴发生旋转,控制轴的旋转带动拉杆向右移动。

此时由于液压缸只随叶轮作旋转运动,而调节杆(定位轴)及与之相连的齿条是静止不动的。

于是齿套是以B点为支点,带动与伺服阀相连的齿条往右移动,使压力油口与油道②接通,回油口与油道①接通。

压力油从油道②不断进入活塞右侧的液压缸容积内,使液压缸不断向右移动。

与此同时活塞左侧的液压缸容积内的工作油从油道①通过回油孔返回油箱。

由于液压缸与叶轮上每个动叶片的调节杆相连,当液压缸向右移动时,动叶的安装角减小,轴流送风机输送风量和压头也随之降低。

当液压缸向右移动时,调节杆(定位轴)亦一起往右移动,但由于控制轴拉杆不动,所以齿套以A为支点,使伺服阀上齿条往左移动,从而使伺服阀将油道①与②的油孔堵住,则液压缸处在新工作位置下(即调节后动叶角度)不再移动,动叶片处在关小的新状态下工作。

这就是反馈过程。

在反馈过程中,定位轴带动指示轴旋转,使它将动叶关小的角度显示出来。

若锅炉的负荷增大,需要增大动叶角度,伺服马达使控制轴发生旋转,于是控制轴上拉杆以定位轴上齿条为支点,将齿套向左移动,与之啮合齿条(伺服阀上齿条)也向左移动,使压力油口与油道①接通,回油口与油道②接通。

压力油从油道①进入活塞的左侧的液压缸容积内,使液压缸不断向左移动,而与此同时活塞右侧的液压缸容积内的工作油从油道②通过回油孔返回油箱。

此时动叶片安装角增大、锅炉通风量和压头也随之增大。

当液压缸向左移动时,定位轴也一起往左移动。

以齿套中A为支点,使伺服阀的齿条往右移动,直至伺服阀将油道①与②的油孔堵住为止,动叶在新的安装角下稳定工作。

相关文档
最新文档